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Abstract: It is well documented that hard bearing combinations show a running-in phenom-
enon in vitro and there is also some evidence of this from retrieval studies. In order to investi-
gate this phenomenon, five Birmingham hip resurfacing devices were tested in a hip wear
simulator. One of these (joint 1) was also tested in a friction simulator before, during, and after
the wear test and surface analysis was conducted throughout portions of the testing. The wear
showed the classical running in with the wear rate falling from 1.84 mm3 per 106 cycles for the
first 106 cycles of testing to 0.24 mm3 per 106 cycles over the final 2×106 cycles of testing. The
friction tests suggested boundary lubrication initially, but at 1×106 cycles a mixed lubrication
regime was evident. By 2×106 cycles the classical Stribeck curve had formed, indicating a
considerable contribution from the fluid film at higher viscosities. This continued to be evident
at both 3×106 and 5×106 cycles. The surface study complements these findings.
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1 INTRODUCTION large-diameter metal-on-metal joints were not
initially fully fluid film lubricated and friction tests
on other types of metal-on-metal joint have revealedEarly, small-diameter (less than 32 mm) metal-on-

metal hip joints were prone to premature failure [1], lower friction factors post-wear than initially [8],
pointing towards more favourable lubrication afteralthough some examples are known to have been

in place successfully for up to 20 years [2, 3]. This wear testing. It has also been noted that the average
linear wear rate (microns per year) for retrievedsuggests there is a favourable tribological condition

in some cases, although not in the majority of cases metal-on-metal joints is lower for joints with a longer
survivorship, indicating that this wearing-in phase isfor the early designs of metal-on-metal joints.

New-generation larger-diameter metal-on-metal hip also likely to occur in vivo [12]. All this suggests that
the articulating surfaces run in during early stages ofjoints have been more successful in the midterm [4,

5] although longer-term clinical results are not yet the wear test, and that this improves the lubrication
conditions and hence lowers the wear even furtheravailable.

Hard bearing joints often show a wearing-in period as the tests progress.
during simulator wear tests [6–10], where the initial
wear rates are higher than the steady state wear rates.
However, the final steady state wear can be more 2 MATERIALS AND METHODS
difficult to discern in ceramic-on-ceramic joints,
even over 14×106 cycles [9] owing to the very low Six Birmingham hip resurfacing (BHR) prostheses

were supplied by Midland Medical Technologies,values of wear. van Kampen et al. [11] showed that
now Smith & Nephew (Bromsgrove). These were all

* Corresponding author: Centre for Biomedical Engineering, of 50 mm nominal diameter with diametral clear-
ances of 160–210 mm, as shown in Table 1. DiametersUniversity of Durham Science Laboratories, South Road, Durham

DH1 3LE, UK. email: tony.unsworth@durham.ac.uk were measured post-wear on a Mitutoyo Crysta
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Table 1 Diametral clearance for each joint pair tested the wear simulator. The maximum and minimum
loads during the friction tests were 2000 N and 100 N

Diametral Standard
respectively and the motion was simple harmonicJoint clearance deviation

identification (mm) (mm) with amplitude 24° and period of oscillation 1.2 s.
This is consistent with previous tests performed inJoint 1 210 0.17

Joint 2 180 0.77 this laboratory.
Joint 3 160 0.21 The joint was tested three times with each viscosity
Joint 4 200 0.23

of lubricant. The mean and standard deviation wereJoint 5 160 0.40
then calculated. In each case the joint pair was
cleaned between runs using Gigasept and acetone,

coordinate-measuring machine using a 12-point according to our standard procedure [17].
least-squares fit for the heads and a nine-point fit for
the cups. The mean diameter of each component

2.2 Wear study
was calculated from three measurements and was
used to determine the clearances. The components were tested in the Durham hip

All friction and wear tests were carried out with function wear simulator I, described elsewhere in
bovine serum lubricant (batch 97623; TCS Bio- detail [18]. Joints were anatomically positioned, with
sciences, total protein content, 74.4 g/l) filtered the cups angled at 33° to simulate the condition in
through a 0.2 mm filter and diluted to 25 per cent, vivo. Approximately each 0.5×106 cycles the joints
resulting in a protein concentration of 18.6 g/l. To were removed, cleaned, and weighed with a protocol
this was added 0.2 per cent sodium azide and 20 mM closely following ISO 14242-2 [19]. The loading pro-
ethylenediaminetetraacetic acid to help to resist file of the wear simulator followed Paul [20] with
biodegradation of the lubricant and calcium deposit maximum and minimum loads of 2975 N and 100 N
formation respectively. For the friction study, sodium respectively.
carboxymethyl cellulose (CMC) was added to the
bovine serum lubricant in varying amounts as a 2.3 Surface study
viscosity enhancer [13], to achieve a range of five

The surface roughnesses of the contact region ofviscosities for testing from 0.001 to 0.1 Pa s. The
each component were measured using the Zygolubricant viscosities were measured at the same
NewView100 non-contacting interference profilom-shear rate (3000 s−1) as the lubricants in the study
eter each 0.5×106 cycles up to 3×106 cycles and thenby Cooke et al. [13]. Because of the shear-thinning
again at 5×106 cycles. Ten measurements were takennature of all these fluids (CMC and bovine serum, as
on the contact area of each component and variouswell as synovial fluid) the viscosity will be lower
surface parameters were recorded and investigated.during the actual testing. Previous friction tests in
Significance was tested by the t test.this laboratory with human synovial fluid as a lubri-

cant yielded similar results to those using bovine
serum (lowest viscosity tested here) [14], although

3 RESULTSthe viscosity of diseased synovial fluid is between the
second and third viscosities tested in the present

3.1 Friction studyseries of experiments. In this study, viscosity-
enhanced serum has been used to generate the entire Figure 1 shows the Stribeck curves for joint 1
Stribeck plot for a better understanding of the lubri- throughout the wear test. Before wear testing, the
cation mechanism. joint had a friction factor which was around 0.08,

which is much lower than the values of 0.15–0.2 seen
2.1 Friction study

for small-diameter metal-on-metal joints [14, 21].
After 1×106 cycles, the familiar mixed-lubricationA single joint (joint 1) was friction tested before the

wear test, and after each 106 cycles of the wear test, Stribeck curve began to form with the friction factor
falling to 0.03 at the highest viscosity. The synovialin hip function friction simulator II. This simulator

is similar to that described in previous work [14–16]. fluid from a patient with rheumatoid arthritis is
around 0.005 Pa s [13] measured at a shear rate ofThe joint was placed in the friction simulator in an

inverted position with respect to the orientation in 3000 s−1 , which corresponds to a Sommerfeld
number of 1.7×10−9 which lies slightly to the left ofvivo. The cup holder was angled at 33° to simulate

the relative positioning in vivo, to ensure that the the third point on each curve in Fig. 1. At this vis-
cosity, the friction factor within the joint was foundfriction was being measured on the contact area from
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Fig. 1 Stribeck plot for joint 1 throughout wear testing

to be 0.083 initially, falling to around 0.055 at 1×106 as part of the checking process, sound emissions
were analysed from all five stations and the soundcycles. At 2×106 cycles this fell again to around 0.015

and some fluid-film lubrication behaviour was seen. emission from station two was different to the others.
At 1.5×106 cycles this joint and joint 3 were swappedThis seemed to be stable at 3×106 and 5×106 cycles.
within the simulator and hence tested in a different

3.2 Wear study
station for 0.5×106 cycles. Both of these joints con-
tinued to follow their previous wear trend over thisThe volume loss on each prosthesis is summarized

in Fig. 2 and the wear rates are given in Fig. 3. During period and, since no clear evidence was found of
station variability, the joints were returned to theirthe testing, it became apparent that joint 2 was show-

ing much higher wear than the other joints. The rig original stations within the simulator for the remain-
der of the test.was checked and no problems were found. However,

Fig. 2 Volume change on prostheses during wear test
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Fig. 3 Wear results for each joint for portions of the wear cycle

For each joint, the wear rates became progressively bides as an array of protruding features. These were
present on all heads and cups and a typical image,lower as the test progressed as seen in Fig. 3. Since
as seen in Fig. 4(a). However, as the test progressed,the wear results for joint 2 were so very different from
this feature diminished, as seen from Fig. 4(b).those for the other four joints, and it was apparent

In Figs 5 and 6 the Z scale was maintained at thethat joint 2 had not ‘run in’ by 2×106 cycles whereas
same level for ease of comparison. The topographyall the others had, the analysis was performed on
of head 1 became progressively smoother throughoutonly joints 1, 3, 4, and 5. Further investigation of joint
the course of testing (Fig. 5). Head 2 also showed2 showed that by 5×106 cycles the surfaces had
a decrease in the carbide features, but surfacebecome smooth but, as seen in Table 2, after 5×106

scratches were more in evidence at 3×106 cyclescycles joint 2 was the only joint to be significantly
than for head 1 [Figure 6(c)]. The surface smoothedrougher than at the start of the test. Clearly some-
out further by 5×106 cycles [Figure 6(d)]. Joint 2 wasthing was different about this joint and so in the
the joint with the higher wear rates. Cup topographyabsence of a full explanation it was felt justified to
followed a similar trend although to a slightly lesseranalyse only the other four joints, which were con-
extent. The initial and final surface data for eachsistent.
component are given in Tables 2 and 3, and statisti-
cally significant changes are shown in bold.3.3 Surface study

A white deposit was seen on some components
Typical surface images for the components are given and this was investigated using scanning electron
in Figs 4 to 6. All images represent an area size of microscopy (SEM). Elemental analysis revealed the
363 mm×272 mm and the Z scale is indicated on presence of carbon in the deposit, indicating that it
each image. was organic in nature and most likely was a pro-

tein layer.Initially the surfaces showed the presence of car-

Fig. 4 Surface images of (a) cup 1 (initial) and (b) cup 3 (1×106 cycles) showing that carbide
feature diminished during wear testing

JEIM63 © IMechE 2006Proc. IMechE Vol. 220 Part H: J. Engineering in Medicine
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Fig. 5 Surface topography of head 1: (a) initial; (b) after 1×106 cycles; (c) after 3×106 cycles;
(d) after 5×106 cycles
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Fig. 6 Surface topography of head 2: (a) initial; (b) after 1×106 cycles; (c) after 3×106 cycles;
(d) after 5×106 cycles
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Table 2 Average initial and final S
r.m.s.

values for each components [8, 22, 24], as seen here with joint 2.
individual component; results in bold are The wear rate from this study compares well with
statistically significant changes simulator results published by other workers [7, 22,

25–27]. McMinn [28] has pointed to laboratoryInitial S
r.m.s.

Final S
r.m.s.Component (mm) (mm) research with differing results from the same type of

joint when tested in different simulators, suggestingHead 1 0.045±0.004 0.029±0.017
that direct comparisons can be misleading. It hasHead 2 0.035±0.010 0.081±0.080

Head 3 0.040±0.015 0.044±0.041 been suggested that the running-in wear is depen-
Head 4 0.054±0.007 0.091±0.092

dent on the joint clearance [26], but in this studyHead 5 0.042±0.006 0.114±0.098
Cup 1 0.058±0.003 0.030±0.004 there was found to be no correlation between wear
Cup 2 0.034±0.004 0.046±0.031 rate and clearance, as summarized in Table 4. TheCup 3 0.040±0.011 0.031±0.007

wear rates in this simulator study with the BHR areCup 4 0.025±0.005 0.009±0.001
Cup 5 0.033±0.002 0.033±0.018 rather lower than reported wear rates from clinical

retrieval studies on conventional metal-on-metal
total hip replacements, as shown in Table 5. It hasTable 3 Average initial and final S

sk
values for each

still to be discovered whether the wear rates of theindividual component; results in bold are
BHR on this simulator study will match the wearstatistically significant decreases
rates from clinical retrievals of BHR devices.

Component Initial S
sk

Final S
sk

4.2 Friction and lubricationHead 1 1.94±0.21 −1.19±2.86
Head 2 1.86±0.42 −1.20±2.49

The Stribeck plots for the joint tested throughoutHead 3 1.59±0.53 −1.16±4.50
Head 4 1.65±0.32 −4.91±4.49 the wear test are given in Fig. 1. Before wear testing,
Head 5 1.64±0.29 −1.24±2.52 the joint had an almost constant friction factor inCup 1 2.03±0.73 1.55±0.83

the region of 0.08. This is much lower than the valueCup 2 1.39±0.27 −2.32±14.01
Cup 3 1.80±0.47 −11.98±6.04 of 0.18 reported for other metal-on-metal articu-
Cup 4 1.76±0.40 0.85±0.54

lations [14]. However, as the wear test continued, theCup 5 2.05±0.11 −8.45±7.15
shape of the Stribeck curve changed to indicate a
more favourable lubrication regime. After 2×106

4 DISCUSSION cycles the Stribeck curve looked like a classical fluid-
film lubrication curve, indicating that at the higher

4.1 Wear viscosities the joint was operating with a substantial
amount of fluid-film lubrication although the pres-The total average wear rate was 0.67 mm3 per 106
ence of a small amount of wear would indicate acycles. However, the joints showed a higher average
small amount of surface to surface contact in con-wear rate initially [(0–1)×106 cycles] of 1.84 mm3 per
junction with this mostly fluid-film lubrication.106 cycles, which then reduced to 0.64 mm3 per 106

cycles for (1–3)×106 cycles and reduced further to
4.3 Surface topography

0.24 over (3–5)×106 cycles. A higher initial wear rate
is common, particularly with metal-on-metal articu- Initially the surfaces of all cups and heads clearly

showed the presence of carbides protruding from thelations [8, 22, 23]. It is also not uncommon to see
large variations in the wear rates between different surface. By 1×106 cycles these were diminished, a

Table 4 Summary of clearances and wear factors throughout the test for each joint

Wear rate (mm3 per 106 cycles)
Diametral
clearance (0–1)×106 (1–3)×106 (3–5)×106 Overall

Joint (mm) cycles cycles cycles wear

1 210 2.05 1.14 0.29 0.93
2 180 7.57 4.98 1.00 4.00
3 160 0.68 0.42 0.10 0.33
4 200 3.59 0.71 0.44 1.08
5 160 0.99 0.27 0.14 0.33

Average (excluding joint 2) 1.84 0.64 0.24 0.67
Correlation 0.26 0.11 0.26 0.16
N 5 5 5 5
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Table 5 Clinical wear rates of metal-on-metal joints tional metal-on-metal THR clinical retrievals. There
was an initially higher wear rate which decreased

Wear rate (mm3/year)
with running in of the components. The joint tribol-Number

Joint type Head Cup Total of years Reference ogy and surface condition both improved with
‘running in’ of the joint, with the surface topographyMcKee–Farrar 2.04 1–25 [29]

Muller 2.97 8–13 [29] becoming more negatively skewed after the test.
McKee–Farrar 2.24 1.4 3.64 8–23 [30] Friction factors were very low for metal-on-metal

combinations, and the lubrication shifted substan-
tially towards fluid film as the wear test progressed.
Surface changes were consistent with the changesfact supported by the significant reduction in the

skewness values of the surfaces. The surfaces became seen in friction results and with the reduction in the
wear factor as the test progressed. This is the firstmore negatively skewed, which is indicative of dim-

inishing peaks or increasing valleys. The peak-to- time that the running-in process has been correlated
with improved lubrication conditions as demon-valley ratio showed a significant increase on many

components. The r.m.s. roughness remained un- strated by measured Stribeck analysis.
changed for some of the components, as seen in
Table 2, although some components did show sig-
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the roughnesses showed a larger standard deviation
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