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On the kinematics of 2D tunnel collapse in undrained clay

A. S. OSMAN
�
, R . J. MAIRy and M. D. BOLTON y

A kinematic plastic solution has been developed for
ground movements around a shallow, unlined tunnel
embedded within an undrained clay layer. In this solu-
tion, the pattern of deformation around the tunnel is
idealised by a simple plastic deformation mechanism.
Within the boundaries of the deformation mechanism,
the soil is required to shear compatibly and continuously
with no relative sliding at the boundaries. The soil is
regarded here as a rigid plastic (Tresca) material. The
plausibility of the proposed mechanism is demonstrated
by comparison with limit analysis calculations and centri-
fuge test results.

KEYWORDS: clays; deformation; plasticity; theoretical analy-
sis; tunnels

Une solution plastique cinématique a été développée pour
les mouvements de sol autour d’un tunnel non revêtu, de
faible profondeur, creusé dans une couche d’argile non
drainée. Dans cette approche, le profil de déformation
autour du tunnel est idéalisé suivant le concept d’un
simple mécanisme de déformation plastique. Dans les
limites du mécanisme de déformation, on impose que le
sol se cisaille de manière compatible et continue sans
glissement relatif aux limites. Le sol est ici considéré
comme un matériau plastique rigide (Tresca). La plausi-
bilité du mécanisme proposé est démontrée par compar-
aison avec des calculs d’analyse de limites et les résultats
d’essais au centrifuge.

INTRODUCTION
Peck (1969) summarises the most important requirements for
successful design and construction in tunnels as stability,
control of ground movements, and performance of linings.
This paper aims to provide a simple theoretical framework
for assessing the first two requirements for tunnels con-
structed in clays. This paper is concerned only with con-
struction effects in clays that are presumed to remain
undrained.

The upper and lower bound theorems of plasticity
(Drucker et al., 1952) offer a rigorous and powerful tech-
nique for estimating the collapse loads. Davis et al. (1980)
derived plasticity solutions employing kinematic upper
bounds and statically admissible lower bounds for plane-
strain circular tunnels and for a two-dimensional idealisation
of the tunnel heading stability in clays with constant shear
strength. To obtain an upper bound to the collapse load, they
developed a number of deformation mechanisms in which
the soil moves as rigid blocks sliding relative to each other
with displacement discontinuities at their boundaries. Davis
et al. (1980) found that the three-variable and the four-
variable mechanisms shown in Figs 1(a) and 1(b) give the
lowest (i.e. the most critical) upper bounds. Sloan & Assadi
(1993) developed extensive sets of upper bound and lower
bound solutions for plane-strain tunnels in soils whose
undrained strength varies with depth. Significant improve-
ments on the upper bound solutions were achieved by using
a more complex seven-variable mechanism (Fig. 1(c)). Sloan
& Assadi (1993) also improved both upper bound and lower
bound calculations using numerical limit analysis. In this
technique, rigorous upper and lower bound collapse loads
are found numerically by linear programming methods,
while spatial discretisation (lower bound stresses) and inter-
polation of the field variables (upper bound velocities) are
accomplished using finite element methods. Although the rigid block mechanisms mentioned above

produced reasonable estimates for collapse loads, these
mechanisms do not attempt to replicate the actual settlement
profile of the ground surface, and the geometry of the
mechanisms does not necessarily represent the extent of the
displacement field around the tunnels or the variation of
the settlement trough with depth. In the following sections,
the authors will demonstrate that the upper bound theorem
coupled with a more realistic continuous deformation
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Fig. 1. Upper bound mechanisms used in the stability calcula-
tions for shallow tunnels: (a) three-variable mechanism (Davis et
al., 1980); (b) four-variable mechanism (Davis et al., 1980); (c)
seven-variable mechanism (Sloan & Assadi 1993)



mechanism can not only offer a reasonable assessment for
collapse, but also replicates some of the features observed in
centrifuge tests of tunnelling in undrained clay.

PLASTIC DEFORMATION MECHANISM
Peck (1969) suggested that the shape of the surface

settlement trough developing during tunnel construction is
reasonably well represented by a Gaussian distribution as
shown in Fig. 2. This suggestion is consistent with a consid-
erable amount of field data of surface settlement profiles
above tunnels in clays.

The surface settlement s is defined as

s ¼ sm exp � 1

2

x

i

� �2
" #

(1)

where sm is the maximum surface settlement, which occurs
above the tunnel centreline. The width of the surface settle-
ment profile is defined by the parameter i, which is the
distance from the tunnel centreline to the point of inflexion
of the trough (shown in Fig. 2).

The volume of the surface settlement trough (per metre
length of tunnel), Vs, is obtained from integration of equa-
tion (l), and is given by

Vs ¼
ffiffiffiffiffiffi
2�

p
ism (2)

In practice, the parameter i is related to the depth of the
centre of the tunnel zo

i ¼ Kzo (3)

Rankin (1988) and Mair & Taylor (1997) showed that K ¼
0.5 is reasonably consistent with field measurements of sur-
face settlement above tunnels in clays for a large number of
case histories.

Figure 3 shows a new plastic deformation mechanism for
a tunnel in undrained clay proposed in this paper. Within the
boundary of the deformation mechanism the soil is deform-
ing compatibly following a Gaussian distribution. Outside
this mechanism the soil is assumed to be rigid.

By analogy with equations (2) and (3), subsurface settle-
ment profiles can be defined using a trough width parameter
iz that is a function of depth z,

iz ¼ Kzzo (4)

where

Kz ¼ 0:5 1 � z

zm

� �Æ

(5)

and where zm is the depth below the ground surface of the
point of intersection of the extension of the boundary AC
(and BD) with the extension of the vertical centreline of the
tunnel, and Æ is a constant controlling the vertical curvature
of the outer boundary of the mechanism shown in Fig. 3.

Note that for the subsidence at the ground surface z ¼ 0,
so that Kz ¼ 0.5, which is consistent with the Rankin
formula (equation (3)). Also, at z ¼ zm, the width iz is
correctly calculated at zero.

The proposed mechanism shown in Fig. 3 implies zero
ground movement at the boundaries AC and BD, so it is
necessary to adjust the Gaussian curve accordingly. The
vertical displacement v is therefore given by

v ¼ Asm

2Kz

exp � 1

2

x

iz

� �2
" #

� exp � B2

2

� �( )
(6)

where A and B are constants.
It is commonly assumed that the total half-width of the

surface settlement trough is about 2.5 i (Mair et al., 1993).
Therefore B can be taken to be 2.5 to achieve zero displace-
ment at x ¼ 2.5iz. Accordingly, A must take the value 1.046
to achieve v ¼ sm at z ¼ 0 and x ¼ 0.

If there is no volume change, the following condition
should be satisfied.

@u

@x
þ @v

@z
¼ 0 (7)

where u is the horizontal displacement.
The horizontal displacement component u can then be

found by substituting equation (6) in equation (7) and
integrating.

u ¼ � ÆAsmx

2Kz zm � zð Þ
exp � 1

2

x

iz

� �2
" #

� exp � B2

2

� �( )

(8)

Equation (8) implies that the maximum horizontal movement
occurs at the point of inflexion of the trough. This is
consistent with field observations reported by Attewell
(1978), as shown in Fig. 4.
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Fig. 2. Surface settlement profile above tunnels
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Fig. 3. Plastic deformation mechanism for tunnels in clay
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Strains can be found from the first derivative of displace-
ments. Applying plane-strain conditions,

�x ¼
@u

@x

�z ¼
@v

@z
(9)

ªxz ¼
@u

@z
þ @v

@x

The engineering shear strain �s is then given by

�s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x � �zð Þ2þª2

xz

q
(10)

Detailed derivations are given in Appendix 1.

STABILITY ANALYSIS
In plasticity, the geometry of the plastic deformation

mechanism is selected to obtain the least upper bound to the
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Fig. 6. Stability bounds for circular tunnels: (a) ªD/suo 0; (b) ªD/suo 1; (c) ªD/suo 2; (d) ªD/suo 3
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Fig. 4. Normalised horizontal displacement profile
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Fig. 5. Idealisation of unlined plane-strain tunnel in clay
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collapse load calculated via the work equation. Work by
external forces (or gravity forces) due to a small displace-
ment increment in the assumed mechanism is equated to the
internal dissipation of energy in the plastically deforming
regions of the mechanism (Chen, 1975).

From the proposed plastic deformation mechanism shown
in Fig. 3, the virtual plastic work in distributed shearing
balances the virtual loss of potential energy and the work
done by tunnel pressure �T and surcharge load on the
ground surface �S (shown in Fig. 5). Since there is no
volume change, the decrease in area of the tunnel must
equal the area of ground loss at the surface. Therefore the
work done per unit length of tunnel by the pressures should
be (�S � �T) multiplied by the displaced area. The work
equation in plane strain for a Tresca material is therefore
given byð1:25zo

�1:25zo

�S � �Tð Þ�vz¼0dx þ
ð

Area

ª�vdArea

¼
ð

Area

su��sd Area

(11)

where su is the undrained shear strength, ª is the unit weight
of the soil, �v is the vertical displacement increment, and
Area is the area of the mechanism shown in Fig. 3.

The stability of the tunnels is often expressed by the
stability number Nc, which is defined by (Broms & Benner-
mark; 1967Þ

Nc ¼
�S þ ªzo � �T

su,T

(12)

where su,T is the undrained shear strength at the tunnel axis
level.

The undrained strength profile can vary linearly with
depth according to

su ¼ suo þ rz (13)

where suo is the undrained strength at the ground surface,
and r ¼ dsu/dz is the rate of change of undrained strength
with depth. This creates an additional dimensionless group
rD/suo and increases the shear strength at the tunnel axis to
[suo + r(C + D/2)]. Therefore the stability number Nc in
these circumstances can be rewritten as

Nc ¼
�S � �T

suo

þ ªD

suo

C

D
þ 1

2

� �� �

3
1

1 þ rD=suoð Þ C=D þ 1=2ð Þ

� � (14)

where C is the depth of cover, and D is the tunnel diameter.
In many design situations, the quantities ªD/suo, rD/suo

and C/D are known, and the problem can be regarded as
finding the critical (lowest) value of (�S � �T)/suo.

Figure 6 shows the values of (�S � �T)/suo calculated
from the proposed plastic deformation mechanism for differ-
ent values of ªD/suo, rD/suo and C/D. The optimum geome-
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Fig. 7. Values of Æ in equation (5): (a) ªD/suo 0; (b) ªD/suo 1; (c) ªD/suo 2; (d) ªD/suo 3
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try of the mechanism that gives the least upper bound is
obtained by iterating on the depth zm and exponent Æ in
equation (5), which govern the shape of the side of the
mechanism (Fig. 3). The values of zm and Æ are restricted
by the fact that points C and D in Fig. 3 should lie at the
tunnel circumference in order to satisfy the undrained condi-
tion, because the decrease in area of the tunnel must equal
the area of ground loss at the surface. The optimum values
of zm and exponent Æ that give the least upper bound are
given in Figs 7 and 8 respectively. The value of Æ is found
to vary from about 0.4 at C/D ¼ 1 in the case of strength
increase with depth (rD/suo ¼ 1) to about 0.8 at C/D ¼ 5 in
the case of soil with constant shear strength (rD/suo ¼ 0).
The depth zm of the point of intersection of the side
boundaries (AC and BD) with the vertical centreline of the
tunnel (Fig. 3) lies at a distance of about 0.45 to 0.82 times
the tunnel radius below the centre of the tunnel circle,
generally increasing as C/D increases.

The bold entries in Table 1 show the value of (�S � �T)/
suo calculated from the proposed two-variable plastic defor-
mation mechanism of distributed shear shown in Fig. 3 using
equations (7)–(11). Other entries indicate upper bound solu-
tions proposed by Sloan & Assadi (1993) and based on a
seven-variable rigid block mechanism (Fig. 1) and on their
finite element formulation. The bold italic values indicate
where the proposed mechanism predicts the least upper
bounds for cases of deep tunnels (C/D > 4). However, it
slightly overestimates the collapse load for the case of very
shallow tunnels (C/D ¼ 1) embedded in soft soil, ªD/suo ¼
3. Results for two extreme values of ªD/suo with a strength

profile of rD/suo ¼ 0.5 are plotted in Fig. 9. The proposed
mechanism predicts (�S � �T)/suo values consistent with the
best of Sloan & Assadi’s calculations.

CONSISTENCY OF THE PROPOSED PLASTIC
DEFORMATION MECHANISM

To assess the ability of the proposed distributed shear
mechanism to predict the stability of tunnels in practice and
to represent real deformations around tunnels, it is necessary
to compare theoretical predictions with observed behaviour.
Although it is always valuable to be able to compare theor-
etical analyses with full-scale observations, it is often diffi-
cult to obtain all the required information about the soil, the
structure, its loads and settlements, and the drainage condi-
tions. Many of these uncertainties are avoided by observation
of the behaviour of closely monitored scale models using
well-documented soils. The centrifuge experiments con-
ducted by Mair (1979) are a valuable dataset for this
purpose.

The centrifuge tests were carried out using the Cam-
bridge Geotechnical Centrifuge. Model tunnels were con-
structed in soft clay and tested at accelerations of 75g and
125g respectively to establish the internal consistency of
the method. Tunnel behaviour was observed as compressed
air support within the tunnels was steadily reduced until
failure occurred. Two series of centrifuge tests on plane-
section tunnels in clay were conducted. The first series was
in clay with constant undrained shear strength with depth.
In the second series, the clay was brought into equilibrium
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Fig. 8. Values of zm in equation (5): (a) ªD/suo 0; (b) ªD/suo 1; (c) ªD/suo 2; (d) ªD/suo 3
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in an overconsolidated state on the centrifuge so that
strength increased with depth. In each case, compressed air
was used to support the tunnel as the centrifuge accelera-
tion was applied, and was reduced incrementally to simulate
tunnel excavation. Details of the centrifuge tests used in the
validation of the proposed deformation mechanism are

shown in Table 2. Fig. 10 shows the undrained strength
profile of the second series. Tests 2DT and 2DU were
designed to model tests 2DP and 2DV respectively, at
different scale.

Surface settlement profile
Normalised surface settlement (s/sm) plotted against nor-

malised distance from tunnel centreline (x/D ) is presented in
Fig. 11. The surface settlement s is calculated from equation
(6) (s ¼ vz¼0). This figure shows that the shape and the
width of the settlement troughs were very similar at different
stages of both tests 2DV and 2DU. A unique profile was also
obtained in tests 2DP and 2DT. The settlement troughs
shown in this figure do indeed closely approximate the
modified Gaussian curve as given by equation (6). The
variation of the width of the settlement trough with depth of
tunnel axis is shown in Fig. 12. All the centrifuge test
results fall within the limits suggested by Peck (1969) and
agree reasonably with the empirical expression of Clough &
Schmidt (1981). The test results also compared reasonably
well for the width of the surface settlement trough given by
equations (4) and (5). However, these equations might over-
estimate the width of the settlement trough for deeper
tunnels (zo/D . 4). These results imply that displacements
around shallow tunnels at any level of tunnel pressure could
be represented reasonably by the deformation mechanism
shown in Fig. 2.

Table 1. Stability bounds of shallow tunnels in clay

C

D

rD

suo

�S � �T

suo

ªD

suo

¼ 0
ªD

suo

¼ 1
ªD

suo

¼ 2
ªD

suo

¼ 3

1 0 2.55 2.70 1.37 1.54 0.15 0.36 �1.12 20.83
0.25 3.05 3.23 1.91 2.08 0.73 0.92 �0.47 20.25
0.5 3.53 3.75 2.41 2.61 1.26 1.46 0.10 0.31
0.75 4.01 4.26 2.89 3.13 1.76 1.99 0.62 0.84
1 4.46 4.76 3.35 3.64 2.24 2.51 1.11 1.37

2 0 3.68 3.84 1.41 1.62 �0.91 20.60 �3.28 22.85
0.25 5.10 5.27 2.89 3.08 0.65 0.89 �1.61 21.32
0.5 6.48 6.68 4.29 4.51 2.08 2.33 �0.14 0.13
0.75 7.85 8.07 5.66 5.91 3.46 3.74 1.26 1.56
1 9.20 9.47 7.02 7.31 4.83 5.15 2.64 2.98

3 0 4.51 4.63 1.18 1.39 �2.20 21.86 �5.63 25.14
0.25 7.11 7.19 3.85 3.99 0.56 0.78 �2.72 22.45
0.5 9.62 9.72 6.39 6.53 3.15 3.34 �0.11 0.14
0.75 12.10 12.24 8.88 9.06 5.66 5.87 2.42 2.68
1 14.57 14.75 11.34 11.57 8.14 8.39 4.92 5.21

4 0 5.17 5.24 0.80 0.99 �3.61 23.28 �8.08 27.56
0.25 9.15 9.09 4.86 4.88 0.56 0.66 �3.77 23.57
0.5 12.99 12.91 8.73 8.71 4.46 4.51 0.18 0.31
0.75 16.80 16.72 12.56 12.53 8.30 8.33 4.03 4.14
1 20.60 20.52 16.36 16.34 12.11 12.15 7.85 7.97

5 0 5.67
�

5.73 0.30
�

0.48 �5.30
�

24.80 �10.60
�

210.10
0.25 11.25 11.02 5.94 5.80 0.61 0.58 �4.74 24.65
0.5 16.59 16.26 11.30 11.06 6.01 5.85 0.70 0.64
0.75 21.89 21.50 16.62 16.30 11.33 11.09 6.04 5.90
1 27.17 26.72 21.91 21.53 16.63 16.33 11.35 11.15

Bold entries indicate upper bound from the distributed shear mechanism. Bold italic entries
indicate the least upper bounds from the distributed shear mechanism. Regular entries
indicate upper bounds from Sloan & Assadi (1993) based on seven-variable rigid block
mechanism and on finite element formulations. Finite element values are followed by the
symbol *.
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Fig. 9. Comparison of stability bounds for circular tunnel in soil
whose undrained strength varies with depth (rrD/suo 0.5)
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Width of subsurface settlement profile
Mair et al. (1993) studied data both from field measure-

ments of tunnels in clay and from centrifuge tests, and
suggested that the values of the trough width parameter iz

derived from subsurface settlement measurements can best
be fitted by

iz

zo

¼ 0:175 þ 0:325 1 � z

zo

� �
(15)

Figure 13 shows values of the trough width parameter iz

derived from subsurface settlement measurements from two
centrifuge tests on tunnels in soft clay (2DP and 2DV) by
Mair (1979), plotted against depth z; both iz and z have been
normalised by the depth of the tunnel, zo. The trough width

parameter iz derived from the distributed shear mechanism
proposed in this paper, using equations (4) and (5), and from
equation (15) of Mair et al. (1993), is also shown in Fig. 13.
The same values of depth zm and exponent Æ that gave the
optimised upper bound (see Table 3) also provide accurate
deformation profiles prior to collapse.

It is worth mentioning that Mair et al. (1993) defined the
parameter K as the width parameter iz divided by the
distance above the tunnel centre (zo � z). This definition is
different from the authors’ expressions (equation (5)). Fig.
14 compares the values of iz/(zo � z) obtained from upper
bound calculations and from the empirical expression of
Mair et al. (1993) (equation 15) with centrifuge test results.
The good agreement suggests that the upper bound theorem
coupled with distributed shear deformation mechanisms can
provide a sound theoretical framework for estimating the
subsurface settlement trough.

Displacement vector patterns
The displacement vectors measured for tests 2DP and

2DV close to collapse are shown in Figs 15 and 16
respectively, together with the vector patterns derived from
the distributed shear plastic deformation mechanism. A
degree of asymmetry in deformation pattern is evident for
both tests. Mair (1979) concluded from surface settlement
profiles at different level tunnel support pressure that the
asymmetry appears to develop only close to collapse. The
deformation mechanism observed from displacement plots
reveals significant inward displacement at the tunnel crown
and shoulders, while much smaller movement is observed at
the tunnel springings and inverts as required by the plastic
deformation mechanism shown in Fig. 3.

CONCLUSIONS
This paper demonstrates the usefulness of the upper bound

theorem not only in assessing the stability of shallow tunnels
in undrained clay, but also in providing a reasonable approx-
imation of the deformation pattern. The width of subsurface
settlement trough can be determined analytically from upper
bound calculations in which a plastic deformation mechan-
ism with distributed shear is incorporated.

Table 2. Centrifuge tests, conducted by Mair (1979), used in the validation

Test no. Cover to
diameter ratio,

Laboratory
consolidation

Centrifuge acceleration: g Tunnel
diameter, D:

Undrained shear
strength, su

C/D pressure: kPa Acceleration at
base of model

Average acceleration
in model

mm

Series I Constant
2DB 1.2 171 75 71 60 undrained shear
2DD 2.8 171 75 71 60 strength, su ¼
2DE 0.8 171 75 71 60 26 kPa
2DH 1.8 171 75 71 60
2DI 2.3 171 75 71 60
2DK 2 171 75 71 60
Series II Varies with
2DP 1.67 171 75 71 60 depth (see
2DV 3.11 171 75 71 60 Fig. 8)
2DT 1.67 171 125 119 36
2DU 3.11 171 125 119 36
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Fig. 10. Undrained strength su profile in Series II centrifuge
tests (Mair, 1979)
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APPENDIX 1. STRAIN COMPONENTS
By substituting equations (4) and (5) in equation (7), the vertical

displacement can be written as

v ¼
Asm zmð ÞÆ

zm � zð ÞÆ
exp �2

x zmð ÞÆ

zm � zð ÞÆzo

" #2
8<
:

9=
;� exp � B2

2

� �0
B@

1
CA

(16)

By substituting equations (4) and (5) in equation (8), the horizontal
displacement can be written as
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Fig. 11. Surface settlement profiles at different stages of centrifuge tests (Mair, 1979)
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Fig. 12. Variation of surface settlement trough width with depth
of tunnel axis in centrifuge tests (Mair, 1979)
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u ¼ �
ÆAsm zmð ÞÆx

zm � zð ÞÆþ1
exp �2

x zmð ÞÆ

zm � zð ÞÆzo

" #2
8<
:

9=
;� exp � B2

2

� �0
B@

1
CA

(17)

The strain in the vertical direction, �z, is therefore

�z ¼
@v

@z

¼
ÆAsm zmð ÞÆ

zm � zð ÞÆþ1
1 � 4

x zmð ÞÆ

zm � zð ÞÆzo

" #2
8<
:

9=
;

0
@

3 exp �2
x zmð ÞÆ

zm � zð ÞÆzo

" #2
8<
:

9=
;� exp � B2

2

� �1A
(18)

The strain in the horizontal direction (x-direction) is found by
differentiating the horizontal displacement with respect to x.
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Fig. 13. Variation of subsurface settlement trough width para-
meter with depth for tunnels in clays: (a) centrifuge model 2DP;
(b) centrifuge model 2DV

Table 3. Stability analysis of centrifuge tests conducted by Mair (1979)

Test no. ªD

suo

rD

suo

�S � �T

suo

Æ
zm � zo

D=2

2DP 3.5649 0.0874 �2.80 0.45 0.58
2DT 3.5649 0.0874 �2.80 0.45 0.58
2DV 3.5649 0.0874 �6.29 0.55 0.62
2DU 3.5649 0.0874 �6.29 0.55 0.62
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Fig. 14 Variation of iz/(zo 2 z) with depth for subsurface
settlement profiles above tunnels in clays

ON THE KINEMATICS OF 2D TUNNEL COLLAPSE IN UNDRAINED CLAY 593



�x ¼
@u

@x

¼�
ÆAsm zmð ÞÆ

zm � zð ÞÆþ1
1 � 4

x zmð ÞÆ

zm � zð ÞÆzo

" #2
8<
:

9=
;

0
@

3 exp �2
x zmð ÞÆ

zm � zð ÞÆzo

" #2
8<
:

9=
;� exp � B2

2

� �1A (19)

Differentiating equation (16) with respect to x gives

@v

@x
¼ �

4Asmx zmð Þ3Æ

zm � zð Þ3Æ zoð Þ2
exp �2

x zmð ÞÆ

zm � zð ÞÆzo

" #2
8<
:

9=
; (20)

Differentiating equation (17) with respect to z gives

@u

@z
¼�

Æ 1 þ Æð ÞAsm zmð ÞÆx

(zm � z)Æþ2
3 1 � 4Æ

1 þ Æ
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8<
:

9=
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@

3 exp �2
x zmð ÞÆ
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 !2
2
4

3
5

8<
:

9=
;� exp � B2

2

� �1A (21)

From equations (20) and (21), the shear strain ªxz in the x–z plane is
given by
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Fig. 15. Displacement vectors just before collapse in test 2DP:
(a) observed displacement vectors (�T 66 kPa); (b) calculated
displacement vector patterns
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Fig. 16. Displacement vectors just before collapse in test 2DV:
(a) observed displacement vectors (�T 107 kPa); (b) calculated
displacement vector patterns
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ªxz ¼
@u

@z
þ @v

@x
¼ �

Asmx zmð ÞÆ

(zm � z)Æþ2
3

Æ 1 þ Æð Þ 1 � 4Æ

1 þ Æ

x zmð ÞÆ

zm � zð ÞÆzo

" #2
8<
:

9=
;exp �2

x zmð ÞÆ

zm � zð ÞÆzo

" #2
8<
:

9=
;� exp � B2

2

� �0
B@

1
CA

þ
4 zmð Þ2Æ zm � zð Þ2

zm � zð Þ2Æ zoð Þ2
exp �2

x zmð ÞÆ

zm � zð ÞÆzo

" #2
8<
:

9=
;

2
666666664

3
777777775

(22)

The expression for engineering shear strain can be found by
substituting equations (18), (19) and (22) into equation (10) to give

�s ¼
Asm zmð ÞÆ

zm � zð ÞÆþ1

2Æ 1 � 4
x zmð ÞÆ

zm � zð ÞÆzo

" #2
8<
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9=
;exp �2

x zmð ÞÆ

zm � zð ÞÆzo
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:
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;� exp � B2

2
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B@

1
CA
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1
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þ
4 zmð Þ2Æ zm � zð Þ2(1�Æ)
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zm � zð ÞÆzo
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1
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(23)

NOTATION
A constant in displacement equations
B constant in displacement equations
C depth of tunnel cover
D tunnel diameter
i width of surface settlement trough

iz width of settlement trough at depth z
K constant relating width of surface settlement to depth of tunnel

Kz constant relating width of settlement trough to depth of tunnel
at depth z

Nc stability number
s surface settlement (vertical displacement at ground surface)

sm maximum surface settlement
su soil undrained strength

suo undrained strength at ground surface
su,T soil undrained strength at level of centre of tunnel

u horizontal displacement
Vs volume of surface settlement trough (per metre length of

tunnel)
v vertical displacement
x lateral displacement from vertical centreline of tunnel
z depth below ground surface

zm depth below ground surface of point of intersection of
extension of vertical boundaries of deformation mechanism
with extension of vertical centreline of tunnel

zo depth to centre of tunnel
Æ constant controlling vertical curvature of outer boundary of

plastic deformation mechanism
�v vertical displacement increment
ª unit weight of soil

ªxz shear strain in x–z plane
�s engineering shear strain
�x strain in horizontal direction (x-direction)
�z strain in vertical direction (z-direction)
r rate of change of undrained strength with depth
�S surface surcharge pressure
�T tunnel supporting pressure
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