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Abstract

Let k denote a k-element chain, & > 3. Let M denote the clone
generated by all unary isotone operations on k£ and let Pol < denote
the clone of all isotone operations on k. We investigate the interval
of clones [M, Pol <]. Among other results, we describe completely
those clones which contain only join (or meet) homomorphisms, and
describe the interval completely for k& < 4.

1 Introduction

Let A be a finite set. A clone on A is a set of finitary operations on A closed
under superposition (composition) and containing all projections. If X is an
m X n-matrix with entries from A, and f is an n-ary operation, then the
column f(X) is calculated row-wise. For an m-ary relation 6 on A, the clone
Pol § consists of all operations f such that f(X) belongs to 6 whenever all
columns of X do. If f belongs to Pol § we say that f preserves the relation
0.

Let p be a preorder on A, i.e. a binary relation on A which is reflexive
and transitive. Let M denote the clone generated by all unary operations



preserving p and as above, denote the clone of all operations preserving p
by Pol p. Tt is proved in [4] that if the interval of clones [M, Pol p| is finite
then the preorder must be a chain, and that for |A| = 3 it is indeed the
case that the interval is finite. Our purpose in this note is to further study
the monoidal interval [M, Pol <] where < is the natural ordering on the set
k={1,2,... k} for £ > 3. We refer the reader to [3, 4] and Chapter 3 of
[11] for a discussion of the general problem of determining monoidal intervals,
and to [8, 9, 11] for standard results and notation.

Before we state our results, we need some notation. Let 3 < h < k and
let 1, denote the h-ary relation consisting of all tuples (a4, ..., a;) such that
a; < ay < ... < ay and such that |{a1,...,a,}| < h. For 1 < h < k let
P, denote the clone of all isotone operations f which are either essentially
unary or such that the image of f contains at most h elements. Notice that
P, = M and that P, = Pol <.

Let V° denote the 3-ary relation consisting of all tuples (a, b, a V b) where
V denotes the join operation of the chain, and similarly for the relation A°
where A is the meet operation of the chain k. Notice that since the order we
consider is a chain, we have that M C PolV° and M C Pol N\°.

It is difficult to state our main result in one short theorem. Therefore we
shall refer to Figure 1 and describe its main properties and where in the text
their proofs can be found. The figure depicts the (partial) Hasse diagram of
the interval [M, Pol <] for k > 3.

1. The interval has three maximal elements, Pol V°, Pol A° and Pol j;
this is proved in Lemma 2.4.

2. Each solid line segment indicates, as usual, a covering relation. This
follows from Lemmas 2.5 and 2.6 and Theorem 3.15.

3. Let C be a clone in the interval [M, Pol <]. Suppose that C' in not one
of M, Pol <, P, Pol V° NPy, Pol \° NP, , Pol uy, for any h. Then
C' is contained in an interval [Py, Pol pp1] for some 3 < h < k — 1.
This is Theorem 3.15. These intervals are depicted by curved lines in
Figure 1.

Notice that the above is sufficient to describe the interval if k& = 3 (this
was first done in [4]), see Figure 2. In section 4 we describe completely the
interval for the case k = 4:
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Figure 1: The interval [M, Pol <].
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Figure 2: The interval [M, Pol <] for k = 3.
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Figure 3: The interval [M, Pol <] for k = 4.



Theorem 1.1 For k = 4, the interval [M, Pol <] consists of exactly 11
clones, as shown in Figure 3.

The next section presents some basic results and definitions we shall need.
In section 3 we prove all results that lead up to our description of the interval
[M, Pol <] in the general case. Then in section 4 we prove Theorem 1.1. We
conclude with a few comments on the structure of the interval for k& > 5.

2 Preliminaries

We begin with a few auxiliary results and definitions. In the following, the
symbol C shall denote strict inclusion. If F' is a set of operations on k then
(F) shall denote the clone generated by F. To simplify notation we shall
write (M, fi,..., fn) instead of (M U{fi,..., fu}).

Definition. Let 6 be an r-ary relation on k, » > 1. Let ¢ and j be
distinct, 1 < 4,5 < r. Then let 6;; denote the set of all pairs (a;,a;) such
that there exists (by,...,b,) € 6 with b; = a; and b; = a;. The relation 6 is
irredundant if 6;; is not the equality relation for any 7 # j.

Lemma 2.1 Let 6 be an wrredundant r-ary relation on k, r > 2. If M C
Pol 0 then 0, is one of <, > or k2.

Proof. This is straightforward.

Lemma 2.2 (Eztension Lemma) Let P be any finite poset and D a non-
empty subset of P. Let f : D — k be an isotone map. Then there exists a
map g : P — k such that (i) g is isotone, (ii) the restriction of g to D is f
and (iii) g and f have the same image.

Proof. For each x € Plet D, = {y € D : y < z}. Let T denote the
image of f and let ay denote the least element in 7. Now define

g(z) = { max{f(y):y € Dy} if D, #0,

ao otherwise.

It is easy to see that ¢ satisfies all the requirements.
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Lemma 2.3 [7] An n-ary operation f is in Pol\V° if and only if

f@o,omn) = fil@) VeV falan)
for some f; € M. (Mutatis mutandis for the clone Pol A\°.)

Lemma 2.4 The mazimal subclones of Pol < containing M are PolV°,
Pol N\° and Pol juy.

Proof. We refer the reader to [6] for terminology, notation, and auxiliary
results used in this proof. The three clones in question are maximal subclones
by Theorem 3.4 of [6]. Now we prove that there are no others. If € is a binary
relation and M C Pol ) then by Lemma 2.1 Pol# is equal to Pol < or the
clone of all operations on k. Then by Lemma 3.1 of [6], if C' is a maximal
subclone of Pol < containing M then it is of type (C,h), (R,h) or (MIh) for
h > 3. Suppose that C' is equal neither to Pol V° nor to Pol A°. By Lemmas
3.2 and 3.3 of [6] we may assume that C' = Polf where 6 is a chain-like,
essential relation of arity A > 3. By Lemma 2.5 of [6], # must contain . On
the other hand, if § contains some h-tuple not in pp, say (ag,...,a) such
that a; < as < ... < ay, let (by,...,b,) be any tuple such that b; < ... < by,.
Then it is easy to find, using the extension lemma above, an f € M that
will map (aq,...,a;) to (by,...,b,). Hence 6 is full (i.e. Polf = Pol <), a
contradiction. Thus 6 = py,.

Lemma 2.5 1. Po_iC P, forall2<h<k-—1.
2. Py_1 C Pol uy, for every 3 < h <k.
3. P, € Pol py, for all 3 < h <k.
4. Pol py NPy & Pol puy,_y for every 4 < h < k.

5. Pol py, C Pol 11 for every 3 < h <k —1.



6. Poluy € Py, for every 3 < h <k —1.
7. POl/LgZPQ.
8. Polu,N P, £ P, for every 4 < h <k.

Proof.

1) This is trivial.

2) This inclusion is easy.

3) This is simple, define a binary operation f as follows:

r+1 ify=Fkand1 <z <h-1,
flz,y) =< h ify==Fk and x > h,
1 otherwise.

It is clear that f € P, and easy to see that f & Pol uy,.

4) This follows from 1), 2) and 3).

5) Note that Polpu, € Polpu,_q follows from 4). We prove the inclu-
sion as follows: consider the (h + 1)-ary relation 6 consisting of all tuples
(@1, ...,ap41) such that a; < ay < ... < apy1 and such that there exists
x € k with (z,as,...,ap41) € pp and (a1, a2, T, a4, ...,a5 1) € pp. Since this
relation is constructed using only p, and < we have that Pol u, C Polf. 1t
remains to show that 6 = py, 1. Let (aq,...,a541) € 6 and suppose that the
a; are pairwise distinct. Then for some = € k we have (z,as,...,a511) € uy
and (ay,a9,x,a4,...,a,1) € pp. From the first we have that + = a3 and
from the second we have that © = as or x = a4, a contradiction. Hence 0 is
contained in g5 1. The other inclusion is easy.

6) It suffices by 1) to show that Pol uy € Py_;. Define a binary operation
f on k as follows: let S be the set of pairs (z,y) such that x +y = k+1 and
2<z<k—1. Let

z if (z,y) € S,
flr,y) =< 1 if (z,y) < (a,b) for some (a,b) € S,
k  otherwise.

It is easy to see that f is isotone and that f ¢ P, ;. However f is

in Pol uy: indeed, suppose it is not; then there exist tuples (ay,...,a4)
and (by,...,by) in pg such that f maps ((a1,b1),..., (aq,bs)) to some tuple
(¢1,...,¢4) nOt in . Since f is isotone, this means that ¢; < ¢3 < ¢3 < ¢4.
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This means that 1 < ¢ < k and 1 < ¢3 < k and so (ag, b) and (ag, b3) are
in S; but S is an antichain in £? so this is impossible by definition of j.

7) By 2) it suffices to prove that Polus; C P,. By a well-known result
of Burle [1] it will suffice to show that Pol 3 C Pol# where 6 is the 3-ary
relation consisting of all (a, b, ¢) with |{a,b,c}| < 2. Construct the following
3-ary relation: let a be the set of all (213, Z92, x31) such that there exist z;;,
1 < 4,5 < 3 satisfying the following:

xij <ap if i <jand k<
€ 13
€ H3

€ 13
€ H3

\V]

X11, 13, 33

N N N/~
~ W
N’ N N’ N N

(

($11, X31, X33
($12, X22,T32
(

~— ' S~

5

T21,T22, T23

Clearly Pol 3 € Pol . We show that o C 6, the other inclusion is easy.
Suppose that there exists (a,b,c¢) € a with a, b and ¢ distinct. Suppose first
that a or c is neither the largest nor the smallest of a, b and ¢. Without
loss of generality, we may assume that a > min{a, b, ¢} and a < max{a, b, c}.
Then by condition (1) we have that z1; < a < x33 and thus condition (2) is
not satisfied. Hence we may assume without loss of generality that a < b < c.
But then

$12§G<b<0§1‘32

by condition (1) so condition (4) fails.
8) If h = 4 consider the binary operation

2 if (z,y) = (k, 1),
) 3 if(z,y) = (k—1,2),
F@U =01 it (2,y) < (k1) or (a,y) < (k—1,2),
4  otherwise.

It is easy to see that f is in Pol uy N P, but not in Ps.
Now assume that A > 5. Define a binary operation as follows: let S be
the set of all pairs (z,y) such that z =k —1and 2 <y < h—3, and let T



be the set of pairs (x,y) such that v = k and 2 <y < h — 3. Let

2 if (z,y) = (k,1),

3 if (z,y) € S,
g(x,y) =4 y+2 if(z,y) €T,

h ify>h—2

1 otherwise.

It is obvious that g € P, and g ¢ P, 1. tuples T = (1,2,4,5,...,h) and The
argument that shows that g € Pol u;, is very similar to the one used in 6).

Lemma 2.6 The clone M is the intersection of the clones Pol V° and Pol \°.
In fact, M = Pol p where p consists of all 4-tuples of the form (a,a,b, b) with
a < b or of the form (a,b,a,b) with a < b.

Proof. Notice that an n-ary operation f is in Pol V°NPol A° if and only
if it is a lattice homomorphism f : " — k. In particular, the kernel 6 of f
is a congruence of £". But then 6 must be of the form # = 6; x 0, x --- x 6,
where each 6; is a congruence of the lattice k (see for example [8], Theorem
2.70).

Suppose that f is not constant, i.e. that some 6; is not equal to k.
Without loss of generality, we may assume that there are a; < b; such that
a; and b; are not congruent modulo #;. Now suppose that there are as < by
with as and by not congruent modulo 6. Then

(al,bz,O,...,O)\/(bl,az,(),...,()): (bl,bz,o,...,O).

But £"/6 is isomorphic to a chain, hence the join operation is the ‘max-
imum’, so (by,b9,0,...,0)/0 = (a1,b09,0,...,0)/0 or (by,bs,0,...,0)/0 =
(by,a,0,...,0)/6. But by choice of the a;,b; this is not the case. Hence
6, = k* and by the same argument the same holds for all 6; with i > 2. This
means that f depends only on its first variable, so f € M and we are done.

For the second statement: We have that Polp C Pol ps34 and Pol p C
Pol py3; where

p2s3s = {(u,v,w) : (xz,u,v,w) € p for some z}



and
pa31 = {(u,v,w) : (w,u,v,z) € p for some z}

But (z,u,v,w) € piff eitheru =w >vorv=w>uiff w=uVwv. In
other words, ps3s = V°. In the same manner one sees that py3; = A°.

Hence by the result above we have that Polp C M. On the other hand
it is clear that M C Pol p so we are done.

3 The interval [M, Pol <|, k > 3
The next few lemmas will be used to prove the following result:

Theorem 3.1 Let f € PolV° be essentially at least binary, and suppose the
image of f has h elements, 2 < h < k. Then (M, f) = Pol V°N\P,. (Mutatis
mutandis for Pol \°).

Lemma 3.2 Let f be an n-ary operation in PolV°, say f(z1,...,2,) =
filz) V-V fo(xy) with f; € M for all 1 <i <n. Then f depends on x; if
and only if there exist uw < v in the image of f; and t; in the image of f; for
all j # @ such that t; < v for all j.

Proof. Suppose that f depends on z;, i.e. there exist z; < x} and x; (j #
i) such that f(x1,..., % 1, % Tizt, .y Tn) < f(T1,. 0 i1, Th T, o0, ).
Let u = fi(x;) and v = fi(z}) and t; = f;(x;) for all j # i. Then

tiyVigV---t;aVuVtig V-V, <ty Ve V---t; VoVt V- Vi,

implies that v < v and that no ¢; is greater or equal to v.
Conversely, suppose that there exist w,v,t; as in the statement of the
lemma. Let f;(z;) = v and fi(z}) = v and f(z;) =t; for all j # i. Then
flz1,... x) =t VgVt 1VuVti V- Vi, <
<v=0(VtagV---t; VoVt V---Vi, =

= f(xla s 71‘7;—171.;'71‘7;4-17 s 7xn)-
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Lemma 3.3 Let ¢ be an n-ary operation in Pol\V°. Then there exist g; € M
such that ¢ and r(t) = ¢(g1(t),. .., gn(t)) have the same image.

Proof. Let T = {a; < ay < ... < ap} be the image of ¢. We find
elements by, ..., b, of k" such that (1) ¢(b;) = a; for all 1 < i < h and (2)
b; < b forall 1 <i < h—1. Indeed, choose ¢y, ..., ¢, such that ¢(c;) = q;
forall1 <i¢<h. Let b =c; Ve V--- Vg for all 1 <1 < h. Certainly the
b;’s satisfy the second condition, and to see that they satisfy the first, just
notice that

o(bi) =dlcrV---Ve)=9¢(er) V- Vole) =ar V- Va; = a.

Now it suffices to define the maps ¢; (i € n) as follows: consider the set
of first coordinates of the tuples by, ..., by, say By = {b1(1) < by(1) < ... <
br(1)}. We may find an isotone map g¢; from k onto By such that g (i) = b;(1)
for all 1 < i < h (easy). Do the same for each coordinate. Then of course
bi = (g1(2), 92(7), . .., gn(2)) for all 4, so ¢(g1(7),. .., gn(i)) = &(b;) = a; for all

1 and we are done.
[ |

Lemma 3.4 Let ¢ € PolV° be an essentially at least binary operation. Then
there exists ¢ € (M, ¢) such that (1) ) is essentially binary and (2) ¢ and
¢ have the same image.

Proof. Let ¢ be an n-ary operation in Pol V°, and suppose without loss of
generality that n > 3 and that ¢ depends on its first two variables. Let 17" be
the image of ¢. By Lemma 2.3 we have that ¢(z1,...,2,) = fi(x)V--- fu(zy)
for some f; € M. Consider the operation F(zs,...,z,) = fo(za) V- - fu(z,),
and let B denote its image. By Lemma 3.3, we may find ¢», ..., 9, € M such
that the map h(t) = F(ga(t), ..., gn(t)) has image equal to B.

We claim that the map ¢ (x,y) = fi(z) V h(y) is the one we’re looking
for. Indeed, v is in the clone (M, ¢) since ¥ (x,y) = ¢(x, g2(y), - ., gn(y))-

The image of ¢ is clearly the set of all z; V ---V z, such that z; is in the
image of f;. Similarly, the image of F'is the set of all z, V ---V 2, such that
z; is in the image of f; for 2 <7 < n. Hence the image of ¢ is equal to the
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set, of all z; V b such that z; is in the image of f; and b € B, which is also
the image of ¢). Hence ¢ and v have the same image.

We now show that ¢) depends on both variables.

We prove that 1) depends on z: ¢ depends on xq, so by Lemma 3.2, there
exist u < v in the image of f; and ¢; in the image of f; (2 < j < n) such
that t; <wvforall j > 2. Let b=tV ---V1, Then b€ B, and b < v so by
Lemma 3.2 v depends on its first variable.

We prove that 1) depends on y: ¢ depends on x5, so by Lemma 3.2, there
exist z < 2’ in the image of f, and ¢; in the image of f; (j # 2) such that
tj <2 forall j #2. Let u=2Vit3V---Vt,and v =2'VizV---Vi,. Notice
that both v and v are in B. Now v = 2’ and u < 2’ so u < v, and ¢; is an
element of the image of f; which is less than v, By Lemma 3.2, ¢ depends
on its second variable.

Definition. Let 2 < h < kandlet T = {a; < as < ... < a,} be a subset
of k. Define an element o of M by

a; if x <a,
ar(z) =% a; ifa;y <z <a;forsomel <i<h-—1,
ap otherwise.

Notice that ag is a retraction onto T, i.e. a3 = ar.

For each n > 2 we define n-ary operations J}") = Jr and M;") = Mr
as follows: Jp(xy,...,z,) = ar(xy V ey V---Vx,) and Mp(zy,...,2,) =
ar(zy Azy A--- A xy,) for all z; € k. Notice that we have Jp(zy,...,2,) =
ar(ry) V-V ar(z,) and similarly for My. (J and M stand for ‘join’ and
‘meet’). Notice also that we have nice ‘identities’ such as Jr(z, Jr(y, z)) =
Jr(x,y, z), etc. (hence the convenient abuse of notation).

Lemma 3.5 Let ¢ € PolV° be an essentially binary operation, say ¢(z,y) =
f(z)Vg(y) where f,g € M. Let T denote the image of g. Then the operation
D(z,y) = f(x)Var(y) is in (M, ¢), it has the same image as ¢ and depends
on both variables.
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Proof. Let T'= {¢; < ... < ¢ }. Choose b; € k such that ¢g(b;) = ¢; for
all 1 < i <r. Of course we have that b; < ... < b,. Define

b1 if ¢ S C1,
h(t)=4¢ b ifcy <t<cforsomel <i<r—1,
b, otherwise.

Then gh(y) = ar(y), hence ¢(x, h(y)) = f(x) V ar(y). In particular, this
operation is in (M, ¢). Since the image of ¢ consists of all u V v with u in
the image of f and v in the image of g, it is clear that [ has the same image.
By Lemma 3.2 it is clear that I' depends on both variables since ¢ does.

Lemma 3.6 Let ¢ € PolV° be an essentially at least binary operation and
let T denote its image. Let a, denote the least element of T. Then there
is an operation F(x,y) = f(x) V g(y) in the clone (M, p) such that (1) the
image of F is T, (2) the images of f and g are contained in T, (3) a1 is in
the image of f and g and (4) F is essentially binary.

Proof. By Lemma 3.4 we may assume without loss of generality that ¢
is essentially binary, say ¢(x,y) = p(x) V q(y) for some p,q € M. Since the
map ar is a retraction onto 7" we have that

¢($,y) = O‘T(d)(xvy))
= arp(z) vV arq(y)

Let f(x) = arp(z) and g(y) = arq(y). Then F = ¢ satisfies the conclusion
of the lemma. Indeed, it is clear that the image of f and of ¢ is contained in
T. This implies that f(z) V g(y) > a; for all  and y, and since a, is in the
image of ¢, a; must be in the image of f and of g. Since ¢ satisfies (1) and
(4) we are done.

Lemma 3.7 Let ¢ € PolV° be an essentially at least binary operation and
let T denote its image. Let a; denote the least element of T. Then there exists
a subset D of T with |D| > 2 and containing ay such that the operation
G(z,y) = ar(z) V ap(y) is in (M,$). Furthermore, G depends on both
variables and has image equal to T.
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Proof. By Lemma 3.6, there exists an operation F' € (M, ¢) such that
F(z,y) = f(z) V g(y) and such that T contains the image of f and g, a;
is contained in the image of f and g, F is essentially binary and has image
equal to T. Let U and V denote the image of f and g respectively. By
Lemma 3.5, we have that the operation F'(z,y) = f(z) V ay(y) is in (M, ¢),
is essentially binary and has image equal to 7. Applying Lemma 3.5 again,
we get that the operation F”(z,y) = ay(z) Vay (y) is in (M, ¢), is essentially
binary and has image equal to 7T'.

For convenience, let us put f = oy and ¢ = ay and ¢ = F".

We may assume without loss of generality that a; is in the image of g.
Consider the operation

G(z,y,2) = d((z,y), 2).
Clearly G is in the clone (M, ¢). Now we have

G(z,y,2) = f(f(x)Valy)Vglz)

= oz, 2) V fy(y)

By Lemma 3.3 we may find operations h; and hy in M such that f'(¢) =
d(hi1(t), ha(t)) has the same image as ¢, namely 7. So we can construct the
operation

H(z,y) = G(hi(z),y, ha, (x)) = ¢(h1(2), ha(@)) V fg(y) = f'(z) V fg(y)

where the image of f’is T'. Notice that H depends on both variables: indeed,
we have that fg(1) = f(a1) = f(f(1)) = f(1) = a;. Thus by Lemma 3.2 H
depends on z. To show that H depends on y it suffices to find some element
in the image of fg which is greater than a;. If this is not the case, then we
have that fg is constant so a; = fg(1) = fg(k) = f(an). Hence f(a) = a;
for all @ € T. However, the image of f is contained in 7" and since the map
¢ depends on x the image of f must contain at least two elements; since f
is a retraction onto its image, this is a contradiction. Furthermore, the new
operation H also has image T'. Indeed, we saw above that fg(1) = a;;ifa € T
and z is such that f'(z) = a then H(z,1) = f'(x)V fg(1) = aVa; = a. Now
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we may apply Lemma 3.5 to construct the operation ¢ (z,y) = ar(z)V fg(y).
By Lemma 3.5, ¢ has image equal to 7" and depends on both variables.

Let D denote the image of fg. We've seen above that the image of
fg contains at least two elements, that it is contained in 7" and contains
ai;. Now apply Lemma 3.5 to the operation v to obtain that the operation
G(z,y) = ar(z) V ap(y) is in (M, ¢), that it depends on both variables and
has image T

Lemma 3.8 Let ¢ € PolV° be an essentially at least binary operation and
let T' denote its image. Then the operation Jy is in the clone (M, ).

Proof.

Let T'={a; < as < ...ap}. By Lemma 3.7 there exists a subset D of T'
such that G(z,y) = ar(x) Vap(y) is in (M, ¢), is essentially binary and has
image equal to 7. Furthermore, D contains at least 2 elements, contains a;
and is contained in 7. If D is equal to T, then G = .J; and we are done.
Thus we will assume that D is properly contained in 7. We shall build an
operation ar(z) V ap(y) where D' is a subset of T that contains D properly.

Let by < b3 < ... < bg be the elements of 1" not in D; then of course
2 < s < h. Also note that a; < by since a; is in D.

Define 0 € M as follows:

aq if ¢ S ai,
O'(t): b; ifai,1<t§ai,for2§i<s
by  otherwise.

Let ¢(z,y) = 0G(z,y) and define
Az, y, z,w) = G(Y(z,y), G(z,w)).
Clearly A is in the clone (M, ¢). We have

Az, y,z,w) = ar(ocar(x)Voap(y))Vaplar(z) V ap(w))
= [agoar(z) Vapar(z)]\/ laroap(y) V ap(w)]
Let

§(z, z) = aroar(z) V apar(z)
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and
e(y,w) = aroap(y) V ap(w).

We claim that (1) 0 has image equal to 7" and that (2) the image of €
contains D properly. It is immediate that the images of 6 and € are contained
in T

(1) Let a € T. If a € D then

d(1,a) = agpoar(l)V apar(a)
= aro(ay)V ap(a)
= ar(a)Va

a Va=a.
If a ¢ D then a = b; for some 2 < ¢ < s. Then
6(ai, 1) = CYTO'CYT(GZ') V OéDOéT(l)
= aro(a;) V ap(ay)
= O[T(bi) V aq
bi Va = bl

(2) First we show that D is contained in the image of €. Let d € D. Then

€(1,d) = agpoap(l)V ap(d)
= aro(a)Vd
= ar(a)Vd
arVd=d.

Now we show that the image of ¢ must contain b; for some 2 < ¢ < s.
Suppose first that a; € D for some 2 < i < s. Then

€(a;, 1) = agroap(a;) Vap(l)
= aro(a;) Va
= ar(b)Va
= b;Va =0b.

Otherwise D must contain a; for some ¢ > s. Then

€(a;, 1) = agpoap(a;) VvV ap(l)
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aro(a;) V a
= ar(bs) Va
= bs Va = bs.

Let D' denote the image of e. By Lemma 3.3 there exist operations
fivgi € M, 1 < i < 2, such that P(z) = 0(fi(x), f2(x)) has image T and
Q(y) = €(91(y), 92(y)) has image D'. Then the operation R(z,y) = P(z) V
Q(y) is in the clone (M, ¢) since

Px)VQ(y) = 0(f1(2), fa(x)) V e(91(y), 92(y)) = Alf1(2), 91(v), f2(2), 92(y))-

Since D' contains a; and at least two elements, it is clear that R has image
equal to T" and depends on both variables. We may apply Lemma 3.5 twice to
R to obtain that the clone (M, ¢) contains the operation G'(x,y) = ar(x) V
ap(y). Repeating the above argument to this operation will eventually yield
the operation Jr.

Lemma 3.9 Let T be any h-element subset of k with 2 < h < k. Then
<M, JT> = Pol V° ﬂPh.

Proof. It obviously suffices to prove that Pol v° NP, C (M, Jr). Let f
be an n-ary operation in Pol V° NP,. We may assume that f is essentially
at least binary. Let B = {b; < by < ... < b;} be the image of f, where
2<t<h.Let T={a; <ay<...ap}. Define a map o as follows:

b1 if ¢ S ai,
O'(t): bz 1fa,_1<t§al,for2§z<t
b, otherwise.

Consider the operation F(z,y) = o(Jr(z,y)). Clearly it is in (M, Jr). It
has image equal to B since the image of Jr is T and ¢ maps T onto B.
Furthermore, F'is essentially binary. Indeed, we have that

F(1,1) = o(Jr(1,1))

17



and

F(1,k) = o(Jr(1,k))

and

F(k,1) = o(Jr(k,1))

I
2
2
=
o
<
=

By Lemma 3.8 we obtain that Jg € (M, Jy).
By Lemma 2.3 we may write f(z1,...,2,) = fi(z1) V...V fu(z,) for
some f; € M. Since ap is a retraction onto the image B of f we obtain that

f@y, .. 2n) = ap(f(@r,..., 7))
= ap(fim) V...V falz))
= Jp(filz1), fa(x2),- - - fulwn))-

Hence f € (M, Jg) C (M, Jr) and this completes the proof.

We may now prove the result mentioned at the beginning of this section:

Proof of Theorem 3.1: Let f be an essentially binary operation in Pol V°
whose image has h elements, 2 < h < k. By Lemma 3.8 the clone (M, f)
contains the operation Jr where T' is the image of f. Hence by Lemma 3.9
we have that Pol V° NP, C (M, f). The other inclusion is trivial.

Corollary 3.10 The only clones C such that M C C' C Pol V° are those of
the form Pol V° NPy, with 2 < h < k. (Mutatis mutandis for Pol \°).
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Proof: Let C' be a clone that contains M properly and contained in
PolVv°. Then C contains an operation f which is essentially at least binary
and has largest image T, say |T'| = h where 2 < h < k. Clearly C C
Pol v°NP,. By Theorem 3.1 C' must contain Pol V° NP, and this completes
the proof.

Corollary 3.11 Let f € PolV° be essentially at least binary, and suppose
the image of f has h elements, 2 < h < k. Let g € Pol \° be essentially at
least binary, and suppose the image of g has h elements. Then (M, f,g) = P,

Proof: It follows from Lemmas 2.3 and 2.4 that Pol <= (M,V,A). In
fact, we claim that the n-ary operations in Pol < are those operations of the
form

flzr, o xn) = filxg, oo xn) A folr, ooy mn) Ao A fo(xg, oo ay)

where the f; are n-ary operations in Pol V°. Indeed, it is clear that operations
of this form are in Pol <. It thus suffices to prove that this set of operations is
closed under the operations in M (easy) and under the operations A (obvious)
and V: indeed, just use the distributive law for this last case.

Let F' be an n-ary operation in P, and denote its image by 7. Let
C = (M, f,g) where the operations f and g are as in the statement of
the corollary. By Theorem 3.1 (and its dual) C' contains Pol V° NP, and
Pol N° NP,. In particular, C' contains Mrp.

Write
F(@) = fi@) A foT) A= A fo(T)
where T = (x1,...,,), and f; € Pol V°. Since the image of F' is T, we have
that
F) = or(F(7)
= o (F(7)
= ap(Hi@) A f(@) A A f5(T))

where each ar(fi(T)) is in Pol V° NP,. Hence F is in the clone C' and we
are done.
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The following result improves on Corollary 3.11. It states that, if a clone
C' above M contains non-trivial (i.e. non-unary) operations in both Pol V°
and Pol A°, then it contains P, where h is the maximum value for which
either Pol V° NP, C C or Pol \° NP, C C.

Theorem 3.12 Let f € Pol V° be essentially at least binary and assume its
image contains h elements, 2 < h < k. Let g € Pol \° be essentially at least
binary and assume its image contains r elements, 2 < r < k. Then the clone
(M, f,g) contains P, where t = max{h,r}.

Proof. We shall prove the result for r < h (the other case follows easily
by dualising the argument). By Corollary 3.11 we may assume without loss
of generality that r < h. Let C = (M, f,g). Let U = {1,2,...,h} and let
V =1{1,2,...,r}. By Theorem 3.1 the clone C' contains the operations .Ji;
and M. By Corollary 3.11 the clone C' contains P,, and hence contains the
operation

1 ifr<rory<r,
flay) = { r+1 otherwise.

Then C contains the operation

¢($,y) = JU(Mv(l‘,y),f(l‘,y)).

We claim that ¢ = Mp where D = {1,2,...,r + 1}. Indeed, we have by
definition that

xANy ifx<rory<r,

My (z,y) = { r otherwise.

On the other hand, it easy to see that

Jaxny fz<rory<r,
Mp(x,y) = { r+1 otherwise.

Suppose that x < r or y < r. Then My (z,y) =2z Ay and f(x,y) = 1. Thus
d(x,y) = Ju(x Ay,1) = z Ay. Otherwise we have that My (z,y) = r and
flz,y)=r+1so ¢(z,y) = Jy(r,r+1)=r+1.

Thus the clone C contains Mp where D contains r + 1 elements. If
r + 1 < h then repeat the above construction until the operation My is
shown to be in C'. By Corollary 3.11 we conclude that C' contains P;.
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Lemma 3.13 Let f be an isotone operation not in PolV°. Then Pol A°
NPy C (M, f). (Mutatis mutandis for the dual).

Proof. Let f satisfy the hypothesis of the lemma. Then permuting
variables if necessary, we may assume that there exist a; < b; ink, 1 <i<n
such that

flai, a9, ... ap, beir, ..., bn) = u
f(b17b27"'7bk7ak+17"'7an) -
f(b17b27"'7bk)7bk+17"'7bn) = w

where u V v # w. Since f is isotone we actually have that v V v < w. For

1 <4 < n define
a; ift <k,
filt) = { b; i

otherwise.

and define

1 ift<uVu,
h(t) = { k  otherwise.

Consider the operation defined by

¢($,y) = h’f(fl(x)a .- '7fk(x)vfk+1(y)7 . vfn(y))

Clearly ¢ is in (M, f). Let x = y = k. Then ¢(z,y) = h(f(b1,...,by)
h(w) =k. If z = k and y < k then ¢(x,y) = h(f (bl, ey by gty e Gp)
(v) =1. If z < k and y = k then ¢(x,y) = h(f(al,.. s Qs Dty oy by)
h(u) = 1. Finally if x < k and y < k then ¢(x,y) = h(f(ar,-..,a,)) <
(v) = 1. Hence ¢(x,y) = k if = y = k and ¢(x,y) = 1 otherwise. This
is obviously an essentially binary operation in Pol A°, so by Theorem 3.1 we
are done.

f—p

— S

A

|
Theorem 3.14 Let C be a clone containing M and contained in Pol <

Suppose that C' is contained neither in PolV° nor in Pol \°. Let 3 < h < k.
If C is not contained in Pol u, then C' contains Py,.
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Proof. Let C' be a clone containing M and contained in Pol <, and
suppose that C' is contained neither in PolV° nor in Pol A°. To prove the
theorem, it will suffice to prove the following equivalent statement:

for all 3 < h <k, if C contains P, 1 and is not (x)

contained in Pol py, then Py, is contained in C.

We first prove by induction on h that statement (*) implies our result.
Assume that (*) holds for all 3 < h < k. Let h = 3. By Lemma 3.13 (and its
dual) C' must contain Pol V° NP, and Pol A° NP,. Hence by Theorem 3.12
C contains P, and we conclude from (*) that C' contains P;. Now assume
the result holds for h — 1. If C' is not contained in Pol py, then by Lemma 2.5
(1) C is not contained in Pol pj,_1. By induction hypothesis we then have
that P, 1 € C. We then conclude from (*) that C' contains P, and we are
done.

We now proceed to prove statement (*). Since C' contains P, it will suffice
by Theorem 3.12 to find an essentially at least binary operation ¢ € C' such
that ¢ is in Pol A° and whose image contains (at least) h elements. There
exists an n-ary operation f € C' that does not preserve u,, i.e. there are
elements a;; € k, 1 <1i <mn,1 < j < hsuch that (a;1,...,an) € p, for all
i and such that (uy,...,up) = (f(a11, ..., an1),- -, f(@ip, ..., Gpp)) is not in
pn- Notice that by definition of pj, we have that a;; < a;;41) for all 7+ and
j. But f € Pol < so it follows that u; < us < ... < uy. Since C' contains
M, we may assume that u; =i for all 1 < i < h (simply compose f with an
operation g € M that maps u; to ). For each 1 < i < n define an operation
gi € M as follows:

. a;; if 1 < h,
%) = { an ifi>h.
Let T = {1,2,...,h} and for convenience let T stand for (zi,...,z,). We
claim that the following operation is the one we seek:

¢(7) = f(91Mr(T), .. ., gn M (T))

where My is the ‘partial meet’ operation defined earlier. We will prove that
(1) ¢ isin C, (2) ¢ depends on all its variables, (3) the image of ¢ contains
T and (4) ¢ is in Pol A°.
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(1) By definition of uy; the set {a;,...,a;} contains at most h — 1 ele-
ments, hence the operation g; My is in P,_; for all 7. It follows that ¢ € C.
(2) For any 1 < i < n we have that

#(2,2,...,2,1,2,...,2) = f(g:1(1),...,9.(1))
= f(alla"'aanl)
=1

(where the lone 1 appears in the i-th place) and
#(2,...,2) = f(q(2),...,,9.(2))

f(a12, <y an2)
= 2.

(3) Let 1 < j < h. Then
= f(alj,...,anj)
= ]
Hence the image of ¢ contains 7T

(4) We start with a simple observation: for any T € k", there exists
1 < j < n such that

(i Mr(T), ..., gaMr(T)) = (a1, - - - , Any).

Notice also that the tuples (a1j,...,an;), 1 < j < n form a chain in £" (this
follows from the definition of ).
Suppose for a contradiction that there exist T = (z1,...,2,) and § =

(Y1, .. .,yn) such that ¢(T) A ¢(7) # ¢(T A 7). Since ¢ is isotone it implies
that ¢(T A7) is distinct from ¢(Z) and ¢(7). However, there exist j and r
such that

(glMT(T)7 v 7gnMT(f)) = (a1j7 R anj)
and
(glMT(y)a - 7gnMT(g)) = (alrv SR am)'

Since these n-tuples are comparable, assume without loss of generality that
(1 M7 (T), ..., g Mz (T)) < (1 M1 (), - - -, g M7 (7))

23



Hence

gl‘]\4T(E A y)v s 7gnMT(f A y))
glMT(T) A\ 91MT@), e ,gnMT(T) A\ gnMT(g))
G Mr(T), ..., g M7 (T))

Il
o

and this is a contradiction. Hence ¢ preserves the meet and we are done.

Theorem 3.15 Let C be a clone in the interval [M, Pol <]. Suppose that
C in not one of M, Pol <, Py, Pol V°NP,, Pol N°NP, , Pol uy, for any h.
Then C'is contained in an interval [Py, Pol pupy 1] for some 3 < h <k — 1.

Proof. By Corollary 3.10 C' can be contained neither in Pol V° nor in
Pol A°. Hence C' contains Pol V° NP, and Pol A°NP,, by Lemma 3.13. Then
by Theorem 3.12 C' contains P,, which is equal to Pol uz by Lemma 2.5 (4).
Since C' is not equal to Pol us, it follows by Theorem 3.14 that C' contains
P;. Now let h be the largest integer such that P, C C. Clearly h > 3. Since
C does not contain P, i, we conclude from Theorem 3.14 again that C' is
contained in Pol p, 11, which concludes the proof.

4 The case k=14

(In the following we shall assume throughout that & = 4.) We shall now prove
Theorem 1.1. By Theorem 3.15 it will suffice to prove that Pol p4 covers P
(Lemma 4.5). We start with a few basic remarks concerning relations 6 such
that P; C Pol 0.

Let 6 be an irredundant relation of arity » > 2 such that M C Polf. By
Lemma 2.1, there exists a partial ordering (r, C) of the indices {1,2,...,r}
such that ¢ C j iff ;; =<. By permuting the indices of # (this does not
affect the clone Pol #) we may assume that the natural ordering r is a linear
extension of (r, C). We shall say that an r-tuple @ = (a4, ..., a,) respects the
ordering of 0 if a; < a; whenever i C j.
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Lemma 4.1 Let M C Pol @, where 0 is an irredundant r-ary relation. Then
P, C Pol 0 if and only if 6 contains every a which respects the ordering of 0
and |{a,...,a.}| < h.

Proof. (=) For i C j (i # j) we may find an element w € 6 such that
w; < wj. For every pair of incomparable elements 7 and j in (r, C), we may
find elements v and v in # such that u; < u; and v; > v;. Consider the
matrix X whose columns are all these tuples, say of size r x m. Certainly
the rows of X form a subposet of £™ isomorphic to (r,C).

Let @ = (ay,...,a,) be an r-tuple that respects the ordering of # and such
that [{aq,...,a,}| < h. Then the map f which sends row i of matrix X to
a; is isotone. By the extension lemma,there is an isotone map ¢ that extends
f and whose image contains at most h elements. Hence this map is in P.
Since the columns of X are in 0, it follows that @ must also be in 6.

(<) Let f € P,. If f is unary then we are done. Otherwise let Y be a
matrix whose columns are in #. We must show that f(Y) € 6. Since f is
isotone, f(Y') respects the ordering of €, and since f is not essentially unary
f(Y) contains at most h distinct entries. Hence f(Y') € 6 and we are done.

The following lemma follows from a more general result [5] we shall discuss
in the next section. At any rate, the proof of this very special case is not
difficult. Let @ = (4,C) be an ordering of {1,2,3,4}. Consider the 4-ary
relation ji¢ consisting of all (a1, as, as, as) that satisfy (i) a; < a; if i C j and
(ii) [{a1,az,as,a4}| < 3. Notice that py = pg when @Q is the usual ordering
of 4. The next lemma states that an operation preserves jiq if and only if f
is unary or the image of any copy of ) under f contains at most 3 elements.

Lemma 4.2 An n-ary operation f is in Pol ug if and only if either (i) f is
unary or (it) |f(e(Q))] < 3 for any isotone map e : Q) — 4™.

Let 6 be an r-ary relation such that P; C Polf C Polpy. Let (r,C)
denote the ordering of the indices described above. Let @ be an r-tuple. We
shall say that @ is fine for 6 if it satisfies the following condition: if a; = 2
and a; = 3 then i and j are incomparable in (r,C).
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Lemma 4.3 Let 6 be an irredundant r-ary relation such that P; C Pol#.
Then Poluy € Pol6 if and only if 0 contains every a which respects the
ordering of 0 and is fine for 0.

Proof. (=) Suppose that Polus C Polf. Notice that M C Pol6.
Proceeding just as in the proof of Lemma 4.1 we may find a matrix X whose
columns are in # and whose rows {7y, ... T, } form a subposet of £™ isomorphic
to (r,C), the ordering of . Let @ be an r-tuple which respects the ordering
of # and which is fine for #. Define an operation as follows:

a; if y == Ti,
f(g): 4 1fy>fl with Cli>1,
1  otherwise.

Clearly this map is isotone and f(X) = @. Since @ is fine for 6, f maps chains
to at most 3 elements and hence by Lemma 4.2 it belongs to Pol p4. Since
the columns of X are in 0 it follows that @ € 6.

(<) Suppose that 6 contains all tuples which satisfy the desired condi-
tions. By Lemma 4.1 # also contains every @ which respects its ordering and
such that [{a1,...,a,}| < 3. Let f € Pol juy. If f is unary then we are done.
Otherwise we may suppose by Lemma 4.2 that f maps every chain to at
most 3 elements. Let X be a matrix with columns in #. We must show that
@ = f(X) € 6. Clearly @ respects the ordering of @ since f is isotone. If
|{ai,...,a,}| < 3 then we are done, so we may suppose that f is onto. In
particular, it is clear that f(1,...,1) =1 and f(4,...,4) = 4. Then @ must
be fine for 0; indeed, suppose the contrary so that a; = 2 and a; = 3 where
i and j are comparable in (r,C). Since f is isotone this implies that i C j,
which means that T; < Z; where Z; denotes the [-th row of X. But then f
maps the chain {(1,...,1),7;,%;, (4,...,4)} onto 4 elements, a contradiction.

We define two relations of arity 4 on k: let & consist of all 4-tuples
(a1, ag, as, aq) such that (i) a; < a; < ay for every i and (ii) [{aq, ag, as, as}| <
3. Let 8 =¢&U{(1,3,2,4)}. (Note that & = pg where @ is described by
1 C i C 4 for all 7).

Lemma 4.4 Pol& = Pol 3 = Ps.
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Proof. By Lemma 4.1 we have that P; C Pol £ and P; C Pol 3. Next we
show that Pol & C P3 using Lemma 4.2. Let f € Pol&; if f is unary we are
done. Otherwise, suppose for a contradiction that f is onto. Then certainly
f(1,...,1) =1 and f(4,...,4) = 4 and it follows that f will either map a
chain or a copy of () onto 4 elements, which is impossible.

Now suppose that there is some f in Pol # which is not in Pol£. This
means there exists a matrix X with columns in & such that f(X) is not in
€. Since f € Pol 8 and 3 contains £ it follows that f(X) = (1,3,2,4)T. Now
consider the matrix Y obtained from X by exchanging the two middle rows.
Clearly the columns of Y are in £ and hence in 3; however, f(Y) = (1,2,3,4)"
which is not in 3, a contradiction.

Lemma 4.5 Let C be a clone such that Ps C C C Pol pig. Then C = Ps or
C = Pol My -

Proof. We may write C' = N;c;Pol 0; where each 0; is irredundant. If
C # Pol 4 then there is some ¢ such that Pol uy € Pol ;. For convenience
let = ;. We shall show that Pol (8, <) = P3, from which C' = P follows.
Let r denote the arity of 6 and let (r,C") denote the partial ordering of
the indices of . By Lemma 4.1 # must contain every b which respects this
ordering and such that [{b,...,b,}| < 3. In particular r > 4. By Lemma 4.3

there exists a tuple @ = (ay, ag, . .., a,) which respects the ordering of # and
which is fine for 6 such that @ ¢ §. We construct a 4-ary relation as follows:
let p consist of all tuples T = (x1, 29, x3, x4) such that (x4, za,, ..., 74, ) € 6.

It is clear that Polf C Pol p.
Claim 1. (1,2,3,4) & p.

Indeed, if z; = i for all ¢ then (z4,, %4y, ..., %4, ) = (a1, 09,...,a,) which
is not in 6.

Let (4,C') denote the partial ordering of the indices of p. Also, let @ =
(4,C) denote the partial ordering defined by 1 C ¢ C 4 for all ¢ (i.e. this is
the ordering of the relation & defined earlier).

Claim 2. (4,C') admits (4,C) as an extension, i.e. if i C' j then i C j.

It is easy to see it suffices to show that (1,2,3,3) and (1, 3,2,3) belong
to p. By the definition of p, if (z4,, Za,,.-.,%,) € 6 then T = (1,2,3,3) € p.
Since there are only three distinct entries, it suffices to prove that T respects
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the ordering of 6. Now clearly z; = a; if j = 1,2,3 and x4 = 3 implies
that T is obtained from @ by replacing occurrences of 4 by 3. If i C" j then
a; < a; and hence z; < ;. Now consider the case of (1,3,2,3). As above it
suffices to show that T respects the ordering of . Now 7 is obtained from
a as follows: replace all occurrences of 2 by 3 and occurrences of 3 by 2,
then replace all occurrences of 4 by 3. Let ¢ C"” j. Then a; < a; and since
a is fine for 0, either a; # 2 or a; # 3. It is easy to see that z; < z; (the
correspondence a; — x; is order-preserving except for the pair (2,3)).

We construct a 4-ary relation as follows: let v consist of all (x1, x4, x5, 4)
in p such that x; < x; < x4 for all i. Clearly Pol (0,<) C Pol~. Hence to
finish our proof it will suffice to prove Poly = Ps;. To do this, we prove that
v is one of £ or # and invoke Lemma 4.4.

Claim 3. y =& or v = [f.

Indeed: by Claim 2 and its proof, it is easy to see that the ordering of v is
. By Lemma 4.1 v contains every tuple that respects () and has at most 3
entries. The only other tuples that can be in y are (1,2,3,4) and (1, 3,2,4).
By Claim 1, (1,2,3,4) & 7. Hence v = £ if it does not contain (1,3,2,4) and
v = [ otherwise.

5 Comments on the structure of the interval
for £k >5

It appears that the structure of the interval [M, Pol <] is much more compli-
cated for k£ > 5 than the cases k = 3 and k£ = 4 would let us believe. Indeed,
consider the following generalisation of the relation py: let 3 < r and h > 2.
Let @ = (r,C) be a partial ordering and define (i, as the set of all r-tuples
@ that respect the ordering @ and such that [{ay,...,a,}| < h. It is clear
that we may suppose that h < max{r, k}, otherwise Pol < is contained in
Pol g p. If @ is an h + 1-element chain then of course we find pg; = pns1
and if () is an antichain then Pol ug s is a Burle clone. From now on we
shall assume without loss of generality that there is always at least some
comparability in ).
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Lemma 5.1 Pol jug, = NacaPol o where A is the set of all restrictions of
Lon to h+ 1 indices. Moreover, each a € A s of the form o = pg y, for
some partial ordering @'

Proof. The inclusion C is trivial. Now let f be an n-ary operation
that preserves every a € A and let X be an r X n matrix whose columns
are in g p. Since @) is non-trivial f is isotone. Hence f(X) respects Q. If
|f(X)| > h then there must be a subset I of r with A+ 1 elements such that
|f(X")] > h where X' is the matrix obtained from X by deleting rows whose
index is not in I. Hence f does not preserve «, the restriction of g to I,
and this is a contradiction.

For the second statement: let I be a subset of r with h 4+ 1 elements.
We prove that (pgn)r = porn where @' is the restriction of @ to I. The
inclusion C is easy. Now let b respect the ordering Q" and |[{by, ..., by 1}| < h.
Consider the partial map ¢ — b; from r to k. By the extension lemma, there
exists an isotone map i — a; from r to k that extends b and such that

a € [Q,h-
|

If @ is an ordering of A + 1 then we denote jig 5, simply by pg.

Lemma 5.2 Let Q be an ordering of h+ 1. Then jg = NgepPol g where
B is the set of all bounded extensions Q' of Q.

Proof. As in the previous result we need only prove that if f is an n-ary
operation that preserves pq for every Q' € B then f preserves pig. Certainly
f is isotone. Let X be an (h+ 1) x n matrix whose columns are in y1g. Then
f(X) respects Q. Now suppose that |f(X)| = h+ 1. Let Z; and Z; be the
rows of X such that f(Z;) = min{f(X)} and f(Z;) = max{f(X)}. Consider
the new matrix X' obtained from X by replacing T; by the tuple (uq,...,u,)
where u; is the least element appearing in column [/, and replacing 7; by the
tuple (v1,...,v,) where v, is the greatest element appearing in column [. We
claim that the columns of X' are in pg. Since f is isotone and one-to-one
on X it is clear by definition of ¢ and j that [ C ¢ for no [ and j C [ for no [.
It follows that each column respects @. If column [ of X' is equal to column
[ of X then of course it is in pug; otherwise it means that column [ of X'
must contain a repetition and hence is in pg. Now consider the ordering ()’
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obtained from () by adding the comparibilities i &' m C' j for all m. This
is obviously a bounded extension of (), and it is clear that the columns of
X" are all in piy. But since f is isotone it is clear that |f(X')] = h + 1 so
f(X') & pgr, a contradiction.

There is a nice characterisation of the operations in Pol jig , which helps
in comparing these clones. It is a generalisation of a result of Jablonskii [2]
(see also [10], p. 152) which we mentioned before Lemma 4.2. Notice that
the two previous lemmas allow us to reduce the proof of this result to the
case Pol jug where ()’ is bounded.

Lemma 5.3 [5] An n-ary operation f is in Pol ug if and only if either (i)
[ is unary or (i) |f(e(Q))| < h for any isotone map e: Q — (h + 1)".

These results show that it suffices to consider clones of the form Pol ¢
where ' is a bounded ordering of h + 1 if we want to classify the clones
Pol jig . Moreover, notice that as a result, there are only finitely many
clones Pol jig . On the other hand, it would appear that these are not the
only clones in the interval [M, Pol <|. Furthermore, for large k, even the
poset of clones Pol jug seems difficult to characterize. As a simple example,
consider, for any k > 6, the partial ordering @ of {1,2,3,4,5} given by
1C2C 3C 4. It is a simple exercise to verify that Py C Pol jug C Pol jis,
and that in fact the clones Pol ug and Ps N Pol ps are incomparable elements
of [M, Pol <].
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