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Abstract

Using Supergravity onAdS7 × S4 we calculate the bulk one-loop contribution to the conformal anomaly of the(2,0) theory
describingN coincident M5 branes. When this is added to the tree-level result, and an additional subleading order con
calculated by Tseytlin, it gives an expression for the anomaly that interpolates correctly between the largeN theory and the free
(2,0) tensor theory corresponding toN = 1. Thus we can argue that we have identified the exactN-dependence of the anoma
which may have a simple protected form valid away from the largeN limit.
 2003 Published by Elsevier B.V.

1. Introduction

The low energy(2,0) theory describingN coincident M5 branes is not yet well understood. Howe
some information about this theory can be obtained via the AdS/CFT correspondence. For example, the
calculation of Henningson and Skenderis [12] makes a prediction of the leading orderN dependence of th
conformal anomaly of this theory.

One might hope that, as in the case ofN = 4 SYM, the anomaly has a protected form with simple depend
onN . Then provided one could calculate the appropriate sub-leading order corrections, one would have
result that is valid beyond the large-N regime.

This is indeed what happens for the R-symmetry anomaly of the(2,0) theory

(1)J8 =NJ free
8 + (

N3 −N)
p2,

whereJ free
8 is the anomaly of the free (N = 1) theory andp2 is the normal bundle of the brane world-volume.

a function ofN , this interpolates between theN = 1 theory and the interacting large-N one that can be describe
by 11d Supergravity onAdS7 × S4.
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The situation is, however, more complicated than the analogous one forN = 4 SYM, where a one-loop
calculation of the conformal and R-symmetry anomalies givesN2 − 1 copies of the freeN = 1 theory anomalies
and this is protected by supersymmetry from higher loop and stringy corrections. Take, for example, the co
anomaly. It is given in general by a sum of type-A and type-B anomalies proportional to Euler and Weyl inv
respectively, and in theN = 4 SYM theory these are related respectively to three and two point correlators
stress tensor. Thus known renormalisation theorems for these correlators apply.

In general the conformal anomaly of an even-dimensional theory (up to total derivative terms th
renormalisation scheme dependent) is a sum of type-A and type-B anomalies, where the former is prop
to the Euler density and the latter is a weighted sum of Weyl invariants made out of contractions of the Wey
and its conformally covariant derivatives. In six dimensions there are three such Weyl invariants.

For the(2,0) theory the leading order coefficient of the Euler invariant in the type-A anomaly is related
four-point correlator of the stress tensor, while the coefficients of Weyl invariants in the type-B anomaly dep
the two and three point correlators. It has been shown [2] that the leading order dependence of the two a
point correlators is given by 4N3 times the corresponding correlators of the free tensor multiplet. But there
reason to expect the four-point correlator to exhibit the same ratio. Indeed, if we look at the leading orde
[12] for the(2,0) conformal anomaly, we discover that the type-B anomaly is given by 4N3 times that for the free
theory, while the type-A anomalies have a different ratio, 16N3/7 [1].

In [9–11] we checked the sub-leading order correction to the conformal anomaly ofN = 4 SYM by a one-
loop calculation inAdS5 × S5 supergravity. In this Letter we will perform a similar calculation onAdS7 × S4 in
order to calculate sub-leading order corrections to the conformal anomaly of the large-N (2,0) theory. An attempt
to calculate such corrections by consideringR4 corrections to the supergravity action was made in [3], but
result gives corrections at a different order inN sinceR4 corrections give anomalies ofO(N), while one-loop
supergravity anomalies areO(1). The different order of these results is explained by the fact that the superg
loop-counting parameter isGNewton∼ 1/N3, whereas the string loop-counting parameter isg2

s ∼ 1/N2.
Summing over contributions from all the Kaluza–Klein towers of supergravity fields gives a contribut

the anomaly which, when properly regularised, is equal to twice the contribution from a free tensor mu
Remarkably, the fields that contribute to the regularised sum exactly match the field content of the tensor m
this is similar to what we observed in thed = 4 case, where the regularised contributions from Kaluza–Klein fi
in supergravity correspond to a sum of contributions that exactly match the field content of theN = 4 SYM theory
[11].

In [3] anO(N) contribution to the type-B anomaly was calculated fromR4 terms in the string theory effectiv
action, but this contribution was conjectured to be incomplete. (Similar calculations of subleading order an
from R4 terms were performed for theN = 4 SYM case in [5,6].) The contribution calculated in [3] can be s
to be related by supersymmetry to anO(N) term in the chiral anomaly, but we would expect there to be o
subleading order corrections [4]. However, any additional corrections due to stringy effects will not contri
the same order as the supergravity contribution.

If we add ourO(1) contribution to the type-B anomaly, we get a result that interpolates correctly betwe
large-N andN = 1 cases. Thus our result may give the exactN dependence of the type-B anomaly. TheO(N)
contribution to the type-A anomaly was not calculated in [3], but our results lead us to a new conjecture
exact form of the type-A anomaly.

2. Leading order anomaly from AdS/CFT

The leading order result of [12] for the conformal anomaly of the large-N (2,0) theory can be written as

(2)A= − 4N3

(4π)3 · 288

[
E6 + 8(12I1 + 3I2 − I3)+O

(∇iJ i)],
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where in terms of the 17 invariants

(A1,A2, . . . ,A17)=
(∇4R, (∇iR)2, (∇iRjk)2,∇iRjk∇jRik, (∇iRjklm)2,R∇2R,Rij∇2Rij ,

Rij∇k∇jRik,Rijkl∇2Rijkl ,R3,RR2
ij ,RR

2
ijkl ,Ri

jRj
kRk

i,RijRklR
ikjl ,

(3)RijR
iklmRj klm,Rij

klRkl
mnRmn

ij ,RjkjlR
imjnRkm

l
n

)
,

we have

(4)E6 = −8A10 + 96A11 − 24A12 − 128A13 − 192A14+ 192A15 − 32A16 + 64A17,

and

(5)I1 = 19

800
A10 − 57

160
A11 + 3

40
A12 + 7

16
A13 + 9

8
A14 − 3

4
A15 −A17,

(6)I2 = 9

800
A10 − 27

40
A11 + 3

10
A12 + 5

4
A13 + 3

2
A14 − 3A15 +A16,

(7)I3 = −11

50
A10 + 27

10
A11 − 6

5
A12 − 3A13 − 4A14 + 4A15 + 1

10
A6 −A7 +A9 + ∇iJ i .

3. Seeley–DeWitt coefficients

The conformal anomaly contributed by a conformal field in six-dimensions is proportional to the Seeley–
coefficientb6 of the associated kinetic operator. The general expression forb6 for a six-dimensional operator o
the form−∇2 −E was given in [7] and can be written in the form

b6 = 1

(4π)3 7! tr

[
18A1 + 17A2 − 2A3 − 4A4 + 9A5 + 28A6 − 8A7 + 24A8 + 12A9

+ 35

9
A10 − 14

3
A11 + 14

3
A12 − 208

9
A13 + 64

3
A14 − 16

3
A15 + 44

9
A16 + 80

9
A17

+ 14
(
8V1 + 2V2 + 12V3 − 12V4 + 6V5 − 4V6 + 5V7 + 6V8 + 60V9 + 30V10 + 60V11

(8)+ 30V12 + 10V13 + 4V14 + 12V15 + 30V16 + 12V17 + 5V18 − 2V19 + 2V20
)]
,

where the invariantsVa , depending on the connection curvatureFij and the endomorphismE, are given by

(V1,V2, . . . , V20)=
(∇iFjk∇iF jk,∇iFji∇kF jk,Fij∇2F ij ,FijF

jkFk
i,RijklF

ijF kl,

RijF
ikF j k,RFij F

ij ,∇4E,E∇2E,∇kE∇kE,E3,EF 2
ij ,R∇2E,

(9)Rij∇i∇jE,∇iR∇iE,EER,E∇2R,ER2,ER2
ij ,ER

2
ijkl

)
.

For a conformally-invariant operator,b6 has the general form

(10)b6 = aE6 + b1I1 + b2I2 + b3I3 + ∇iJ i .
Theb6 coefficients for the fields appearing in the free(2,0) tensor multiplet were calculated in [1]. If we igno

the total derivative terms, and denote theb6 coefficients for a conformal scalar, Dirac fermion, and gauge 2-f
ass, f andga2, respectively, then we have

(11)s = 1

(4π)3 7!
(

− 5

72
E6 − 28

3
I1 + 5

3
I2 + 2I3

)
,

(12)f = 1

(4π)3 7!
(

−191

72
E6 − 896

3
I1 − 32I2 + 40I3

)
,
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(13)ga2 = 1

(4π)3 7!
(

−221

4
E6 − 8008

3
I1 − 2378

3
I2 + 180I3

)
.

A free (2,0) tensor multiplet consists of 5 scalars, 2 Weyl fermions and a chiral 2-form gauge field, and i
conformal anomaly is thus given by

(14)5s + f + ga2

2
= − 1

(4π)3 · 288

(
7

4
E6 + 8(12I1 − 4I2 + I3)

)
.

4. One-loop conformal anomalies from AdS/CFT

The one-loop contribution to the conformal anomaly from bulk supergravity fields was found in [8]
Schrödinger functional methods. These are particularly appropriate to the study of the AdS/CFT correspo
because being Hamiltonian, they allow us to study bulk fields via sources that live near the AdS bounda
result of [8] can be expressed (for six-dimensional boundaries) as

(15)δA= −
∑ (∆− 3)

2
b6,

where the sum is taken over all the fields in 11d Supergravity compactified onAdS7 × S4, and∆ is the scaling
dimension of the corresponding boundary operator.

To find the coefficientb6 appropriate to each bulk field, it is necessary to decompose the seven-dimen
bulk fields into ones appropriate to the six-dimensional boundary. There are some interesting feature
decomposition.

If the boundary is assumed Ricci-flat, then the bulk AdS metric (satisfying the Einstein equation
cosmological constant−15/l2) can be written as

(16)ds2 = 1

t2

(
l2dt2 +

∑
i,j

ĝij dx
i dxj

)
, t > 0,

whereĝij is proportional to the boundary metric. In this metric, the decomposition into boundary fields ex
cancellations that ensure that each massive seven-dimensional bulk field contributes to the anomaly via th
DeWitt coefficient corresponding to an irreducible six-dimensional operator with the same spin. So, for ex
the contribution of the massive seven-dimensional vector field is proportional to theb6 coefficient for the six-
dimensional (gauge-fixed) Maxwell operator. Where there are gauge invariances, there are additional cont
associated with Faddeev–Popov ghosts.

If the boundary is not Ricci-flat, the metric that satisfies Einstein’s equations is obtained by multiplyingĝij in
(16) by the factor(1 − R̂t2l2/120)2 whereR̂ is the Ricci scalar constructed from̂gij . The effect of this on the
decomposition into six-dimensional fields is to introduce couplings toR̂ that render them conformally covarian
Thus, a seven-dimensional minimally coupled scalar contributes via theb6 coefficient for a six-dimensiona
conformal scalar, and a seven-dimensional gauge field via theb6 coefficient of a six-dimensional gauge field.

Now this necessarily spoils some of the cancellations that we observed in the Ricci-flat case. For e
by decomposing a seven-dimensional massive vector into transverse and longitudinal parts, we can show
b6 coefficient for it differs from that of the gauge field by a conformal scalar contribution. In the Ricci-flat
this cancelled the contribution from the Faddeev–Popov ghosts, but since the latter are minimally coup
cancellation is now incomplete. However, this is exactly what is needed to make the overall sum ofb6 coefficients
a sum ofb6 coefficients ofconformal operators.

In Table 1 we display the values of∆− 3 for the Kaluza–Klein spectrum. These are related to the bulk ma
which were first given in [13]. The supermultiplets are labelled by an integerp � 2 and form representation
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Table 1
The(a, b) representation ofUSp(4) has dimension(a+ 1)(b+ 1)(a + b+ 2)(2b+ a + 3)/6

Field SU(4) repn USp(4) repn ∆− 3

φ(1) (0,0,0) (0,p) 2p− 3, p � 2
ψ(1) (1,0,0) (1,p− 1) 2p− 5/2, p � 2

A
(1)
µνρ (2,0,0) (0,p− 1) 2p− 2, p � 2

A
(1)
µ (0,1,0) (2,p− 2) 2p− 2, p � 2

ψ
(1)
µ (1,1,0) (1,p− 2) 2p− 3/2, p � 2
hµν (0,2,0) (0,p− 2) 2p− 1, p � 2

ψ(2) (0,0,1) (3,p− 3) 2p− 3/2, p � 3
Aµν (1,0,1) (2,p− 3) 2p− 1, p � 3

ψ
(2)
µ (0,1,1) (1,p− 3) 2p− 1/2, p � 3

A
(2)
µνρ (0,0,2) (0,p− 3) 2p, p � 3

φ(2) (0,0,0) (4,p− 4) 2p− 1, p � 4
ψ(3) (1,0,0) (3,p− 4) 2p− 1/2, p � 4

A
(2)
µ (0,1,0) (2,p− 4) 2p, p � 4
ψ(4) (0,0,1) (1,p− 4) 2p+ 1/2, p � 4
φ(3) (0,0,0) (0,p− 4) 2p+ 1, p � 4

of USp(4). Thep6 coefficients of the fields can be calculated using the formula (8), but we will not give the
explicitly, since the only ones we will need in the final result are the ones involved in the free(2,0) tensor multiplet.

If we denote the values ofb6 for the fieldsφ,ψ ,Aµ,Aµν ,Aµνρ ,ψµ, hµν by s, f, v, a2, a3, r, andg, respectively,
then the contribution from a generic (p � 4 ) multiplet is(∑

(∆− 3)b6

)
p�4

= (−13s + 2v− a2 − 4f )+ (65s + 54f − 14a3 + 6v+ 2r − g+ 21a2)
p

6

+ (−37s − 6f + 22a3 + 18v+ 14r + 5g− 9a2)
p2

6

+ (−28s − 48f − 8a3 − 24v− 16r − 4g− 12a2)
p3

3

(17)+ (14s + 24f + 4a3 + 12v+ 8r + 2g+ 6a2)
p4

3
,

whilst for thep = 3 multiplet it is

(18)
(∑

(∆− 3)b6

)
p=3

= 90s + 230f + 140v+ 94r + 2g+ 50a2 + 62a3.

Thep = 2 multiplet contains gauge fields requiring the introduction of Faddeev–Popov ghosts. These are
in Table 2, and the total contribution of thep = 2 multiplet is

(19)
(∑

(∆− 3)b6

)
p=2

= −16s + 10f + 16v+ 10r + 3g+ 10a3.

Note that if we substitute the values of theb6 coefficients, the contributions from each supermultiplet are n
zero, even in the Ricci-flat case (this is unlike thed = 4 case). To deal with the sum over multiplets labelled byp,
we will use the regularisation introduced in [11]. The divergent sum is evaluated by weighting the contribu
each supermultiplet byzp. The sum can be performed for|z|< 1 and we take the result to be a regularisation
the weighted sum for all values ofz. Multiplying this by 1/(z− 1) and integrating around the pole atz= 1 gives a
regularisation of the original divergent sum.
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Table 2
Decomposition of gauge fields for the massless multiplet

Original field Gauge-fixed fields ∆− 3

Aµ Ai 2
A0 3

bFP, cFP 3

ψµ ψ irr
i 5/2

γ iψi 7/2
ψ0 7/2

λFP, ρFP 7/2
σGF 7/2

hµν hirr
ij 3

h0i 4
h00, hµµ

√
18

BFP
0 , CFP

0

√
18

BFP
i , CFP

i 4

This yields

(20)
∑
(∆− 3)b6 = 26s + 4f − 4v + a2.

As discussed earlier, theb6 coefficients of massive fields depend on the decomposition from seven t
dimensions. For the massive vector, we have

(21)2v = 2v0 + 3s − 3s0,

wherev0, s0 are the coefficients for the gauge-fixed six-dimensional Maxwell operator and minimally co
scalar, respectively [14]. Theb6 coefficients for all other massive fields are what we would expect for
appropriate spin, for example, the contribution for the massive graviton corresponds to the heat-kernel co
for the transverse traceless part of a six-dimensional spin-2 operator, and the contribution for a tw
antisymmetric tensor is the heat-kernel coefficient for an irreducible six dimensional operator of the same

The final expression for the one-loop contribution to the conformal anomaly is

(22)δA= −
∑
(∆− 3)

b6

2
= −2(5s + f + ga2).

5. Discussion

If we express the result (22) in terms of the Euler and Weyl invariants we get

(23)δA= 1

(4π)3 · 288

(
7

2
E6 + 16(12I1 + 3I2 − I3)

)
,

which is to be added to the leading order result

(24)A= − 4N3

(4π)3 · 288

[
E6 + 8(12I1 + 3I2 − I3)+O

(∇iJ i)].
In [3] an additional subleading order contribution to the anomaly was identified. Since the topology

boundary was assumed to be trivial, implying the vanishing of the Euler density, only the contribution
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coefficients of the Weyl invariants was determined. This is given by

(25)δA= N

(4π)3 · 288

(
8(12I1 + 3I2 − I3)

)
.

We can speculate that there is a similar contribution proportional to the Euler density with an undete
coefficientα:

(26)δA= N

(4π)3 · 288
αE6.

Adding all the contributions together gives

(27)A= − 1

(4π)3 · 288

[(
4N3 − αN − 7

2

)
E6 + (

4N3 −N − 2
) · 8(12I1 + 3I2 − I3)+O

(∇iJ i)
]
.

PuttingN = 1, we observe that the coefficient of the Weyl invariants coincides with the result (14) for th
(2,0) tensor multiplet. Ifα = −5/4, the coefficient of the Euler density would coincide as well. Thus we conje
that there is anO(N) contribution to the conformal anomaly corresponding to (26) withα = −5/4, and that the
exactN -dependence of the conformal anomaly is thus

(28)A= − 1

(4π)3 · 288

[(
4N3 + 5

4
N − 7

2

)
E6 + (

4N3 −N − 2
) · 8(12I1 + 3I2 − I3)+O

(∇iJ i)
]
.
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