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Abstract—The goal of this paper is to describe a generic
approach to the problem of optimal coordinated ramp me-
tering control in large-scale motorway networks. In this ap-
proach, the traffic flow process is macroscopically modeled by
use of a second-order macroscopic traffic flow model. The overall
problem of coordinated ramp metering is formulated as a con-
strained discrete-time nonlinear optimal control problem, and a
feasible-direction nonlinear optimization algorithm is employed
for its numerical solution. The control strategy’s efficiency is
demonstrated through its application to the 32-km Amsterdam
ring road. A number of adequately chosen scenarios along with
a thorough analysis, interpretation, and suitable visualization of
the obtained results provides a basis for the better understanding
of some complex interrelationships of partially conflicting per-
formance criteria. More precisely, the strategy’s efficiency and
equitey properties as well as their tradeoff are studied and their
partially competitive behavior is discussed. The results of the
presented approach are very promising and demonstrate the ef-
ficiency of the optimal control methodology for motorway traffic
control problems.

Index Terms—optimal control, nonlinear systems, ramp me-
tering, traffic control (transportation).

I. INTRODUCTION

ANUMBER of approaches have been developed in the past
for the design of control strategies for motorway networks

that involve control measures such as route recommendation
with the use of variable message signs (VMS) or equipped ve-
hicles, ramp metering, motorway-to-motorway (mtm) control,
etc. In this paper, the optimal control approach (discrete-time
formulation) is applied to the design of large-scale optimal co-
ordinated ramp metering control strategies.

Early applications of nonlinear constrained optimal con-
trol to coordinated ramp metering were reported in [1], [2],
and [3]. In [4] and [5], a similar approach was applied to
the Boulevard Peripherique in Paris. In [6]–[8] and [9], the
problem of ramp metering as an optimal control problem was
considered. In [10] and [11], results related to the integrated
control of motorway networks, considering both route recom-
mendation and ramp metering, were reported for a hypothetical
network based on the approach described in this paper and
the control software tool advanced motorway optimal control
(AMOC). AMOC determines optimal control trajectories for
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arbitrary-topology networks with arbitrary geographically dis-
tributed control measures (including, besides ramp metering,
mtm control and route recommendation). AMOC considers
all the available control measures simultaneously so as to
maximize their synergistic effect thereby avoiding conflicting
control actions. Results for coordinated ramp metering based
on AMOC are reported in [12]. A control strategy based on an
optimal control problem formulation integrating ramp metering
and variable speed limits was reported in [13]. For a more
detailed and systematic overview of ramp metering control
strategies see [14].

This paper first provides a thorough description of the op-
timal control approach to coordinated ramp metering along with
a suitable numerical solution algorithm. Based on application of
the proposed methodology to the Amsterdam ring road, previ-
ously obtained results are enhanced and extended with regard
to the computational efficiency, which is a prerequisite for the
real-time application of the method, as well as with regard to the
operational performance (efficiency versus equity) and related
tradeoffs. Both issues (computational effort and operational per-
formance) are of major importance for the practical deployment
of the proposed methodology.

The rest of this paper is structured as follows. Section II
briefly presents the macroscopic traffic flow model which
is used for the design of the control strategy. Section III
formulates the problem of coordinated ramp metering as a
constrained nonlinear discrete-time optimal control problem.
Section IV presents the numerical solution algorithm for the
formulated problem. Section V presents the application results
for the Amsterdam ring road. The main conclusions and future
work are reported in Section VI.

II. MACROSCOPIC TRAFFIC FLOW MODEL

A validated second-order traffic flow model is used for the
description of traffic flow on motorway networks to provide the
modeling part of the optimal control problem formulation. Since
traffic assignment (routing) aspects of the traffic process are not
necessary when the only type of control measure applied is ramp
metering, the traffic assignment modeling part will not be pre-
sented (see [15], for details).

The network is represented by a directed graph whereby the
links of the graph represent motorway stretches. Each motorway
stretch has uniform characteristics, i.e., no on-/off-ramps and no
major changes in geometry. The nodes of the graph are placed
at locations where a major change in road geometry occurs, as
well as at junctions, on-ramps, and off-ramps.

The time and space arguments are discretised. The dis-
crete-time step is denoted by (typically – s). A
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Fig. 1. Origin-link queue model.

motorway link is divided into segments of equal-length
(typically m). In principle, such a link may be

divided into unequal segments as long as the stability condition
holds, where is the free-flow speed

of link corresponding to the speed at close to zero-density
traffic conditions. This condition ensures that no vehicle
travelling with its free speed will pass through a segment
during one simulation time step. However, an uneven spatial
discretization scheme does not provide any advantage over
the equal length division. It is for our convenience that we use
equal segment lengths for each motorway link. Each segment

of link at time , is macroscopically
characterized via the following variables: The traffic density

(veh/lane-km) is the number of vehicles in segment
of link at time divided by and by the number of
lanes ; the mean speed (km/h) is the mean speed
of the vehicles included in segment of link at time ;
and the traffic volume or flow (veh/h) is the number of
vehicles leaving segment of link during the time period

, divided by . For each segment of link at
each time step we have the following:

(1)

(2)

(3)

(4)

where denotes the critical density per lane of link (the
density where the maximum flow in the link occurs), and is a
parameter of the fundamental diagram (4) of link ; the funda-
mental diagram expresses a nonlinear relationship between the
mean speed and the traffic density in link which is needed in
the second term of the right-hand side of (3). Furthermore, ,
a time constant, , an anticipation constant, and , are constant
parameters, which are equal for all network links. This is due
to the fact that the traffic model has relatively low sensitivity
to these parameters, see [16] and [17]. Additionally, the mean
speed resulting from (3) is limited from below by the minimum

speed in the network in order to avoid unrealistically low
flows during congestion.

Two additional terms are added to (3) in order to consider the
speed decrease caused by merging phenomena at a junction and
by lanes drops, respectively, see [16] for details.

For origin links, i.e., links that receive traffic demand and for-
ward it into the motorway network, a simple queue model is
used (Fig. 1). The outflow of an origin link depends on
the traffic conditions of the corresponding mainstream segment

and the existence of ramp metering control measures.
If ramp metering is applied, then the outflow that is al-
lowed to leave origin during period , is a portion of the
maximum outflow that would leave and enter the main-
stream in absence of ramp metering. Thus,
is the metering rate for the origin link , i.e., a control vari-
able, where is a minimum admissible value; typically,

is chosen so as to avoid ramp closure. If ,
no ramp metering is applied, else . The queueing
model is described by the following:

(5)

where is the queue length (veh) in origin at time ,
and is the demand (veh/h) at at the same period. The
outflow is determined as follows:

(6)

with

(7)

and

(8)

(9)

where is the on-ramp’s capacity (veh/h), i.e., the on-ramp’s
maximum possible outflow under free-flow traffic conditions in
the mainstream; and (veh/lane-km) is the maximum den-
sity in the network segments. Thus, the maximum outflow
is determined by the current origin demand if [see
(7), (8)], or by the geometrical ramp capacity if the main-
stream density is undercritical, i.e., [see (9)], or
by the reduced capacity due to congestion of the mainstream, if

[see (9)]. Thus, (9) models the reduction of the
origin link’s capacity due to mainstream congestion (Fig. 2).
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Fig. 2. Reduction of origin link capacity due to mainstream congestion.

A model similar to (5)–(9) applies to motorway-to-motorway
interchanges.

Motorway bifurcations and junctions (including on-ramps
and off-ramps) are represented by nodes. Traffic enters a node

through a number of input links and is distributed to the
output links according to

(10)

(11)

where is the set of links entering node is the set of links
leaving is the total traffic volume entering at period

is the traffic volume that leaves via outlink , and
is the portion of that leaves the node through link

. are the turning rates of node and are assumed to
be known for the entire time horizon. Equations (10) and (11)
provide required in (1) for .

If a node has more than one leaving link, then the upstream
influence of density (which is necessary for the modeling of
congestion spillback) is taken into account in the last segment
of the incoming link by an appropriate calculation of
which is required in (3) for . When a node has more
than one entering links, then the downstream influence of speed
is taken into account by appropriately calculating required
in (3) for . For more details see [15].

It should be noted here that the investigations reported in
this paper were based on turning rate information instead of
OD information. Since it is very rare for neighboring on-ramps
to have significantly different OD rates, something that would
seriously affect the controller’s performance, the use of turning
rates instead does not pose any problem. AMOC can deal with
OD information (see also [10] and [11]) but at the expense
of the required computation effort due to the more detailed
description of the traffic process, see also [15].

III. PROBLEM FORMULATION

The coordinated ramp metering control problem is formu-
lated as a dynamic optimal control problem with constrained
control variables which can be solved numerically over a given
time horizon. The motorway traffic flow is considered as a
process under control via the various ramp meters installed at
the network entrances. The state of the process is described
by the state vector and its evolution depends on the
system dynamics and the input variables. The input variables
are distinguished into control variables and the

uncontrollable external disturbances . In the following,
we will introduce a general problem formulation whereby the
value of each control measure may change less frequently than
at each model sample time . Assume that the different
control measures have distinct control sample times which
are assumed to be multiples of the model sample time , i.e.,

. Let
and let denote the number of control

measures that have sample time and are organized in the
vector . Then . The general
discrete-time formulation of the optimal control problem reads

Minimize

(12)

subject to

(13)

and (14)

where is the considered time horizon, and are arbitrary,
twice differentiable, nonlinear cost functions.

Based on the previous section, it may be seen that by
substituting (2), (10), and (11) into (1); (4) into (3); and (6)–(9)
into (15), the traffic flow model equations take the form of
(13). In this case, the state vector consists of the densities

, the mean speeds of every segment of every link
, and the queues of every origin . The control vector
consists of the ramp metering rates of every on-ramp
under control, with according to (14).

We assume here that all ramp meters have the same sample
time . Finally, the disturbance vector consists of
the demands at every origin of the network, and all the
turning rates at the network’s bifurcations. The disturbance
trajectories are assumed known over the time horizon .
For practical applications, these values may be predicted with
sufficient accuracy based on historical data and, if necessary,
on real-time estimations, see, for example, [18].

The chosen cost criterion aims at minimizing the total time
spent (TTS) of all vehicles in the network (including the waiting
time experienced inside the network queues). It can be proved
that the minimization of the TTS is equivalent to the maximiza-
tion of the time weighted network outflow, see [3] and [14]. The
minimization of the TTS is a natural objective for the traffic sys-
tems considered here, since it represents the total time that all
users spent in the network. Furthermore, there is a widespread
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use of the TTS as an evaluation criterion of control strategies
that do not explicitely aim at its minimization, such as feedback
strategies. More precisely, the cost criterion is as follows:

(15)

with

(16)

where are weighting factors. The first two terms of (15)
correspond exactly to the TTS. The term with weight is in-
cluded in the cost criterion to suppress high-frequency oscilla-
tions of the control trajectories. The last penalty term is included
in the cost criterion in order to enable the control strategy to limit
the queue lengths at the origins if and to the level desired. The
parameters are predetermined constants that express the
maximum permissible number of vehicles at any time period
in origin ’s queue. The weights and were adjusted via
trial-and-error striking a balance between acceptable time-vari-
ations in the optimal control trajectories and queue constraint
violations on one hand and efficiency and fast convergence to
the optimum on the other.

IV. NUMERICAL SOLUTION ALGORITHM

Define the quantities

if mod

integer otherwise
(17)

For a given admissible trajectory , the
state trajectory can be found by solving (13) starting
with the known initial state and, hence, the cost criterion
can be regarded as depending on the control variables only, i.e.,

. The gradient of with respect to on the
equality constraints surface for the time period is given by

(18)

where the costate vector satisfies

(19)

and

(20)

A projected gradient is defined to have its components
equal to if none of the corresponding bounds

(14) is active, and else. Furthermore we define a
saturation vector function with components

if
if
else

where and are the upper and lower bounds, respec-
tively, of the variable .

The necessary conditions of optimality are given by (13),
(14), (19), (20), and . A well known so-
lution algorithm based on feasible directions can be described
as follows:

Step 1) select an admissible initial control trajectory
; set the iteration index

;
Step 2) using , solve (13) from

known initial condition to obtain ;
using and solve (19) from ter-
minal condition (20) to obtain ;

Step 3) using , and
, calculate the gradients and

;
Step 4) specify a search direction (see below);
Step 5) apply an one-dimensional search routine along the

-direction to obtain a new, improved admissible
control trajectory , i.e.,

where is the scalar step length, and

Step 6) if, for a given scalar , the condition
is satisfied, stop; otherwise set

and go back to Step 2.
Several techniques for specifying a search direction in

Step 4 of the algorithm can be applied, including steepest de-
scent, conjugate gradient, and variable metric, see [19] and [20].
Whichever of these seach methods is used, a periodic restart of
the search algorithm takes place, i.e., after a certain number of it-
erations, the search direction is set equal to the steepest-descent
direction so as to accelerate the algorithm’s speed of conver-
gence to a minimum. For more details on the overall numerical
solution algorithm, see [21] and [20].

As an alternative solution algorithm, Step 4 may be omitted
while Step 5 may be replaced by the derivative backpropagation
method RPROP (resilient backPROPagation) proposed in [22]
for neural network training. RPROP does not require the line-
search routine used in the above algorithm, since it calculates
the necessary changes of the control variables at each iteration
based only on the signs of the gradient components . To
the best of our knowledge, this is the first time that the RPROP
method is used for large-scale nonlinear optimization.



924 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 6, NOVEMBER 2004

When the RPROP method is used (slightly modified as com-
pared to its original form in [22]), Steps 4 and 5 of the above
algorithm are replaced by the following calculations:

where the control variable increments are calculated
based on the sign of the gradient and the increment

of the previous iteration, as shown in the equation
at the bottom of the page, where . Thus,
if no change of sign of occured between iterations

and , the corresponding increment is increased
as compared to by a factor (typically

). If a sign change of occured, then the algorithm has
stepped over a minimum in the corresponding direction, hence,
the new increment is opposite in sign and reduced in
size (typically ) as compared to . The al-
gorithm starts with ; the calculated at
each iteration may be restricted to lie in a prespecified interval

.
The RPROP method preserves feasibility of the overall algo-

rithm but cannot guarantee a decrease of the objective function
value at each iteration.

The previously described numerical optimization algorithm
does not guarantee convergence to a global minimum. Previous
experiences, indicate that a physically satisfactory minimum is
always achieved. In some cases, when the algorithm was started
with different initial control trajectories, convergence to dif-
ferent local minima occurred. The corresponding difference in
the cost criterion’s value, however, was insignificant.

V. APPLICATION EXAMPLE

A. Site Description

The previously described approach to network-wide optimal
ramp metering has been applied to the Amsterdam ring road
with the use of AMOC.

The Amsterdam orbital motorway (A10) is shown in Fig. 3.
The A10 simultaneously serves local, regional, and inter-re-
gional traffic and acts as a hub for traffic entering and exiting
North Holland. There are four main connections with other mo-
torways, the A8 at the north, the A4 at the southwest, the A2 at
the south, and the A1 at the southeast. The A10 contains two tun-
nels, the Coen Tunnel at the northwest and the Zeeburg Tunnel
at the east.

For the purposes of our study, only the counterclockwise di-
rection of the A10, which is about 32 km long, is considered.
There are 21 on-ramps on this motorway, including the connec-
tions with the A8, A4, A2, and A1 motorways, and 20 off-ramps,
including the junctions with A4, A2, A1, and A8. The topolog-
ical network model may be seen in Fig. 4. It is assumed that
ramp metering may be performed at each of the on-ramps.

The model parameters for this network were determined
from validation of the network traffic flow model against real

Fig. 3. Amsterdam ring road.

Fig. 4. Amsterdam ring road model.

data taken from the motorways. The validation was conducted
in two phases. The first phase was the quantitative validation
where several motorway stretches from the ring road were se-
lected and a rigorous optimization-based validation procedure
was carried out for each of them estimating the model parame-
ters , and , and for every
link . The second phase of the validation involved the manual
tuning of other parameters, such as certain turning rates, that
enabled the model to capture the network-wide dynamics. In
fact, the network considered here is only a part of the whole
network considered in [23] and [24] where the detailed results
of the modeling and validation of the Amsterdam network are
reported.

The ring road was divided in 76 segments with average length
421 m. This means that the state vector is 173-dimensional (in-
cluding the 21 on-ramp queues). If ramp metering is applied to
all on-ramps, the control vector is 21-dimensional, while the dis-
turbance vector is 41-dimensional. With a time step s
we have, for a horizon of 4 h, . This means that for
a control sample time of 1 min and all on-ramps metered, there
are 254, 160 variables included in the resulting nonlinear opti-
mization problem.

if

else
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Fig. 5. No control. (a) Density. (b) On-ramp queues.

Four different scenarios are considered for this network. For
all scenarios it is assumed that, even in case of long on-ramp
queues, no rerouting takes place. Scenario 0 corresponds to the
no-control case, i.e., when no ramp metering control measures
are applied. During the four hour period in this scenario, which
corresponds to the evening rush hours, the whole spectrum of
traffic conditions (free, critical, and congested) appears on the
ring road. Starting from initially uncongested conditions, the
build up of congestion inside the motorway and the build up
of queues at the network’s on-ramps may be observed, and we
can follow their evolution until they are resolved. This way, the
no-control case provides a sound base-case, based on which the
control strategy performance is evaluated under different sce-
narios. In Scenario 1, the maximum permissible storage
in (16) is set to 40 vehicles for the urban on-ramps and 100 vehi-
cles for the motorway-to-motorway ramps; in Scenario 2 these
storage capacities are equal to 80 and 120 vehicles, respectively,
while in Scenario 3 no maximum queue constraints are consid-
ered, i.e., in (15).

B. Optimal Results

When no control measures are applied, the excessive demand
coupled with the uncontrolled entrance of drivers in the main-
stream causes congestion from the beginning of the time horizon
[Fig. 5(a)]. This congestion originates at the junction of A2 with
A10 and propagates upstream blocking the A4 and a large part
of the A10-West. By the time this congestion begins to dissolve,
a new one appears at the junction of A10 with A1 which be-
gins to propagate upstream until it reaches the first congestion
whose trend of resolving is reversed and both are united into a
single more severe congestion. This strong congestion keeps the
A4 entrance to the A10 blocked, something which results in the
accumulation of many vehicles in the motorway-to-motorway
(mtm) on-ramp of A4 (i.e., a spillback of the congestion from
A10 onto the A4 motorway) and in the surrounding on-ramps
[Fig. 5(b)]. As a result the TTS becomes 13 226 veh h.

When optimal control is applied to the network under Sce-
nario 1, the TTS becomes 9 032 veh h, a 31.7% improvement.
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Fig. 6. Scenario 1: (a) density, (b) on-ramp queues, and (c) optimal ramp metering rates.

This improvement is evident in Fig. 6 which depicts the density
and queue evolution profiles as well as the optimal ramp me-
tering rates for Scenario 1. The large ramp queues that occur
in the no-control case are not present any more, but queues are
spread to many on-ramps so as to counteract the formation of

congestion. It can be seen that the control strategy manages to
comply with the queue constraints imposed and at the same time
reduce the cost criterion, by distributing the queues spatially and
temporally almost in the same pattern as the density’s propaga-
tion in Scenario 0 [Fig. 5(a)].
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Fig. 7. Scenario 2: (a) density, (b) on-ramp queues, and (c) optimal ramp metering rates.

Scenario 2 assumes that there is more ramp storage capacity
at the strategy’s disposal (80 vehicles for urban on-ramps and
120 vehicles for mtm on-ramps). When optimal control is ap-
plied under these conditions, the TTS becomes 8 230 veh h,
a 37.8% improvement over the no-control case. This larger im-

provement is evident in Fig. 7(a) where the density profile is
seen to be much flatter than that of Scenario 1 [Fig. 6(a)]. Be-
cause larger storage space is available to the strategy, larger
queues are formed, but less on-ramps are used for storage pur-
poses, see Fig. 7(b). Once the strategy has dealt with the primary
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cause of congestion effectively, due to the increased storage
capacity available, keeping the demand of the A10-West me-
tered would only increase the delays without any benefit to the
overall cost criterion, hence, ramp metering is released. The
control strategy is intelligent enough to create queues only when
and only to the extent they may contribute to the reduction of the
TTS under the imposed queue constraints, as can also be seen
from the optimal ramp metering rates in Fig. 7(c).

In the case of Scenario 3, the absence of any queue constraints
leads to a TTS equal to 7 466 veh h, an improvement of 43.5%
over the no-control case. As can be seen from Fig. 8(a), the den-
sity evolution profile is completely flat in this case, indicating
the fact that there is no congestion present in the ring road. The
control strategy achieves this impressive amelioration of traffic
conditions by creating large queues at the on-ramps that are lo-
cated in the critical bottleneck area where congestion originates,
see Fig. 8(b). The queues created, when the optimal ramp me-
tering rates depicted in Fig. 8(c) are applied, prevent the exces-
sive demand from entering into the motorway and degrading
the network’s capacity. Since there is no limit to the queues that
are allowed to occur, the queues created in the bottleneck area
of A10-South are quite large. No queues are required for the
on-ramps further upstream since the primary cause of conges-
tion is dealt with locally. The optimal results for each scenario
are summarized in Table I.

The amount of TTS reduction depends on the on-ramp
storage capacity available to the control strategy. The behavior
exhibited by optimal control application in the three scenarios
indicates that the most efficient way to deal with bottlenecks
and potential congestion is to perform ramp metering at the
on-ramps immediately upstream of the primary bottleneck
location, as was the case in Scenario 3. The unlimited storage
capacity assumed in this scenario made the optimal control
indifferent to the creation of large queues in the vicinity of
the bottleneck. However, once the storage capacity becomes
limited, as in the cases of Scenarios 1 and 2, queues are created
further upstream from the bottleneck location, and at the same
time some congestion appears in the mainstream whose extent
depends on the storage capacity assumed available by each
scenario. Despite the fact that further storage is available
at the on-ramps far upstream from the bottleneck, e.g., in
A10-North and East (and in the case of Scenario 2 in A10-West
as well), congestion is tolerated because large queues in these
on-ramps would impose delays to drivers exiting the network
before reaching the bottleneck. In essence, the control strategy
aims at establishing an optimal tradeoff between the delay
reduction due to the decrease of the congestion extent, and the
delay increase due to the metering of vehicles that exit before
reaching the bottleneck.

C. Equity

Let us now examine the queues formed when the control
strategy is applied for the three scenarios considered. Figs. 6(b),
7(b), and 8(b) differ in the size and location of the queues formed
which is natural because different storage capacities are at the
strategy’s disposal in each case. In Scenario 1, the short queues
are spread over the network, and they endure for a large part
of the time horizon. In Scenario 2, the queues are longer and

TABLE I
TTS FOR EACH SCENARIO

less spread; they are concentrated around the critical area, and
they endure for less time than in Scenario 1. In Scenario 3, long
queues occur at selected on-ramps where excessive demand ul-
timately creates the congestion problem, and their duration is
shorter. The reason for these different behaviors is the queue
constraints.

The control strategy distributes the metering burden for
reducing the TTS among the on-ramps subject to the maximum-
queue constraints. When no such constraints are imposed,
the burden of improving the traffic conditions is assigned to
the on-ramps that ultimately create the problem because all
corresponding users will cross the bottleneck location, hence,
nobody is delayed unnecessarily. Thus, imposing maximum
queue constraints can be seen as a way of distributing the delays
experienced by drivers while waiting in the controlled on-ramps.
This way the cost of ameliorating the traffic conditions in the
overall network is shared more or less fairly among the drivers
that enter the motorway from various on-ramps, depending
on how strict the constraints are. This equity aspect, however,
is achieved at the expense of a lower improvement of the
traffic conditions, hence, equity and efficiency are partially
competing properties of the control strategy. For a discussion
on the equity properties of ramp metering strategy, see also
[25] and [26].

Fig. 9 depicts the average (over the time horizon) travel times
at each on-ramp, needed for ramp-queueing and travelling a
6.5 km mainstream distance. For each on-ramp the average
travel time is calculated according to

(21)

where is the index number of the link downstream of , and
is the link index number where the considered mainstream

distance of 6.5 km ends, and .
It can be seen that, in absence of control measures, the

on-ramps of A10-West are the most disadvantaged ones be-
cause the congestion occuring at the A10-South creates queues
and severe density waves traveling upstream [Fig. 5(a)]. Since
the ring road from the A1 up to the A8 (counterclockwise) is
not congested, the average travel time for the corresponding
on-ramps is small.

The smallest average travel times are achieved in Scenario 3,
where no maximum queue constraints exist. However, in this
scenario, larger travel times occur at the specific on-ramps be-
tween A1 and A4 where ramp metering is applied [Fig. 8(b)].
By focusing in this area, the control strategy clearly induces a
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Fig. 8. Scenario 3: (a) density, (b) on-ramp queues, and (c) optimal ramp metering rates.

disadvantage to the drivers that enter the motorway from the
specific on-ramps, over the drivers that enter the ring road from
the rest on-ramps. By doing so, however, it achieves the smallest
TTS compared with Scenarios 1 and 2.

The effects of queue constraints in Scenarios 1 and 2 may
be seen in Fig. 9. The average travel times become larger as the
maximum queue constraints become smaller, but this increase is
distributed more evenly to other on-ramps also, not only to those
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Fig. 9. Average travel times �t at each on-ramp o.

in the bottleneck area that are extensively metered in Scenario
3, thus, making the control strategy to behave more fairly.

As a further equity index, the spatial variance of the travel
times at every discrete time step is calculated according to

(22)

where and is the number of origins.
The average variance is given by .
In the no-control case, the variance of the travel times follows
the pattern of the congestion formation (Fig. 10) illustrating the
large travel times experienced by the drivers that enter the main-
stream from on-ramps directly affected by the congestion, and
the average variance is 0.0183 h . In the cases of Scenarios 1, 2,
and 3, the variance of the travel times becomes much smaller as a
result of the applied ramp metering, while the total variance be-
comes 0.0022 h , 0.0020 h , and 0.0030 h , respectively. Com-
paring the three control scenarios, Scenario 3 has the greatest
average variance, and, in the beginning of the time horizon, it
has even greater variance than the no-control case. This result is
due to the increased delays incurred by the large queues formed
at the beginning of the time horizon. The variance of travel times
for the other two scenarios is more or less at the same level, with
Scenario 1 having slightly larger average variance than Scenario
2. This result is due to the fact that a larger congestion is allowed
to occur in the mainstream under Scenario 1 than under Scenario
2. The delays caused by this congestion result in higher vari-
ance of the travel times due to longer mainstream travel times
for ramps affected by the congestion.

Under these terms, Figs. 9 and 10 illustrate also the partially
competitive nature of equity and efficiency. Compared to no
control, all control scenarios are substantially more efficient and

fair. Among the control scenarios, however, Scenario 3 is the
most efficient achieving a 43.5% improvement of the TTS, but
also the most unfair; scenario 1 is the most fair from the con-
sidered scenarios but at the cost of achieving a “mere” 31.7%
reduction of the TTS; finally, Scenario 2 is in the middle of Sce-
narios 1 and 3 concerning efficiency and equity.

It should be noted that these results were not obtained from
the explicit optimization of the travel time variance (22). From
(21) and (22) it can be seen that the variance is a function of
the problem’s state variables, hence, this equity index could be
optimized explicitly by including it as an additional weighted
factor in the cost criterion (15).

D. Computational Effort

The computation time required to obtain the optimal solu-
tions is moderate and depends upon the search method used
and the specific parameters of each algorithm. It was found
that for the search methods that use line optimization, a restart
had to take place every four iterations for best convergence,
while for RPROP the parameters used where

, and . Fig. 11 depicts the cost
criterion against the CPU time for various solution methods for
Scenario 3. It can be seen that RPROP is much faster than the
search direction methods which use line optimization. It may be
seen that with RPROP, particularly near the optimum, the cost
criterion value does not necessarily decrease monotonically, but
the major part of the cost criterion improvement is typically
achieved very fast. The computation time for the 4-h horizon
is 20 min for the bulk of the 43.5% improvement (more than
40.5%) on a Sun Ultra5 with a Sparc IIi-360 MHz processor
workstation. Furthermore, the inclusion of queue penalty terms
does not have any significant effect on the RPROP algorithm’s
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Fig. 10. Variance of travel times Var (k).

Fig. 11. Cost criterion versus CPU time.

convergence, although the convergence speed becomes some-
what slower. The queue penalty terms have a more important
effect on the search methods that use line optimization by re-
ducing their speed of convergence.

Finally, for different initial feasible trajectories, relatively dif-
ferent optimal control trajectories have been observed in some
cases, but the differences of the corresponding optimal traffic
states was negligible, which means that there are local minima,
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but they do not constitute a serius handicap for the practical
efficiency of the proposed algorithm.

VI. CONCLUSION AND FURTHER DEVELOPMENTS

The reported results demonstrate that the uncontrolled uti-
lization of the motorway infrastructure strongly degrades the
available infrastructure. An impressive amelioration of traffic
conditions in motorway networks (including the ramps and
motorway intersections) is possible with the use of optimal
ramp metering by increasing the network throughput. The
highest efficiency is achieved if only the on-ramps closest to
the bottlenecks are strongly metered, which however creates
long queues and disbenefits the corresponding users for the
sake of the general efficiency. There is a tradeoff of efficiency
versus equity which the optimal control strategy addresses im-
plicitly via consideration of the available ramp storage space,
something which may be used as a tool to establish a desired
policy.

The formulation of the problem of coordinated ramp me-
tering control as a discrete-time optimal control problem, allows
the application of well known concepts from automatic control
theory, and allows the consideration of other control measures as
well. Further control measures such as speed control and route
guidance may be readily integrated cooperatively due to the
flexible nature of the problem formulation, see [13], [27] and
[11], [28], respectively. The control trajectories obtained may
be used as strategic decision in the sense of providing optimal
and fair set values over a long time horizon (e.g., 4 h) for subor-
dinate reactive ramp metering, using, e.g., local ramp metering
control strategies such as ALINEA (see [29]). This strategic role
can be further enhanced by use of a rolling horizon framework
whereby the optimal control problem is solved repeatedly in real
time, with updated initial state, demand predictions, and turning
rates, as well as with inclusion of possible incidents.

Finally, it has been demonstrated that the RPROP search di-
rection method is superior to the search methods that use line
optimization for this particular problem.
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