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Collisions between bright solitary waves in the 1D Gross-Pitaevskii equation with a harmonic potential,
which models a trapped atomic Bose-Einstein condensate, are investigated theoretically. A particle
analogy for the solitary waves is formulated and shown to be integrable for a two-particle system. The
extension to three particles is shown to support chaotic regimes. Good agreement is found between the
particle model and simulations of the full wave dynamics, suggesting that the dynamics can be described
in terms of solitons both in regular and chaotic regimes, presenting a paradigm for chaos in wave
mechanics.
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The presence of chaos in quantum systems is a topic of
intense interest [1]. A signature of classical chaos is the
ergodic filling of regions in phase space. Applying this
criterion in the search for chaos in wave mechanical sys-
tems, e.g., the linear Schrödinger equation in quantum
mechanics, the uncertainty relations dictate that trajecto-
ries are smeared out. Chaos is impossible to observe when
dispersion dominates over the exponential divergence of
neighboring trajectories. Nondispersive waves such as soli-
tary waves or solitons are therefore of particular interest in
the study of chaotic dynamics. In this case, particle-like
chaotic behavior may be well-defined in wave mechanical
systems.

Solitary waves may be found in solutions to nonlinear
wave equations where the nonlinearity counteracts the
dispersion of a wave packet such that it retains its form
as it propagates. An example is the nonlinear Schrödinger
equation (NLSE), employed to describe diverse physical
systems, e.g., light propagating in fibre-optics [2], and as
an approximation to the dynamics of dilute atomic Bose-
Einstein condensates (BEC) [3], where it is called the
Gross-Pitaevskii equation (GPE). Solitons are solitary
waves that emerge unscathed from collisions, up to shifts
in position and phase [4]; this is reminiscent of particle
behavior, motivating the particle-like name soliton. The
homogeneous 1D NLSE with attractive nonlinearity sup-
ports bright soliton solutions [4], so-called because they
represent a peak (rather than a trough) in intensity in a
nonlinear-optical setting, or in particle density in BEC.
Macroscopic quantum states of multiple bright solitary
matter-waves present an interesting testing ground for
wave chaos. In general all wave packet evolution predicted
by the Schrödinger equation is periodic or quasiperiodic,
due to its linearity. The nonlinearity in the 1D GPE and
associated solitary wave solutions may break all periodic-
ity, leading to the realization of ergodic behavior, i.e.,
recognizably chaotic dynamics.

Bright solitary waves have been the subject of substan-
tial experimental and theoretical investigation in nonlinear

optics [2,5,6], and BEC [7–11]. Notably, chaotic and regu-
lar soliton behavior have been observed theoretically in a
NLSE with a �-kicked rotor potential [12]. In BEC experi-
ments, the magnetic or optical trap employed to confine
the constituent atoms introduces a position-dependent
potential. In this Letter, we investigate to what extent
solitary wave collisions in a harmonic potential provide a
paradigm for particle-like chaotic behavior in a wave
mechanical system. Because of this potential, bright
solitary waves in a harmonically trapped system are not
true solitons; however, it will be shown that the particle
nature of the solitary waves is very pronounced, so the
bright solitary waves in this system will from now on be
called solitons. To test the extent of the soliton behavior,
we introduce a particle model, adapted from a nonlinear
optics context for a NLSE with a sinusoidal external
potential [5]. In this model, constructed for the regime
where the solitary waves are well-separated before and
after collisions, the waves are modeled as interacting clas-
sical particles. Within this model, we show that the
two-soliton case is integrable, but for three (or more)
solitons, one can expect chaotic dynamics. The results
are compared to numerical solutions of the GPE, and
provide a probe of the coexisting particle and wave prop-
erties of bright solitary waves. The most surprising result is
that the particle-like behavior is preserved even in the
chaotic regime. In contrast to the linear Schrödinger equa-
tion, where the evolution of localized wave packets is
rapidly disrupted in regimes supporting classically chaotic
dynamics [1], the soliton solutions appear to be remarkably
robust. At temperatures encountered in atomic BEC ex-
periments (nK or lower), the atom-atom interaction poten-
tial may generally be replaced by an effective contact
interaction, quantified by the s-wave scattering length, a.
Depending on species, this may be positive or negative,
and may also be tuned using an external magnetic field
[13]. In the case of a trapped, almost fully Bose-condensed
dilute atomic gas, the dynamics are largely governed by the
following GPE:
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where N is the total number of atoms, m the atomic mass,
and ��r; t� the condensate mode-function, normalized to
one. The atom-atom interactions are quantified by g3D �
4�@2a=m, where, in this Letter, a is negative. The propor-
tion of noncondensate atoms is thus assumed to be negli-
gible. However, linear instabilities in the GPE directly
imply [14,15] that the population of the noncondensate
component may rapidly become significant. Regimes
where soliton collision dynamics have a chaotic character
are thus of additional interest, as they may coincide with a
greater tendency for linear instability, and hence implicitly
with condensate depletion [16].

The regime of interest for the study of solitons is the
quasi-1D case, where the atoms are trapped in a radially
tight harmonic trap with loose harmonic axial confinement.
We may assume a harmonic ground state (Gaussian) ansatz
in the radial direction, since the harmonic potential energy
dominates. The GPE then takes the form
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where x is now measured in units of @2=mjg1DjN and t in
units of @3=mjg1Dj

2N2 with g1D � 2@!ra, !r is the radial
trapping frequency and! is the axial frequency in our units
of inverse time. In the case of zero axial potential, an exact
solution exists [4], comprising an arbitrary number of well-
separated solitons taking the form

 �i�x; t� � 2�isech�2�i�x� qi��eivi�x�qi�ei�2�
2
i�v

2
i =2�tei�0i ;

(3)

where qi � vit� x0i is the position of the peak of the ith
soliton; x0i is the peak position at t � 0; �0i � vix0i is the
phase at x � 0, t � 0; and vi are the soliton velocities. Our
normalization condition implies that

PNs
i 4�i � 1, where

Ns is the number of solitons present. When these solitons
emerge from collisions, they suffer position shifts depen-
dent on vi (initial speeds), and �i (effective masses) only.
The outgoing soliton motion is independent of the relative
phase [4] (see Fig. 1).

The particle model follows the approach of Scharf and
Bishop [5], which reproduces the position shifts following
collisions, and also reproduces the motion due to the trap-
ping potential, while neglecting the phase behavior. This
approach is appropriate when the solitons are well sepa-
rated between collisions. It is not appropriate for soliton
trains, as observed by Strecker et al. [8], and modeled by
Gordon [17], and by Gerdjikov et al. [18], where the
solitons are never well separated, and the phase difference
has an important effect. Parker et al. have modeled bright
matter-wave soliton collisions [11] using the 3D GPE at or
near the quasi-1D regime. Taking the full 3D GPE dynam-

ics into account highlights some important deviations from
the 1D dynamics: in particular, collapse may occur during
collisions of solitons having slow approach speeds, with
sensitivity to the relative phase of the solitons. Above a
particular threshold velocity, the quasi-1D model can be
expected to hold, including the observed phase-
insensitivity of the collision dynamics.

Following reference [5], the effect of the external po-
tential is deduced by using the one soliton solution of the
homogeneous case as an ansatz for the system with a
harmonic potential, and evaluating the constant norm and
energy functionals. This gives equations of motion for the
solitons in the external potential. We add an interparticle
potential which reproduces the position shifts of the sol-
itons on emerging from collisions with each other, inferred
from the exact solution to the homogeneous NLSE, which
are assumed not to change upon the addition of the
position-dependent external potential. The Hamiltonian
for an arbitrary number of solitons (Ns) is given in the
particle analogy by
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This Hamiltonian models the positional dynamics of the
soliton peaks. In the case of two solitons (Ns � 2) with

 

FIG. 1 (color online). Trajectories in the particle model (lines)
plotted over density distributions predicted by 1D dynamics in
the homogeneous GPE. The trajectories correspond to solitons
colliding with a relative phase of the golden ratio � � �1����

5
p
�=2 in (a) and (c), and a relative phase of � � ��1�

���
5
p
�=2

in (b) and (d). In (a) and (b), the incoming speeds of the solitons
are �0:1 jg1DjN=@ and 0.2 jg1DjN=@, and in (c) and (d), the
incoming speeds are �0:1 jg1DjN=@ and 0.3 jg1DjN=@. The
solitons have equal effective masses, and other parameters
(radial trap frequency of 800 Hz, atomic mass and scattering
length of 7Li, and 5000 particles per soliton) are taken to agree
with recent experiment [8]. The unit of x is then � 3:6 �m, and
a unit of t � 1:4 ms.
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identical effective masses, we define the following coor-
dinates: the center-of-mass position Q :� �q1 � q2�=2 and
the relative position q :� q1 � q2, with their canonical
momenta, P and p respectively. The Hamiltonian separates
into the center-of-mass energy E (dependent on P and Q
only), and the ‘‘relative energy’’ � (dependent on p and q
only). The two independent constants of the motion, E and
�, as many as there are degrees of freedom, imply the
particle model for two solitons is integrable and the dy-
namics must be completely regular. The same argument
holds for nonidentical masses.

In the case of three solitons (Ns � 3), the situation is
different. When the masses are identical, a coordinate
change may be made to QT=� :� �q1 � q2 � q3�=3, the
center-of-mass position, and qc=� :� �q1 � q3�=2 (corre-
sponding to the ‘‘stretch’’ mode) and qr=� :� �q1 � q3 �
2q2� (corresponding to the ‘‘asymmetric stretch’’ mode),
the normal coordinates of the system for small displace-
ments from the origin. These modes are similar to the
vibrational modes in a triatomic molecule [19]; as the
system is constrained to 1D, however, there is no analogue
of the molecular bending mode. Rescaling time ~t � �2t,
and introducing the momenta pc � 2 _qc and pr � _qr=6, we
may remove the center-of-mass behavior from the prob-
lem. (An equivalent treatment is possible for nonidentical
masses.) The resultant reduced system Hamiltonian
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describing the two remaining degrees of freedom, is not
separable, and it is necessary to integrate the equations of
motion numerically. Poincaré sections illustrate regions of
regular and chaotic behavior. Figure 2 shows a section
corresponding to the momentum pr and position qr of
the ‘‘asymmetric stretch’’ mode when the stretch mode
coordinates qc � 0, pc < 0. The form of ~H [Eq. (5)] is
such that without the interaction, the system is integrable,
as it becomes a decoupled pair of harmonic oscillators.
When ~H is large and positive, the interaction part (which is
always negative) gives a small contribution, compared to
the integrable part of ~H (which is always positive). When
~H is reduced, chaos is emergent, illustrated by ergodic
mixing of the trajectories in phase space. The Poincaré
section plotted is of an intermediate regime with both
ergodic regions and regular tori.

Figure 3 shows a comparison of trajectories in the
particle model with results from integrations of the 1D
GPE [Eq. (2)]. The comparisons illustrate the good agree-
ment in the regimes in which the particle model is valid,
i.e., when solitons are well-separated between collisions
[Figs. 3(a) and 3(b)], even when the motion is chaotic
[Fig. 3(b)]. When two of the solitons are not well separated
[Fig. 3(c)], the 1D GPE simulation shows that a ‘‘bound
state’’ is formed, which looks like a single ‘‘higher-order’’

soliton with an excited breathing mode [20]. The particle
model does not predict well the behavior within the
‘‘bound state,’’ but does give a good prediction of the
center-of-mass motion of the ‘‘bound state’’ and its inter-
actions with the other soliton; it is likely that the behavior
of the density of the ‘‘bound state’’ is strongly coupled to
the phase behavior within the ‘‘bound state.’’

Harmonically trapped solitons thus have strong particle
characteristics. Even in chaotic regimes, where the expo-
nential growth of linear instabilities is most prevalent, the
soliton solution is remarkably robust. An echo of the wave-
equation origin of the particle model is that, consistent with
the attractive interaction potential, the particles pass
through each other subsequent to collisions. The particle
model is much quicker to solve than the 1D GPE (involv-
ing four real variables, rather than a continuous complex-
valued function); thus Poincaré sections (see Fig. 2) can
rapidly build up a qualitative idea of the many-soliton
behavior.

Experimental demonstration of such chaotic dynamics
in a wave mechanical system requires a relatively straight-
forward adaption of recent experiments [8–10]. For ex-
ample, a system of 3 solitons can be created reproducibly
by careful choice of the initial conditions [10].
Manipulation of the optical trapping potential during
the solitons’ creation will allow the solitons’ initial veloc-
ities to be chosen. Chaotic regions of phase space may
be probed by measuring the sensitivity of the subsequent
evolution of the density distribution to the initial
condition.

 

FIG. 2 (color online). Poincaré section of the three-soliton
system with ~H � 10. Regions corresponding to trajectories in
Figs. 3(a)–3(c) are labeled and highlighted using darker points.
The section corresponds to the momentum pr and position qr of
the ‘‘asymmetric stretch’’ mode when the stretch mode variables
qc � 0, pc < 0. The figure corresponds to the regime where the
solitons have equal effective masses, the axial trapping fre-
quency is 10 Hz, and the other parameters (radial trap frequency
of 800 Hz, mass and scattering length of 7Li, and 5000 particles
per soliton) correspond to recent experiment [8].
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An effective classical particle model has been derived
for many solitons in the NLSE with a harmonic potential.
This applies to a dilute BEC of attractive atoms in the
quasi-1D limit of a cigar-shaped trap. Within this model
two-soliton dynamics are fully integrable and regular, but
three solitons may display chaotic dynamics when atom-
atom interactions are significant. The particle model ex-
hibits good agreement with the 1D GPE in the regime of
large separation of the solitons before and after collisions,
even when the particle motion is chaotic. This confirms the
surprising robustness of bright matter-wave solitons, as
observed experimentally [8–10]. There is a good degree
of agreement even when ‘‘bound states’’ are modeled
(states not in a regime of large separation). Chaotic regions

may also be a useful predictor of regimes of condensate
instability, which can be explored with a fuller treatment of
the condensate and noncondensate atoms [15].
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FIG. 3 (color online). Trajectories in the particle model (lines)
plotted over density distributions predicted by 1D GPE dynam-
ics, corresponding to (a) a regular orbit, (b) a chaotic orbit, and
(c) a bound state, as shown in Fig. 2. In the center of the bound
state, the density increases to 	0:5 normalized units, but our
scale is pinned at 0.14 units in order to resolve the low density
regions better. Here ~H � 10, the solitons have equal effective
masses, the axial trapping frequency is 10 Hz, and other pa-
rameters (radial trap frequency of 800 Hz, atomic mass and
scattering length of 7Li, and 5000 particles per soliton) corre-
spond to recent experiment [8]. The unit of x is then � 2:4 �m,
and a unit of t � 0:6 ms.
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