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Summary. This paper calculates the evolution of the three components of
the velocity dispersion of the stars in a galactic disc due to the influence of
massive gas clouds in circular orbits in the disc. We find that there are two
phases in this evolution: an initial transient phase in which the shape of the
velocity ellipsoid relaxes to a final shape depending only on the ratio Q/k
of the circular to the radial epicyclic frequencies, followed by a steady
heating phase in which for typical disc stars the velocity dispersion o varies
as do?/dt « N.M2v[o?, where N, and M, are the surface density and mass of
the clouds and v is the vertical epicyclic frequency. We also find that the
amount of stellar heating predicted will be comparable with that observed,
for young stars at least, if cloud masses are near the upper end of the observa-
tionally allowed range, but that the ratio of vertical to horizontal velocity
dispersions predicted disagrees with that observed. This may indicate that
other disc heating mechanisms are important.

1 Introduction

In this paper we calculate the evolution of the velocity dispersions of the stars in a galactic
disc when the orbits of the stars are perturbed by massive gas clouds in circular orbits in
the disc.

The influence of gas clouds on stellar velocity dispersions was first considered by Spitzer
& Schwarzschild (1951), who calculated the evolution of the stellar distribution function
by numerically integrating the Fokker—Planck equation. Their calculation included the
velocity dispersion of the gas clouds but ignored galactic rotation. In a second paper, Spitzer
& Schwarzschild (1953) argued that their previous neglect of galactic rotation was incorrect,
and analytically calculated the evolution when the epicyclic motion of the stars in the back-
ground galactic potential was included, in the approximation that the epicyclic velocities
of the stars greatly exceeded the random motions of the clouds. Fujimoto (1980) has
performed an analytical calculation under the assumption that the clouds are very short-
lived, while numerical integrations of star—cloud encounters have been carried out by
Woolley & Candy (1968a, b) and Icke (1982).
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The calculations of Spitzer & Schwarzschild (1953) and Icke (1982) have the basic short-
coming that they only consider stellar motions in the symmetry plane of the disc. Woolley &
Candy (1968b) do include stellar motions perpendicular to the plane but do not derive a
velocity dispersion—age relation from their results, while we shall argue that Fujimoto’s
(1980) assumption of short cloud lifetime is not applicable to galactic discs. This paper
fills a major gap in the theory by generalizing the Spitzer & Schwarzschild (1953) calculation
to include vertical motions of the stars. This is important both because of the intrinsic
interest of predicting the vertical velocity dispersion and because their vertical epicyclic
oscillations can take the stars out of the layer of perturbing clouds and so reduce the
scattering rates.

There is at present great interest in the possibility that the cloud scattering mechanism
may explain the velocity dispersions of disc stars because the giant molecular clouds observed
(eg. Solomon & Sanders 1980; Liszt, Xiang & Burton 1981) have roughly the properties
required according to Spitzer & Schwarzschild (1953). Also observations of disc scale-
heights in edge-on galaxies (van der Kruit & Searle 1981a, b) now provide information on
the radial variation of the vertical component of velocity dispersion, which can be used to
put constraints on the functional dependence of the stellar heating (Lacey & Fall 1983).
The more complete calculation of the effects of this heating mechanism presented here
should make possible a much more reliable assessment of its importance in galactic evolution.

The plan of the remainder of the paper is as follows: Section 2 states the basic assump-
tions of the calculation and discusses the energy transfer from a general point of view,
while Section 3 contains the details of the calculation. Section 4 describes the evolution
of the velocity dispersions and contains the main results of the paper. Section 5 considers
the effects of modifications to the epicyclic approximation for vertical motions, Section
6 compares the results to those of previous calculations and Section 7 describes the
comparison with observations. Section 8 contains the conclusions.

2 Assumptions
The calculation starts from the following assumptions:

(1) The orbits of the stars in the background galactic potential (assumed axisymmetric
and plane-symmetric) are described by first-order epicyclic theory.

(2) The clouds are long-lived, much more massive than the stars and move in circular
orbits in the symmetry plane.

(3) The clouds are randomly distributed and act independently.

(4) For a typical star—cloud encounter, the effective interaction time is short compared
to the epicyclic period, and the velocity difference between the local standards of rest at
the star and at the cloud is negligible compared to the non-circular velocity of the star.

(5) The perturbation of the stellar velocities is dominated by the effect of the many
distant, weak encounters so that the evolution of the distribution function is given by a
diffusion equation.

Assumption (1) is valid if the departures from circular orbits in the symmetry plane
are small, which holds for most disc stars except perhaps in the centres of discs. It is a good
approximation for virtually all of the disc populations used to determine the velocity
dispersion—age relation in the solar neighbourhood. The assumption about cloud masses
made in (2) is easily satisfied since they are of order 10°—10° M,. We estimate the neglect
of the cloud velocity dispersions to be a reasonable approximation provided the stella
epicyclic velocities exceed 2—3 times the 3-D cloud velocity dispersion; for comparison,
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Liszt & Burton (1981) obtain approximately 6 km s~ for the 3-D velocity dispersion of the
most massive clouds, while the velocity dispersions of disc stars in the solar neighbourhood
range between about 10 and 80 kms™! according to Wielen (1977). We estimate the effect of
finite cloud lifetimes to be unimportant provided these exceed roughly the time for a star to
cross a cloud radius, 10°yr at most, whereas estimates of cloud lifetimes are in the range
107—10°yr (Bash, Green & Peters 1977; Solomon & Sanders 1980). Assumption (3) neglects
the possibility of the cloud distribution being organized on a large scale, e.g. into a spiral
arm. Regarding assumption (4), a typical encounter would be one with impact parameter
roughly the geometric mean of the cloud radius (~10pc) and the epicyclic orbital size
(~ 1kpc) for which the encounter time and cloud shear velocity would be roughly 1/10 the
epicyclic period and stellar epicyclic velocity respectively. Finally, regarding assumption (5),
the physical size of the clouds probably excludes strong encounters.

We now briefly consider energy and angular momentum balance. We use cylindrical polar
coordinates (R, 6, z) and define («, v, w) to be the corresponding components of the non-
circular velocity. Let ® (R, z) to the potential and 2 (R) the frequency of a circular orbit
at (R, z = 0). Thus:

Q?=(1/R3®/3R),-o. (1)
Then the energy and angular momentum (about the z-axis) per unit mass are:

E=%{u*+ [RQUR) +v]* + w?} + (R, 2), (2)
J =R [RSUR) +v]. 3)

In a single star—cloud encounter, as a result of assumptions (2) and (4)
A@W? +v* +w?)=0, 4)
while (R, 0, z) are unchanged, so
AE = RUR) Av = QR) AJ. (5)

corresponding to conservation of the Jacobi integral £ — §J. The calculation of Section 3
only follows the evolution of the stellar distribution explicitly, but equation (5) shows that
overall conservation of energy and angular momentum (of stars + clouds) is consistent with
the clouds being on orbits which remain virtually circular but which slowly change radius as
they exchange energy and angular momentum with the stars.

We expect the energy in random motions of the stars to increase on general thermo-
dynamic principles. This can be accomplished even in a purely stellar disc if there is some
mechanism for transferring angular momentum outwards [in a disc in which §(R) declines
outwards] (Lynden-Bell & Kalnajs 1972). Our calculation shows that in the presence of
clouds such an increase of the energy in random stellar motions does indeed occur, but it
does not reveal how much of this increase comes from a decrease in the energy of organized
motions of the stars (the clouds playing a purely catalytic role) and how much from a

decrease in the orbital energy of the clouds. To determine this, an analysis involving second-
order epicyclic theory would be required.

3 Calculation of the evolution of the velocity dispersion
3.1 UNPERTURBED STELLAR ORBITS

In this subsection we set up the equations of motion and define the conserved quantities
for the (first-order) epicyclic approximation (e.g. Chandrasekhar 1960). We define the
24
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frequencies k and v of horizontal and vertical epicyclic motion

k2= [02®/dR% + (3/R) 0®/0R], = o

=402 (1 +%dIn Q/dInR), (6)
v2 = (02®/0z%), = o, (7
and the frequency ratio g:
B=28k. 3)

For real discs, B ranges between 1 (solid-body rotation) and 2 (Keplerian). The motion of
a star is referred to a radius R, (which is not necessarily the guiding centre radius), and J
is defined to be the angular momentum for a circular orbit at that radius. We define the
phase variables ¢/, x and ¢

Y=o — [(B —1)(J—J)R3F] ¢, (9a)
X = Xo +Kt, (9b)
¢ = ¢g + VL. (9¢)
in terms of which the position of the star is given by

R — Ro = B(J — Jo)/(kRo) + [(2E,)"?*/k] cos X, (10a)
0 — Qt =y — Bl(2E,)""*/(kRo)] sin X, (10b)
z=[(2E,)Y?*/v] cos ¢, (10¢)
and its velocity components relative to the local circular velocity by

u=R=—(QE,)"*sinx, (11a)
v=R[0 - QR)] = —[(2B)"?/B] cos X, (11b)
w=z2=—(2FE,)"?*sin ¢. (11¢

In the above equations the frequencies 2, k and v are all evaluated at the reference
radius R,. E, and E, are the energies associated with horizontal and vertical epicyclic
motions respectively:

Ee=%(u® + f*v?), (12)
E,=%(W? +v2z?%). (13)

We define E.(J) to be the energy of a star in a circular orbit at z =0 with angulai
momentum J, so that the total energy is given by

E=E.(J)+E,tFE,. (14

E,, E, and J are all separately conserved in the unperturbed epicyclic motion, but are gener-
ally changed by encounters with clouds.

3.2 CHANGES OF THE EPICYCLIC ENERGIES BY ENCOUNTERS

Assumptions (3), (4) and (5) of Section 2 allow us to treat the perturbation of the
stellar orbit by the population of clouds using the usual velocity diffusion coefficients
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(Chandrasekhar 1960; Hénon 1973) derived for motion with no external forces through a
uniform distribution of perturbers. The moments of the velocity change AV in a time Az
short compared to the orbital time are given by equations (54) of Hénon (1973), where we
neglect the stellar mass compared to the cloud mass M, and also the cloud velocity relative
to the stellar velocity V = (4, v, w) in the local standard of rest at the position of the star.
Resolved along three orthogonal axes, one parallel and two perpendicular to V, these are:

(AV)=—4nG*n M2 In A At/V?, (15a)
AV, =(AV ) =0, (15b)
(arp» =0, (15¢)
(AV ) = AV ) = 4nGPnM2 In A ALY, (15d)
(AV)(AVL ) = (AV ) (AVL) = (AVL)(AVL) = 0, (15¢)

where n is the number density of clouds at the position of the star and the factor In A
which arises from the integration over impact parameters can be approximated by

InA~In (Zmax/lmin)- (16)

Here lnax and i, are the effective maximum and minimum impact parameters, and for
clouds (assumed roughly homogeneous) of physical radius a,

lmin = max [am GMC/Vz] (17)
(see Hénon 1973 for a more detailed discussion). Following the discussion of Hénon (1958)

we take for [,.x the product of the typical relative velocity with the orbital time, or,
equivalently, the size of an epicyclic orbit. Thus

Imax ~ QE)"*/k or  (2E)"*/v. (18)

From equations (15) we derive the moments of the velocity change in our original
coordinate system:

(Auy = —4nG?n M2 In A At u/ V>, (19a)
AV = —41GP M2 In A At v V3, (19b)
(Awy = —41G*n M2 In A At w/V3, (19¢)
(Au)» =4nG*n MZ In A At (v* +w?)[ V3, (20a)
(Av)) =4nG2n M2 In A At (u? +w?)/ V3, (20b)
(AW = 4nG*n M2 In A At (u? +02)/ V3. (20¢).

Using (12) we find for the expectation value of the change in the epicyclic energy E, in
the same short time interval:

(AE = ulAu) + %{(Au)*) + B2 ((Avy + %(Av)D). (21)
We assume the dependence of cloud number density on position to be of the form:
ne(R, 2) = [Ne(R)/(2m)"* he] exp (—2*[2ht), (22)

so that N, is the number of clouds per unit area. The Gaussian z-dependence assumed is
consistent with the observations (e.g. Sanders, Solomon & Scoville 1984) and is mathe-
matically convenient. However, the main results are not expected to be sensitive to the
detailed z-dependence. We assume that n. varies only slowly with galactocentric radius,
one/oR ~ n¢/R, but the R-dependence is otherwise arbitrary. Then, provided the epicyclic
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amplitude is small, (2E,)"?/k < R, the rate of change of the epicyclic energies depends only
on the local values of N, and A and not on their gradients. Combining equations (19)—(22)
we derive the expectation value of the instantaneous rate of change of E,:

dE,jdty = 2m)*(G*NMZ In Alh) exp (—z%/2h32)

x [(B2 —2)u? + (1 = 270> + (B2 + ) w?]/V?. (23)
Similarly, (13) gives for the change in Ej:
(AE, = w(Aw) + %{(Aw)?), (24)
and combining with (19), (20) and (22) gives

dE,jdt) = 2m)"2 (GANME In AJh,) exp (—z2/2h2) x (u? + v? — 2w?)/ V3. (25)

33 RATE OF CHANGE OF THE EPICYCLIC ENERGIES FOR A POPULATION OF
STARS

Equations (23) and (25) give the expected rates of change of the epicyclic energies for a
single star. To calculate the mean rates of change for the whole population, these expressions
must be averaged over the stellar distribution, which we describe by the phase-space density
f, defined so that fd®x d®v =number of stars in the phase-space volume element d*x d®v.
We assume that the evolution of the distribution due to encounters is slow compared to
the orbital frequencies, so that in its dependence on the phase-space coordinates f always
approximates to a steady-state solution of the collisionless Boltzmann equation, depending
on E,, E, and J but not on the phase variables (Jean’s theorem). In a fully self-consistent
calculation this dependence would have to be derived by solving the orbit-averaged Fokker—
Planck equation for f. In this paper, for the purpose of carrying out the averaging, we take
the simpler approach of assuming that f is approximately isothermal, i.e. exponential in the
epicyclic energies and so Gaussian in the non-circular velocity components. While we do
not expect this to be exactly true, it is probably a reasonable approximation at energies
comparable to the mean (e.g. see Spitzer & Schwarzschild 1951 for the numerical solution
of a similar Fokker—Planck equation). We expect this approach to give the correct general
dependence of the population-averaged rates of change on the mean energies etc., though the
numerical coefficients may not be exactly right.
We write the phase-space density as -

f(Ee» E,, J) = S(J) exp [7 (Ee/<Ee> + Ez/(Ez»] (26)

S(J) is related to the radial variation of the surface density and (E,) and (E,) are averages
of the epicyclic energies at fixed J. (Henceforth, the brackets () will always denote an
average over the stellar distribution rather than over encounters with clouds, except where
explicitly stated otherwise.)

Substituting for J, E, and E, using equations (3), (12) and (13), we obtain an expression
for f as a function of (R, z, u, v, w), where we use the same symbol for the phase-space
density as a function of the new variables since no confusion should be caused. To lowest
order in the epicyclic amplitude, this is

u? 2 w? 22\
f(R, z, u, v, w) ~ S[QUR)R*] exp [—(_ +—— +——+ )J 27

20% 207 20% 2h?

The dispersions g, 0,, 0,, and kg are defined to be averages over all stars at fixed R, and are
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related to the mean energies by, to lowest order,

o, = (U — W)H? ~ (E)V?, (28)
0y = (v — WDV ~ (EN?/B, (29)
Oy = (W — WH)DHY2 ~ (EV2, (30)
ho= (z — @)HV?E ~ (E)3 . (€39

In the above, (E,) and {E}), which are defined as functions of J, are to be treated as functions
of R through the zero-order relation J = §(R) R?. Equations (28)—(31) are true for an
arbitrary steady-state distribution function, as can be shown from (10) and (11), though
for a non-isothermal distribution the local dispersions (at fixed R, z) will differ from the
z-averaged (at fixed R) values which these equations give. The Gaussian z-distribution for
the isothermal population (equation 27) depends on our assumption that the z-motion is
harmonic, which is equivalent to assuming that the total density of gravitating mass is
independent of z. The effects of relaxing this assumption will be considered later.

We need an expression for the number of stars dV in the range dE, dE, dJ dx d¢ dy.
This is
dN = f(F,, E,, J) A(E,, E,, J) dE, dE, dJ dx d¢ dy, (32)

where A(E,, E,, J) dE, dE, dJ dx d¢ dy is the phase-space volume corresponding to the
range dE, dE, dJ dx d¢ dy. In Appendix A the Jacobian factor 4 (E,, E,, J) is shown to be

A(E,, E,, J) =1/kv. (33)

The rate of change of (F;) (i =e or z) is then given by averaging, over all stars at that J,
the expression (dE;/dt)en. for the expected rate of change for a single star due to
encounters, where we add the subscript ‘enc’ to distinguish the average over encounters
with clouds from the average over the stellar distribution:

Hﬂ f dE, dE, dx d¢ dy dE;|dDene A(Ey, Ey, J) f(Eey Ey, J)
dEp/dt = (34)

ffffdee dE; dx d Ay A(Ee, E;, J) f(Ee, By, J),

or, substituting from (26) and (33),
S o 2m 2m
dED|dt = (An*ENEY) ™! f dEef dE, f dx f do
0 0 0 0

(dE;|dDenc €Xp [— (Ee/KE) + EKE D). (35)

To carry out the averaging, we rewrite (23) and (25) for (dE,/dt)enc and {dE,[dt)en in
terms of E,, F,, x and ¢ using (10) and (11):
dE,|dtYenc = T2 (G2NME In AJhy) exp [— E, cos® ¢/(v?h?)]
{[8? sin® x + (1/6%) cos® x — 2] £, + (B* +1) sin® ¢ £},
X
{Isin®> x + (1/8%) cos?® x] E, +sin? ¢ E4}>?

(36)
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dE,[dDenc = 72 (G*NM?2 In Alh,) exp [— E, cos? ¢/(¥*h?)]
 {[sin? x + (1/8%) cos® x] E, — 2 sin® ¢ Ex}

{[sin® x + (1/8%) cos® x] E, +sin® ¢ £,}*>
The details of the averaging are given in Appendix B. The final result is
d(Epdt = CK(a, B)/ [(EN? (1 + g*)V?],
dKE)[dt = CL(a, B) [KESY2(1 + ¢%)2],

where we have defined
C=2G*N_M2 In Alh,,

o? =(EJER) ~ (0,0/0,),
q* = (E|(V*he) ~ (hs[he)’.

0.0 0.4

(37)

(38)
(39)

(40)

(41)
(42

Figure 1. Dependence of rates of change of epicyclic energies on epicyclic energy ratio and rotatiot
curve shape. Plotted are K(a, 8) and L(w, B), proportional to d{Ep)/dt and d(E,)/dt respectively (cf

equations 38, 39), as functions of a = ((E,)/(E))"?, for three values of g = 22/«.
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K(a, B) and L(a, B) are dimensionless integrals over the epicyclic phase defined in Appendix
B (B6 and B7), and are plotted as functions of « for various values of § in Fig. 1. Combining
(38), (39) and (41) we find that the ratio of vertical to radial velocity dispersions a evolves
according to

d(e®)/dr = C[L(a, B) — &*K (e, B)/ [LE*? (1 +q*)""2]. (43)

4 Evolution of the epicyclic energies

We now use the results of Section 3 to determine the evolution of the epicyclic energies, or
equivalently the components of the velocity dispersion, at a fixed radius, for which 8= 20/«
is a constant. Inspection of (38), (39) and (43) and of Fig. 1 showing the form of the
functions K and L reveals that the evolution can be divided into two phases:

4.1 TRANSIENT RELAXATION

There is an initial transient phase in which the ratio o relaxes towards a stable equilibrium
value a4(f) defined by

L[as(B), B] = o5 (B) K [a5(B), B]. (44)

1.0

0.8

0.6

0.4

0.2 Ks(3) + L([3)

(ow/0,)s or a,/a, or (Kg+Lg)

0.0
1.0 1.2 1.4 1.6 1.8 2.0

Figure 2. Dependence of velocity dispersion ratios and heating rate on rotation curve shape in steady
heating phase. Plotted as functions of g = 22/« are the steady-state values of o,,/0y [=as(B)] and oy/0y,
(=1/g) and the function Kg(B) + Lg(p), which gives the g-dependence of the net heating rate in the steady
heating phase (cf. 46).
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The function ag(B) is plotted in Fig. 2 and numerical values are given in Table 2. The
relaxation towards equilibrium occurs on a time-scale

Tre = lim (o5 — o?)/(do’/d1)
a—ag

d
= [(EDY2 (1 +4%)"*/C1{~ 204 /5& [L(e, B) — o*K(et, B)] o= g} (45)

Numerical values of the §-dependent factor in the brackets are given in Table 1. During this
phase either (E,) or (E;) will decrease if a is sufficiently far from its equilibrium value, and
the mean total epicyclic energy (E, + E,) may also decrease. The physical reason for this
relaxation is simply that a star whose motion is mainly in the plane is likely to be scattered
out of the plane in an encounter, and vice versa.

42 STEADY HEATING

Following the relaxation phase, both epicyclic energies increase steadily with time (except

Table 1. Comparison of relaxation and heating time-scales.

8 VIS R C P LV N NI S (R LY
1.0 1.9 ©
1.2 1.4 56
1.4 0.95 12
1.6 0.67 4.8
1.8 0.48 2.4
2.0 0.35 1.4

Table 2. Steady-state values of « and of heating rate coefficients.

B a () K_(8) (1+1/8%+a Y%K _(8) /a
1.0 1.00 0.0 0.0
1.2 0.89 0.019 0.13
1.4 0.78 0.082 0.47
1.6 0.69 0.21 1.0
1.8 0.61 0.41 1.9
2.0 0.55 0.70 3.1
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for the special case §=1 — see below) in such a way that the ratio « remains constant at the
value ag(B). The total epicyclic energy evolves according to

d(E, + Epdt = C[Ky(B) + Ly(B)l/ [<ES"2(1 + ¢)"'], (46)
where

K(B) = Klas(B), Bl, (47a)
Ly(8) = L[as(B), B]- (47b)

The function K (B)+ Lg(B) is plotted in Fig. 2 and numerical values of K () are given
in Table 2. The steady heating occurs on a time-scale

Theat = ES(AENdL) = (B |(d{ EpldE)
= [KE2(1+4*)"*[C] [1/K(B)], (48)

(cf. 45). Numerical values of the f-dependent factor are given in Table 1, from which it can
be seen that Theyt is typically an order of magnitude larger than 7.

We can restate these results in terms of the velocity dispersions: once the initial
relaxation phase is over, the velocity dispersion components maintain constant ratios
depending only on §:
0u:0y: 0y~ 1:1/8:04(B), (49)
(by equations 28, 29 and 41) where the ratio ¢,/0, depends only on the assumption of a

steady state of the collisionless Boltzmann equation, while the total velocity dispersion
o, defined by

g = o%l + 03 + 0‘2,1,, (50)
evolves as
do?/dt = {2G*N.MZ In Af[o(h + R2)2 1} {[1 +1/8% + Z(B)]** Ks(B)) (51)

(combining 46, 49, 40 and 42). The evolution can be divided into two regimes according
to whether the stellar scale-height is less or greater than the cloud scale-height. In the
former case, hg < hg:

do*/dt ~ D3]o (hg < hy), (52)
where

Dy = QG>NM2 In Afh {1 +1/8* + (B> K(B)), (53)
so that for N, and M, constant,

o(t) ~ [05 + (3/2) D3t]™? (hs S he), (54)
where 0 is the initial velocity dispersion, while in the latter case, sg 2 h¢:

do?[dt ~ D4 /o* (hg 2 hy), (55)
where

Dy = (2G*NM; In Av){[1 +1/8% + of (B)]*Ks(B)/eis(B)} (56)
so for N, and M, constant

o(r) ~ (08 + 2D, 1)"* (hs 2 ho). (57)

Numerical values of the 8-dependent factor in D, are given in Table 2.
The results (52)—(54) for the regime g = hg/h, < 1 are given mainly for completeness
and for the purpose of comparing with previous calculations. Equations (38) and (39)
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from which they are derived are formally correct for an arbitrary value of g, but in practice
the cloud layer must owe its finite thickness A, to a finite velocity dispersion, so our
approximation of neglecting the cloud velocity dispersion will break down for ¢ < 1 unless
the stellar velocity dispersion is very anisotropic.

43 SPECIAL CASE OF SOLID-BODY ROTATION

The case when the galactic rotation curve is £ = constant = =1 provides a useful check
on the correctness of our results. We note first that K(a, §)=—L(a, B) in this case
=(E, + E,) = constant. That this must be the case follows from the fact that the Jacobi
integral £ — J is now an exact integral when the potential due to the clouds is included in
the energy, and that £ — QJ ~ E, + E, except in the vicinity of a cloud. A further conse-
quence of the existence of this exact integral is that f(E — J) must be a steady-state
solution even in the presence of encounters, so that equilibrium must correspond to
(Ep) =(Ep. (I am grateful to D. Lynden-Bell for pointing this out to me.) Our calculation
is in agreement with this. Thus for =1, a relaxes to ag=1, so that ¢, = 6,= 0,,, but no
secular increase of velocity dispersions occurs.

5 Effects of modifications to the epicyclic approximation for z-motions

The calculations of Section 3 assume that the unperturbed z-motions of the stars are
harmonic with a time-independent frequency ». In this section we consider the effects of
relaxing these assumptions. The results have applications to stars whose velocity dispersions
are comparable to or exceed that of the disc as a whole.

5.1 EFFECTS OF DEPARTURES FROM THE HARMONIC APPROXIMATION

For stars whose vertical amplitudes are comparable to or exceed the scale-height i of mass
in the disc, the z-motion is no longer harmonic and the vertical oscillation frequency is a
function of vertical epicyclic energy, » =v(E,), where E, =%w’ + [®(R, z) - P(R, 0)]
Equations (10c) and (11c) no longer apply, but we can still define a phase ¢ evolving
according to (9¢), and equation (33) for A(E,, E,, J) still applies, with v =v(E;) (see
Appendix A).

As before, we obtain expressions for the rates of change of (E,) and (E), defined to
be averages at fixed J, by combining (34), (33), (23) and (25). We further take the limit
he < hg, so that the cloud number density (equation 22) becomes

Ne[1/@2m)2he] exp (—2%[2h2) - N:6(z)
= Ne[W(E;)IN2E;] [8(9 — m/2) + 8(¢ + n/2)], (58
where we have used the result (3z/0¢)g, = w/v(E;), which follows using (9¢), and choser

the zero-point of ¢ so that z=0 when ¢ = /2, 3n/2. Performing the ¢-integrations in th
averages over the stellar distribution we obtain

(E,)
dt

~ 2GNM? In A f f f dE, dE, dx f(E., E,, J)

1 [(32 —2ul+(1-2) v +2(f* + 1) E,

b

1
ffdee dE, dx W) f(Ee, E,, J) (59
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AE,)

~ 2G*N.M? In A f f f dE, dE, dx f(E,, E,, J)
1 [ u® +v? — 4E, ]

V2E, L@u? + v* + 2E,)*?
X ;

j f f dE, dF, dxfE)f(Ee, Ey ) (60)

z

where v and v are to be expressed in terms of £, and x using (11a) and (11b) as before. Note
that the mean epicyclic energies are in general no longer related to the velocity dispersions
in any simple way. We again assume an isothermal distribution function,

fEe, Bz, J) = S(J) exp = [Ee/EX(J) + EL[EF(N]}, (61)

so that o} ~ EfF, o2~ EX|B*, 0% ~ E¥, where as before the velocity dispersions are
z-averaged. (E,) = EF but (E;) # E;¥ in general. The results of the averaging for this case
can be straightforwardly derived by noting that v(E;) only appears in the denominators
of (59) and (60) and by requiring that for »(E,) = constant they reduce to the 4, =0
limits of (38) and (39). We obtain

dKENdt ~ 2G*NMZ2 In A 9(EF) K (a, B)/(EXY? EFV?) (hs > hy), (62)

AKEdt ~ 2G*NM2 In A (EF) L, B/(EFV2EFYY)  (hy> h). (63)

where

s (EX) = (1EF) f AE,[1WE)] exp (— By /EF). (64)
0

These results reduce further for the case that the stellar scale-height A greatly exceeds
the disc scale-height Ap (here defined as the ratio of the surface density to twice the central
density). Then the stars move in a potential with z-dependence ®(R, z) — ®(R, 0) ~ vihpz,
where vy =v(E, =0), and have frequencies »(E,)~ (7/2) v3hp/(QE,)"% Then (E,)=
(3/2) E¥, and we derive

dEX  (2m)Y2G2NMZ In A vihp

. * s
dt Ee*l/ZEZ* K(a ’ B) (hs > hD); (65)
dEF  (QmY*GANM2 In Avihp 2
~ e — 1, O[*, h.> h , 66
dt Ee*llez* 3 ( ﬁ) ( S D) ( )

where we now define o* = (E}*/E¥)"? ~ 0,,/0,. The equilibrium ratio of vertical to
horizontal velocity dispersions () is the solution of

2/3L[aF(B), B] = a*(B) K [eF(B), B1, (67)

(compare equation 44). Over the range 1 < 8 < 2, a(pB) differs from ag() by at most 5 per
cent. In the steady heating phase, the total velocity dispersion o varies as

do?*/dt ~ Ds/o® (hg> hp), (68)
where
Ds =[(2m)"*G*NMZ In Avghp] {[1 +1/8% + o2(B)1¥2 K [a(B), Bl/*(B)} (69)

An equation of the form of (68) was derived by Ostriker (1982, private communication).
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From the results of this section we infer that for typical disc stars (i.e. with kg < hp) the
effects of departures from the harmonic approximation are likely to be small provided the
distribution remains approximately isothermal.

5.2 EFFECTS OF A TIME-DEPENDENT VERTICAL FREQUENCY

Another extension of the results of previous sections is to allow the vertical epicyclic
frequency v to be a function of time. If v varies slowly compared to the orbital frequency,
then for stars whose z-motion is harmonic, E,/v is adiabatically invariant and there is an
extra contribution to the rate of change of the vertical epicyclic energy

(KED[dt)aq = (D[VXE,), (70)

which must be added to that of (39).
We can apply this to a population which is self-gravitating in the z-direction. If the
population is isothermal, its density varies as p(z) = po sech? (z/hp) with a scale-height

hp = 0% [1Gup =~ {E)[nGup, (71)
where up is the surface density, and the vertical frequency for small oscillations is
v = (4nGpo)"'? ~ 2V2aGupKEHY2. (72)

The z-motions are treated as being harmonic with frequency vy, though this is only a
rough approximation as applied to the whole population. Then adiabatic invariance gives

(KED[dt)ag ~ —(1/2) AE)dt + (fip/up XE;) (73)

where the p/up terms allows for the possibility that the disc mass is increased by infall.
Combining with (38), (39), (40) and (42) and assuming kg > h., we derive

dE) 2¥?27G3upNM?2 In A

- K(a, B), 74
dt (E)Y2(E,) @B (
dE) 2¥2nG3upN.M2In A 2 24

=L “? ol 1n '—L(a,B)+ﬂ<Ez>. (75)
dt (ESVHE) 3 3 up

In practice, the up/up term is likely only to be important for a small number of stars formed
very early in the history of the disc (¢f. Lacey & Fall 1983), so the main effect of making
the disc self-consistent is to reduce the heating rate by another power of o. (The equilibrium
value of o0,,/0, is also changed, being given by (67) if the ap/up term can be ignored.) For
subpopulations with smaller velocity dispersions than that of the disc as a whole, the effects
of the variation of v will be very small.

6 Comparison with previous calculations

The results of this paper are most directly comparable to those of Spitzer & Schwarzschild
(1953) since the assumptions made are the same apart from their neglect of vertical motions.
Our result for the evolution of the total velocity dispersion o for stars whose orbits are
confined to the cloud layer (ks < h.), equations (52)—(53), is identical to their equation
(20) apart from numerical factors of order unity. This shows that our results are a generali-
zation of theirs, For stars whose scale-heights exceed that of the cloud layer (kg 2 &), we find
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the heating rate to be suppressed by a factor h./hs < 1/0 (equations 55-56) relative to
what Spitzer & Schwarzschild derive.

It is more difficult to compare our results with those of Icke (1982) since his calculations
are all numerical, but in so far as he obtains the Spitzer & Schwarzschild (1953) result
o ~ t'3 for epicyclic orbits in the plane, his results are consistent with ours. Icke does not
consider vertical motions.

Fujimoto (1980) derives the result o ~ #/2, but this is based on the assumption that the
cloud lifetime is much less than the minimum star—cloud encounter time, which does not
seem to be the case in practice, as mentioned in Section 2. Fujimoto’s calculation does
include z-motions, but only appears to be applicable to stars whose vertical motions do not
take them outside the cloud layer.

The derivation of the axial ratios of the velocity ellipsoid by Wielen (1977) should
also be discussed in order to point out how his calculation differs from this one. Wielen’s
calculation is not based on a specific physical mechanism, but rather assumes ‘isotropic
diffusion in velocity space’, for which (Au) = (Av) = (Aw) = 0 and ((Au)*)= (Av)?) = ((Aw)?).
It follows that A(E,)=(1+B*) A(E,), so that the velocity dispersion ratio approaches
ow/o, =(1+8*)Y2 for o> 0o, but there is no relaxation in the sense of Section 4,
which depends on the non-vanishing of (AV). The moments of AV for scattering by clouds
(equations 19 and 20) are different from those assumed by Wielen, so the value of 0,,/0,
derived is different.

After work on this paper was completed I became aware of a recent N-body simulation
of the heating of a stellar disc by giant molecular clouds by Villumsen (1983). Villumsen
finds different results from those presented here, in particular he obtains the time-
dependence o ~ t*? and obtains the ratio of velocity dispersions o,,/0, ~ 0.5. In his
simulation the stars start ‘hot” with a velocity dispersion in the plane roughly half the final
value, and the clouds have a velocity dispersion in the plane equal to the initial value for the
stars. Thus the velocity dispersion of the clouds is always comparable to that of the stars,
while the small factor by which the total stellar velocity dispersion increases makes it
difficult to determine accurately the asymptotic power-law dependence of velocity disper-
sion on time. I believe that these two features are the main reasons for the differences in the
results obtained.

7 Comparison with observations

A long-standing problem in galactic evolution is to explain why, in the solar neighbourhood
at least, the velocity dispersions of disc stars increase with their age (see, e.g. Wielen 1974
for a recent observational analysis). Wielen (1977) has argued persuasively that the origin of
this effect must lie in stochastic acceleration of the stars after they are born rather than in
any time-dependence of the velocity dispersion of the gas layer from which they form.
We will not repeat the arguments here. In this section we use the results of Section 3 to
examine whether the giant gas clouds observed in the disc can be the dominant cause of the
stochastic acceleration of the stars.

In making this comparison we shall assume that the stars are in the steady heating phase
and check whether this is consistent with the observations, since if the stars are still in the
relaxation phase there will not yet have been any significant increase of total velocity
dispersion. We compare theoretical predictions with observations for three observationally
independent aspects: the shape of the velocity ellipsoid, the age-dependence of the total
velocity dispersion and the dependence of disc scale-height on radius.
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7.1 SHAPE OF THE VELOCITY ELLIPSOID

In the steady heating phase, for kg < hp, the ratio of axes o,,: 0,: 0,, is given by equation
(49) (see also Fig. 2), being independent of time and depending only on the value of
B=28Q/k. Over the whole range 1 < < 2 the prediction is o, > 0,, > 0,, while virtually
all observational determinations give g, > 0, > 0,, (Delhaye 1965). To predict the ratios
in more detail one needs to know the local value of 8, which can be estimated either directly
from the rotation curve V(R) or from the ratio o,/0, (by equation 49). According to
Knapp (1983), the rotation curve in the solar neighbourhood is flat or slowly rising,
dlnV,/dinR ~0.1+£0.1, which would be consistent with what is observed in other
galaxies (Rubin 1983). This implies § ~ 1.35+0.05, for which we predict o,:0,: 0, =
1:0.74£0.03:0.81 £0.03. The observational determinations of the axial ratios are
somewhat ambiguous. Two recent determinations are that of Wielen (1974), based on a
sampte of roughly 300 McCormick K and M dwarfs within 25 pc of the Sun, who finds
0,:0,:0,=1:059+0.05:051%£0.04, and that of Woolley er al. (1977), based on
roughly 700 G and K stars (mainly giants) out to roughly 400 pc, who find g, : 0,: 0, =
1:0.74+£0.04:0.71 £0.04. (Wielen takes scale-height effects into account empirically to
estimate z-averaged velocity dispersions, but finds that this makes no significant difference
to the ratios.) Individually both sets of ratios are inconsistent with the theory at the 20
level when § is determined from o¢,/0,, and both in the sense that the observed o,,/0, is
less than that predicted. However, the two observational determinations also differ from
each other at the 20 level, and of the o,/0, values only that of Woolley et al. is consistent
with the rotation-curve estimate to within the quoted errors.

7.2 AGE-DEPENDENCE OF THE VELOCITY DISPERSION

The scale-height regime relevant for most disc stars is 4, < kg S hp so that equations (55)—
(57) apply. Then for a constant diffusion coefficient D, the age-dependence for o* > 0§ is
o « 74 for stars all of the same age 7. Observations of velocity dispersion as a function of
age (Wielen 1974, 1977) imply a somewhat steeper dependence, o « 7V/2 or V2 if a constant
star formation rate is assumed. Also Lacey & Fall (1983), fitting the relation do?,/dt =
D02, 9, with D proportional to the star formation rate, to Wielen’s data on z-motions
alone, found g ~ 2 to give the best fit in the context of a set of models for the chemical
and kinematical evolution of the solar neighbourhood, while we predict ¢ =4 here. However,
there are considerable uncertainties in the observational determination, and consistency
between the theory and observations is possible if we allow some time-dependence of the
diffusion coefficient D, in the sense of it being larger at early times.

Another test is to estimate the present solar neighbourhood value of D, from the
observed properties of the giant molecular clouds. The clouds actually have a spectrum
of masses, so in our formulae we make the replacement

NME > [N 12 vt = o, (76)
where p is the surface density of cloud matter and Mg is the mass-weighted mean mass:
Mg = |N(M) MZ nd/ch(Mc) M. dM.. (77)

The results of Liszt et al. (1981) give uc~ 2.6 [n(H,)/300 cm ™3| M pc™2 for the solar
neighbourhood and their distribution function for cloud diameters gives MF ~ 6.6 x 10°
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[n(H;)/300 cm™] Mo, assuming the cloud density to be independent of size (where we
have assumed 25 per cent helium by mass and a Gaussian scale-height of 50 pc for the cloud
layer). Here n(H,) is the internal density of the clouds, for which a reasonable range based
on Liszt et al’s non-LTE analysis of the CO emission is 150 < n(H,) < 500 cm™3. This
implies

4%x10° S uMF < 5x10° M2 pe2. (78)

The results of Sanders ef al. (1984) and Sanders, Scoville & Solomon (1984), based in part
on Virial theorem estimates of cloud masses, give u.~ 4 Mo pc™? and MF ~ 1 x 10® M,
which gives ucMF ~ 4 x 10° M2 pc™2, at the upper end of the range (78), which is therefore
taken as a rough indicator of the range of uncertainty. (However, Sanders & Solomon
1984) find evidence for the clustering of clouds on mass scales of about 107 M, which
would further increase u Mg).

Taking into account both the rotation curve and the velocity ellipsoid data, I estimate
the possible range for fto be 1.3 < 8 < 1.8, which gives for the g-dependent factor in D,

0.3 < [1+1/8* + oZ(B)I* Ko(B)/as(B) S 1.9. (79)

Oort’s (1960) determination of K, gives ¥ ~ 90km s*kpc™ and we take In A ~ 3 (appro-
priate for Ipyin ~ 20 pc, Iyay ~ 500 pc). Then, assuming the ranges (78) and (79), we derive

10% £ D, $10% (km s™%)* Gy -1, (80)

If Dy is constant and 0, =10 km s™7, then on the basis of (57) we predict that the time Ti/2
for the velocity dispersion to reach twice its initial is 1< 71,5 100 Gy, compared to
the observed value 7/, ~1 Gy (Wielen 1974). The velocity dispersion of the oldest disc
stars, with ages of about 12 Gy, is predicted to be in the range 10 S ¢ < 40 km s~*. (This
result is not significantly changed if instead we treat the disc as being self-consistent and use
(74) and (75) with a constant up ~ 80 Mo pc2.) If D, is time-dependent then the upper
limit should be multiplied by (Ds/D,)"* where D, is the time-average value. This should
be compared with ¢ ~ 60—80 km s™! obtained by Wielen (1974) empirically for the oldest
age groups. Thus if the cloud masses are at the upper end of the observationally allowed
range then they can account for the increase in velocity dispersions of young stars (in fact
this puts an upper limit on D,), but in order to account for the velocity dispersions of old
stars also we require Dy to have been larger at early times.

7.3 RADIAL DEPENDENCE OF THE DISC SCALE-HEIGHT

If the disc as a whole is approximated as being locally isothermal and is self-gravitating in the
z-direction, and if the infall term gp/up is negligible, then according to (74) and (75), the
velocity dispersion varies as

do®[dt « upuMg|d?, (81)

so that the radial dependence of o at a fixed time is given by ¢ & (up uMF)V® (for 0 > 0y),
where we have ignored the §-dependence and the bar denotes a time-average. Then the disc
scale-height is given by (71) and varies radially as

hD &« (“(:Mc*)ws/“?)/s- (82)
To reduce this further, some assumptions must be made about how u¢ and My vary with

radius. A plausible pair of assumptions is M = constant, g « up, (cf. Lacey & Fall 1983),
which gives

hp(R) < up(R)™YS (83)
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or hp «exp(aR/5) for an exponential disc with up «exp(—aR). (This corresponds to
g =5/2 in the notation of Lacey & Fall 1983, which differs from the value g = 4 for the
velocity dispersion—age relation because Lacey & Fall did not include the variation of »
in their treatment.) This is probably consistent with the observations of edge-on disc
galaxies by van der Kruit & Searle (1981a, b, 1982) which show that the disc scale-height
is approximately independent of radius.

Subsection 7.4 Discussion

We see that the cloud heating mechanism can explain the increase in velocity disperions of
young stars if cloud masses are at the upper end of the allowed range, and also the velocity
dispersions of old disc stars if sufficient time variation of u. and M is allowed. Given
plausible assumptions about the radial variation of u, and MF it can also explain the
approximate constancy of disc scale-height with radius. However, the predicted o,,/0, is
10—30 per cent too high compared to that observed, and this prediction is independent of
cloud properties, depending only on §. But it is not clear how significant the disagreement
is, since different measurements of the velocity dispersion ratios are inconsistent with each
other and with measurements of the rotation curve. It would be very useful for testing
theories of stellar heating if a more consistent set of values could be obtained observationally.

Possible explanations for the discrepancy in the velocity dispersion ratios include distor-
tion of the local stellar kinematics by the potential of a spiral density wave (which might
also help to explain the discrepancy between different estimates of §) and departures from
isothermality in the stellar distribution function, which might modify the equilibrium ratio
of epicyclic energies. Based on the results of Section 5, it does not seem likely that depar-
tures from harmonic motion in the z-direction would by themselves significantly change
the result. Other effects not taken into account in the present calculation which might
modify the results presented here include the clustering of clouds on large scales, and the
increase of the effective masses of the clouds by stellar wakes (Julian & Toomre 1966;
Julian 1967).

There are other possible mechanisms for heating the disc which might compete with or
dominate heating by clouds. These include heating by transient spiral density waves
(Barbanis & Woltjer 1967; Carlberg & Sellwood 1984) or by massive black holes in the
galactic halo (Lacey, Ostriker & Schmidt, in preparation). It is interesting that heating by
a spiral density wave appears to produce too little vertical compared to horizontal heating
(Carlberg 1983, private communication), which is the opposite problem to that for the
cloud mechanism. It is possible that the resolution of the heating problem lies with a
mechanism producing perturbations in the potential on both large and small scales.

8 Conclusions

We have derived equations for the evolution of the three components of velocity dispersion
of the stars in a galactic disc when the orbits of these stars are perturbed by massive gas
clouds moving in circular orbits in the disc. We find that the evolution can be divided into
two phases:

(1) An initial relaxation phase in which the ratios of vertical to horizontal velocity disper-
sions (o0,,/0, and 0,/0,) relax to values depending only on the rotation curve parameter
B=2Q/k.

(2) A steady heating phase (absent for a solid-body rotation curve) in which the velocity
dispersions increase with time while the shape of the velocity ellipsoid remains fixed. For a

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1984MNRAS.208..687L

FT9BAVNRAS, Z08. “687L !

Stellar velocity dispersions in galactic discs 705

population of stars whole scale-height exceeds that of the cloud layer but is less than that of
the disc, the dispersion varies as do?/dt « N;MZv/o*. This result is modified for other
scale-height regimes.

Comparing these results with observations, we find that clouds may be important for
increasing the velocity dispersions of young stars if the cloud masses are at the upper end of
the observationally allowed range (with mass-weighted mean mass M ~ 10° M) but that to
account for the velocity dispersions of old stars also, the cloud number densities and/or
masses need to have been larger in the past (on the average by a factor ~ 10). If the cloud
number density follows the total surface density of the disc then we can explain the
approximate constancy of disc scale-height. However, there is a discrepancy between the
predicted and observed velocity dispersion ratios, the predicted o,,/0, being 10—30 per
cent too large. It may be possible to explain this difference within the context of heating
by clouds. Alternatively, some other heating mechanism may be involved.

Acknowledgments

I am grateful to Mike Fall for suggesting this problem and to Donald Lynden-Bell for
pointing out a problem with an earlier version of the calcuation. I thank Jerry Ostriker,
Ray Carlberg, Roland Wielen and other colleagues at Cambridge for helpful discussions and
for comments on an earlier version of this paper, and James Binney for a useful referee’s
report. I acknowledge financial support from the SERC.

References

Barbanis, B. & Woltjer, L., 1967. Astrophys. J., 150, 461.

Bash, F. N., Green, E. & Peters, W. L., 1977. Astrophys. J., 217, 464.

Carlberg, R. G. & Sellwood, J. A., 1984. Astrophys. J., submitted.

Chandrasekhar, S., 1960. Principles of Stellar Dynamics, Dover, London.

Delhaye, J., 196S5. In Galactic Structure, p. 61, eds Blaauw, A. & Schmidt, M., Chicago University Press.

Erdelyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G., 1954. Tables of Integral Transforms, Vol. |,
McGraw-Hill, New York.

Fujimoto, M., 1980. Publs astr. Soc. Japan, 32, 89.

Goldstein, H., 1980. Classical Mechanics, chapter 10, Addison Wesley, London.

Hénon, M., 1958. Annls Astrophys., 21, 186.

Hénon, M., 1973. In Dynamical Structure and Evolution of Stellar Systems, p. 182, eds Martinet, L. &
Mayor, M., Geneva Observatory.

Icke, V., 1982. Astrophys. J., 254, 517.

Julian, W. H., 1967. Astrophys. J., 148, 175.

Julian, W. H. & Toomre, A, 1966. Astrophys. J., 146, 810.

Knapp, G. R., 1983. In Kinematics, Dynamics & Structure of the Milky Way, p. 233, ed. Shuter, W. L. H.,
Reidel, Dordrecht.

Lacey, C. G. & I"all, S. M., 1983. Mon. Not. R. astr. Soc., 204, 791.

Liszt, H. S. & Burton, W. B., 1981. Astrophys. J., 243, 778.

Liszt, H. S., Xiang, D. & Burton, W. B., 1981. Astrophys. J., 249, 532.

Lynden-Bell, D. & Kalnajs, A. J., 1972. Mon. Not. R. astr. Soc., 157, 1.

Oort, J. H., 1960. Bull. astr. Insts Neth., 15, 42.

Rubin, V. C., 1983. In Internal Kinematics & Dynamics of Galaxies, p. 3, ed. Athanassoula, E., Reidel,
Dordrecht.

Sanders, D. B., Scoville, N. Z. & Solomon, P. M., 1984. Astrophys. J., submitted.

Sanders, D. B. & Solomon, P. M., 1984. In The Milky Way Galaxy, ed. van Woerden, H., Reidel, Holland.

Sanders, D. B., Solomon, P. M. & Scoville, N. Z., 1984. Astrophys. J., 276, 182.

Solomon, P. M. & Sanders, D. B., 1980. In Giant Molecular Clouds in the Galaxy, p. 41, eds Solomon,
P. M. & Edmunds, M. G., Pergamon Press, Oxford.

Spitzer, L. & Schwarzschild, M., 1951. Astrophys. J., 114, 385.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1984MNRAS.208..687L

FT9BAVNRAS, Z08. “687L !

706 C. G. Lacey

Spitzer, L. & Schwarzschild, M., 1953. Astrophys. J., 118, 106.

van der Kruit, P. C. & Searle, L., 1981a. Astr. Astrophys., 95, 10S.

van der Kruit, P. C. & Searle, L., 1981b. Astr. Astrophys., 95, 116.

van der Kruit, P. C. & Searle, L., 1982. Astr. Astrophys., 110, 61.

Villumsen, J. V., 1983. Astrophys. J., 274, 632.

Wielen, R., 1974, Highlts Astr., 3, 395.

Wielen, R., 1977. Astr. Astrophys., 60, 263.

Woolley, R. & Candy, M. P., 1968a. Mon. Not. R. astr. Soc., 139, 231.

Woolley, R. & Candy, M. P., 1968b. Mon. Not. R. astr. Soc., 141, 277.

Woolley, R., Martin, W. L., Penston, M. J., Sinclair, J. E. & Aslan, S., 1977. Mon. Not. R. astr. Soc., 179,
81.

Appendix A: derivation of A(E,, E;, J)
The Jacobian factor A(E,, E,, J) is defined by the equation
A(E,, E,, J) dE, dE, dJ dx d¢ dy = d*xd3v, (A1)

where d3x d>v represents the phase-space volume expressed in terms of Cartesian coordinates
and velocities. For the case that the epicyclic oscillations are harmonic, as assumed in
Sections 3 and 4, 4 may be derived directly from (10) and (11). Here we present a more
general derivation, valid whenever the potential is axisymmetric and separable in R and z,
ie. ®(R, z) =P, (R) + ®,(2). Then the motion is triply periodic, and we can define actior
variables (Jg, J, J,) and angle variables (x, ¥, ¢) associated with the (R, 6, z) motions
respectively. (For the properties of action-angle variables, see, e.g. Goldstein 1980). For
the case that the R- and z-oscillations are harmonic, the definitions of x and ¢ made here
reduce to those of Section 3.1, while ¥' = ¢ + Qt, so that dy' = dy. Action-angle variables
are canonically conjugate, so that

d3xd3v=dJg dJ dJ, dx dy d¢. (A2

Further, our assumption of separability means that (14) is still valid, with E, = E,(Jg, J.
and E, = E,(J,), so that k =0E(Jg, J, J,)[0Jg = 0E,[0Jg and v=0E(Jg, J, J,)/0J,=
dE,[dJ,, where k and v are the angular frequencies of the (not necessarily harmonic) R- anc
z-oscillations. Thus (A2) becomes

d3xd3v=(1/kv) dE, dE, dJ dx d¢ dy, (A3
which, comparing with (A1), proves the result

A(E,, E,, J)=1/kv. (A4

Appendix B: calculation of population-averaged heating rates

We define
a(x) =sin® x + (1/8%) cos? ¥, (B1
b(x) =2 — (B sin® x + (1/6%) cos® X). (B2

We note that the integrals over E, and E, in (35) are Laplace transforms with transforn
variables 1/(E,) and (1 + g2 cos? ¢)/{E,) respectively. We make use of the result

f " ax f i dy exp [—(sx + ty)] x/(ax + by)*? = n'2[{a'/?s"/2 [(bs)* + (at)"*]?} (B3)
0 0
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derived with the help of formulae (4.2.20) and (4.12.10) of Erdelyi et al. (1954). Some
algebra gives

/2 /2
dENdr = (CHEN?)(2/m) f dx f de
0 0

[B—b)asing — (1 + 42 cos? $)''? ba''?]

, (B4)
a1 + % cos? $)2[(1 + g% cos® ¢)"2 a"2 + a sin ]
m2 m2
AE)/dt = (C/(Ee>l/2)(2/77)f d)(Jv do
0 0
[(1 + g* cos? )24V — 24 sin ¢] (B5)

X .
(1 +q2 C082 ¢)1/2 [(1 +q2 COS2 ¢))1/2 a1/2 + o sin ¢]2

The integrals over ¢ may be performed by making the substitution ¢ = sin o/
(1+¢? cos® $)"'? but the integrals over x must be performed numerically. The final answers
are equations (38) and (39). The functions K(a, B) and L(w, ) are defined to be

Kap)=cm [ " a3 — (bs + 3) tan"} o[ s(s + 1), (B6)
0
w2

L(a, §) = (2/m) f dx [=3 + (5 + 3) tan " V/5/51/(os), (B7)
0

s(x) = a(x)/o® — 1. (B8)

(Note that the factor

tan~'\/s/\/s = tanh "'/ = s\ — s

and so is real-valued for any real s).
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