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formulate the two-body problem in the model with our generalizedgauge symmetry and onsider the ase with both CS and bakgroundeletromagneti �elds, as it is used in the desription of frationalquantum Hall e�et.1 IntrodutionReently there has been a lot of interest in onsidering quantum-mehanialand �eld-theoreti models with nonommutative spae-time oordinates:[bx�; bx�℄ = i���(bx) = i(�(0)�� + �(1)�� �bx� + : : :) (1.1)If �����(x̂) 6= 0 the Poinar�e symmetries with ommutative translationsdo not preserve the relation (1.1) and so the only ase invariant under las-sial translations x̂0� = x̂�+ a� (a� - -numbers) is provided by ���(x̂) = �(0)�� .Suh a deformation, �rst introdued on the grounds of quantum gravity byDopliher, Fredenhagen and Roberts [2℄, was further justi�ed in D = 10string-theory moving in the bakground with a nonvanishing tensor �eld B��[3,4℄. However, it is easy to see that even for onstant value of the ommuta-tor (1.1) the nonommutativity of spae-time breaks Lorentz invariane, i.e.�(0)�� is a onstant tensor. If we assume that the relation (1.1) is valid in alllassial Poinar�e frames then this onstant tensor should be desribed by asalar parameter. The following two ases an be onsidered:i) D = 2 relativisti theory, with lassial Poinar�e symmetries. In suha ase �(0)�� = �h� "�� ; (1.2)where "�� is a D = 2 ovariant antisymmetri tensor.ii) D = 2 + 1 nonrelativisti theory, with a lassial time variable andrelations (1.1) applied to the D = 2 spae oordinates xi (i = 1; 2). In thisase one gets �ij = �h� "ij : (1.3)It is known that in a nonrelativisti Galilean-invariant theory the spae-timeoordinates an be related to the Galilean boosts by the following relation[5℄ Ki = mXLi : (1.4)The formulae (1.3{1.4) in a D = 2 + 1 nonrelativisti theory imply thatthe Galilean symmetry is endowed with two entral harges: one standard2



desribing mass m, and the seond \exoti", desribed by the parameter � in(1.3). Moreover, if we onsider the (2+1){dimensional nonrelativisti !1limit of a (2+1){dimensional relativisti theory, the parameter � determinesthe value of the nonrelativisti Abelian D = 2 spin [6℄.The nonommutativity of position oordinates an be obtained as a on-sequene of anonial quantization of dynamial models. Suh a result isvalid for string{inspired nonommutativity and for the (2 + 1){dimensionalGalilean models with nonommutative spatial oordinates. In our previouspaper [1℄ we have shown that a nonvanishing value of � (see (1.3)) an beintrodued by the following extension of the free lassial D = 2+ 1 partileation ( _a � ddta): L = m _x2i2 � k"ij _xi�xj : (1.5)The ation (1.5) ontains higher derivatives and their presene leads,after anonial quantization, to the introdution of nonommutative positionvariables.By omparison with formula (1.3), one an show thatk = ��m22 : (1.5a)The ation (1.5), in the Hamiltonian approah, is haraterized by a six-dimensional phase spae with two anonial momentapi = �L� _xi � ddt �L��xj = m _xi � 2k"ij�xj (1.6a)epi = �L��xi = k�ij _xj (1.6b)whih leads to the HamiltonianH = � m2k2 (epj)2 + 1k epk�klpl : (1.7)Introduing the variablesXLi = xi � 2m epi; Pi = pi; ePi = kmpi + �ij epj (1.8)we get H = �!P 22m � m�!~P 22k2 (1.9)3



and, onsidering (1.6b) as a onstraint, we see that we get the followingsympleti struture [1℄: fYA; YBg = 
AB ; (1.10)where 
 = 0B� 2km2 " 12 0�12 0 00 0 k2"1CA (1.11)and where YA = fXLi ; Pk; ~Plg.We see thati) the parameter k introdues nonommutativity in the oordinate setor1ii) the dynamis splits into the deoupled sum of the dynamis in thephysial setor (XLi ; Pi variables) and in the auxiliary setor ( ePi variable).In this paper we onsider the model (1.5) with eletromagneti intera-tion. Following the method of Faddeev and Jakiw [7, 8℄ we rewrite theLagrangian (1.5) in the �rst-order form, and introdue nonommutative o-ordinates Xi = XLi + 2km2 "ijPj ; (1.12)whih were reently introdued by Horvathy and Plyushhay [9℄. The non-ommutative oordinates (1.12) satisfy the relations (see (1.5a))fXi; Xjg = � 2km2 "ij = �"ij (1.13)and transform with respet to the Galilean boosts as omponents of a Galileantwo{vetor.The eletromagneti interation with a magneti potential an be intro-dued in two di�erent ways:i) By adding to the Lagrangian the termLint = eAi(Xi; t) _Xi : (1.14)Suh a way of introduing eletromagneti interation an be interpreted asorresponding to the modi�ation of the sympleti form of the system whihdetermines the nonommutative phase-spae geometry (1.10-1.11) [10℄.1(1.10-11) desribes lassial Poisson brakets whih are nonvanishing in the oordinatesetor. For onveniene, we will refet to this fat here and in the rest of this paper as`nonommutativity' both in the quantum and in the lassial ase.4



ii) One an introdue the minimal EM oupling by the replaementH0 = P 22m ! ~P22m = 12m ��!P � e�!A (Xi; t)�2 (1.15)and preserve the sympleti struture (1.10-1.13). In suh a way the inter-ation does not modify the nonommutative geometry, but hanges Abeliangauge transformations.The main aim of this paper is to onsider the ase ii), whih is relatedto models desribing the quantum Hall e�et, with generalised gauge trans-formations aompanied by area - preserving transformations (see e.g. [11℄{ [13℄)2 After onsidering in Set. 2 the �rst order formalism for our modelfrom [1℄ and the anonial struture of both models, i) and ii), we intro-due the area reparametrization - invariant formalism. In Set. 3 we showthat both possibilities are related to eah other by a lassial Seiberg-Witten(SW) map [3℄ supplemented by a nonanonial transformation of phase spaevariables for planar partiles. In suh a way we reover the known de�nitionof ovariantized oordinates [16℄ desribing the oordinate part of the non-anonial transformation in the phase spae desribing planar partiles. InSet 4 we onsider the Chern-Simons (CS) gauge interations of planar par-tiles and formulate the dynamis of the orresponding two-body problem.This leads to the deformed anyoni dynamis whih might then be applied tothe desription of the quantum Hall e�et. In Set 5 we onsider our modelwith statistial CS �elds in the eletromagneti bakground. We note thatfor the ritial value of the magneti bakground �eld strength we obtain thedesription of lowest Landau level for Quantum Hall E�et. In the last se-tion we omment on the seond quantization of our model [1℄ and outline therelativisti generalization to D = 3+1. Finally, in an appendix we introduea gauge �eld-dependent dreibein formalism.2Area-preserving transformations are the symmetry transformations for eletrons inthe lowest Landau level. They have been introdued in [14℄ and reently studied in [15℄.
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2 Two Ways of Introduing Minimal GaugeCouplingsFollowing Faddeev-Jakiw's method of desribing Lagrangians with higherorder derivatives [8℄ we desribe, equivalently, the ation (1.5) as (see [1℄)3L(0) = Pi( _xi � yi) + y2i2 + �2"ijyi _yj == Pi _xi + �2"ijyi _yj �H(y; P ) ; (2.1)where H(y; P ) = �y22 + Piyi : (2.2)Using the variables [9℄ Qi = �(yi � pi)Xi = xi + "ijQj ; (2.3)we see that our Lagrangian separates into two disonneted parts desribingthe \external" and \internal" degrees of freedom. Thus we haveL(0) = L(0)ext + L(o)int ; (2.4)with L(0)ext = Pi _Xi + �2"ijPi _Pj �H(0)ext (2.5a)L(0)int = 12�"ijQi _Qj �H(0)int (2.5b)where H(0)ext = 12�!P 2 ; H(0)int = � 12�2�!Q 2 : (2.6)From (2.5a-2.6) we obtain the following Poisson brakets (PBs) of theindependent sets of external and internal phase spae variables:fXi; Xjg = �"ij ;3For simpliity we give for all the partiles the same mass (m = 1 in appropriate units)and use � de�ned by (1.5a) (� = �2k) instead of k as the seond entral harge.6



fXi; Pjg = Æij ;fPi; Pjg = 0 ; (2.7)and fQi; Qjg = �� "ij ; (2.8)with all other PBs vanishing.Having separated o� the \internal" degrees of freedom (i.e. Lint) we nowproeed to ouple in the eletromagneti �eld. We ouple it to the \external"setor only. Hene in the remainder of this paper we shall not be onernedwith the \internal" setor of the theory (desribed by Qi and L(0)int). We note�rst that the ation (2.5a) desribes the model by Duval and Horvathy [10℄,with the sympleti struture given by the following Liouville form
 = PidXi + �2"ijPidPj �H(0)extdt : (2.9)The minimal oupling to the gauge �eld A�(�!x ; t) = (Ai(�!x ; t); A0(�!x ; t))an be introdued in the following two ways:2.1 Duval-Horvathy modelOne replaes the one-form (2.9) by:
! 
e = 
 + e(AidXi + A0dt) ; (2.10)whih orresponds to the addition of (1.14). Introduing dX� = (dXi; dt) themodi�ation (2.10) leads to the sympleti form with a standard additionorresponding to the minimal EM oupling! = d
 = dPi ^ dXi + �2"ijdPi ^ dPj � dH(0)extdt+e(12FijdXi ^ dXj � EidXi ^ dt) ; (2.11)where Fij = �iAj � �jAi = "ijB ; Ei = �iA0 � �tAi : (2.12)It is easy to see that the sympleti form (2.11) is invariant under standardgauge transformationsAi ! A0i = Ai + �i� ; A0 ! A00 = A0 + �t� : (2.13)7



The Lagrangian orresponding to (2.10) now beomesLext = LDH = (Pi + eAi) _Xi + �2"ijPi _Pj � 12�!P 2 + eA0 ; (2.14)whih may be brought by the point transformationPi ! P 0i = Pi + eAi ; (2.15)to the equivalent form:LDH = P 0i _Xi + �2"ij(P 0i � eAi)( _P 0j � e ddtAj) + eA0 � 12(P 0i � eAi)2: (2.16)The Lagrangian (2.14) is quasi-invariant under standard loal gauge trans-formations (2.13):Lext ! L0ext = Lext + �i� _Xi + �t� = Lext + ddt� : (2.17)The modi�ation (2.10), (2.11) has been onsidered in [10℄ and it leads tothe modi�ation of the PB struture (2.7) [10℄:fXi; Xjg = �"ij1� e�B ;fXi; Pjg = Æij1� e�B ;fPi; Pjg = eB"ij1� e�B : (2.18)2.2 Model with generalized gauge transformationsThe other possibility of a minimal oupling follows from the assumption thatthe sympleti struture (2.7) remains unhanged. This is the ase if weinsert the minimal substitution4Pi ! Pi = Pi � eÂi (2.19)H(0)ext ! H(0)ext � eÂ04The gauge �elds in this model we shall denote by hat (Â�; F̂n�) in order to distinguishthem from the orresponding quantities in the model of Duval and Horvathy [10℄.8



into the free Hamiltonian H(0)ext only.In this way we get, in plae of (2.16), the following LagrangianeLext = Pi _Xi + �2"ijPi _Pj � 12(Pi � eÂi)2 + eÂ0 : (2.20)The di�erene between both Lagrangians is in the 2nd term of (2.20).LDH (2.16) arises from L(0)ext by performing the minimal substitution (2.19)not only in H(0)ext but also in the seond term of L(0)ext.We note that the sympleti struture desribed by (2.7) is invariantunder the following in�nitesimal time-dependent area - preserving - loaloordinate transformationsÆXi = �e�"ij�j�(�!X; t) ÆPi = e�i�(�!X; t); (2.21)where � is in�nitesimal.If we supplement (2.21) by the transformation of the gauge �eldsÆÂ�(�!X; t) : = Â0�(�!X + Æ�!X; t)� Â�(�!X; t)= ���(�!X; t) ; (2.22)it is easy to hek that the Lagrangian (2.20) is quasi-invariantÆ eLext = e ddt(� + �2"ij�i�Pj) : (2.23)We note that (2.22) di�ers from the standard gauge transformation (2.13)by the simultaneous oordinate transformation5 (2.21). For the orrespond-ing hange Æ0Â� of the gauge �eld at �xed ~X we obtain from (2.21-22)Æ0Â�( ~X; t) := Â0�( ~X; t)� A�( ~X; t)= ���( ~X; t) + efA�( ~X; t);�( ~X; t)g (2.24)in plae of (2.13). Therefore we all the transformation (2.24) a generalisedgauge transformation. In deriving (2.24) from (2.22) we have used the PBs(p. (2.7)) fg; fg : = � �ij �ig �jf (2.25)for two generi funtions f and g.5For the mixing of gauge and oordinate transformation see also Jakiw et al. [17℄9



The equations of motion (EOM) derived from (2.20) are given by_Xi = ��"ij[e(Pk � eÂk)�jÂk + e�jÂ0℄ + Pi � eÂi ;_Pi = e(Pk � eÂk)�iÂk + e�iÂ0 ; (2.26)whih, having made use of (2.7), an be put into the Hamiltonian form_Xi = fXi; Hg ; _Pi = fPi; Hg ; (2.27)where H = 12(Pi � eÂi)2 � eÂ0 : (2.28)Let us rewrite the EOM (2.26) in terms of our new variable Pi (2.19).We obtain _Pi = e( bFikPk + bFi0) ; (2.29)with the invariant �eld strength6bF�� := �� bA� � �� bA� + efÂ�; Â�g (2.30)and _Xi + e�"ij�j bA0 = Pk(Æik � e�"ij�jAk) : (2.31)3 Seiberg-Witten (SW) Map and the Equiv-alene of the Two Planar Partile Modelswith Nonommutative StrutureIn this setion we show that our model, (2.20), and the one of Duval et al.,(2.14), are related to eah other by a nonanonial transformation of thephase spae variables (Xi; Pi) ! (�i;Pi) supplemented by a lassial SWmap between the orresponding gauge potentials.Let us introdue, besides the invariant Pi given by formula (2.19), theinvariant partile oordinates as follows7 (p [13℄):�i(�!X; t) := Xi + e�"ij bAj(�!X; t) : (3.1)6We draw attention to the di�erene from the model of Duval et al. [10℄ whih has astandard Abelian �eld strength.7p. [16,19℄ for the ase of nonommutative gauge theories10



Clearly from (2.21-22) we obtainÆ�i = 0 (3.2)but at �xed ~X the �elds �i transform asÆ�i = ef�i;�g: (3.3)It is easy to hek that the new phase-spae variables (�i;Pi) satisfy thenonanonial Poisson brakets (2.18)f�i; �jg = ��ij1� e�B(~�; t) ; (3.4)f�i;Pjg = Æij1� e�B(~�; t) ; fPi;Pjg = e�ijB(~�; t)1� e�B(~�; t)with the �eld B de�ned by (p. [20℄)B(~�; t) = B̂( ~X; t)1 + e�B̂( ~X; t) (3.5)where Xi is a funtion of �i as follows from (3.1).The relations (3.4) as well as (2.7) desribe, after quantization, two dif-ferent quantum phase spaes with nonommutative position setors.With (�i;Pi) as the new nonanonial phase-spae variables our L (2.20)beomes L = bLpart + �2"ijPi _Pj ; (3.6)where bLpart is given by the �-deformed partile Lagrangian in the preseneof gauge �elds de�ned in [13℄, i.e.bLpart = Pi _�i� 12P2i + e( bAi _Xi + bA0 + e�2 "ij bAi ddt bAj)� 12 ddt(e�"ijPi bAj) : (3.7)Moreover, we neglet the total time-derivative term whih is irrelevant forEOM.In order to express L in terms of (�i;Pi) we have to introdue a mapbA�(�!x ; t)! A�(�!� ; t) : (3.8)11



In aordane with [13℄ we de�ne (3.8) by the requirementbAi _Xi + bA0 + �2"ij bAi ddt bAj = Ai(�!� ; t) _�i + A0(�!� ; t) : (3.9)Eliminating at the l.h.s. of (3.9) _Xi in favour of _�i we obtain, by omparingthe oeÆients of _�i as well as of unity at both sides of (3.9), the relationsAk ��!� (�!X; t); t� = 12Âl(�!X; t)0�Ækl + ekl(�!X; t)1 + e� bB 1A (3.10)A0 ��!� (�!X; t); t� = Â0(�!X; t)� e�2(1 + e� bB) bAl(�!X; t)"kj�t bAj(�!X; t)ekl(�!X; t) ;(3.11)expressed in terms of the inverse dreibein, whih we disuss in more detailin the Appendix (see (A.6) and also [13℄, Eq. (24)).From (3.10-11) we derive a simple relation between the orresponding�eld strengths (p. [20℄)F��(~�; t) = F̂��( ~X; t)1 + e�B̂( ~X; t) : (3.12)The relations (3.10) and (3.11) are just the lassial limits of an inverseSW-map de�ned by replaing in the SW di�erential equation ([3℄, eq. (3.8))star produts by ordinary produts (p. ([21℄, set. 2) and ([20℄, set. 4.1)).They give us the required relation between our Lagrangian given by (2.20)and the one of Duval and Horvathy denoted by LDH and given by (2.14)L� bA�(�!X; t); _�!X;�!X;�!P ; _�!P )� = LDH(A�(�!� ; t);�!� ; _�!� ;�!P ; _�!P )): (3.13)Thus we see that the relations (3.10) and (3.11), supplemented by thetransformation (3.1) and (2.19), desribe within a lassial framework theSW map relating the planar partile dynamis in the presene of Abeliangauge �elds in two di�erent nonanonial phase spaes with two di�erentsympleti strutures. These sympleti strutures are either gauge �eldindependent (p. (2.7)) or gauge �eld dependent (p. (3.4)), (p. [20,21℄). Aharaterization of the SWmap as relating two di�erent sympleti strutureshas been onsidered also earlier (see e.g. [21,22℄) and provides an extension12



of the original formulation in terms of in�nitesimal gauge transformations [3℄in the presene of partile oordinates.The relation (3.13) is the entral result of our paper. We see that the twomodels desribing di�erent possibilities of introduing minimal eletromag-neti interation, one with the standard gauge transformations (see (2.13))and the other one with the generalized gauge transformations (see (2.24)),may be transformed into eah other by a loal Seiberg-Witten transformationaompanied by a hange of phase spae variables in the partile setor. Itshould be stressed that if � 6= 0, in both phase spaes, the Poisson brakets inthe oordinate setor imply nonommutative spae oordinates. In this waywe have ahieved an extension to � 6= 0 of a lassial SW map for standardpoint partiles with ommuting spae oordinates onsidered in [13℄.The total ation is obtained if we further add a pure gauge part of theation (Maxwell, Chern-Simons et.), with orresponding sympleti stru-tures (and, ultimately, one an add also our \internal" Lagrangian L(0)int). Inpartiular if the gauge �eld ations transform into eah other by the SW-map(3.10-3.11), the partile trajetories with gauge interation in the respetivephase-spaes are lassially equivalent i.e. may be expressed equivalently intwo nonanonial phase spae frameworks. It should be added that suh alassial equivalene might beome invalid after quantization due to the op-erator ordering problems providing �-dependent quantum orretions to thepartile interations.It is worth noting that, using arguments similar to ours, Jakiw et al.have presented in a very reent paper [19℄ the Seiberg-Witten map relatingthe Lagrange and Euler pitures in the presene of gauge �elds for anotherdynamial model: the �eld-theoretial formulation of uid mehanis.4 Chern-Simons Gauge Interation and theTwo-Body ProblemIn this Setion we derive the dynamis for two idential partiles desribedby our model (2.20) interating via Chern-Simons (CS) gauge interations.Let us start with the CS-ation of a bA� �eld invariant with respet to thegeneralized gauge transformation (2.24).
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We have (p. [11℄, [13℄)LCS = �2 Z d2x "��� bA� ��� bA� + e3fÂ�; Â�g� : (4.1)The extra (unusual) term in this expression is required by our generalisedgauge invariane as disussed in [11℄ and [13℄. Its origin an be traed to theappearane of an extra term in (2.30).Next we onsider the following total LagrangianLtot = 2X�=1 eLext;� + LCS (4.2)with eah of eLext given by (2.20).The variation of LCS with respet to the Lagrange multiplier �eld bA0leads to the well known Gauss onstraint�ij bB(�!x ; t) = F̂ij = ��ij e� 2X�=1 Æ(�!x ��!X�) : (4.3)Modulo asymptoti parts, whih do not ontribute to the Hamiltoniandesribing relative partile motion, we obtain a solution of (4.3) for bAk atthe partile position �!x = �!X 12 in the form [13℄bAk(X 12 ) = �"kj(X1 �X2)j�(j�!X 1 ��!X 2j) ; (4.4)with�(R) = 1e� 0�1�  1� e�R2!1=21A = 12 e�� 1R2 �1 + 14 ~� 1R2 + 0(�2)� ; (4.5)where R = j�!X j and e� := e2��� :With (4.4-4.5) and the position and momentum variables for the relativemotion �!X := �!X 1 ��!X 2 ; �!P := 12 ��!P 1 ��!P 2� ; (4.6)14



and by applying the Legendre transformation to (4.2) and using the Gauss -onstraint (4.3) we obtain the following Hamiltonian for the relative motionH = �!P 2 + 2e "ijXiPj + R2� !�(Xk)� e2��� (4.7)= �!P 2 + e2��"ijXiPj 1R2 + e44�2�2R2 +O (�) ;i.e. in the leading order of the �-expansion we reprodue the known anyoniHamiltonian.The phase-spae variables for the relative motion (4.6) obey, aordingto (2.7), the Poisson braket relationsfXi; Xjg = 2�"ij ;fXi; Pjg = Æij ;fPi; Pjg = 0 : (4.8)In order to quantize the Hamiltonian system (4.7-8) we proeed in threesteps:i) We replae the lassial struture (4.8) by ommutators of the orre-sponding operators fA; Bg ! 1i�h [Â; B̂℄; (4.9)where Â, B̂ denote the quantized variables.8ii) We solve the ordering problem arising from the nonommuting positionand momentum variables by symmetrizationPi�(Xk) ! 12 �P̂i�̂(X̂k) + �̂(X̂k)P̂i� : (4.10)iii)We replae the operator-valued funtions f̂(X̂k), ĝ(X̂k) of nonommut-ing position variables X̂k with loal multipliation by funtions f(yk), g(yk)depending on ommuting position variables yk and the nonloal Moyal-starprodut f̂(X̂k)ĝ(X̂k)  ! f(yk) � g(yk) :=8We hope that there is no onfusion here with the hat introdued before - for the �eldquantities of our model 15



f(yk) exp �i�h��ij �� i�!� j� g(yk) =: f �yk � �"klP̂l� g(yk); (4.11)where P̂i := �hi �i; (4.12)with �i := ��yi .Suh a quantization proedure leads to the Shr�odinger equation(��h2� � e2�k� � E) + 2e�ij(yi�(y)) � P̂j + 2e� (y2�(y)) � = 0: (4.13)In deriving (4.13) we have used the property that � is a funtion of onlyy := j~yj (see (4.5)) and thus �ij yi (P̂j�) = 0: (4.14)In this Setion we have been onsidering the gauge interation betweentwo idential partiles, with the same harge e. An interesting questionnow arises, as to whether the Poisson braket (4.8) for relative oordinatesshould depend on the hoie e1; e2 of harges at the points ~X1; ~X2. If weobserve that � is geometrially similar to the mass parameter, whih is alsoa Galilean entral harge, one an assume, by analogy, that � di�ers forpartiles with di�erent eletri harges. In order to obtain for N planarpartiles the invariant ation (4.2) we are led to the onsistant replaement� ! �e in the formulae of Set. 2-4. In suh a ase one gets for relativeoordinates (4.6) in the N = 2 ase the following modi�ation of the �rstformula (4.8) fX1; Xig = � � 1e1 + 1e2� ; (4.15)i.e. if e1 = �e2 we obtain fX1; X2g = 0, in agreement with the onlusionsof [23℄.5 Appliation: Statistial planar CS gaugeation and external eletromagneti bak-ground �elds5.1 Physial bakgroundIt is known that CS gauge transformations as well as CS gauge �elds inthe D = 2 + 1 Hamiltonian framework are used for the desription of the16



Frational Quantum Hall E�et (FQHE) (see e.g. [24,25℄) and represent uxtubes attahed to eletrons forming basi fermioni quasipartiles - ompositefermions (CF). However, formally suh CS gauge �elds are gradients, i.e. puregauge, the gauge funtions are multivalued and from the Stokes theorem itfollows that the CS gauge �eld strength is nonzero. In what follows thesegauge �elds ACS� , whih dress the eletrons in the Hamiltonian formulationof FQHE, will be alled statistial CS �elds.In a general ase one an embedd the system of CFs in an external ele-tromagneti bakground �eld Aext� (X), i.e. add to the CS ations onsideredin set. 2 additional gauge �eld ouplings. One an proeed in two ways:i) By modifying the minimal substitution (2.19) in the HamiltonianPi ! Pi � eÂi �! Pi ! Pi � eÂtoti ; (5.1)where Âtoti turns out to be a nonlinear funtion of ÂCSi and Âexti as givenbelow.ii) By adding to the Lagrangian (2.20) the bakground �eld term in theform of (1.14).We shall onsider below these two ouplings in our model, (2.20), whihis invariant with respet to the area-preserving oordinate transformations(2.21-22).5.2 Minimal oupling (5.1)Our main point here is, that for suh a oupling, the gauge �elds in our model(for � 6= 0) are nonadditive.Firstly, let us observe that in the DH Lagrangian (2.14) the gauge �eldsare oupled linearly, i.e. one gets Abelian addition formulaAtot� = ACS� + Aext� (5.2)but the gauge �elds Âtot� in our model will be the solution of the relations(3.10-11) and so (see (3.13))L(Âtot� ( ~X; t); ~X; _~X; ~P ; _~P ) = LDH(ACS� (~�; t) + Aext� (~�; t) ; ~�; _~�; ~P; _~P) (5.3)In order to have insight into the nonlinear struture of our deompositionof Âtot� we determine the SW map (3.10-11) for Âtot� in the lowest order of the� expansion using (3.1) (p. [3℄):Âtot� (~x; t) = Atot� (~x; t) � e�2 �ik Atoti (�kAtot� + F totk� ) + O(�2); (5.4)17



where Atot� is given by (5.2) and the �eld strength F totk� is related to Atot� by(2.12).The analogue of (5.4) for the �eld strength has been given in a losedform in (3.12), i.e. we haveB̂tot( ~X; t) = Btot(~�;t)1�e�Btot(~�;t) ; (5.5)Êtoti ( ~X; t) = Etoti (~�;t)1�e�Btot(~�;t) ;with ~� de�ned by (3.1) and F tot�� deomposing additivelyF tot�� = FCS�� + F ext�� : (5.6)As an obvious onsequene of this proedure we see that the minimal sub-stitution (5.1) for the total gauge �eld de�ned by (5.3) leaves the sympletistruture (2.7) unhanged.5.3 Hybrid ouplingIn this ase we ouple the CS and external �elds di�erently, introduing Aext�into the sympleti form as in (2.10). We assumeL = ~LCSext + e(Âexti _Xi + Âext0 ); (5.7)where ~LCSext is given by (2.20) with Â� replaed by ÂCS� . In this ouplingsheme, whih we all hybrid, the CS �eld is oupled via the minimal substi-tution rule (2.19) while the eletromagneti bakground �eld is oupled likein the Duval-Horvathy model.If we onsider the ase of onstant external �elds B̂ext and Êext we �ndthat the seond term in (5.7) beomes, modulo a gauge dependent totaltime-derivative term, e �12B̂ext �ij Xi _Xj + Êexti �Xi� : (5.8)Note that from the two terms in (5.8) the �rst one is known to be invariantwith respet to the time-independent area preserving oordinate transforma-tions ([12℄, [26℄), but the seond is not invariant. However, we an furthermodify the ation by adding the following term proportional to �:�e2�2 ���� F̂ ext�� ÂCS� : (5.9)18



With suh a term we obtain instead of (5.8)eB̂ext2 (�ijXi _Xj � 2e�ÂCS0 ) + eÊexti (Xi + e� �ijÂCSj ); (5.10)and we see that in the seond term of (5.8) Xi has beome replaed by theinvariant oordinate Xi + e� �ijÂCSj = �i( ~X; t).Note that (5.10) is quasi-invariant with respet to time-dependent area-preserving transformations (2.21-22)Æ(�ijXi _Xj � 2e�ÂCS0 ) = e� ddt (Xi�i� � 2�): (5.11)So we haveLhyb = ~LCSext + eB̂ext2 (�ijXi _Xj � 2e�ÂCS0 ) + eÊexti � �i: (5.12)We would like to make the following omments:(i) The additional terms (5.10) lead to the hange of the sympleti stru-ture from (2.7) to (2.18) with B = B̂ext.(ii) Expression (5.9) looks like the interation of an indued urrentJ�� : = �e�2 ���� F̂ ext�� (5.13)with the CS-gauge potential ÂCS� . Obviously, the urrent J�� is on-served.(iii) Arbitrary time-dependene of Êexti preserves the quasi-invariane ofLhyb with respet to the transformations (2.21-22). However, any spae-dependene of F̂ ext�� or time-dependene of B̂ext spoils it.One an onsider Lhyb given by (5.12) for the ritial value of the B �eldi.e. at B̂extrit = (e�)�1: (5.14)Then,� the two terms being proportional to ÂCS0 in (5.12) add up to zero andso, due to the Gauss onstraint, the ÂCSi beomes trivial, i.e. the CS�eld deouples from our partiles.19



� By the point transformation [10℄Xi ! qi : = Xi + � �ik Pk (5.15)one �nds as derived by Duval et al [10℄ thatLhyb = 12� �ij qi _qj (5.16)i.e. the partile phase-spae redues to two degrees of freedom. Fur-thermore, the partile EOM redue to the Hall onstraint [10℄Pi = e��ijEj: (5.17)We see, therefore, that in the ritial ase (5.14), even in the preseneof a CS-oupling, the Hilbert spae redues to the well known subspaeof the lowest Landau level desribing the Quantum Hall E�et.6 OutlookThe aim of this paper has been to disuss the ouplings with a gauge �eldof our planar partile model [1,9℄ whih provides, via anonial quantization,nonommutative position oordinates (see (2.7)). The relations (2.7) areinvariant under time-dependent area-preserving transformations (2.21).In our paper we have presented a oupling of Abelian gauge �elds whihtransform under generalized gauge transformations (see (2.24)) in a waywhih implies the invariane of the ation under the joint transformations(2.21) and (2.22). We have shown that after hanging the phase spae vari-ables for point planar partiles and introduing lassial SW transformationfor gauge �elds one an identify our model with the one ontaining gaugeoupling as presented by Duval and Horvathy [9,10℄. We would like to stresshere that our lassial SW transformation (see (3.10-12)) relates the gauge�elds formulated on two nonommutative oordinate spaes (see (2.18) and(2.7)) whih, only to the �rst order in �, oinides with the standard SWtransformations.Our results on the two-body problem, with the inlusion of an externalmagneti �eld, should be further extended. Detailed quantum mehanialalulations along the lines given in a reent paper by Correa et al [27℄ arealled for. 20



The onsiderations presented in this paper desribe nonrelativisti dy-namis in 2 + 1 dimensions. In suh a ase the ation (1.5) is Galilean-invariant. The analogous relativisti model an be onstruted in D = 1+1.In a general D-dimensional relativisti ase we ould introdue the followingextension of the ation for a relativisti massless partileL = 1e _X2� � ke2 _X� �X���� ; (6.1)where _X� � dX�ds and s desribes a parametrization of the partile trajetoryand e is an einbein variable transforming under reparametrization s0 = s0(s)by the formula e0(s0) = �ds0ds ��1 e(s). Unfortunately, if ��� is a onstant, theation (6.1) breaks the D-dimensonal Lorentz invariane9.One of the questions whih should be also addressed is the seond quan-tization of the model (1.5), i.e. the passage from the lassial and quantummehanis to the orresponding �eld-theoreti model.The required D = 2 + 1-dimensional �eld-theoreti model should havethe following properties10:i) In the limit � ! 0 it should beome the Shr�odinger theory for freenonrelativisti D = 2 partiles.ii) For � 6= 0 it should be invariant under the Galilei group with twoentral harges, m and �, and should lead to the nonvanishing value of �from the ommutator of generators of Galilei boosts.Finally we would like to observe that in this paper we have dealt onlywith the ouplings of Abelian gauge �elds. In order to onsider ouplednon-Abelian gauge �elds we would have to extend our model from [1℄ bysupplementing the spae-time geometry by new degrees of freedom desribingnon Abelian harge spae oordinates (see [31-34℄).9We would like to mention that the relativisti invariane an be restored if we promotethe onstant ��� to a one-dimensional �eld ���(s) (see e.g. [28℄).10Suh a model would help to solve the problem of the relation between the seondGalilean entral harge and spin, reently disussed by Hagen [29℄. A �rst attempt toonstrut suh a model has been done very reently by Horvathy et al. [30℄.
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Appendix - Gauge Field Dependent DreibeinFormalismIn this appendix we would like to derive a gauge �eld-dependent dreibeinformalism.We solve (2.31) for Pk and so getPk = _XiEik + E0k ; (A.1)where Eik = (1 + e� bB)�1(Æik + e�"kj�i bAj); (A.2)E0k = e�"ij�j bA0Eik (A.3)desribes a dreibein di�ering from the one proposed in [13℄, in the ase ofomponents (A.2), only by an invariant fator. The dreibein omponents(A.2-A.3) transform with respet to the transformations (2.21-22) as follows:ÆE�k = e�"ij(���j�)Eik ; (A.4)whih is a speial ase of the general transformation formula for a generi�eld f(�!X; t) [18℄ Æ(��f) = ��Æf + e�"kj(���j�)�kf : (A.5)The formulae (A.2-A.3) an be treated as the modi�ation, with non-vanishing torsion, of the torsion-less �-dependent dreibein presented in [13℄(see [13℄, formula (20)), with the omponents E00 = 1 and Ek0 = 0 keptunhanged.The inverse dreibeins e��E �� = Æ �� have a simple form (e k� � e�k)e 00 = 1 ; e 0i = 0e�k = Æ�k + e�"ik�i bA� (A.6)and provide the formula for the derivativeD� = e �� �� ; (A.7)whih is invariant under the loal transformations (2.21-22).22
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