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ABSTRACT

We consider the idea that galaxy halos are composed of massive black holes as a possible resolution of two
problems: the composition of dark halos, and the heating of stellar disks. We find that in order to account for
the amount of disk heating that is observed in our Galaxy and others for which good data exists, the black
holes must have masses My ~ 10° M. This heating mechanism makes predictions for the dependence of the
velocity dispersion on time, and for the shape of the velocity ellipsoid, that are in good agreement with obser-
vations. It also predicts that the stellar distribution function is approximately isothermal at low epicyclic ener-
gies, but with a power-law tail at high energies, N(E)dE oc E~%dE, that typically contains about 1% of the
stars. The latter provides a possible explanation for the high-velocity A stars found in the solar neighborhood.
This mechanism can also account approximately for the observed constancy of the scale height of the stellar
disks in spiral galaxies, though this does not result as naturally as the other properties. Among the predictions
made are that we expect a significant fraction of normal galaxies to have one or a pair of massive black holes
in their nuclei, and also that VLBI measurements will indicate that about 1% of sources are gravitationally
lensed at the several milliarcsecond level. We consider the constraints on this picture set by dynamical friction
causing black holes to spiral to the Galactic center, by the possible presence of dark matter in dwarf spher-
oidal galaxies, and by the accretion of interstellar gas by the black holes producing luminous objects in the
Galaxy. This last may pose a problem for the scenario.

Subject Headings: black holes — galaxies: internal motions — galaxies: structure — gravitation

I. INTRODUCTION

In this paper, we investigate the possibility of a radical resolution of two important problems in galactic structure and evolution:
the unknown composition of the dark halos around galaxies, and the uncertain mechanism for heating stellar disks in galaxies.
(1) There is now abundant evidence that most of the mass in spiral galaxies, and possibly in elliptical galaxies also, is in a very low
luminosity form, in dark halos that have a more extended distribution than most of the luminosity (Roberts 1975; Ostriker, Peebles,
and Yahil 1974; Faber and Gallagher 1979). The observed flatness of the rotation curves at large radii in spiral galaxies shows that
the density of these dark halos varies as py oc r~2 at large distances, and measurements of the flaring of the gas layers in these
systems show that the halos are fairly round (Gunn 1980; van der Kruit 1981). However, it is still not known what the dark halos are
made of, although the most straightforward possibilities have been ruled out by observations: the dark matter cannot consist of
nuclear-burning stars of any mass (Boughn, Saulson, and Seldner 1981; Gilmore and Hewett 1983) or of gas (Peebles 1980; Hegyi
and Olive 1983). Some other remaining possibilities are discussed by Hegyi (1984) and Primack and Blumenthal (1984). (2) The
observed relation between velocity dispersion and age for stars in the solar neighborhood shows that some mechanism increases the
velocity dispersions of stars in galactic disks after they are born (Wielen 1977). However, no mechanism has yet been shown able to
account for all of the observed features of the acceleration process: gravitational scattering of stars by massive gas clouds in the
galactic disk, as suggested by Spitzer and Schwarzschild (1951, 1953), may possibly be important for accelerating young stars but
appears unable to explain the velocity dispersions of old disk stars (Lacey 1984c), while acceleration of stars by transient spiral
density waves (Barbanis and Woltjer 1967; Carlberg and Sellwood 1985) has not been demonstrated to produce sufficient heating of
the disk in the vertical direction.

As a resolution of both of these problems, we consider the possibility that dark halos may be composed of massive black holes.
Then, assuming that the black holes are formed pregalactically, dark halos form by dissipationless collapse: if all parts of the
protogalaxy collapse simultaneously, violent relaxation leads to a density profile py oc r~3 (van Albada 1982; McGlynn 1984), while
if mass shells at larger radii collapse at successively later times, a flatter density profile results, with py oc =2 (Gunn 1977; Fillmore
and Goldreich 1984; Bertschinger 1985), which is in better agreement with the density profiles deduced from rotation curves.
Massive black holes will also tend to lose energy to the stars in two-body encounters because of the tendency to equipartition. If we
assume that all the heating of disk stars results from this effect, we can use it to determine the mass My of the holes. (The change in
the velocities of spheroid stars by this mechanism will be relatively much less important because of the larger initial velocity
dispersion in the latter case.) A rough derivation is as follows (a more detailed calculation is presented in § II): defining Vj, to be the

typical velocity of the black holes relative to the disk stars, we find for the change in the total velocity dispersion o of the disk stars
after a time At

8nG%py My In A At

A0 =~ {(AV)*DAt ~ 7 , (1
H

for ¢ < V (Chandrasekhar 1960), where In A is the Coulomb logarithm. Note that for a fixed mass density py in perturbers,
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determined from analysis of the rotation curve, the rate of energy change is proportional to My. For the solar neighborhood, we
take A(c?) ~ o, with 6 &~ 80 km s~ ! for the oldest disk stars, At ~ 10*° yr, py % 1072 Mg pc™>, Vi ~ 300 km s™*,and In A % 10,
and find My =~ 10° M. Bahcall, Hut and Tremaine (1985) have set a much smaller upper limit on the masses of the objects that
constitute the unseen material in the disk, but their limit does not apply to the dark matter in the halo. We note in advance that a
particular result of this type of heating is that while most of the stars will be given a roughly Maxwellian distribution of velocities,
there is also a power-law tail due to occasional close encounters with black holes. Of order 1% of stars in the disk would be in the
power-law tail if this theory is correct, and these would reach to large distances from the plane.

The plan of the remainder of the paper is as follows: In § II, we derive the evolution of the stellar velocity distribution at a
particular point in the disk in more detail, including the effects of the epicyclic motions of the stars and of close encounters between
stars and black holes. In § III, we compare the predictions of this mechanism with the observational constraints on disk heating. In
§ IV, we consider other tests of the idea that galactic halos consist of black holes with this mass. Section V presents our conclusions.
Preliminary versions of some of the results of this paper have been presented elsewhere (Lacey 1984a, b).

II. EVOLUTION OF THE VELOCITY DISTRIBUTION OF DISK STARS

In § IIa we calculate the time evolution of the three components of the velocity dispersion of disk stars due to scattering of the
stars by halo black holes. In § IIb we consider the shape of the distribution function in more detail, and in particular the high-energy
tail which results from close encounters between stars and black holes. Throughout, we assume that the mass of the black holes is
much greater than that of the stars, My > m,, and that the halo velocity dispersion is isotropic and much larger than that of the
stars, o > 0.

a) Evolution of the Components of the Stellar Velocity Dispersion

The method we use here is the same as that used by Lacey (1984c¢) in the analogous problem of disk heating by giant molecular
clouds: we calculate the evolution of the mean values of the epicyclic energies of the stars and then relate these to the components of
the velocity dispersion. First, some definitions: we define (u, v, w) to be the components of velocity of a star relative to the local
circular velocity V,(r):

u=sri, (22)
v=rb — V., (2b)
w=iz, (20

where (r, 0, z) are cylindrical polar coordinates. The background galactic gravitational field is assumed to be symmetric about r = 0
and z = 0. The orbits of most disk stars depart only slightly from circular orbits in the plane, and so, in the absence of perturbations,
they are described approximately by standard (harmonic) epicyclic theory (e.g., Chandrasekhar 1960): superposed on the circular
motion of the guiding center around the galaxy at frequency Q(r) = V.(r)/r is a harmonic oscillation in the plane at frequency
k(r) = 2Q(r)[1 + id In Q/d In r]/* and a harmonic oscillation perpendicular to the plane at frequency v(r). The corresponding
epicyclic energies, which are separately conserved in the absence of encounters, are

E, = 3u® + p*?), ©)
E, = {w? +v*2%), @

where
B =2Q/x . ®)

(See also equations [A1]-[ A4] of the Appendix.) The other constant of the unperturbed motion is the angular momentum J:
J=rV(r)+rv. (6)

We assume that the population of black holes in the halo, with local number density ny and local mean rotation velocity V, has
an isotropic Gaussian distribution of random velocities with one-dimensional dispersion o. Then, for My > m,, the moments of
the velocity change AV of a star due to encounters with the black holes, resolved parallel and perpendicular to the velocity of the
star relative to the halo population, V,,,, are, per unit time,

4nG*ny M4 In A

AV = — ) yG(y) , (7a)
(AV)> =0, (7b)
2 2
<(AV||)2>=4 2nG*ny My lnAG(y), (70)
H
2 2
qavyhy = DM 8 e, (7d)
H
(AVAV) =0 (70)
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(Chandrasekhar 1960), where we have defined

Y= V;'el/\/5 0y » (8)

and
G(y) = [erf (y) — y erf’ (9)1/2y°, (%a)
H(y) = [(2y* — 1) erf (y) + y erf’ (»)1/2y°, (9b)

where erf (y) is the error function
2 b
erf (y)) =—= | exp (—y*)dy.
Jndo

[Note that the functions G(y) and H(y) defined here differ from those defined by Chandrasekhar.] The Coulomb logarithm has the
value

In A~ In (I, (V2 + 30%)/GM,) , (10

where the maximum impact parameter [, ~ r. In equations (7a)+(7¢) we have neglected “nondominant” terms, which are
O(1/In A) relative to the leading terms. This is a reasonable approximation, since In A & 10 for cases of interest. To the same order
of approximation, all the higher moments of AV vanish. We return later to the effects of these nondominant terms on the velocity
distribution.

In terms of the components of the epicyclic velocity, the velocity of the star relative to the black hole population is

Via = [0+ (V, = V), W] . (11)
Resolving the moments in equations (7a)7e) parallel to the (4, v, w) axes, and assuming u, v, w < gy, we find

Auy = 0, (12a)

Aoy & AV, (12b)

(Aw) = 0, (12¢)

(Au)*y = 3(AV)>, (12d)

Ay = LAV, (12¢)

(Aw?> = K(AV)*o (126)

where the error made is O(u/oy), and all other moments vanish in the same approximation. The subscript zero means that an
expression is to be evaluated at u = v = w = 0, i.e,, for V,,; = (V. — V) = V,. Thus, to this order of approximation, the moments of
(Au, Av, Aw) are independent of the epicyclic motion of the star.

From equations (12a)~(12f) we derive the mean rates of change of E, and E, averaged around an epicyclic orbit, as described in the
Appendix:

CAE.),, = 3(AV)? )0 + 1B7AV))0 (13)
<AEz>av X %<(AVJ.)2>O ’ (14)

where the fractional error is now only O(u?/a%) because of the orbit-averaging. We assume that the evolution due to encounters
occurs on a time scale long compared to the orbital time scale, so that the stellar distribution function is in a quasi-steady state, with
the phase-space density f depending on position and velocity only through the constants of the unperturbed motion (Jeans’
theorem), i.e., f = f(E,, E,, J, t). We define (E,) and <E,) to be the mean values of the epicyclic energies, averaged over all stars at
fixed J. Then, since (AE,>,, and (AE,),, are approximately independent of E, and E,, we find, combining equations (7), (13), and
(14),

d{E>

dt z <AE2>BV
27G*pyMy In A
z 2 oH : [28%G(yo) + H(yo)] = D, , (15)
H
d{E,)
dt ~ <AE2>av
27G*pyMy In A
2ECoaMuIn A (16)
Oy
where
Yo = VO/\/EGH =V, — VH)/\/EUH , a7
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and py = nyMy. In the approximation that radial gradients in the stellar distribution function can be neglected, the components of
velocity dispersion, averaged over all stars at fixed r, are related to the mean epicyclic energies by

i =< — w)*> =<E), (18)
o5 =<K = <)*> =<EH/B?, (19)
on =W — <w))*> =(E.), (20)

which follows from equations (A1)(A4) and the assumption of a quasi-steady state. Radial gradients introduce correction terms of
0(c?/V}), when (E,» and {E,) are treated as functions of r through the zero-order relation J = r¥,(r). Combining equations
(18)+20) and (15)(16), we find that the components of the velocity dispersion evolve as

a(t) = (63 + D)/, 21
o (t) = o.(t)/B (22)
ou(t) = (000 + D, 1'% . (23)
Thus the ratio of the tangential to radial velocity dispersions is constant in time
o,/0,= 1/, 29

which simply results from epicyclic theory, while the ratio of vertical to radial velocity dispersions tends to a constant value for
2 2
o° > 0p:

0/0,— (D./Do)'? = [1 + 2B2G(yo)/H(yo)] ™' . (25)

This ratio thus depends on the shape of the rotation curve through f, and on the dimensionless rotation velocity of the halo through
yo- The total velocity dispersion ¢ = (62 + 62 + ¢2)'/? increases with time as

o(t) = (62 + Dt)'’? | (26)

where

2 /
p - y2nCpu My In A [26° + 0600 + (24 5o | @
H

Note that the form derived for a(t), which is our main result, is intuitively obvious, because the stars receive equal but randomly
directed increments in velocity in equal time intervals, leading to a random walk in velocity space, for which o oc t'/2. This is quite
different from the dependence o oc t'/# associated with scattering by giant molecular clouds in the disk (Lacey 1984c). Our result that
the heating in the vertical direction is comparable to that in the horizontal direction also contrasts with the results for disk heating
by transient spiral density waves, for which the vertical heating appears to be much less than the horizontal heating (Carlberg 1984).
Results similar to equations (26) and (27) for the evolution of the total velocity dispersion, but not allowing for the epicyclic motions
of the stars, have also been derived by Ipser and Semenzato (1983), in a preprint that we received while we were writing this paper.
Our results are also related to those of Wielen (1977), who assumes, without deriving this from any specific physical mechanism, that
the diffusion coefficients in velocity space are isotropic and independent of epicyclic velocity and derives an equation of the form
(26). In our case, the diffusion coefficients are velocity-independent, but are not isotropic, except in the special case that the halo
population is nonrotating relative to the disk population (i.e., y, = 0), for which our results (24) and (25) for the shape of the velocity
ellipsoid reduce to those of Wielen.

Modification of Results for Self-Gravitating Disk—The previous analysis was for the case that the stellar population moves in a
static background potential that is harmonic in z, and it must be modified if the population is self-gravitating in the vertical
direction, since disk heating then makes the potential time-dependent. In § IIb we show that the stellar distribution function is
approximately isothermal in z, so that in a self-gravitating disk, most of the stars move for most of their orbits in a potential which is
approximately harmonic in z, with frequency w(t) oc up/<E,»'/?, where py, is the surface density of the disk and (E,> is now an
average over all the stars in the disk at that radius (see eqs. [48]-[49] and the discussion following them). The frequency v is a slowly
varying function of time through the time dependence of (E.) and possibly of up,. For slow changes in the potential, E,/x and E,/v
are adiabatically invariant. The evolution of the epicyclic energy in the plane (E,) is therefore approximately unchanged, but the
time dependence of v leads to an extra contribution to d{E_)/dt,(d<{E,)/dt),q = (v/v){E,>, which must be added to that of equation
(16). Therefore equation (16) is replaced by

KEY 2 2t
dt ~ 3 <AEz>av + 3<”D><Ez> ’ (28)

where the second term allows crudely for the effects of any change in the mass of the disk due to inflow or outflow of matter. If the

latter term can be neglected, the ratio of vertical to radial velocity dispersions in the self-gravitating case tends to the value, for
2 2

o° > 005

aw/o-u_) (2D2/3D2)”2 = (%)1/2[1 + 2ﬁ26(v0)/H(y0)J w1z > (29)

which is smaller by a factor (2/3)!/? than in the non-self-gravitating case. This result applies to the dominant part of the mass
distribution in the disk, while equation (25) applies to a group of test particles with lower velocity dispersion.
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b) Shape of the Stellar Distribution Function

Having derived the time-evolution of the components of the stellar velocity dispersion in the previous section, we now consider
the shape of the distribution function in mere detail. It is convenient to work in terms of the function N(E,, E_, J, t), defined such that
N(E,,E,,J,t)dE,dE,dJ is the total number of stars in the range dE,dE_.dJ. N(E,, E_, J, t) is related to the phase-space density

s f(E, E,, J,t)by

N(E,, E., J, t) = [@n)*/xv] f(E, E., J, 1) (30)
(e.g., Lacey 1984c). Henceforth, the J-dependence will be suppressed. We also define
N/(E,,1) = j N(E,, E., dE_ , 31
0
NJ(E, 1) = J N(E,, E., 1)dE, . (32)
0

We also generalize our definition of E, to allow for a potential in z, ®(z), which is not harmonic:
E, =4w- + (), (33)

(cf. eq. [4]). This modification can be important for stars with large z-energies. Equation (30) relating N and f remains valid in this

case, but with v = v(E,). We again assume that the distribution of random velocities of the black holes is isotropic, but in this section

we relax the requirement that it be Gaussian. (For an istropic non-Gaussian velocity distribution, the analysis of § Ila would

proceed in the same way, but with more general expressions [e.g., Henon 1973] replacing eqs. [7a], [7c] and [7d] for (AV,>,
{(AV})*> and {(AV,)*) respectively.)

The evolution of the distribution function may be analyzed simply in two limits: For low values of the epicyclic energies, the form
of the distribution function results from the cumulative effect on the stars of many distant, weak encounters with black holes, which
cause a diffusion in energy space. At high energies, the form of the distribution function results from single close encounters between
stars and black holes, which have low probability but cause large changes in the energy of a star. The relative importance of distant
and close encounters is determined by the value of In A (e.g., Henon 1973). We will assume that In A > 1, meaning that the distant
encounters dominate the energy input into the stars. We now consider the two limits in turn.

i) Low Energies
The evolution in the low-energy, diffusion regime is described approximately by the orbit-averaged Fokker-Planck equation:

ON 1 Pp | o
R aE av 3 6E2 DDu N1+ 35 o5, ((AEAE. e

(e.g., Henon 1973), where we have neglected the J-dependence. We assume that for low epicyclic energies, the harmonic approx-
imation is valid for both vertical and horizontal epicyclic oscillations, and that the velocity-space diffusion coefficients are approx-
imately independent of the epicyclic velocity (cf. § IIa), so that the energy-space diffusion coefficients obey the relations derived in
the Appendix. Then the Fokker-Planck equation separates: there are solutions of the form N(E,, E,, t) = N, (E,, t)N, (E,, t), where

[K(AE.)*>. N1 (34)

av av

6 ON, 0*N,
— =X E>av<aE EZE> (35)
and similarly for N,. This has as a solution the isothermal distribution
1 E
NzEz>t)= X <_ z>, 36
Ee =255\ " & e

with <E,> = <AE,>,,t + <E_.)>,. We have arbitrarily normalized the integral of N over E, to unity, since equation (35) is linear in
N,. There is an exactly similar solution for N, (E,, t).

ii) High Energies

The form of the distribution function for large epicyclic energies directly reflects the probability distribution for the energy
changes in a single close encounter, since the probability of a star undergoing two such close encounters is very small. Therefore, we
start from the expression for the probability per unit time that a star moving at velocity ¥, relative to a population of black holes
with isotropic distribution function f5(Vy) has its velocity changed in an encounter by AV:

4nG*ME [ 5 3 5
R(Vea, AV) = =3t | AV VR + ) (37)
(0]
(Goodman 1983; Ipser and Semenzato 1983), where, for My > m,,

2=[ rel AV+%(AV)2]2
o= A . (38)
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Here, V,

r

o = (u, v + V,, w). Assuming u, v, w, Au, Av, Aw < oy, V, ~ oy, we expand equation (38),
(Av)*V2 v, Av
2 = 0 . 3
C =t + o+ awd T AT, (39)

We also define the dimensionless halo distribution function gg(x) by fy (Vi) = (ng /o3)9u(V i/ ). (A Gaussian distribution function,
as assumed in § IIa, corresponds to gg(x) = 1/(2r)*'? exp ( — x/2).) Substituting into equation (37), we obtain

B 4nG*ny M% © (Av)*Vi/o} ] (v, Av)
RAV) = L 2?00 + (aw)?] o L dx gu [x tar st TN\, ) (40)

where we have suppressed the dependence of R on V.

We now define the auxiliary variables A¢ = {[(Au)? + B*(Av)?], An = 3(Aw)>. These have the property that for large energy
changes, with AE, > E,, AE, > E,, AE, ~ A{, AE, ~ An (see egs. [A5] and [A6]). Also, integrating over the effects of all encounters,
we have (AE,>,, = {A&),., KAE,>,, = {An),,, for u, v, w < oy (eqs. [A8] and [A9]. Integrating over all values of Au, Av that lead
to the same value of A&, we find that the probability per unit time for an encounter with A, An is

G*ny M% <An>
K(AE An) ~—F—— F| — |, E., E,, A¢, Ay) < 0%, 41
(A A~ B B () M <} (41)
where the error is now only O{[(A¢)?, v*]/c%} after averaging over epicyclic phase, and where the dimensionless function F(y) is
defined to be

e | ® (233/6%) cos® &
Vs L 1 Gin® ¢ + (/P oo 6 + )" L o ”[x T lsin? § + (1/F) cos® 6 + y)] ' )

Stars in the high-energy tail of the distribution function, with E, > (E,), E, > (E,), have gained essentially all their energy in a
single encounter. Therefore, the form of the distribution function at high energies after a time ¢ is, assuming the normalization
,” dEe dEz N(Eea Eza t) = 1’

N(E,, E., t) ~ K(E,, E)t

_GnyMjt (E,
(Ee)saH F<E ) ’ (<Ee>’ <Ez>) < (Ee, Ez) < 0'%{ . (43)

e,

Thus, the high-energy tail of the distribution function has a power-law form, with the horizontal and vertical epicyclic energies E,
and E, being correlated. In general, it is not possible to perform both integrals in equation (42) for F(y) analytically. Therefore it is
more illuminating to consider the projections N, or N, of the distribution function obtained by integrating N(E,, E,, t) over E, or
E, (egs. [31] and [32]). We derive

2 2 0
NJE, i) = S ruMut (J F(y)dy>, (E,y <E,<d}, “44)
(E)*oy o
G*ny M3t [ [®
NAE,, 1) = it (f yF(y)dy) . (E)<E.,<d}. 43)
(E)*oy o

[N.B.N(E,, E,, t) # NE,, t)N,(E,, t) in this case.] We can relate the amplitudes of the power-law tails on N (E,, t) and N (E,, t) to
the mean energies: from equation (41) we find

(Any = j ) L " AnK(AZ, AndAgdAn

G*ny M}, Aax\ [
v —In ( A > j yF()dy (46)
(]

OH min

where we have introduced upper and lower cutoffs Ay,,,,, and An,;, on the integration over Ay because equation (41) for K(A¢, An) is
valid only over a certain range. The maximum possible velocity change in an encounter with a typical black hole is ~ oy, thus
An,... ~ 0%. The minimum possible velocity change in an encounter is ~GMy/l.,. 6y; thus An... ~ (GMy/l,.... on)?. Therefore
In (A ax/Almin) = 2 In A (see eq. [10]). Now <AE,>,, = {An), and <E,> = {AE,>,,t + {E,)o, so combining these results with
equations (45) and (46) and assuming that <E,) > {E_),, we find

1 <E)

NZ(EZ’ t) z 2 In A Ez b

(E><E,<oj. (47)

An exactly similar result holds for N(E,, t). Comparing with equation (36), we find the interesting result that the time evolution of
NE,, t) and N (E,, 1) is self-similar (at least in the low-energy and high-energy limits) and is independent of the form of the halo
velocity distribution function (if it is isotropic). The fraction of stars in the high-energy tail, when defined in a dimensionless way,
depends only on the value of In A.
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iii) Phase-Space Density
To convert from N(E,, E_, t) to the phase-space density f(E,, E,, t) we need to know the vertical oscilliation frequency v(E,),
which is constant for z-amplitudes smaller than the scale height of the disk but varies with energy for larger amplitudes. As a useful
model, we assume that the background density p,, (z) producing the potential @(z) is that of a self-gravitating isothermal disk, with
pp(2) = po sech? (z/hy), where the effective half-thickness is hy, = 03/nGup, up being the surface density and o, the vertical velocity
dispersion (see § I11d). This density distribution produces a potential

D(z) ~ Bv3 2%, z<hy,
~./20pvoz—2In20}, zz hy, (48)
for which the vertical frequency is
V(Ez) XV, Ez s Ulz) s
T op
%Vozﬁ, EZZO'IZ), (49)

where v, = (4nGp,)!/2. We consider only the distribution function for vertical motions here: defining f,(E,, t) analogously to
N,(E,, t), we have, by equation (30),

WE)
2n

JAE;, 1) = N.(E., 1) . (50)

For the case that (E,> < o2 but that the power-law tail begins at some energy E,. > 3, the phase-space density is approximately
(combining eqgs. [36], [47], [49], and [50])

vO Ez
E. t)~ — R . e s
JAE., 1) SCED exp( <E2> E.<E

~ vo op<E,)
8InA EN?* °

E, <E,Sd%. (51)

The above expression is exact in the low- and high-energy limits but is simply an interpolation in the intermediate range. The
quantity E__ is defined in such a way that the approximate expression for f,(E,) is continuous:

E, \*? E n op
zc _ zC = . 52
<<E,>> exp( <E,>) 4n A BT 2
If the stellar population of interest is self-gravitating in the vertical direction, then 63 &~ (E,> in the above expressions. The

derivation of N(E,, E,, t) should then be modified to take account of adiabatic invariance (cf. § IIa), but we ignore this complication
here, since it does not change the essential features of the results.

III. OBSERVATIONAL TESTS OF DISK HEATING

We censider four distinct observational tests of the idea that halo black holes account for essentially all the heating of stellar disks
in galaxies: (a) the age dependence of the stellar velocity dispersion; (b) the shape of the velocity ellipsoid; (c) constraints on high
velocity/large scale height components in disks; (d) the variation of the disk velocity dispersion/scale height with radius. For some of
these tests, the best constraints come from detailed data on the solar neighborhood; for others, from observations of the large-scale
structure of other galaxies.

a) Age Dependence of the Velocity Dispersion

The total velocity dispersion ¢ of a population of stars is predicted to vary with its age t according to equation (26) (neglecting the
effects of self-gravity, which in this case are small), i.e., ¢ oc t'/? for 6 > 2. The relation between velocity dispersion and age in the
solar neighborhood has been estimated observationally by Wielen (1977), who derives space velocities from radial velocities, proper
motions, and trigonometric parallaxes and assigns mean ages to groups of stars on the basis either of their position on the main
sequence or of the statistics of calcium emission line strength, assuming that the star formation rate has been constant over the life of
the disk. Wielen’s data, which cover the range t ~ 108-10° yr, are in excellent agreement with the theoretical prediction. The
velocity dispersion—age relation has also been investigated observationally by Carlberg et al. (1985), using an independent method
which involves calculating ages for individual F stars from Stromgren-band photometry and theoretical isochrones. Their results,
however, are in disagreement with Wielen’s data and with our prediction.

The magnitude of the stellar heating depends on the mass My of the black holes, and so cannot be predicted, since My, is
unknown. Instead, we derive a value of M on the assumption that this mechanism accounts for all the observed disk heating. The
oldest age-group listed by Wielen (1977) has ¢ ~ 80 km s~ !, while the youngest has 6, ~ 10 km s~ !; therefore, assuming that the
age of the disk is t; = 15 Gyr, we find from equation (26) that D ~ 400 km? s 2 Gyr~'. We combine this with equation (27) to
estimate My. We take 2'/264 ~ V. ~ 220 km s~ !, and in calculating In A we take I,,,, ~ r = 8 kpc. The value of In A also depends
weakly on My; it will turn out (see eq. [54]) that In A =~ 12 is appropriate. We also take = (2)!/? (corresponding to a flat rotation
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curve) and y, = 1. (More details of the estimation of 8 and y, are given in § IIIb, but the result for D is not very sensitive to their
values.) We derive

puMy ~2 x 10* M% pc™2 . (53)

For a singular isothermal sphere, we would have py = V2/4nGr? ~ 1.4 x 1072 M pc~ 3, for the parameters quoted above. More
detailed estimates of py can be made from Galactic mass models: the various models of Caldwell and Ostriker (1981); Ostriker and
Caldwell (1983); and Bahcall, Schmidt, and Soneira (1983) all give values of py in the solar neighborhood within a factor of 2 of
pu = 1072 M pc 3. Adopting the latter value, we find

My ~2 % 10° M, . (54)

If other mechanisms contribute toward heating the disk, then this is actually an upper limit.

b) Shape of the Veiocity Ellipsoid

The ratio of velocity dispersions in the plane, g,/g,, is given by equation (24). It depends only on the assumption of dynamical
equilibrium and therefore does not test the heating theory. The ratio of vertical to radial velocity dispersions, 6,,/,, for 6% > 63, is
given by equation (25) for a non—self-gravitating population that moves in a time-independent potential, and by equation (29) for a
population which is self-gravitating in the vertical direction and has constant surface density. The velocity dispersion ratio in the
latter case (denoted SG) is smaller by a factor (£)'/? than in the former (denoted NSG) because of the effect of adiabatic cooling of the
vertical motions. However, these results are modified if the disk mass is changed by inflow or outflow of gas. Late infall of matter
into the disk, as is invoked in some models of chemical evolution (e.g., Twarog 1980; Lacey and Fall 1985), tends to offset the
adiabatic cooling (cf. eq.[28]). For instance, for a constant infall rate and a balancing constant star formation rate, the effects of
adiabatic cooling and adiabatic heating on the mean vertical velocity dispersion (averaged over stars of all ages) roughly cancel, so
that ¢,/0, is approximately the same as in the NSG case. For infall and star formation rates which decay with time, which is
probably more realistic, o,,/0, is intermediate between the SG and the NSG cases. Conversely, if there is mass loss from the disk in
the form of a galactic wind (e.g., McKee and Ostriker 1977; Wheeler and Ostriker 1985), the adiabatic cooling will be increased,
reducing o,,/c, further.

The ratio o,/0, as given by equation (25) or (29) depends on the parameters f = 2Q/k and y, = (V, — Vy)/2"/* 6. The quantity
B may be estimated either from measurements of the Galactic rotation curve or from the observed value of the ratio o,/0, (using eq.
[24]). 7, obviously cannot be determined directly, since the halo objects are unobserved. If the halo were a self-gravitating,
nonrotating, singular isothermal sphere, we would have Vy = 0, ¥, = 2'/2gy, and thus y, = 1. If the halo rotates, y, is reduced,
though the fractional correction V,/V, is probably small. The value of y, will also be modified due to the gravity of the luminous
matter in the Galaxy, etc., which changes V. and 6. The sensitivity of the results to y, is not large, so we assume y, = 1 in what
follows. Figure 1 shows ¢,/0, and 6,,/6, plotted against f for y, = 1.

Observations of the Galactic rotation curve (reviewed by Knapp 1983) imply that locally V,(r) is flat or slowly rising, with
d1n V,/d In r ~ 0.1 £ 0.1, which implies 8 &~ 1.35 + 0.05. For this value of f§, we predict ,:0, = 1:0.74 £ 0.03, and 6,:5,, = 1:0.67
+ 0.01 (NSG) or 1:0.55 4+ 0.01 (SG). The various observational determinations of the shape of the velocity ellipsoid in the solar
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F16. 1.—Dependence of velocity dispersion ratios on rotation curve shape. Plotted as functions of f = 2Q/x are ¢,/0,, (eq. [24]) and ¢,,/7,, for 62 > 63 and y, = 1,
in the self-gravitating (SG, eq. [29]) and non-self-gravitating (NSG, eq. [25]) cases.
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neighborhood show significant discrepancies both with each other and with the value of § determined from the rotation curve,
which makes a clean comparison with the theory difficult. We choose to compare our predictions with two recent observational
determinations: Woolley et al. (1977) measured the components of the velocity dispersion from radial velocities for a sample of
roughly 900 G and K stars (mainly giants) out to about 500 pc from the Sun. They find 6,:0,:0,, = 1:0.74 + 0.04:0.71 + 0.06.
Wielen (1974), using space velocities for a sample of roughly 300 McCormick K and M dwarfs within 20 pc of the Sun, finds
6,:6,:0, = 1:0.59 + 0.05:0.51 + 0.04. These two sets of observational ratios disagree with each other at roughly the 2 o level for
the quoted uncertainties. The Woolley et al. value of ¢,/0, agrees with the estimate based on the rotation curve value of f; the
Wielen value of 6,/a, is discrepant, again at the 2 ¢ level, and corresponds instead to § = 1.70 £ 0.15. For the latter value of 8, we
would predict ¢,:0,, = 1:0.58 + 0.03 (NSG) or 1:0.47 £ 0.03 (SG). These inconsistencies may be caused by observational error or
by departures from axisymmetry in the Galaxy, for instance due to a spiral density wave. Both samples of stars have values of the
velocity dispersion similar to that of the old disk as a whole; therefore comparison with the prediction for the SG case is probably
the more appropriate. (To illustrate the effects of varying y,, if we had taken y, = % instead of y, = 1, we would have predicted
values of /0, smaller by (.04 (NSG) or 0.03 (SG) for the values of j discussed above.) Considering all the uncertainties, the
agreement between prediction and observation for the value of ¢,/0, is satisfactory, when compared to the predictions of other
mechanisms. For disk heating by molecular clouds, a simplified analytical calculation predicts values of o,/0, that are somewhat
too high (Lacey 1984c), although a numerical simulation gives better agreement with the observed ratio (Villumsen 1985). Heating
by transient spiral density waves predicts ¢,,/0,, < 1 (Carlberg 1984).

c) Constraints on High Velocity/Large Scale Height Components in Galactic Disks

The high-energy tail on the stellar distribution function that results from disk heating by halo black holes might be detected either
as a high-velocity component or as a large scale height component in disks. For In A = 12, as derived in the previous section, we
find from equations (36) and (47) that the distribution function N(E) changes from exponential to power-law form at E/{E) ~ 7 and
that the fraction of stars in the power-law tail is about 10~ 2, This fraction is independent of any of the other properties of the disk or
halo. There are two observational phenomena with which one might try to identify such a high-energy tail: thick disks, and the
high-velocity A stars.

A “thick-disk ” is defined to be a stellar component with scale height and flattening intermediate between the ordinary thin disk
and the spheroid. Thick disks were first found in SO galaxies by Burstein (1979), but there has been some controversy regarding
their interpretation as a distinct component and their existence in spiral galaxies. Van der Kruit and Searle (19814, b) find no thick
disks in spiral galaxies without bulges but do find analogues of Burstein’s thick disks in spiral galaxies with significant bulges.
However, their interpretation of the “thick disk ” in these cases is that it represents the flattening of the outer parts of the bulge by
the gravity of the disk, rather than being a distinct component. There is also some evidence for a thick disk in our own Galaxy, from
star counts (Gilmore and Reid 1983; Gilmore 1984) and from the properties of halo giant stars (Ratnatunga 1985). Gilmore claims
that this thick disk locally has about 10% of the surface density of the thin disk.

The small fraction of stars predicted to be in a “thick disk ” for heating of the disk by halo black holes, about 1%, is consistent
with the fact that no thick disks have been detected in bulge-free spiral galaxies, but correspondingly this mechanism cannot explain
the thick disks which are claimed to exist in some other spiral galaxies and to contain ~ 10% of the surface density of the thin disk,
because the thick disk fraction depends only on the value of In A, which will be practically the same for all disk galaxies. The
predicted thick disk has density varying with z approximately as n(z) oc z~ 2 for large z (from eqs. [48] and [51]).

The high-velocity A stars are a high-velocity stellar population in the solar neighborhood. Rodgers (1971) found that there is a
population of main-sequence A stars with normal disk metallicities that extends out to several kiloparsecs from the plane. These
stars have ages ~10° yr, and so cannot be a relic from the formation of the Galaxy, unlike thick disks, which might be explained in
this way. Stetson (1981a, b) identified the corresponding high-velocity population at z ~ 0 and found that they constitute ~ 103 of
the A dwarfs in the solar neighborhood, consistent with the estimate made by Rodgers, Harding, and Sadler (1981) by extrapolating
the density at several kiloparsecs back down to the plane. Stetson also found a similar fraction of high-velocity F dwarfs, with
metallicities covering the range found in the disk. This suggests that whatever process produces these high-velocity disk stars has
been operating over the life of the disk, though not necessarily continuously, rather than being a single event.

From equation (51), we predict for the distribution f,,(w) of vertical velocities at z = 0, normalized so that | f,(w)dw = 1,

1 w?
fw(w)z\/z_nawexp<—27‘%>, w<w,,
N J7 6pal (55)

- w,.<wzso
InA w ¢ ">

where w. = (2E,.)"? and E,, is given by equation (52). Taking ¢, ~ 10 km s™* for the A stars and o, =~ 25 km s™! for the
background disk (Mihalas and Binney 1981), we find w /6, & 3.6 for In A = 12. Stetson defines high-velocity A stars to be those
with transverse velocities greater than 80 km s~ !, which corresponds roughly to V/o > 5, since the total velocity dispersion of A
dwarfs is ¢ ~ 20 km s~ 1. A proper estimate of the fraction of high-velocity stars according to Stetson’s selection criterion should use
the three-dimensional velocity distribution, but we can make a rough estimate by using the one-dimensional distribution (55) to
calculate the fraction of stars at z = 0 with w/a,, > 5. We find a fraction ~3 x 10~ %, similar to the observed fraction ~ 107 3. Thus,
disk heating by halo black holes may be able to explain the high-velocity A stars. An analysis similar to the above was performed by
Ipser and Semenzato (1985). They estimated a larger fraction of high-velocity stars in the solar neighborhood for My =~ 1 x 10°
M g, but their calculation neglects the difference in scale heights of the low- and high-velocity populations.
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d) Variation of Disk Scale Height with Radius

The velocity dispersion of the disk is predicted to vary with radius according to equations (26) and (27), where most of the radial
dependence is likely to arise from that of the halo density py. Ideally, one would measure the variation of velocity dispersion with
radius in a disk and compare it with what is predicted for halo density models derived from fits to rotation curves. The measurement
of o(r) has only been attempted for one spiral galaxy so far (van der Kruit and Freeman 1985), and the results are rather uncertain.
The best constraints at present on the radial variation of the velocity dispersion are somewhat less direct, and come from
determinations of the radial variation of the disk scale height. Van der Kruit and Searle (19814, b, 1982) in a series of papers present
surface photometry of edge-on spiral galaxies. They find that the surface brightness distributions of these galaxies can be fitted by
models in which the volume luminosity density of the old stellar disk varies as j(r, z) oc exp ( — ar) sech? (z/hp), with the disk scale
height hj, constant with radius. If the disk has constant mass-to-light ratio and is self-gravitating, then a constant scale height
implies o oc pp, o exp (—or) (see eqs. [59] and [60]), where o, is the vertical velocity dispersion of the disk and pj, is its surface
density. Rather than compare the predicted velocity dispersion for disk heating by black holes with the radial dependence derived in
van der Kruit and Searle’s model, we prefer to predict the vertical structure and project it to compare directly with the original
surface brightness data. We take this approach for two reasons. The first is that the line-of-sight integration through a galaxy will
tend to smooth over variations in the scale height and thus make the scale height of the projected disk appear more constant than it
really is; it is difficult to assign meaningful error bars to a deprojection to take account of this effect. The second reason is that the
vertical gravity of the halo may be important in some parts of the disk, causing the vertical structure to depart from the sech? law.

We make the approximation that the z-motions of stars are decoupled from their motions in the plane, and that the old disk
population, which dominates the mass in the disk and dominates the light from the disk at large z, is exactly isothermal in the
z-direction at each radius, with velocity dispersion o(r). Then the z-dependence of the density p, of the old disk is found at each
radius by solving the coupled stellar hydrodynamic and Poisson equations (e.g., Bahcall 1984):

2
o5 0pp _ _ 3

and

0’

3_2— = 4nG(pD + PH eff) s (57)

z
where
1 a4 ,
PH off = PH(") - EG_" 5 Vc(r) s (58)

In equation (58), we have neglected the z-dependence of py ¢ and assumed that the gravity due to the bulge is negligible. The second
term on the right-hand side of that equation represents the contribution of distant matter to the vertical gravity and vanishes for a
flat rotation curve. The assumption of the decoupling of the vertical and horizontal motions in equation (56) and the neglect of the
z-dependence in equation (58) break down for z X r. The assumption of strict isothermality is also only an approximation, for two
reasons: (1) The distribution function has a high-energy tail, as discussed in § IIb and IIIc. However, this should not have a large
effect for the values of z at which we compare with observations. (2) There is a range of ages in the old disk population, so that the
distribution function should more properly be treated as a sum of Gaussians with different dispersions. However, the range of
dispersions in the old disk should not be large, so we neglect this effect.

Equations (56) and (57) have simple analytic solutions for the extreme cases that either the disk self-gravity or the halo gravity
dominate locally.

i) Self-gravitating:
u z
ppz) = i sech? (};) , (59)
where
2
Op
h =
= (60)
ii) Non-self-gravitating:
2
—Fp _r
mw%m<%> (6
where
o
hp = ——2—— . 62
° (8Gpy err)'? €2

In the above, hy is the effective half-thickness, hj, = up/2pp(0). For any non-zero py ., the effective halo gravity will dominate that
of the disk at large enough z. .
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We must now choose models for the mass distribution in the disk and dark halo. We assume that the surface density of the disk is
a truncated exponential in radius, which follows from the observed surface brightness profiles and the assumption of constant
mass-to-light ratio (Freeman 1970; van der Kruit and Searle 1981a):

#D(r) = Upo CXp ( - O(r) > T < Tyax »
=0, P> Foax - (63)

We assume that the dark halo is spherical, with volume density having the pseudo-isothermal form

PHo
= 64
pH(r) (1 + rz/rf) ( )
(e.g., Caldwell and Ostriker 1981). This has py oc r~2 for r > r,, which is the form indicated by the flatness of galaxy rotation curves
at large distances.
These mass distributions produce a circular velocity in the plane V,(r) = [V2)(r) + V24(r)]*/?, with

- (o uf3)elz) 23]

where I, I,, Ky, and K, are modified Bessel functions (Freeman 1970), and

. _tan”?! (/r)
VcH(r)—Vi[l o) ]

where V2 = 4nGpy,rZ. The contribution of the disk to the rotation curve has been evaluated in the infinite thin disk approx-
imation. The non-zero disk thickness and finite truncation radius introduce small corrections to equation (65) (e.g., van der Kruit
+ and Searle 1982). These are not important for our calculation, except near the center, where (1/4nGr)(0V %,/dr) diverges logarithmi-
cally as r— 0 when evaluated using equation (65). We cut this divergence off at its value at r = hy(r = 0). Our results for the disk
scale height are not sensitive to our approximate treatment of this term because, in practice, where the disk gravity is important, the
local contribution dominates.

The vertical velocity dispersion of the disk evolves in time as do3/dt = 2D, when the disk is self-gravitating (ignoring infall), and as
dop/dt = D, when the halo gravity dominates (egs. [16] and [28]). We define the critical velocity dispersion o,, at which the disk
makes the transition from being self-gravitating to being non-self-gravitating, as that for which expressions (60) and (62) for hy, are
equal; thus 6, = (1>G/8py )"/’ pup. Treating the disk as a single-age population with effective age 7, we then have approximately

(66)

2 2 2 2
op=0po+ D,7, o;. < 0po »
_ 32 1.2 2 2 2 2
=3%0po — 306, + D7, 6po < 0, <0po +3D,7,
2 2 2 2 2
=JDO+§DZT7 GDO+3DZT§-Ucr' (67)

The quantity D, is given by equation (16), in which My, and In A are taken to be constant with radius. We assume that ¥, = 0, so
that V, = V,(r), and oy(r) is found by integrating the equation of stellar hydrodynamics for spherical symmetry (e.g., Binney 1982, eq.
[18]), for the given halo density profile, where we calculate the disk gravity from M p(r), the disk mass within a sphere of radius r. The
results are not sensitive to the latter approximation.

We can determine the qualitative behavior of the disk scale height as follows: The velocity dispersion depends on radius mainly
through the halo density py (see eq. [16]), thus 6} oc py if 63 > 03, If the disk is locally self-gravitating, which is likely to be a good
approximation over much of the disk, then hj, oc 63/up, and we find

€Xp (ar
Pu Zp(z)'
pp  (r* +717)

hp o (68)
We see from this that the disk scale height will increase at large radii, where the disk surface density falls off more rapidly than the
halo density, and also at small radii, if the halo core radius r, is small. However, the halo gravity will tend to reduce the flaring of the
disk, and the line-of-sight integration will also tend to reduce the apparent scale height variation. We now proceed to include these
effects properly.

We numerically integrate equations (56) and (57), to find the vertical structure of the disk at each radius, and then perform
line-of-sight integrations through the model, to calculate the projected surface density distribution. We then compare the projected
model with the observed surface brightness distribution for an edge-on galaxy. We compare the models with the observational data
for two of the van der Kruit and Searle galaxies, NGC 5907 and NGC 4244, chosen because they are essentially bulge-free, which
greatly simplifies the comparison, and because they span the range in or,,,, found in van der Kruit and Searle’s sample (ar,,,,, = 3.4
for NGC 5907 and 5.3 for NGC 4244). We use the sets of J-band luminosity profiles parallel to the z-axis presented in van der Kruit
and Searle (1981a, 1982).

We choose the parameters of the models as follows: we adopt van der Kruit and Searle’s estimates for the distances to the
galaxies, the radial scale-length o~ ' and truncation radius r,,,,, and the inclination angle i. We calculate the central surface density
of the disk up, from the inferred face-on central surface brightness I, of the old disk and an assumed mass-to-light ratio M/L for the
old disk; ppo = (M/L)I,. We consider values of the mass-to-light ratio for the old disk in the range M/L = 5-10, which
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corresponds to M/L = 2-5 for the disk as a whole, since about half the total light comes from the young population (van der Kruit
1983). The galaxies under consideration are observed to have rotation curves that are fairly flat over most of the visible disk, so for
given M/L and halo core radius r,, we calculate the asymptotic rotation velocity V,, from V,(r,) = V2, — V2, ..., where V,, is the
measured rotation velocity, and V., ..., = 0.880(nGup, o~ 1)!/? is the maximum rotation velocity due to the exponential disk alone,
which occurs at a radius r,, & 2.15a¢~*. The flatness of the rotation curve provides a constraint on r,. We assume that In A = 12 and
7 = 10 Gyr in both galaxies but leave My, as a free parameter (in fact, the results only depend on the product My [In A]r) and take
6po = 4 km s~ (see Wielen 1977). Thus for each galaxy we attempt to fit, we have three adjustable parameters: M/L,r,, and M.
Note that we only try to fit the light distribution at large z, where the old population is expected to dominate; close to the plane, the
light distribution is affected by light from the young stellar population and by obscuration by dust.

For NGC 5907, we adopt o~ = 5.7 kpC, T = 19.3 kpe, i =87°, I =35 L, pc™ 2, and V,,, = 240 km s~ %, the latter from
Casertano (1983). The value of I, assumed here differs from that given by van der Kruit and Searle (1982), which is incorrect (van der
Kruit 1985). Figure 2 shows the comparison between the observed profiles and a model with M/L = 10, r, = 5.7 kpc, and
My =3 x 10° M, which is seen to provide a reasonable fit. An equally good fit is obtained with different values of M/L in the
range we consider, provided My is also varied to keep the scale height the same, e.g., if M/L is reduced to 5, then My must be
reduced to 1.5 x 10° M. The quality of the fit is, however, rather more sensitive to the value of r, : the fit remains reasonable ifr, is
doubled to 11.4 kpc, but if r, is halved to 2.85 kpc then the projected scale height becomes too large near the center, as shown in
Figure 2. Thus we require r, ~ (1-2)a " 1.

A problem with this simple model is posed by the flatness of the observed rotation curve: Casertano (1983) finds that for
5 <r <19 kpe, the rotation velocity is constant at the value V,,, = 240 km s~ ! to within 410 km s~ !, while the model with
M/L =10, r, = 5.7 kpc, and My = 3 x 10° M, which fits the surface photometry, produces a rotation curve which is still rising
over this range. The model rotation curve can be made flatter by increasing M/L or by decreasing r,, but the latter worsens the fit to
the surface photometry, as already mentioned. However, the rotation curve near the center is probably affected by a small bulge
component, so that consistency may be possible. Such a component seems to be required even when the disk and halo parameters
are chosen to optimize the fit to the rotation curve alone (Casertano 1983).

For NGC 4244, we adopt ™! = 2.6 kpc, 7., = 13.7 kpc, i = 88°, 1, = 37 Ly pc~?, and V,,, = 130 km s, the last from Caser-
tano (1985). Figure 3 shows the comparison between the observed profiles and a model with M/L = 10, r, = 2.6 kpc, and My, =
1 x 10° M. The model is seen to provide a reasonable fit in the inner parts of the galaxy but has too large a scale height in the
outer parts. As for the case of NCG 5907, for a reasonable fit in the inner regions we require r, ~ (1-2)a " *. The increase in the scale
height of the outer parts of the disk is much more dramatic in this case than in the case of NCG 5907 because of the larger value of
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F1G. 2—Comparison of models with data for surface brightness profiles of the edge-on spiral galaxy NGC 5907. The J-band data are from Van der Kruit and
Searle (1982). The surface brightness profiles are taken parallel to the projected z-axis, at equal intervals in radius of Ar = 1.84 kpc. The models shown have
M/L =10,My =3 x 10° My, and r, = 5.7 kpc (solid line) and r, = 2.85 kpc (dushed line). (See text for a full description.)
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F1G. 3.—Comparison of models with data for surface brightness profiles of the edge-on spiral galaxy NGC 4244. The J-band data are from van der Kruit and Searle
(1981a). The surface brightness profiles are taken at intervals in radius of Ar = 1.39 kpc. The models shown have M/L = 10 and M, = t x 10° M, (solid line), and
M/L =5,My =035 x 10° M, (dashed line), with r, = 3.9 kpc in both cases. (See text for a full description.)

O max 10 this case (5.3 for NGC 4244, as against 3.4 for NGC 5907). The amount of flaring is not sensitive to r,, but it is reduced if
M/L is reduced to M/L = 5, with My = 0.35 x 10° M, as also shown in Figure 3. The quality of the fits to the luminosity profiles
in the outer parts could also be improved if we relaxed the assumptions in the models that the disk age and mass-to-light ratio are
constant with radius, for instance allowing 7 to decline by a factor of 2 from the center to the edge, as in models of galactic evolution
similar to those of Gunn (1982), or allowing M/L to increase by a factor of 2.

In conclusion, disk heating by halo biack holes will account for the observed disk thickness of other spiral galaxies as well as of
our own, if the black holes have masses My ~ 2 x 10° M. However, the computed radial variation of the stellar scale height is
larger than observed unless there is some fine-tuning of parameters. To fit the scale height in the inner regions, one must choose the
halo core radius to be in the range ar. &~ 1-2, for which there is no obvious physical reason, although it appears to be consistent with
the observed form of rotation curves. For galaxies with large ar,,,,, to avoid too much flaring of the stellar disk in the outer parts,
one must in addition choose a value for the mass-to-light ratio of the old disk that is on the low side (M/L = 5 rather than 10), or
assume that the outer parts of the disk form after the inner parts.

IV. OTHER TESTS

In this section, we consider some other tests of our disk heating hypothesis that do not involve disk heating directly. These are (a)
the effects of two-body encounters (between black holes or between stars and black holes) on the distribution of black hoies in the
Galaxy, (b) effects of dark matter in dwarf spheroidal galaxies, (c) radiation by black holes accreting from the interstellar medium,
and (d) the gravitational lensing of cosmologically distant sources by black holes.

a) Evolution of the Black Hole Distribution Due to Two-Body Encounters

Consider first the effects of encounters between the black holes themselves. A measure of the two-body relaxation time for a
population of objects with mass m, density p, and one-dimensional velocity dispersion o is the “reference” relaxation time (Spitzer
and Hart 1971):

0.3

te = 0.340
rel G

ZomIn A’ (69)

Assuming that p,, is given by equation (64) and oy = V, /2'/?, with V,, =220 km s~ !, My = 2 x 10° M and In A = 12, we find

that the central two-body relaxation time of the halo is ¢, (0) = 3.2 x 10° yr (r,/kpc)®. The halo core radius r, is rather weakly
constrained by observations: Galactic mass models (Caldwell and Ostriker 1981; Ostriker and Caldwell 1983) suggest r, =~ 2-8 kpc,
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while the requirement of a constant disk scale height (see § IIId) requires r, ~ (1-2)a~!, which for our Galaxy corresponds to
r. & 4-8 kpc (e.g., Bahcall and Soneira 1980). Thus 5 (0) probably exceeds the age of the Galaxy, and encounters between black
holes should not have led to significant evolution.

More important for the evolution of the black hole distribution will be encounters between black holes and stars. Two-body
encounters cause the black holes to lose kinetic energy to the stars, as the two populations try to reach energy equipartition; if stars
and black holes initially have the same velocity dispersion, the time scale ¢, for this process is roughly given by equation (69), with
p = p, and m = My (Spitzer 1969); thus ty, ~ (pu/p,)tyy. In the inner regions of the Galaxy, the density of stars (in the spheroid)
probably exceeds that of the halo, so that the effects of star—black hole encounters dominate those of black hole-black hole
encounters. As a black hole loses orbital energy to the background of stars through two-body encounters, its orbit decays in radius.
We now consider this process of dynamical friction in more detail. It has previously been discussed by Carr (1978).

Within the central few kiloparsecs of the Galaxy, the mass density in stars is dominated by the spheroid. We take for the density
py(r) of the inner spheroid a model suggested by observations of the stellar infrared luminosity distribution at small radii ( < 50 pc)
and of the rotation curve at larger radii (r 2 50 pc) (Sanders and Lowinger 1972; Oort 1977; Sanders 1979). These observations
indicate that p,oc r~!® at small radii. At larger radii, the density must fall off more steeply; observations of our own and other
galaxies suggest p, oc r 3. On the basis of rotation curve measurements, Sanders (1979) suggests that the change of power law slope
occurs at r & 800 pc (see also Matsumoto et al. 1982). Based on all this evidence, we adopt as our idealized model for the inner

spheroid
N 1.8
ps(r)=p1 7 s r<rg,

3
= pl !‘r—l s r > 7‘1 Py (70)
with p, = 1.8 M pc™3, r; = 800 pc. We have also replaced the observed density distribution, which is flattened at small radii, by
the spherical distribution which contains the same mass.
To calculate the rate at which the orbits of the black holes decay due to dynamical friction, we make the idealization that their
orbits are all circular. Then the rate of change of the radius of the orbit is given by a straightforward extension of the analysis of
Tremaine, Ostriker, and Spitzer 1975):

dr 4nG*My In A B(V,/\/20) rpyr) .

dt l+dlnV/dinr) Vi)’ 71
where B(x) = erf (x) — x erf’ (x) and g(r) is the one-dimensional velocity dispersion of the spheroid stars, assumed isotropic.
Assuming that the spheroid described by equation (70) is self-gravitating, it is straightforward to derive expressions for V,(r) and
a(r), using the equation of stellar hydrodynamics in the latter case. For r > r,, we find ¥, oc r~*/2 approximately, with B[V,/2'/%¢_],
l+dInV/dlInr, and In A slowly varying, so that dr/dt oc r~'/%, and the time for a black hole to spiral into the center is
tyr & %r/|dr/dt|. Evaluating the various slowly varying factors, we find that over the lifetime of the Galaxy, t; ~ 1.5 x 101 yr, all
the black holes with initial orbital radiir < r,; & 2 kpc will have spiraled into the center, assuming My = 2 x 10® M. Clearly, this
estimate of r,, is rather rough: the density distribution p(r) is uncertain, as is My, and the assumption of circular orbits for the black
holes cannot be correct in detail. White (1982) finds that for objects with an initially isotropic velocity distribution moving through
an isothermal background (with p oc r~2), the mean value of r, s differs only slightly from the value derived for circular orbits.
However, the case of interest here has a different background density distribution, and it is possible that the orbits of the black holes
are very radially elongated because of the gravitational influence of the spheroid, so that the true value of rq4y might differ
considerably from the estimate above.

If ryy <r, then the mass in black holes that is accreted by the center over the lifetime of the Galaxy, assuming the same halo
density law as previously, is M. & 2 x 10° M (r,,/2 kpc)®(r./4 kpc)~ 2. In fact, this is probably an underestimate, because the halo
density near the center is likely to be increased by the gravitational attraction of the spheroid. Note the sensitivity of this estimate to
the uncertain parameters r,, and r,. The observational constraints on the mass distribution close to the Galactic center are fairly
stringent: Serabyn and Lacy (1985) estimate that the mass in the form of a compact object at the center is M, ~ 3—4 x 10® M o>
similar to the mass of the individual black holes derived in this paper, but small compared to the total mass that would have been
accreted.

However, gravitational interaction between the black holes once they reach the center is likely to cause ejection of the holes by the
slingshot effect (Saslaw, Valtonen, and Aarseth 1974; Begelman, Blandford and Rees 1980), in which a three-body system disrupts
with the ejection of a single body and a tight binary, although it is not clear how far out from the center the black holes will be
ejected. In this case, the number of black holes at the center for most of the time would be 0, 1, or 2, assuming that the three-body
disruption time is short compared to the time between successive black holes falling into the center. A problem remains, however:
the orbital energy that the black holes lose by dynamical friction is deposited in the stellar background, so that in sinking to the
center, a black hole tends to evaporate stars from the cusped distribution around the center. In the final stages of its decaying orbit,
the orbital velocity of the black hole will be comparable to that of the stars it interacts with, and it only interacts with stars out to
about the radius of its orbit, so it will evaporate a mass in stars ~ My from the central region. Thus if mass M, in black holes is
accreted. even if most of it is subsequently ejected, the p;oc r~'® cusp will be destroyed out to a radius a, ~ 0.4 pc (M,../
10° M )*®3, for the density distribution of equation (70). For r,, = 2 kpc and r, = 4 kpc, we find a, ~ 200 pc . Two-body encoun-
ters between the stars tend to recreate a cusp around a central compact object (e.g., Bahcall and Wolf 1976), but this only occurs on
the relaxation time scale for the stars, which is long: t,,; & 3 x 10° yr (r/pc )** for the original density distribution for r < r,, using
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equation (69). Thus it seems unlikely that the stellar cusp would be repopulated by stellar dynamical processes, once it had been
destroyed. Even with fairly optimistic assumptions, (say) r,; = 1 kpc, r, = 8 kpc, giving M, &~ 6 x 10" M, we find a, ~ 10 pc. In
contrast, the observations show that the light from the stellar population varies as p; oc r~!® down to r < 0.1 pc (Allen, Hyland,
and Jones 1983). A possible resolution of this problem is to repopulate the cusp with stars formed from the large amounts of gas that
collect at the center. Interestingly, measurements of ionized gas velocities close to the center indicate that the mass density in stars
flattens off compared to the light within r < 10 pc (Crawford et al. 1985), which supports this picture, since a young stellar
population would have a lower mass-to-light ratio. The presence of supergiant stars close to the center (Becklin et al. 1978) also
suggests that there has been star formation relatively recently.

b) Dynamics of Dwarf Spheroidal Galaxies

There are observational indications that at least some dwarf spheroidal galaxies may contain large amounts of dark matter
(Aaronson 1983; Faber and Lin 1983), although this is still controversial. For dark matter in the form of massive black holes, we
must consider what the effects on a dwarf galaxy will be. Interactions with black holes cause the total energy E of a star moving at
velocity V through such a galaxy on the average to increase at a rate

CAE) = VAV + KAV + 5K(AV)*
_4 2nG*py My In A exp <_ V2>

On

26% 72
(using eq. [7]). For the Draco dwarf galaxy, Aaronson (1983) measures the stars as having a one-dimensional velocity dispersion
o, = 6.5 km s~ within the luminous core of radius r, = 140 pc. If the dark matter dominates the mass within this radius, and is
assumed to have core radius r, > r,, this implies it has a central density py, & 902/4nGr? ~ 0.36 M pc™>. For stars with orbits
confined to the core, (E) = 30Z; integrating equation (72), we find that heating over a time t ~ 10'° yr will cause the stellar velocity
dispersion to exceed the observed value unless My/oy <2 x 10> Mg (km s™!)~1, A similar bound can be derived for the case that
the dark matter is distributed according to equation (64) with r, < r,. If we assume 65 ~ 0, ~ 6.5 km s~ ', then we derive the limit
My < 10° M, while if instead we assume My ~ 10° M, then we require 6, = 10* km s~ !, or . 2 100 kpc. The latter is clearly
unacceptable. A way around this problem of 10° M, black holes producing too much heating is to suppose that the black holes
form a compact cluster, with density falling off more rapidly than py oc r~2 outside the core, and core radius small compared to the
present stellar core. Then, if the stars initially had a similar distribution, interactions would have ejected them on almost radial
orbits from the black hole cluster. The resulting halo of stars would continue to be heated and to expand as long as the stellar orbits
passed through the cluster core. However, tidal interactions with neighboring large galaxies would deflect the stars onto less radial
orbits, and thus terminate the stellar heating, when the characteristic radius of the stellar halo became comparable to, but somewhat
less than, the tidal radius.

A further effect that must be taken into account is interactions between the black holes themselves: if the number of black holes N
exceeds 2, then these interactions will cause ejection of the black holes from the galaxy on a time scale ,,,, &~ 300t,,, where t,,, is the
mean two-body relaxation time of the black holes within the half-mass radius (Spitzer 1975). If the ratio of dark to luminous matter
in the galaxy is initially 10:1, then the simultaneous ejection of the last three black holes by gravitational slingshot will unbind and
disrupt the galaxy for initial values of N in the range 2 < N < 30. For Draco, if we assume My =2 x 10° M, we calculate
tevap & 101 yr if the black holes have the same distribution as the stars, and t,,,, < 10*° yr if they have a much smaller mean radius,
as was postulated above. However, for this value of My, Aaronson’s mass estimate for the galaxy gives N = 2, so that disruption will
not in fact occur. Galaxies which were initially somewhat more massive than Draco would have been disrupted by now, if the black
holes were in a dense cluster, because they would have had 2 < N < 30 and ¢,,,, < 10!° yr. Galaxies with N > 30 (i.e., total stellar
masses M, > 6 x 10° M) would avoid disruption. In those with tevap < 10'° yr, all the black holes would have been ejected,
leaving a purely stellar system.

To summarize our argument: the dark matter in a dwarf spheroidal may be in the form of massive (My ~ 2 x 10° M) black
holes, but these must be in a dense cluster, to avoid too much stellar heating. The stellar system will then be heated only until its
radius is comparable to the tidal radius. This is consistent with the ratios of core to tidal radius measured in local group spheroidals
(see Hodge 1971) and provides an explanation of why the dwarf spheroidals have much lower stellar densities than the other branch
of low-luminosity ellipticals (cf. Wirth and Gallagher 1984). Evaporation of the black holes should cause disruption of systems with
initial masses somewhat greater than that of Draco (M ~ 4 x 10° M), and thus systems with present total masses in that range
should be mainly stellar and have normal mass-to-light ratios. We also predict that in the systems with large M/L, the stellar
velocities should increase inward because of the central concentration of the black holes.

¢) Radiation by Accreting Black Holes

A black hole moving through the disk or halo of a galaxy will accrete gas from the surrounding medium, generating radiation
which makes the black hole potentially visible. A typical halo black hole moves supersonically relative to gas in the disk or halo
(though only marginally so in the latter case). In this case (e.g., Hunt 1971), a bow shock forms at a distance ~r,,, = 2GMy/V% from
the black hole, at which the gas is slowed down, relative to the black hole, and heated to temperature T, ~ 3m,V?%/32k (where m,, is
the mass of a hydrogen atom and k is the Boltzmann constant). Gas within a distance r,., of the axis is captured by the black hole,
leading to an accretion rate

_ 4nG* M nmy

M , 73
% (73)
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where n is the local density of hydrogen atoms. In this section, we will evaluate numerical values of accretion rates, luminosities, etc.,
for the fixed values My =2 x 10° M, Vi = 300 km s~ ! but will display the dependence on n, since we shall be interested in
densities covering the range n~ 107* to 10* cm™3. Thus we find r,.,, =02 pc, T, ~ 1 x 10° K, and M = 5.5 x 10!° gs~!
(n/ cm ™). If the accreted matter is converted to radiation with an efficiency e, the accretion luminosity of the black hole is

L=eMc? =50 x 10*° ergs s ™! € (n/cm~3) (74)

for the same parameters. The efficiency € and the spectral distribution of the radiation depend on uncertain details of the accretion
process, so that it is not possible to give definite answers. An extensive discussion of this problem has been given by Ipser and Price
(1977), and much of our discussion will be patterned on theirs.

At radii somewhat smaller than r,., the accretion flow onto the black hole will be roughly spherical. However, two qualitatively
different cases must be distinguished for the form of the gas flow at radii comparable to the Schwarzschild radius of the black hole,
rs = 2GMy/c?, where most of the energy is released. If the accreted gas has very low angular momentum, the flow will remain
roughly spherical, while if the angular momentum is larger, the gas will settle into an accretion disk at small radii. To form an
accretion disk with outer radius r,, the accreted gas must have specific angular momentum J, = (GMyr,)'/?, which may occur if
there is either a velocity gradient or a density gradient in the ambient medium from which accretion is occurring. If there is a
velocity difference Av across the radius r,., of the accretion front, the accreted gas has angular momentum J, ., ~ Avr,,., while if
there is a density difference An acrossr,,, thenJ,., & (An/n)r,..Vy. Taking the dividing line between disklike and spherical accretion
as corresponding to r, = 20rs (cf. Ipser and Price), we find that formation of an accretion disk requires either a velocity gradient
exceeding 5 km s™! pc™! or a relative density gradient exceeding 0.02 pc~! on the scale r,... While the former is rather large
compared to typical values in the interstellar medium, the latter condition seems likely to be met in any dense cloud in the disk, for
which typical radii are a ~ 10 pc.

For spherical accretion, the efficiency e is rather uncertain because of uncertainties in the treatment of magnetic fields, turbulence,
etc., but might be rather low. For compressional heating and bremsstrahlung cooling only, € ~ 1 x 10~ "(n/cm ~3), with most of the
radiation being in the form of hard X-rays or gamma-rays with E ~ 10 MeV (Shapiro 1973a). If the energy of the magnetic field
embedded in the accreted gas reaches rough equipartition with the kinetic energy of the flow, then cooling by synchrotron emission
is important, and most of the radiation is in the infrared. Shapiro (1973b) included only compressional heating of the gas and found
€~ 4 x 107*(n/cm ) for n < 1 cm™3, with emission at a typical wavelength A ~ 600 um(n/cm ™)~/ Ipser and Price (1982)
included additional (and uncertain) heating of the gas by magnetic fields and turbulence and found slightly larger efficiencies:
€~ 5x 10" *(n/em™>) for n $02cm™> and e ~ 1 x 1072 for n 2 0.2 cm 3, with emission at a typical wavelength A ~ 10 um
(nfem~3) 12 forn < 0.2 cm™3.

For disk accretion, the efficiency is fairly high in the standard thin disk models: € ~ 0.06 for a nonrotating black hole, and € ~ C.4
for a maximally rotating black hole. For the nonrotating case, the inner edge of the accretion disk is at r = 3rg, and the flux emitted
per unit area from either side of the accretion disk in the steady state is, ignoring relativistic corrections,

3GMy M
Flr) = ——5—00), (75)

where Q(r) = 1 — (3rs/r)"/ (e.g, Novikov and Thorne 1973). If the disk is optically thick and the opacity is dominated by absorption
rather than electron scattering, then each element of the disk radiates as a blackbody with surface temperature T,(r) = [F(r)/c]'*,
where ¢ is the Stefan-Boltzmann constant. According to equation (75), half the luminosity of the accretion disk is emitted within a
radius r, = 12rg; therefore we may characterize the emitted spectrum for the whole disk by the surface temperature at r,:

T(r,) = 1.4 x 10* K (n/cm ~3)1/4 . (76)

Thus most of the radiation will typically be in the visible range. A detailed discussion of optically thick accretion disks is given by
Novikov and Thorne, and using their results one may show that the assumption of optical thickness is self-consistent for the
accretion rates of interest here. For accretion rates corresponding to n 2 1-10° cm ™3, electron scattering opacity may become
important at small radii in the disk, but the effect of this on the emitted spectrum is only marginal, and equation (76) for the
radiation temperature should still be approximately valid (see Novikov and Thorne).

The optically thick accretion disk models are not the only possible equilibrium solutions, however. Optically thin solutions are
also possible, in which the disk radiates at a much higher temperature (Payne and Eardley 1977): assuming bremsstrahlung cooling
with cooling function A(T) ~ 2 x 10727 ergs cm® s~ }(T/K)"? for T 2 107 K, the temperature at r, for an “ a-disk ” is

T(r)) = 5 x 108 K (2/0.1)" ! (n/cm ~3)'/? (77)

for 10 %(2/0.1)* S (n/cm ~?) < 10%, where the viscosity parameter o is thought to lie in the range 10~2 < « < 1. In this case, most of
the radiation is in the form of X-rays. Payne and Eardley argue that an optically thin rather than optically thick accretion disk will
be formed if the accreted gas is preheated to a sufficiently high temperature. Now in the region of roughly spherical inflow onto the
black hole (r; S r < r,..), adiabatic compression of the gas results in a temperature variation T(r) ~ 102 K (rg/r), so that it is likely
that sufficient preheating will occur. However, optically thin disks are thermally unstable (Pringle 1976), so that their existence is in
some doubt (but see Payne and Eardley).

We must also consider possible feedback effects of the emitted radiation on the accretion of gas, which may act to limit the
accretion rate below that given by equation (73). The first of these is radiation pressure on the inflowing gas, which prevents the

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1985ApJ...299..633L

No. 2, 1985 MASSIVE BLACK HOLES IN GALACTIC HALOS? 649

luminosity due to accretion from exceeding the Eddington value, Lgyg = 4nGMy cmy/o, where o is the photon cross section per
hydrogen atom. If the only source of opacity were electron scattering, we would have Lgyy ., = 2.5 x 10** ergs s~ '. However, the
radiation is also absorbed by dust: for photons above the Lyman limit, the cross section per hydrogen atom is g, ~ 2.0 x 107!
cm? (Spitzer 1978), and thus Lgyq 4 ~ 8.2 x 10*° ergs s~ ! for ionizing radiation. There are other possible feedback effects, but these
appear to be less important than radiation pressure on dust. If the emission is in the X-ray band, then heating of the gas in the
spherical inflow region by the radiation makes steady inflow impossible above a certain critical luminosity (Ostriker et al. 1976); this
would be relevant for an optically thin accretion disk, but, using equations (74) and (77), one finds that the critical luminosity
somewhat exceeds Lgyy 4. The radiation from the black hole would also heat the interstellar medium ahead of the accretion shock,
causing it to expand and thus reducing the density of the medium into which the black hole is moving. However, the pocket of hot
gas ahead of the black hole can only expand at roughly its own sound speed, so the accretion rate would only be significantly
reduced if the sound speed exceeded the velocity of the black hole, which would require heating the gas to T 2 5 x 10° K. The
ultraviolet radiation from an optically thick accretion disk would ionize and heat the gas to only T ~ 10* K. The X-rays from an
optically thin accretion disk might heat the gas to a higher temperature (Buff and McCray 1974), but still not by a large enough
factor to significantly affect the accretion rate, because an element of gas at distance r ahead of the black hole is only heated for a
time ~ r/Vj before encountering the bow shock.

We now consider the properties of black holes accreting from various environments in the Galaxy. We assume that the
interstellar medium consists of the following components, in order of increasing density (McKee and Ostriker 1977; Sanders,
Scoville, and Solomon 1985): a gaseous halo with radius r ~ 10 kpc and density n ~ 10~ * cm ™ ?; a hot interstellar medium in a disk
with r ~ 10 kpc, half-thickness h ~ 2 kpc, and density n =~ 4 x 1073 cm™3; and three cooler components in the form of clouds
partially filling a disk with r ~ 10 kpc and h ~ 120 pc: the warm H 1, with filling factor f~ 0.2 and n ~ 0.3 cm 3, the cold H 1, with
£~ 002 and n~ 40 cm 3, and the molecular clouds, with f ~ 0.003 and n ~ 600 cm~>. We shall assume ny = 5 kpc™? for the
number density of black holes. We consider black holes accreting in each of these environments in turn.

i) Halo gas—There would be N ~ 2 x 10* such sources in the Galaxy, with the nearest at d = 2 kpc. These sources are unlikely
to form accretion disks because the density gradients are too low. Using Ipser and Price’s (1982) analysis of spherical accretion, we
estimate a luminosity of L & 3 x 103! ergs s~ ! at wavelengths around 4 &~ 1000 um. Such sources would be difficult to detect.

ii) Hot interstellar medium.—There would be N = 6 x 10® such sources with the closest at d ~ 0.6 kpc. Most of them would
probably not form accretion disks, though a small fraction (~ 10%) in the more inhomogeneous gas close to the plane might. For
spherical accretion, we find a luminosity L ~ 4 x 103 ergs s™' at 4 ~ 200 um. Such sources would probably not have been
noticed. For an optically thick accretion disk, we would have L ~ 1 x 10%7 ergs s~ !; with an effective temperature T,¢ ~ 3600 K.
In color and luminosity, this corresponds roughly to an MO supergiant star. For an optically thin accretion disk, we would have an
X-ray source with L & 1037 ergs s~ ! and typical photon energy kT = 3 keV. There are only ~ 30 X-ray sources in the Galaxy with
L, 2 1037 ergs s~! in this energy range (Clark er al. 1978), so even a small number of such black hole sources would violate
observational constraints.

iii) Warm H 1.— There would be N = 80 of these sources, with the closest at d ~ 2 kpc. Radiation would almost certainly be from
an accretion disk, so that L ~ 9 x 1038 ergs s~ *. If the accretion disk were optically thick, the radiation would have an effective
temperature T, &~ 11,000 K. This color and luminosity corresponds roughly to a B8 supergiant star. Assuming the spectrum to be
roughly blackbody, the flux of ionizing photons would be S ~ 1 x 10*¢ s™*, which would produce a very small H 11 region. If the
accretion disk were optically thin, it would produce X-rays with typical energy kT = 30 keV. The observations rule out any X-ray
source this luminous existing in the Galaxy.

iv) Cold H 1—There would be N = 8 such sources, with the nearest at d & 6 kpc. For disk accretion, the luminosity would be
L ~ 1.2 x 10*! ergs s~ !. which slightly exceeds the Eddington luminosity for radiation pressure on dust. For an optically thick
accretion disk, T ~ 36,000 K. This corresponds in color roughly to an O8 star, but the luminosity is much greater. Again
assuming a blackbody spectrum, the ionizing flux would be S~ 1 x 10°" s™'. In a clumpy medium with clump density
n =40 cm~? and filling factor f= 0.02, this would ionize a region of radius r &~ 100 pc. Thus, the accreting black hole would
produce a giant H 1 region, somewhat brighter than Carina (S~ 4 x 10°°s™'), but not as bright as 30 Doradus
(S ~ 1 x 1052 s~ 1!). Kennicutt (1984) concludes from the observations that several giant H 11 regions with § ~ 10°* s~ " may exist in
the Galaxy, and even brighter H 11 regions exist in some other galaxies. A difficulty with this interpretation, however, is that the
observed giant H 1 regions correlate strongly with spiral arms. If the accretion disk were optically thin, again it would produce a
much brighter X-ray source than is consistant with observations.

v) Molecular Clouds—There would be N = 1 such source in the Galaxy, at a distance d ~ 10 kpc. If there were no feedback
effects, this would have a luminosity L ~ 1.8 x 10*? ergs s ! for disk accretion. However, the effects of radiation pressure on dust
should limit the luminosity to Lgsg 4 ~ 8 x 10%° ergs s™ !, similar to the value for a black hole in a cold H 1 cloud. In contrast to
that case however, the H 11 region would be confined to the interior of the cloud, and most of the radiation would be absorbed
directly by dust and reradiated in the infrared, so that the black hole would appear as a very luminous infrared source.

d) Gravitational Lensing by Black Holes

Massive black holes in the halos of galaxies will cause gravitational lensing of cosmologically distant sources. If the black holes
comprise a fraction Q, = 0.1 of the cosmological critical density, then the probability that an object at redshift z = 1 will be
significantly lensed (with total amplification greater than 1.3) is approximately 1-2 x 1072 for 0.1 < Q,, < 1, if there is no
amplification bias, and the typical splitting of the images is approximately 7 x 107> arcsec, for My = 2 x 10 M, (Press and Gunn
1973; Turner, Ostriker, and Gott 1984). The observational bias of investigating brighter (hence amplified) sources could increase this
fraction by an order of magnitude. This effect is potentially detectable by means of VLBI, though the number of compact sources
studied so far is only about 100 (e.g., Pearson and Readhead 1984), which may not be enough to separate out the possible effects of
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lensing from those of intrinsic complications in source geometry. In multiple image systems where a quasar is observed to be lensed
by a galaxy, minilensing by black holes in the galaxy halo will also cause fluctuations in the intensities of the images around the
values calculated assuming a smooth distribution of matter (e.g., Gott 1981; Young 1981). Scaling the results of Gott and of Young
to My =2 x 10° M, we find that massive black holes will lens the optical continuum and line emitting regions of the quasar
together, thus leaving their relative intensities unchanged, and cause variations in the intensities on a time scale of ~ 105 yr, much
too long to be observationally interesting. Minilensing splits the images by roughly 10~ 2 arcsec. For Q0967 + 561, the only system
for which a satisfactory lensing model exists at present (Young et al. 1981), the inputs into the model are sufficiently uncertain that
additional effects on the image intensities due to minilensing by randomly situated black holes probably cannot be excluded. In

cgnclusion, gravitational lensing by galactic halos composed of massive black holes appears to provide a promising test for the
picture presented in this paper.

V. CONCLUSIONS

We have shown that if the dark halos around galaxies are composed of massive black holes, then this can provide an explanation
of the heating of the stellar disk in our Galaxy and in other galaxies. Gravitational scattering of disk stars by black holes
automatically results in the stellar velocity dispersion increasing with age as ¢ oc t!/2 for large t, in good agreement with what is
observed in the solar neighborhood, and also predicts axial ratios for the velocity ellipsoid in agreement with observations. The
magnitude of the velocity dispersion predicted for old disk stars agrees with that observed in the solar neighborhood if the mass of
the black holes is taken to be My, ~ 2 x 10® M, with the same value satisfactory for other galaxies also.

Heating by halo black holes results in a distribution function for the stars which is approximately isothermal at low epicyclic
energies, in the Fokker-Planck regime in which the evolution is due to many weak encounters, but with a power-law tail at high
energies produced by the relatively rare close encounters. The number of stars per unit epicyclic energy in the high energy tail varies
as N(E) oc E~2. The evolution of the distribution function is self-similar in the low- and high-energy regimes, so that the fraction of
stars in the high-energy tail is independent of the age of the stellar population, and in fact only depends on the value of the Coulomb
logarithm In A for scattering of stars by black holes, independent of any of the other properties of the disk or halo. The Coulomb
logarithm is expected to have the value In A = 10, for which we predict the fraction of disk stars in the high-velocity tail to be about
1%, almost independent of the properties of the galaxy or the radius within the galaxy. This fraction is too small to account for the
“thick disks ” already found in some other galaxies, but is of about the right magnitude to explain the high-velocity main-sequence
A and F stars observed in the solar neighborhood.

The heating mechanism can also account for the approximate constancy of the disk scale height with radius that is observed in
other spiral galaxies, though this property does not arise as naturally as the others discussed above: the core radius r, of the halo
must be chosen in the range r, & (1-2)o "', where « ™! is the exponential scale length of the disk. There is also a problem that the
flaring of the outer parts of the disk is predicted to be larger than is observed in disks with large or,,,,, where r,,, is the outer
truncation radius of the disk, unless the outer parts of spirals form later than the inner parts or have larger mass-to-light ratios.

We do not propose any specific scenario for the formation of these black holes. However, it is interesting that the mass derived for
the individual black holes is close to the baryon Jeans mass at recombination, which may be the preferred mass scale for the first
bound objects which form in the universe (Peebles and Dicke 1968; Carr and Rees 1984). The subsequent evolution of such an
object is uncertain, but the baryons in it might form a single supermassive star, which then collapses to a black hole (Carr 1978).
Alternatively, if the mass of the universe is dominated by weakly interacting elementary particles, density fluctuations will collapse
directly to black holes if the random motions of the particles are small enough (Shapiro and Teukolsky 1985).

We also predict the effect of the halo black holes on the central region of the Galaxy. A rough calculation of the effect of
dynamical friction on the spatial distribution of the black holes suggests that of order 100-1000 will have spiraled into the Galactic
center over the life of the Galaxy, but that at any given time there will probably never be more than two in the center due to the
gravitational slingshot interaction between single and binary black holes. Thus we naturally account for the compact object
postulated to be at the center of the Galaxy by several observers.

We have calculated the effects of gravitational lensing by the black holes and find that they are probably consistent with
observational limits. Approximately 1% of sources at redshift z ~ 1 will be significantly lensed, with typical image splittings of
several milliarcseconds.

We have also calculated the effect that such black holes would have on dwarf spheroidal galaxies, and find that heating of the
stars by the black holes might provide an explanation for the low stellar densities of these systems.

There is one potentially serious problem, that radiation by black holes as they accrete gas from the interstellar medium should
make some of them very luminous. In particular, there should be ~ 10 black holes in the Galaxy accreting from dense gas clouds,
and if the standard thin accretion disk theory is correct, these will each radiate L ~ 1 x 10*! ergs s~ ! and emit enough ionizing
radiation to produce a giant H 11 region comparable in luminosity to those seen in some other spiral galaxies. Whether some of the
observed giant H 11 regions might in fact be produced by this mechanism is problematical.

In conclusion, although massive black holes in halos can explain disk heating and account for condensed objects in galactic
nuclei, the lack of clear, direct evidence for nearby accreting massive objects places the scenario in some doubt.
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APPENDIX

In this Appendix we derive expressions for the orbit-averaged diffusion coefficients for E, and E, in terms of the velocity space
diffusion coefficients. We assume that (Au), {(Avd, (Aw), {(Au)?>, {(Av)*> and {(Aw)*) are constant around an orbit, with all the
other moments vanishing, and that the unperturbed orbits of the stars are described by harmonic epicyclic theory, for which

u = (2E,)'? sin (xt + 8), (A1)
v = [(2E,)'*/B] cos (xt + J), (A2)
z = [(2E)Y*/v] sin (vt + ¢€) , (A3)
w = (2E,)Y? cos (vt + €) , (A4)

where E,, E,, and f are defined by equations (3)5). Then

AE, = uAu + YAu)* + B*[vAv + HAv)*], (AS)

AE, = wAw + Aw)?*,

(A6)

assuming that the change in position of a star during an encounter is negligible. The expected instantaneous rate of change of E, is

therefore
(AE,» = u{Auy + 3(Aw)*) + B*([v{Av) + 3{(Av)*)] . (A7)
Orbit-averaging, using the assumptions about the constancy of the moments and the result (from [A1] and [A2]) (u),, = <v),, =0,

we derive
(AE.),, = 3[{(Aw?*) + B*<(Av)*)] . (A8)

Similarly,
(AE.),, = 3(Aw)*) . (A9)

Squaring equation (A5), and assuming that mixed moments of (Au, Av, Aw) and moments higher than the second vanish, we derive

AE)?) = u*{(Aw?*) + p*0*<(Av)*) .
B*¢v?>,, = E,, we obtain
= 2E€<AEe>av .

Orbit-averaging, using the result (u?),, =

(AE)*,,

Similarly,

<(AE2)(AE2)>av =0 B
((AE)*,, =2ECAE.),, .

(A10)

(A11)

(A12)
(A13)

The results for {(AE,)?>,, and {(AE,)*>,, clearly depend on the assumption that the epicyclic oscillations are harmonic in time, but
the results for the other moments are valid for any periodic oscillations.
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