
An infinite hierarchy in a class of

polynomial-time program schemes

Richard L. Gault∗,
Oxford University Computing Laboratory,

Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.

Iain A. Stewart∗,
Department of Computer Science, University of Durham,

Science Labs, South Road, Durham DH1 3LE, U.K.

Abstract

We define a class of program schemes RFDPS constructed around notions of forall-loops,

repeat-loops, arrays and if-then-else instructions, and which take finite structures as inputs,

and we examine the class of problems, denoted RFDPS also, accepted by such program

schemes. The class of program schemes RFDPS is a logic, in Gurevich’s sense, in that: every

program scheme accepts an isomorphism-closed class of finite structures; we can recursively

check whether a given finite structure is accepted by a given program scheme; and we can

recursively enumerate the program schemes of RFDPS. We show that the class of problems

RFDPS properly contains the class of problems definable in inflationary fixed-point logic (for

example, the well-known problem Parity is in RFDPS) and that there is a strict, infinite

hierarchy of classes of problems within RFDPS (the union of which is RFDPS) parameterized

by the depth of nesting of forall-loops in our program schemes. This is the first strict, infinite

hierarchy in any polynomial-time logic properly extending inflationary fixed-point logic (with

the property that the union of the classes in the hierarchy consists of all problems definable

in the logic). The fact that there are problems (like Parity) in RFDPS which cannot be

defined in many of the more traditional logics of finite model theory (which often have zero-

one laws) essentially means that existing tools, techniques and logical hierarchy results are

of limited use to us.

1 Introduction

One of the central open problems of finite model theory is whether there is a logic
capturing P. That is, does there exist a logic whose sentences define exactly the prob-
lems (the encodings of which are) recognizable by polynomial-time Turing machines?
Of course, in order to make sense of this question, one needs to say exactly what one

∗Supported by EPSRC Grant GR/M 12933. Most of the research in this paper was completed
whilst the authors were at the University of Leicester.

1

means by a ‘logic’. This has been done by Gurevich [10] who formulated a very liberal
definition which encompasses many different ‘traditional’ logics as well as a variety of
computational models. Over the years, a number of contenders have been suggested
as logics which might capture P but so far all such logics, whilst only defining prob-
lems in P, have subsequently been shown not to have the expressive power to define
every problem in P. Perhaps the best-known contender was inflationary fixed-point
logic with counting (see, for example, [5]). Immerman had suggested that this logic
might capture P, but this was later shown not to be the case by Cai, Fürer and
Immerman [4].

In this paper we introduce a new logic (in the sense of Gurevich) which defines
only problems in P. Whilst our logic is strictly more expressive than, for example,
inflationary fixed-point logic and can define problems such as Parity (the problem
consisting of all finite structures of even size over the empty signature), there are,
however, problems in P which are not definable in our logic. This comes as no
surprise to us as (intuitively) our logic lacks the sophistication we feel any such logic
must have were it to capture P. In any case, it is not our real aim here to develop a
logic which might capture P (though we feel that our logic might provide a stepping-
off point in the search for such a logic, as we mention in the Conclusion): our primary
motivation for introducing our logic is because such a logic arises naturally within
our ongoing systematic study of the expressive power of classes of program schemes.
Broadly speaking, program schemes are models of computation which are amenable to
logical analysis yet closer to the general notion of programs than logical formulae are.
Program schemes were extensively studied in the seventies, without much regard being
paid to an analysis of resources, before a closer complexity analysis was undertaken
in, mainly, the eighties. There are connections between program schemes and logics
of programs, especially dynamic logic. (The reader is referred to [2] for references
relating to the research mentioned in the preceding two sentences.)

We define our program schemes around ‘high-level’ programming constructs such
as arrays, while-loops, assignments, non-determinism, and so on, but so that the input
comes in the form of a finite structure and, in general, there is no access to a linear
ordering of the elements of the input structure. The program schemes defined in [16,
18] all involve arrays, while-loops and non-determinism. Allowing unrestricted access
to arrays enables one to accept PSPACE-complete problems, whilst by restricting
access to arrays (to be, in a sense, ‘write-once’), one can limit oneself to accept
only problems in NP (although there is still sufficient power to accept NP-complete
problems). Furthermore, classes of program schemes were defined in [2, 17] whereby
every problem accepted by such a program scheme is in P and, additionally, there
are such program schemes accepting P-complete problems. These program schemes
involve while-loops, a stack and non-determinism. So as to emphasise that these
models of computation are not given an ordering on the elements of an input structure,
amongst the results in the aforementioned papers are that the class of problems
accepted by any of the above classes of program schemes has a zero-one law (but,
interestingly, not necessarily because the problems can be defined in bounded-variable
infinitary logic as is often the case in finite model theory). On ordered structures, our
classes of program schemes capture the complexity classes P, NP and PSPACE as
appropriate (see also [15]).

In this paper, we introduce a class of program schemes RFDPS based on ar-

2

rays, if-then-else instructions and forall-loops, where our forall-loops result in parallel
executions of a portion of code, with one execution for each element of the input
structure. So as to provide a means for iteration, we allow portions of code to be
repeatedly executed n times, where n is the size of the input structure. The class of
program schemes RFDPS arose through our efforts to replace the notion of a while-
loop in earlier classes of program schemes with one of a forall-loop. Note that unlike
the program schemes mentioned in the previous paragraph, our program schemes are
deterministic (and every problem accepted by such a program scheme is in P).

Another ‘polynomial-time’ model of computation has recently been examined by
Blass, Gurevich and Shelah1. In [3], Blass, Gurevich and Shelah introduced a model
of computation C̃PTime, Choiceless Polynomial-Time, a program (ρ, p(n), q(n)) of
which is an adapted Abstract State Machine ρ (see [11, 12]) augmented with two
polynomial bounds, p(n) and q(n), with p(n) bounding the length of any run of
the machine on any input and q(n) bounding the number of ‘parallel executions’
in one of their forall-loops, where these polynomial bounds are in terms of the size
n of the finite input structure upon which the program works. Although such a
program takes a finite structure (over some relational signature) as input, it treats
the elements of this finite structure as atoms and has the potential to build certain sets
over these atoms and use these sets as new ‘elements’ in its ‘computational domain’.
Consequently, without restricting the run-time and the number of parallel executions,
the program would have the capacity to build a computational domain of arbitrary
size; indeed, it is not difficult to show that such an unrestricted program can simulate
an arbitrary Turing machine. The instructions, or rules in the terminology of [3],
of the programs of C̃PTime have similarities with those of the program schemes of
this paper. For example: there are dynamic function symbols and assignments via
update rules, whereas our program schemes have arrays and assignment-blocks; there
are conditional rules, whereas our program schemes have if-then-fi-blocks; and there
are do-forall rules, whereas our program schemes have forall-do-od-blocks. However,
there are a number of important differences between the computational model of Blass,
Gurevich and Shelah and ours, including the following. Their computational domain
fluctuates, whereas ours is fixed and is always the domain of the input structure.
Viewed as a logic, C̃PTime is three-valued (a program may accept, reject or neither
accept nor reject), whereas our program schemes always either accept or reject. A
program of C̃PTime has no access to the cardinality of the input structure, and
the problem Parity cannot be accepted by a program of C̃PTime (furthermore, it
has been reported in [3] that Shelah has shown that C̃PTime has a zero-one law),
whereas our program schemes have access to the size of the input structure and there
is such a program scheme accepting Parity . In order to force the abstract state
machine to accept polynomial-time solvable problems, the polynomial bounds p(n)
and q(n) must be imposed from without, whereas no such bounds need be imposed
upon our program schemes: our program schemes naturally accept only polynomial-
time solvable problems.

The motivation for the research in [3] was the search for an answer to the ques-
tion, stated earlier, of whether there is a logic capturing P. In turn, this question

1Actually, although their work was published before this paper was written, the actual research
was undertaken simultaneously and independently. The writing of our paper was delayed due to the
writing of the Ph.D. thesis of Gault within which the research presented here is included.

3

has motivated a search for logics capturing an increasing sub-class of the class of
polynomial-time solvable problems. The main results of [3] are that the class of prob-
lems accepted by the progams of C̃PTime properly contains the class of problems
accepted by Abiteboul and Vianu’s class of polynomial-time relational machines [1]
but that there are polynomial-time solvable problems, in particular Parity and the
problem Bipartite Matching (consisting of those bipartite undirected graphs whose
two sets in the partition have equal size for which there exists a perfect matching),
that are not accepted by any program of C̃PTime. In fact, it is also shown in [3]
that Bipartite Matching is not accepted by any program of C̃PTime+, an extension
of C̃PTime which allows access to a constant fixed at the size of the input structure
(however, Parity is accepted by a program of C̃PTime+). It is also claimed in [3] that
the class of problems accepted by the programs of C̃PTime includes any problem de-
finable in any other ‘polynomial-time logic’ in the literature (the authors presumably
mean only ‘natural polynomial-time logics’ and not augmentations of such by, for
example, counting quantifiers or Lindström quantifiers).

Our results are of a somewhat different flavour to those of [3] and, in a sense, are
more refined. We obtain a strong result which provides limitations on the problems
accepted by our program schemes, and we use this result to obtain a strict, infinite
hierarchy of classes of problems within the class of problems accepted by the program
schemes of RFDPS. These classes are parameterized by the depth of nesting of forall-
loops allowed in the defining program schemes, and the union of these classes is the
class of problems accepted by the program schemes of RFDPS. Consequently, each
class of problems in the hierarchy is definable by a logic in Gurevich’s sense. To our
knowledge, this is the first strict, infinite hierarchy in a polynomial-time logic properly
extending inflationary fixed-point logic (with the property that the union of the classes
of the hierarchy consists of the class of problems definable in the polynomial-time
logic). Our results are obtained by a direct analysis of computations of our program
schemes. Note that the existing hierarchy theorems of finite model theory, such as
those in [7, 8, 9], are of no use to us here given that all of these hierarchy results are
for explicit fragments of bounded-variable infinitary logic (which has a zero-one law),
whereas our computational model is, first, not defined in terms of traditional logics
and, second, is complicated by its ability to accept problems not having a zero-one
law.

Like the Choiceless Polynomial-Time model of Blass, Gurevich and Shelah, our
program schemes are different from other (polynomial-time) models of computation
more prevalent in database theory, such as the relational machines of Abiteboul and
Vianu [1], the extension of inflationary fixed-point logic with a symmetry-based choice
operator proposed by Gire and Hoang [6] and the extension of first-order logic with for-
loops proposed by Neven, Otto, Tyszkiewicz and Van den Bussche [14]. The models
of computation proposed by these researchers (and others) allow the construction of
whole relations as an atomic operation, whereas our construction of relations (stored
in arrays) is, in a sense, ‘one element at a time’. Some of these models are more
expressive than our class of program schemes but, unlike our class of program schemes,
no hierarchy results have been established. Hence, we do not discuss these models
further here (although the reader is referred to our comments in the Conclusion).

This paper is organized as follows. In Section 2, we detail the basic definitions
from finite model theory required throughout, and in Section 3 we define our class of

4

program schemes RFDPS and prove some lower bound results for RFDPS. In Section
4, we give a more formal semantics for our class of program schemes before proving
some limitations of the program schemes of RFDPS in Section 5. We present our
conclusions in Section 6.

2 Basic notions

Throughout, a signature σ is a tuple 〈R1, . . . , Rr, C1, . . . , Cc〉, where each Ri is a
relation symbol, of arity ai, and each Cj is a constant symbol: in the case that σ
consists only of relation symbols, we say that σ is relational . First-order logic over
some signature σ, FO(σ), consists of those formulae built from atomic formulae over
σ using ∧, ∨, ¬, ∀ and ∃; and FO = ∪{FO(σ) : σ is some signature}.

A finite structure A over the signature σ, or σ-structure, consists of a finite uni-
verse or domain |A|, together with a relation RA

i of arity ai for every relation symbol
Ri of σ, and a constant CA

j ∈ |A| for every constant symbol Cj (by an abuse of
notation, we often do not distinguish between constants or relations and constant or
relation symbols). A finite structure A whose domain has size n is said to have size n,
and we denote the size of A by |A| also (this does not cause confusion). The class of
all finite structures over the signature σ is denoted STRUCT(σ). A problem over some
signature σ consists of a subset of STRUCT(σ) which is closed under isomorphism.
Clearly, we can consider the classes of problems definable by the sentences of FO. We
denote this class of problems by FO also and do likewise with other logics and classes
of problems.

Let ϕ(x,y) ∈ FO(σ ∪ 〈R〉), for some signature σ and some relation symbol R, of
arity k, say, not in σ, be such that the free variables of ϕ are those of the k-tuple x
and the m-tuple y, where m ≥ 0 (with all variables distinct). Then

IFP[λx, R, ϕ(x,y, R)]

denotes the inflationary fixed-point relation of ϕ(x,y, R) with respect to R and x.
That is, for any σ-structure A and for any v ∈ |A|m,

IFP[λx, R, ϕA(x,v, R)] =
∞⋃

i=0

RA
i ,

where RA
0 is the empty relation and where for each i ≥ 0,

RA
i+1 = {u ∈ |A|k : A |= RA

i (u) ∨ ϕ(u,v, RA
i)}.

Inflationary fixed-point logic, denoted (±IFP)∗[FO], is the closure of first-order logic
with the operator IFP.

We denote by L∞ω the infinitary logic built as is first-order logic except that we
allow conjunctions and disjunctions of arbitrary (and not just finite) sets of formulae.
Obviously, any problem can be defined in L∞ω. So, let us turn to the bounded-
variable fragment. Let Ld

∞ω be the fragment of L∞ω where the only variables we
allow, free or bound, are x1, x2, . . . , xd; and define bounded-variable infinitary logic,
Lω
∞ω, as ∪∞

d=1Ld
∞ω. Let A and B be σ-structures, for some σ; let e be such that

5

0 ≤ e ≤ d; and let u ∈ |A|e and v ∈ |B|e. If for all ϕ ∈ Ld
∞ω with free variables

x1, x2, . . . , xe,
A |= ϕ(u1, u2, . . . , ue) ⇔ B |= ϕ(v1, v2, . . . , ve)

then we write
(A, u1, u2, . . . , ue) ≡Ld

∞ω (B, v1, v2, . . . , ve).

There is a well-known game-theoretic characterization of definability in Ld
∞ω. Two

players, Spoiler (who is male) and Duplicator (who is female), play the following
game on two structures A and B, over the same signature, where the game involves
d pairs of pebbles {(p1, q1), (p2, q2), . . . , (pd, qd)}. Each move of the game consists of
Spoiler placing some pebble pi or qi on some element of |A| or |B|, respectively, with
Duplicator replying by placing the other pebble of the pair on some element of the
other domain as appropriate (note that a pebble can be removed from one element of
a structure and placed on another element of that structure in a move of the game).
Consider some play of the game which is a (possibly infinite) set of moves. If after some
move the map |A| → |B| given by {pi �→ qi : pebble pi is in play} does not induce a
partial isomorphism from A to B then Spoiler wins the play of the game. If there is
no such move then Duplicator wins (when the play is necessarily of infinite length).
Duplicator has a winning strategy on A and B if she has a strategy by which she can
win every play of the game, i.e., a strategy by which she can continually maintain a
partial isomorphism between the pebbled elements no matter what Spoiler does. Let
u ∈ |A|e and v ∈ |B|e, where 0 ≤ e ≤ d. If Duplicator has a winning strategy in the
above d-pebble game when the pebbles p1, p2, . . . , pe start on u1, u2, . . . , ue and the
pebbles q1, q2, . . . , qe start on v1, v2, . . . , ve then we say that Duplicator wins the d-
pebble game on (A,u) and (B,v). The game-theoretic characterization of definability
in Ld

∞ω, due to Barwise, Immerman and Poizat (see [5]), can be stated as follows.

Theorem 1 Let A and B be two structures over the same signature and let u ∈ |A|e
and v ∈ |B|e, where 0 ≤ e ≤ d. The following are equivalent.

(i) (A, u1, u2, . . . , ue) ≡Ld
∞ω (B, v1, v2, . . . , ve).

(ii) Duplicator wins the d-pebble game on (A,u) and (B,v).

We do not actually use the above characterization result in its full generality, only
the notion of Duplicator winning the d-pebble game on (A,u) and (B,v). However,
it is useful for the reader to know the logical significance of the Duplicator winning
this game. We refer the reader to [5] for more details on the above definitions and
results, and for more results involving the above logics and notions.

3 A class of program schemes

We now define a class of program schemes based around a notion of a forall-loop,
rather than a while-loop (as was the case in [2, 16, 17, 18]), and where we disallow
non-determinism. We compensate for this lack of non-determinism by interpreting
our for-loops as the parallel execution(s) of a portion of code with one execution for
each element of the input structure.

6

Definition 2 (The syntax of our program schemes.) A program scheme ρ of RFDPS:
is over a signature σ; involves a finite set of variables {x1, x2, . . . , xk}, for some k ≥ 1;
and involves a finite set of array symbols {A1, A2, . . . , Ag}, for some g ≥ 0, where the
array symbol Ai has an associated arity ai ≥ 1.

The set of terms consists of: the variables {x1, x2, . . . , xk}; the constant symbols of
σ and the constant symbols 0 and max, which never appear in any signature; and the
array terms {Ai[τ1, τ2, . . . , τai

] : each τj is a variable or a constant symbol, and 1 ≤
i ≤ g} (note that we do not allow array terms to be nested).

A program scheme ρ consists of a finite sequence of blocks of instructions, the
constituent blocks , sandwiched between the input-instruction, INPUT(x1, x2, . . . , xk),
and the output-instruction, OUTPUT(x1, x2, . . . , xk), where each block is as follows.

• An assignment-block α is simply an instruction of the form

τ := τ ′ assignment-instruction

where τ is a variable or an array term and τ ′ is a variable, a constant symbol or
an array term. The scope of α is the actual assignment-instruction constituting
the block.

• An if-then-fi-block α is a sequence of instructions of the form

IF ϕ THEN if-instruction
α1 block of instructions
α2 block of instructions
. . .
αl block of instructions

FI fi-instruction

for some l ≥ 1, where ϕ is a quantifier-free first-order formula over σ∪{0,max}
whose free variables come from {x1, x2, . . . , xk} (note that we do not allow array
terms in ϕ). The scope of α is the union of the if-instruction, the fi-instruction
and the scopes of the blocks α1, α2, . . . , αl.

• A repeat-do-od-block α is a sequence of instructions of the form

REPEAT DO repeat-do-instruction
α1 block of instructions
α2 block of instructions
. . .
αl block of instructions

OD repeat-od-instruction

for some l ≥ 1. The scope of α is the union of the repeat-do-instruction, the
repeat-od-instruction and the scopes of the blocks α1, α2, . . . , αl.

• A forall-do-od-block α is a sequence of instructions of the form

7

FORALL xp WITH Aj
i DO forall-do-instruction

α1 block of instructions
α2 block of instructions
. . .
αl block of instructions

OD forall-od-instruction

for some l ≥ 1, where 1 ≤ p ≤ k, 1 ≤ i ≤ g and 1 ≤ j ≤ ai. The variable xp is
the control variable and the array symbol Ai is the control array symbol of the
forall-do-od-block. We say that the control variable xp is active in Ai in α at
index j (we shall define forall-do-od-blocks where the control variable is inactive
in a moment). The scope of α is the union of the forall-do-instruction, the forall-
od-instruction and the scopes of the blocks α1, α2, . . . , αl. Furthermore, there
are some additional constraints on α.

– There must exist at least one assignment-instruction in the scope of α
where the term on the left-hand side of the assignment is an array term
involving Ai.

– Any array term Ai[τ1, τ2, . . . , τai
] appearing in any assignment-instruction

(on the left or on the right) in the scope of α must be such that the term
τj is xp (the control variable).

– No array symbol apart from the array control symbol may appear in a
term on the left-hand side of any assignment-instruction in the scope of α.

– The control variable xp must not appear (as a solitary variable) on the
left-hand side of any assignment-instruction in the scope of α.

– Any other forall-do-od-block (with either an active or an inactive control
variable) whose instructions are in the scope of α must not have xp as its
control variable.

• We also allow forall-do-od-blocks α of the form

FORALL xp DO forall-do-instruction
α1 block of instructions
α2 block of instructions
. . .
αl block of instructions

OD forall-od-instruction

for some l ≥ 1, where 1 ≤ p ≤ k. The control variable xp is said to be inactive
in α. The scope of α is the union of the forall-do-instruction, the forall-od-
instruction and the scopes of the blocks α1, α2, . . . , αl. The constraints on α are
as follows.

– No array term appears on the left-hand side of any assignment-instruction
in the scope of α.

– The control variable xp must not appear (as a solitary variable) on the
left-hand side of any assignment-instruction in the scope of α.

8

– Any other forall-do-od-block (with either an active or an inactive control
variable) whose instructions are in the scope of α must not have xp as its
control variable.

The scope of the program scheme ρ consists of the union of the input-instruction, the
output-instruction and the scopes of the blocks forming ρ. A block appears in ρ if it
is used somewhere in the iterative process of building ρ; and we say that a block α
appears in the scope of another block α′ if the instructions in the scope of α are in
the scope of α′. The depth of nesting of an instruction in the scope of ρ or of a block
appearing in ρ is the number of forall-do-od-blocks in whose scope the instruction
or the block appears; and the depth of nesting of ρ is the maximum of the depth of
nesting of all instructions of ρ.

We can clearly write any program scheme as a sequence of instructions, start-
ing from the input-instruction and ending in the output-instruction, so that these
instructions are numbered consecutively.

Our name for our class of program schemes, RFDPS, is an acronym for ‘Repeat
Forall Deterministic Program Schemes’.

Now is an apposite time to make some observations as regards control variables
and control array symbols. Suppose that a forall-do-od-block α appears in the scope
of a forall-do-od-block β where the control variable of α is xi and the control variable
of β is xj (note that necessarily i �= j).

• If xi is active in α then xj is active in β and the control array symbols of α and
β are identical.

• If xj is inactive in β then xi is inactive in α.

Two forall-do-od-blocks can have the same control variable but if they do then neither
will appear in the scope of the other. As to why we impose the restrictions that we
do in Definition 2 will become clearer when we define the semantics of our program
schemes (essentially, our restrictions mean that we can treat control array variables
as ‘partitioned shared memory’).

Let us now explain how our program schemes compute (a more rigorous semantics
will be forthcoming in the next section).

Definition 3 (How our program schemes compute.) Any program scheme ρ, as in
Definition 2, takes a σ-structure A, of size n, say, as input. The variables and array
elements all take values from |A| with array elements indexed by tuples of elements
of the input structure (where the length of the tuple is the arity of the array symbol).
The program scheme ρ computes on input A in the obvious way except with the
following provisos.

• Prior to the computation, the constant symbols 0 and max are given arbitrary
distinct values from |A|. Initially, all variables and array elements are made
equal to 0.

• A repeat-do-od-block α of the form

9

REPEAT DO repeat-do-instruction
α1 block of instructions
α2 block of instructions
. . .
αl block of instructions

OD repeat-od-instruction

iteratively executes the blocks of instructions α1;α2; . . . ;αl in this order exactly
n times. The effect is precisely that of writing

α1;α2; . . . ;αl;α1;α2; . . . ;αl; . . . ;α1;α2; . . . ;αl (n repetitions)

which, of course, is impossible within our syntax as the value of n depends upon
the input structure.

• A forall-do-od-block α of the form

FORALL xp WITH Aj
i DO forall-do-instruction

α1 block of instructions
α2 block of instructions
. . .
αl block of instructions

OD forall-od-instruction

causes a ‘multi-way split’ in the computation so that n ‘child processes’ are set
off in parallel, each executing the blocks of instructions α1;α2; . . . ;αl and each
with its own ‘local copy’ of the variables of ρ (thus, the processes cannot use
these variables to somehow communicate with each other). The only difference
between the processes is that the variable xp takes a different value in each; that
is, for each u ∈ |A|, there is exactly one process in which the variable xp has
the value u. Whilst the value of xp does not change throughout any process (as
a consequence of our syntactic constraints), the values of other variables might
change within a process (so that the same variable has a different value in two
different processes).

However, the arrays are not local to the individual processes: each process
makes use of exactly the same arrays. Our syntactic conditions on forall-do-od-
blocks ensure that two different processes never have access to the same array
element of the array Ai (which is the only array whose values may change in any
process). Exclusive access is ensured because the only array terms involving Ai

allowed in assignment-instructions in the scope of α are those where the control
variable xp is the jth array index. Hence, in the child process corresponding
to the control variable xp having the value u ∈ |A|, the only elements of Ai to
which this process has (either read or write) access are elements of the form
Ai[u1, . . . , uj−1, u, uj+1, . . . , uai

], where u1, . . . , uj−1, uj+1, . . . , uai
∈ |A|. Note

that two processes might have read-access to the same array elements of other
arrays but no process has write-access to these arrays. The arrays can be con-
sidered as a form of ‘partitioned shared-memory’ where access is controlled so
that non-deterministic behaviour, such as races, does not occur (a race occurs

10

when two computational processes have access to the same variable and differ-
ent relative execution speeds of the processes can result in different values for
the variable).

When all child processes have reached the forall-od-instruction, they terminate
and the results of these child processes are registered as follows. Call those vari-
ables appearing on the left-hand side of an assignment-instruction in the scope
of α the local variables (note that there may be no local variables). The main
computation resumes at the instruction of ρ following the forall-od-instruction.
At this point, the value of xp is set to max if, in every child process, the values
of the local variables of α are all set at max on termination of the process;
otherwise the value of xp is set at 0. If α has no local variables then xp is always
set to max. The values of all variables apart from xp now take their original
values held immediately prior to the execution of the forall-do-od-block. The
values of the arrays stay as they are when all child processes have finished (as
we have described above, these array values are consistent). So, execution of a
forall-do-od-block: leaves all the values of variables, except possibly the control
variable, unchanged; has an effect which is signalled by the resulting value of
the control variable; and might change the values of some of the control ar-
ray elements but no other array elements. A forall-do-od-block in which the
control variable is inactive computes in exactly the same way as we have just
described (obviously, the situation is more straight-forward as no value of any
array element is changed due to the execution of such a forall-do-od-block).

The structure A is accepted by ρ if, and only if, there exist distinct values for 0 and
max for which the computation of ρ on input A reaches the output-instruction with
all variables set at max.

Essentially, what we are doing is ‘building in’ two distinct constants 0 and max
to our program schemes so that we might use these constants for initialization and
acceptance purposes. However, our definition of how we build the constants 0 and
max into our program schemes is slightly different to how we usually build constants
and relations into logics in finite model theory. For example, any problem in P can be
defined in inflationary fixed-point logic in the presence of a built-in successor relation
(a result due to Immerman and Vardi: see [5]). That is, for any problem Ω in P,
over some signature σ, there is a sentence ϕ of inflationary fixed-point logic over
the signature σ ∪ {succ, 0,max}, where succ is a binary relation and 0 and max are
constant symbols not in σ, such that for every σ-structure A:

(a) if A ∈ Ω then (A, succA, 0A,maxA) |= ϕ, for all successor relations succA over
A with minimum 0A and maximum maxA; and

(b) if A �∈ Ω then (A, succA, 0A,maxA) �|= ϕ, for all successor relations succA over
A with minimum 0A and maximum maxA,

where a successor relation over A is a binary relation of the form {(u0, u1), (u1, u2),
. . . , (un−2, un−1)}, where |A| = {u0, u1, . . . , un−1}, and the minimum element is u0 =
0A and the maximum element is un−1 = maxA.

One might be tempted to regard inflationary fixed-point logic with a built-in
successor relation as a logic. However, the problem of deciding whether a sentence ϕ

11

of inflationary fixed-point logic (and even first-order logic) with a built-in successor
relation is well-formed, in that it obeys (a) and (b), above, is undecidable (this follows
from Trakhtenbrot’s Theorem: see [5]), and it is reasonable to insist that any logic
should have a recursive syntax.

This motivated Gurevich to define what it means to be a logic (in the context of
capturing complexity classes). A logic L is given by a pair of functions (Sen, Sat)
satisfying the following conditions. The function Sen associates with every signature
σ a recursive set Sen(σ) whose elements are called L-sentences over σ. The function
Sat associates with every signature a recursive relation Satσ(A, ϕ), where A is a σ-
structure and ϕ is a sentence of L. We say that A satisfies ϕ (and write A |= ϕ) if
Satσ(A, ϕ) holds. Furthermore, we require that Satσ(A, ϕ) if, and only if, Satσ(B, ϕ)
when A and B are isomorphic.

If we were to build our constant symbols 0 and max into the program schemes of
RFDPS as is usually done in finite model theory then we would only be interested
in program schemes for which acceptance of an input structure is independent of the
particular pair of (distinct) values chosen for 0 and max. That is, not every program
scheme of RFDPS would accept an isomorphism-closed class of structures, and so not
every program scheme of RFDPS would be well-formed. However, with our notion of
acceptance, every program scheme of RFDPS is automatically well-formed (in fact,
the classes of problems accepted by the program schemes of RFDPS under the two
different notions of acceptance are identical but we do not prove this result here)
and this obviates the need to check that RFDPS is a logic. Also, with our notion of
acceptance, some fragments of RFDPS, to be defined later, are also logics (this fact
is not so clear if we adopt the alternative semantics). Note that whichever semantics
one adopts, we obtain a class of problems solvable in polynomial-time. However, if we
were to build a successor relation into a polynomial-time logic and adopt our semantics
then (assuming that the polynomial-time logic is rich enough) we could accept NP-
complete problems (such as the problem of deciding whether a given digraph has a
Hamiltonian cycle).

Remark 4 We make the following two comments.

(i) We can clearly simulate if-then-else-fi-blocks (with the obvious semantics) within
the program schemes of RFDPS.

(ii) We refer to ‘the’ computation of a program scheme on some input structure
as we assume that 0 and max have been fixed as two arbitrary but distinct
elements.

We phrase the following trivial observations in the form of a lemma.

Lemma 5 The computation of a program scheme ρ ∈ RFDPS on some input struc-
ture terminates; and every problem in RFDPS can be solved in polynomial-time.

In the next section, we provide a more formal semantics for our program schemes.
However, our definitions above are sufficiently detailed for us to now give examples
of some program schemes and the problems they accept, and also to obtain some
lower bounds on the computational power of the program schemes of RFDPS. To aid
readability: we allow our variables and array symbols to have different names from

12

xi and Ai; we assume that we are allowed to use if-then-else-blocks; and we indent in
typical programming style.

Example 6 Let σ2 = 〈E〉, where E is a binary relation symbol. Consider the fol-
lowing program scheme ρ of RFDPS where A and B are array symbols of arity 2.

1 INPUT(x, y, z, u, v)
2 FORALL x WITH A1 DO make A the input digraph adjacency
3 FORALL y WITH A2 DO matrix with 1’s on the leading diagonal
4 IF E(x, y) ∨ x = y THEN
5 A[x, y] := max
6 FI
7 OD
8 OD compute the transitive closure of the
9 REPEAT DO input digraph by iteratively multiplying
10 FORALL x WITH B1 DO the adjacency matrix by itself
11 FORALL y WITH B2 DO
12 B[x, y] := A[x, y] copy the array A into B
13 OD
14 OD
15 FORALL x WITH A1 DO
16 FORALL y WITH A2 DO
17 FORALL z DO
18 u := B[x, z]
19 v := B[z, y]
20 IF u = max ∧ v = max THEN
21 u := 0
22 v := 0
23 ELSE
24 u := max
25 v := max
26 FI
27 OD
28 IF z = 0 THEN
29 A[x, y] := max
30 FI
31 OD
32 OD
33 OD
34 FORALL x WITH A1 DO check that every pair appears in the
35 FORALL y WITH A2 DO transitive closure of the input digraph
36 z := A[x, y]
37 OD
38 z := y
39 OD
40 IF x = max THEN signal acceptance or rejection
41 y := max
42 z := max

13

43 u := max
44 v := max
45 FI
46 OUTPUT(x, y, z, u, v)

It is worthwhile noting how we simulate existential quantification in the above pro-
gram scheme. Essentially, we have a forall-do-od-block with inactive control variable
z (in line 17). Consequently, we have a child process for every possible value of z. An
affirmative answer to our check as to whether there are edges (x, z) and (z, y) results
in the local variables u and v being set to 0, otherwise they are set to max. Hence, at
the corresponding forall-od-instruction (at line 27), the value of z is set to 0 if, and
only if, two edges (x, z) and (z, y) exist, for some z. This is noted in lines 28-30.

This program scheme is such that acceptance and rejection is actually independent
of the particular distinct values chosen for 0 and max (a stronger condition than we
require); and a σ2-structure is accepted by ρ if, and only if, when considered as a
digraph, it is strongly connected.

Example 7 Let σ be any signature. Consider the following program scheme ρ of
RFDPS.

1 INPUT(x)
2 REPEAT DO
3 IF x = 0 THEN
4 x := max
5 ELSE
6 x := 0
7 FI
8 OD
9 OUTPUT(x)

This program scheme is such that acceptance and rejection is actually independent
of the particular distinct values chosen for 0 and max; and a σ-structure is accepted
by ρ if, and only if, it has odd size.

We now exhibit some lower bounds on the class of problems accepted by the
program schemes of RFDPS.

Theorem 8 There is a program scheme of RFDPS accepting any first-order definable
problem.

Proof We shall prove the result by induction on the quantifier-rank d of any first-
order formula where our induction hypothesis is: ‘Let σ be some signature and σ′ be
the expansion of σ with m additional constant symbols. For any first-order formula
ψ of quantifier-rank r less than d ≥ 1 over σ and with free variables x1, x2, . . . , xm,
say, there exists a program scheme ρ′ ∈ RFDPS over σ′ such that if ψ is considered
as a sentence over σ′ then for every σ′-structure A′:

• if A′ |= ψ then A′ |= ρ′; and

14

• if A′ �|= ψ then the computation of ρ′ on input A′ (no matter what the distinct
values given to 0 and max are) is such that the output-instruction is reached
with all variables involved in ρ′ having the value 0.

Moreover, ρ′ does not involve any array symbols and has depth of nesting r.’
First, the base case of the induction. Let ψ be quantifier-free. The following

program scheme suffices.

INPUT(y)
IF ψ THEN

y := max
ELSE

y := 0
FI
OUTPUT(x)

Now, suppose that the inductive hypothesis holds for all formulae of quantifier-
rank less than d. Let ϕ be a first-order formula of quantifier-rank d ≥ 1 of the
form ∃xmψ(x1, x2, . . . , xm), where x1, x2, . . . , xm are the free variables of ψ. By the
induction hypothesis, there exists a program scheme ρ′ over σ′, the expansion of σ
with m additional constant symbols, such that for every σ′-structure A′:

• if A′ |= ψ then A′ |= ρ′; and

• if A′ �|= ψ then the computation of ρ′ on input A′ is such that the output-
instruction is reached with all variables involved in ρ′ having the value 0.

Moreover, ρ′ does not involve any array symbols and has depth of nesting d−1. Let ρ
denote the program scheme ρ′ with the input- and output-instructions stripped away;
and suppose that the variables involved in ρ′ are those of the tuple y. Also, regard
xm now as a variable (not in y) as opposed to a constant symbol (we have assumed
that the name of the constant symbol of σ′ corresponding to the variable xm is xm

also). Define the program scheme ρ′′ over σ′′, the expansion of σ with a constant
symbol for each of the variables x1, x2, . . . , xm−1, as follows.

INPUT(y, xm)
FORALL xm DO

ρ′

IF y = 0 THEN
y := max

ELSE
y := 0

FI
OD
IF xm = max THEN

(y, xm) := (0, 0)
ELSE

(y, xm) := (max,max)
FI
OUTPUT(y, xm)

15

The shorthand used above should be obvious (except that 0 and max denote tu-
ples of the constant symbols 0 and max, respectively, of the appropriate lengths).
The program scheme ρ′′ is clearly as required. The case where ϕ is of the form
∀xmψ(x1, x2, . . . , xm) is similar. The result follows by induction.

Theorem 9 There is a program scheme of RFDPS accepting any problem definable
in inflationary fixed-point logic.

Proof Let ϕ(y, z) be a formula of inflationary fixed-point logic of the form

IFP[λx, R, ψ(x,y, R)](z),

where: |x| = |z| = k; R is a relation symbol of arity k, not in the underlying signature
σ; and ψ is a formula with free variables those of the k-tuple x and the m-tuple y
such that there exists a program scheme ρ′ over σ′, the extension of σ with k + m
additional constant symbols called x1, x2, . . . , xk, y1, y2, . . . , ym, with the following
properties. Involved in ρ′ is an array symbol B of arity k such that B does not
appear on the left-hand side of an assignment-instruction. We shall regard the array
symbol B as being ‘free’ in the sense that we shall set the values of its elements from
without; and we shall only be interested in valuations of B for which every element is
either 0 or max. In this way, B models a k-ary relation over the elements of the input
structure. Furthermore, the program scheme ρ′ is such that for every σ-structure
A, for every k-tuple u and m-tuple v over |A| and for every array valuation val(B)
modelling the k-ary relation R, as above,

((A,u,v), val(B)) |= ρ′ if, and only if, ψA(u,v, R)

(of course, (A,u,v) is the σ′-structure obtained from A by augmenting A with the
k +m constants (u,v)).

Suppose that the variables involved in the program scheme ρ′ are those of the
tuple w, and regard the additional constant symbols x1, x2, . . . , xk now as variables.
Consider the program scheme ρ over σ′′, the extension of σ with m additional constant
symbols y1, y2, . . . , ym, built as follows (where A is another array symbol of arity k).

INPUT(w, x)
FORALL x1 WITH A1 DO initialize A to 0

FORALL x2 WITH A2 DO
. . .
FORALL xk WITH Ak DO

A[x1, x2, . . . , xk] := 0
OD
. . .

OD
OD
REPEAT DO k nested repeat-do-od-

REPEAT DO blocks
. . .
REPEAT DO

FORALL x1 WITH B1 DO copy A to B

16

FORALL x2 WITH B2 DO
. . .
FORALL xk WITH Bk DO

B[x1, x2, . . . , xk] := A[x1, x2, . . . , xk]
OD
. . .

OD
OD
FORALL x1 WITH A1 DO

FORALL x2 WITH A2 DO
. . .
FORALL xk WITH Ak DO

w := 0 ρ′ has its input- and
ρ′ output-instructions
IF w = max THEN stripped away

A[x1, x2, . . . , xk] := max
FI

OD
. . .

OD
OD

OD
. . .

OD
OD
(w,x) := (max,max)
OUTPUT(w, x)

The program scheme ρ is such that for every σ-structure A and for every m-tuple u
over |A|, (A,u) |= ρ and on termination, the array element A[z] encodes ϕA(u, z),
the inflationary fixed point of ψA(x,u, R).

Immerman [13] proved that every problem definable in inflationary fixed-point
logic can be defined by a sentence of the form

∃z1∃z2 . . . ∃zkIFP[λx, R, ψ(x, R)](z1, z2, . . . , zk),

where ψ is first-order. A combination of the above construction and that of Theorem 8
yields the required result.

4 A more formal semantics

Having introduced the program schemes of RFDPS, let us now give a more formal
description of a computation of a program scheme on some finite structure. This
more formal description will be necessary when we come to prove some (very refined)
limitations of our program schemes.

Let the program scheme ρ ∈ RFDPS be over the signature σ, and involve the
variables of {x1, x2, . . . , xk} and have h instructions. Let A be a σ-structure of size
n. An instantaneous description (ID) of ρ on A is a tuple (V,A, I,R) consisting of:

17

• a tuple V which contains a value of |A| for every variable of {x1, x2, . . . , xk}
(with the components ordered in some canonical fashion);

• a tuple A which contains a value of |A| for every array element of

{A[u1, u2, . . . , ua] : A is an array symbol in ρ, of arity a, and
u1, u2, . . . , ua ∈ |A|}

(with the components ordered in some canonical fashion);

• a number I ∈ {1, 2, . . . , h}; and

• if instruction I of ρ is within the scope of r repeat-do-od-blocks then an r-tuple
R of numbers from the set {1, 2, . . . , n}.

We can represent a computation of ρ on A as a labelled acyclic digraph G(ρA),
whose vertices are labelled with IDs of ρ on input A, built as follows. Start with two
vertices q0 and q1, and an edge (q0, q1). Label the vertex q0 with the ID (V,A, I,R) =
(0,0, 1, ε) (this represents the values of the variables and the array elements and the
instruction about to be executed in the computation of ρ on input A initially, where ε
denotes the empty tuple). If the second instruction is not a repeat-do-instruction then
label the vertex q1 with the ID (0,0, 2, ε), otherwise label q1 with the ID (0,0, 2, (1))
(this represents the values of the variables and the array elements and the instruction
about to be executed after execution of the first instruction, the input-instruction,
of ρ on input A). Now apply the following rules until these rules can no longer be
applied.

• If the instruction associated with (the ID labelling a) vertex q is an assignment-
instruction of the form τ := τ ′, where τ and τ ′ are terms, then create a new
vertex q′ and include the edge (q, q′). Label the vertex q′ with the same ID as
that labelling vertex q except:

– with the value of the term τ altered so that it is made equal to the value
of the term τ ′ (where value means according to the ID labelling vertex q);

– with the value of I increased by 1; and

– if the instruction whose number is the new value of I is a repeat-do-
instruction then tag an extra component onto the tuple R and give this
component the value 1.

• If the instruction associated with vertex q is an if-instruction, involving some
test ϕ, then create a new vertex q′ and include the edge (q, q′). Label the vertex
q′ with the same ID as that labelling vertex q except:

– with the value of I increased by 1 if the test ϕ holds in A when the values
of any terms in ϕ are taken according to the ID labelling vertex q;

– with the value of I made equal to 1 plus the number of the fi-instruction
corresponding to the if-instruction if the test ϕ does not hold; and

– if the instruction whose number is the new value of I is a repeat-do-
instruction then tag an extra component onto the tuple R and give this
component the value 1.

18

• If the instruction associated with vertex q is a fi-instruction then create a new
vertex q′ and include the edge (q, q′). Label the vertex q′ with the same ID as
that labelling vertex q except:

– with the value of I increased by 1; and
– if the instruction whose number is the new value of I is a repeat-do-

instruction then tag an extra component onto the tuple R and give this
component the value 1.

• If the instruction associated with vertex q is a repeat-do-instruction then create
a new vertex q′ and include the edge (q, q′). Label the vertex q′ with the same
ID as that labelling vertex q except:

– with the value of I increased by 1; and
– if the instruction whose number is the new value of I is a repeat-do-

instruction then tag an extra component onto the tuple R and give this
component the value 1.

• If the instruction associated with vertex q is a repeat-od-instruction then create
a new vertex q′ and include the edge (q, q′). Label the vertex q′ with the same
ID as that labelling vertex q except:

– if the value of the final component of R is not equal to n then increase
this value by 1 and set the value of I to be the value of the corresponding
repeat-do-instruction; or

– if the value of the final component of R is equal to n then remove the final
component from R and increase the value of I by 1, unless the instruction
whose number is the new value of I is a repeat-do-instruction when we do
not remove this final component but simply reset it to 1.

• If the instruction associated with vertex q is a forall-do-instruction, for which
the control variable is xp, then create n new vertices q0, q1, . . . , qn−1 and include
edges (q, q0), (q, q1), . . . , (q, qn−1). Label the vertices of {q0, q1, . . . , qn−1} with
the same ID as that labelling vertex q except:

– with the values of xp (in V) in each of the IDs set at a unique value of |A|;
– with the value of I increased by 1; and
– if the instruction whose number is the new value of I is a repeat-do-

instruction then tag an extra component onto the tuple R and give this
component the value 1.

• If the instruction associated with vertex q is a forall-od-instruction of a forall-
do-od-block α, where the control variable corresponding to this instruction is
xp, then find the (unique) first ancestor q′′ of q (working backwards up the
already constructed acyclic digraph) for which the instruction associated with
q′′ is the forall-do-instruction corresponding to our forall-od-instruction. Let
Q be the set of leaves, i.e., vertices of out-degree 0, of the already constructed
acyclic digraph that are descendants of q′′. If the instruction associated with
every vertex of Q is our forall-od-instruction then create a new vertex q′ and
include edges {(q, q′) : q ∈ Q}. Label the vertex q′ with the following ID.

19

– The value of V is the same as the value of V in the ID labelling vertex
q′′ except if the values of the local variables of α in the IDs labelling the
vertices of Q are all max then the value of xp is made equal to max;
otherwise it is made equal to 0. If α has no local variables then the value
of xp is made equal to max.

– The values of the array elements of A are as they are in the ID labelling
vertex q′′ except that if any of these array elements has a different value in
any of the IDs labelling vertices of Q then the value of the array element
in the ID labelling the vertex q′ is the new value at this vertex of Q (note
that because of our syntactic restrictions on forall-do-od-blocks, all array
elements in the ID labelling q′ are well defined).

– The value of I is increased by 1.

– The values of R are the same as in the ID labelling vertex q′′, unless the
instruction whose number is the new value of I is a repeat-do-instruction
when we tag an extra component onto the tuple R and give this component
the value 1.

For any block α appearing in ρ, there might be a number of connected components
of G(ρA) corresponding to α (where by ‘connected’ we mean with respect to the
underlying undirected graph obtained from G(ρA) by replacing all directed edges with
undirected ones): this is because the block α might appear in the scope of a repeat-
do-od-block or a forall-do-od-block. We call the subgraphs of G(ρA) corresponding
to these connected components images of α in G(ρA), and we denote an image by
ImA(α) (it is always clear as to which image of α we are referring). Note that every
image has a source, the unique vertex of in-degree 0, and a sink , the unique vertex
of out-degree 0. Note also that the sink of one image will generally be the source of
another image, and that the digraph G(ρA) is formed by gluing together images of
blocks by identifying sources and sinks. The source of G(ρA) is the unique vertex of
in-degree 0, and the sink of G(ρA) is the unique vertex of out-degree 0. We can clearly
talk of a child and a parent of a vertex of G(ρA) (indeed, we have already spoken of
ancestors and descendants).

Let q be a vertex of G(ρA) and let τ be some term. We denote by q(τ) the value
of the term τ in the ID labelling the vertex q (note that if τ is an array term then
we must instantiate the appropriate values for the index terms). The input structure
A is accepted by ρ if, and only if, the ID labelling the sink, s, of G(ρA) is such that
s(x1) = max, s(x2) = max, . . ., s(xk) = max.

A cut in G(ρA) is a set U of vertices such that the source of G(ρA) is in U and
the vertices of U form a connected component (in the above sense). A vertex q of
G(ρA) \U is a successor vertex of the cut U if there exists an edge from a vertex of U
to q. A leaf of U is a vertex of U from which there is no edge to another vertex of U .

5 Some limitations of our program schemes

We begin by proving some limitations on the actual values held by variables and array
elements throughout a computation of a program scheme of RFDPS on some input
structure. Essentially, Lemma 10’s intuitive interpretation is as follows.

20

• A non-control variable can only ever assume a value equal to a constant or that
of a control variable within whose associated block the non-control variable
appears.

• An array value can only ever be equal to a constant or that of one of the variables
used to index it.

We use the following shorthand in what follows: we denote the set of constant symbols
from a signature σ in union with the set {0,max} by κσ.

Lemma 10 Let ρ ∈ RFDPS involve the variables x1, x2, . . . , xk (and no others) and
be over the signature σ. Let A be some σ-structure and let q be some vertex of G(ρA)
for which the associated instruction I is in the scope of forall-do-od-blocks in ρ whose
control variables are (w.l.o.g.) x1, x2, . . . , xm, for some m ≥ 0.

(i) If I is not a forall-do-instruction then

{q(xm+1), q(xm+2), . . . , q(xk)} ⊆ κσ ∪ {q(x1), q(x2), . . . , q(xm)};

and if I is a forall-do-instruction, with control variable xm, say, then

{q(xm), q(xm+1), . . . , q(xk)} ⊆ κσ ∪ {q(x1), q(x2), . . . , q(xm−1)}.

(ii) Let A be any array symbol, of arity a, say, and let (u1, u2, . . . , ua) ∈ |A|a. Then

q(A[u1, u2, . . . , ua]) ∈ κσ ∪ {u1, u2, . . . , ua}.

Proof We shall show that if (i) and (ii) hold for all vertices in a cut of G(ρA) then
they hold for any successor vertex of this cut. As the statement trivially holds for
the source of G(ρA), the result will follow by induction. There are a number of cases,
depending upon the type of the instruction associated with a leaf or leaves of our cut.

Suppose that the instruction associated with a leaf q of our cut is a repeat-do-
instruction, a repeat-od-instruction, an if-instruction, a fi-instruction or a forall-do-
instruction. Then (i) and (ii) trivially hold for any successor vertex of q in G(ρA).
(Let us remark that if the instruction associated with a successor vertex of q is a
forall-do-instruction then we have another control variable to contend with. However,
note that this control variable was not a control variable at q and so (i) still holds at
a successor vertex of q . This remark applies throughout.)

Suppose that the instruction I associated with a leaf q of our cut is an assignment-
instruction and let the successor vertex of q in G(ρA) be q′.

• If I is of the form xi := τ , for some variable or constant symbol τ , then (i) and
(ii) can easily be seen to hold for q′ (note that i �∈ {1, 2, . . . ,m}).

• If I is of the form xi := B[τ ′1, τ
′
2, . . . , τ

′
b], for some array symbol B, of ar-

ity b, say, then q(B[τ ′1, τ
′
2, . . . , τ

′
b]) ∈ κσ ∪ {q(τ ′1), q(τ ′2), . . . , q(τ ′b)} and q(τ ′j) ∈

κσ ∪ {q(x1), q(x2), . . . , q(xm)}, for each j ∈ {1, 2, . . . , b}. So, q′(xi) ∈ κσ ∪
{q(x1), q(x2), . . . , q(xm)} and q(xj) = q′(xj), for each j ∈ {1, 2, . . . ,m} (again,
note that i �∈ {1, 2, . . . ,m}). Hence, (i) and (ii) hold for q′.

21

• If I is of the form A[τ1, τ2, . . . , τa] := τ , where A is an array symbol, of arity a,
say, and where τ is a variable or a constant symbol, then q′(A[τ1, τ2, . . . , τa]) ∈
κσ ∪ {q(x1), q(x2), . . . , q(xm)} = κσ ∪ {q′(x1), q′(x2), . . . , q′(xm)}. However, as
I is in the scope of forall-do-od-blocks with control variables x1, x2, . . . , xm,
we have that {x1, x2, . . . , xm} ⊆ {τ1, τ2, . . . , τa}. Hence, q′(A[τ1, τ2, . . . , τa]) ∈
κσ ∪ {q′(τ1), q′(τ2), . . . , q′(τa)}, and (i) and (ii) hold for q′.

• If I is of the form A[τ1, τ2, . . . , τa] := B[τ ′1, τ
′
2, . . . , τ

′
b], where A and B are array

symbols, of arities a and b, say, then q′(A[τ1, τ2, . . . , τa]) ∈ κσ∪{q(τ ′1), q(τ ′2), . . . ,
q(τ ′b)}. Also, q(τ ′j) ∈ κσ ∪ {q(x1), q(x2), . . . , q(xm)}, for each j ∈ {1, 2, . . . , b}.
However, because I is in the scope of forall-do-od-blocks with control vari-
ables x1, x2, . . . , xm, we have that {x1, x2, . . . , xm} ⊆ {τ1, τ2, . . . , τa}. Hence, as
q(xj) = q′(xj), for each j ∈ {1, 2, . . . ,m}, we have that (i) and (ii) hold for q′.

Let α be a forall-do-od-block, with control variable xm, say, and let ImA(α)
be an image of α in G(ρA) so that every vertex of ImA(α) apart from the sink
is in our cut. Denote the sink of ImA(α) by q′ and the source by p. Consider
q′(A[u1, u2, . . . , ua]), where A is some array symbol of arity a, say, and u1, u2, . . . , ua ∈
|A|. As (i) and (ii) hold for p and every parent of q′ in ImA(α), we have that
(ii) also holds for q′. It is also the case that q′(xm) ∈ {0,max} and q′(xj) =
p(xj) ∈ κσ ∪ {p(x1), p(x2), . . . , p(xm−1)} = κσ ∪ {q′(x1), q′(x2), . . . , q′(xm−1)}, for
each j ∈ {m+ 1,m+ 2, . . . , k}. Hence, (i) holds for vertex q′. The result follows by
induction.

We now turn to our main result (note that, by Theorem 1, we think of A ≡Ld
∞ω B

in game-theoretic terms). We emphasise that the following theorem only holds for
structures of equal size.

Theorem 11 Let ρ ∈ RFDPS be over the signature σ and have depth of nesting
d ≥ 0. Let A and B be σ ∪ {0,max}-structures of equal size such that 0A �= maxA,
0B �= maxB and A ≡Ld

∞ω B. Then

A |= ρ if, and only if, B |= ρ.

Proof We begin with some definitions and notation before we outline the structure
of the proof.

Let the variables involved in ρ be x1, x2, . . . , xk and let the constant symbols of
σ be C1, C2, . . . , Cc, where c ≥ 0. Let α be any block of instructions appearing in
ρ. Suppose that α is in the scope of forall-do-od-blocks β1, β2, . . . , βm with control
variables x1, x2, . . . , xm, respectively, for some m ≥ 0, and suppose further that block
βi+1 is in the scope of block βi, for each i ∈ {1, 2, . . . ,m− 1}.

Let ImA(α) and ImB(α) be images of α in G(ρA) and G(ρB), respectively, and let
sA and tA be the source and the sink of ImA(α), and sB and tB the source and sink of
ImB(α). Write κσ(A) for {0A,maxA, CA

1 , C
A
2 , . . . , C

A
c }, with κσ(B) defined similarly.

Definition 12 We write As ≡Ld
∞ω Bs to denote that the following two conditions

hold:

(i) (A, sA(x1), sA(x2), . . . , sA(xm)) ≡Ld
∞ω (B, sB(x1), sB(x2), . . . , sB(xm));

22

(ii) for each i ∈ {m+ 1,m+ 2, . . . , k}, one of the following is true:

– sA(xi) = sA(xj) and sB(xi) = sB(xj), for some j ∈ {1, 2, . . . ,m},
or

– sA(xi) = CA and sB(xi) = CB, for some C ∈ κσ.

Let us reiterate the comment made after Definition 2 but in the present context.
Consider the forall-do-od-blocks β1, β2, . . . , βm. Note that if xi is active in the array
symbol A in βi then xj is active in (the same array symbol) A in βj , for each j ∈
{1, 2, . . . , i − 1}; and if xi is inactive in βi then xj is inactive in βj , for each j ∈
{i + 1, i + 2, . . . ,m}. In particular: either there exists a unique array symbol A so
that xi is active in A in βi, for at least one i ∈ {1, 2, . . . ,m}, when we say that A is
the array symbol associated with α; or xi is not active in βi, for each i ∈ {1, 2, . . . ,m},
when we say that α has no associated array symbol. Whenever α has an associated
array symbol, which we always take to be the array symbol A, of arity a, say, and
f ∈ {1, 2, . . . ,m} is the maximal such element for which xf is active in A in βf then
w.l.o.g. we assume that xi is active in A in βi at index i, for every i ∈ {1, 2, . . . , f}
(throughout, f always refers to this particular index if α has an associated array
symbol).

Definition 13 Suppose that As ≡Ld
∞ω Bs. Let um+1, um+2, . . . , ud ∈ |A| and let

vm+1, vm+2, . . . , vd ∈ |B| be such that

(A, sA(x1), . . . , sA(xm), um+1, . . . , ud) ≡Ld
∞ω (B, sB(x1), . . . , sB(xm), vm+1, . . . , vd).

Define πs to be the natural map from κσ(A) ∪ {sA(x1), . . . , sA(xm), um+1, . . . , ud}
to κσ(B) ∪ {sB(x1), . . . , sB(xm), vm+1, . . . , vd} (note that this map is well-defined
and depends upon um+1, um+2, . . . , ud, but we have suppressed this fact in the no-
tation). We say that sA and sB are array-consistent at (um+1, um+2, . . . , ud) and
(vm+1, vm+2, . . . , vd) if

πs(sA(B[w])) = sB(B[πs(w)])

(with πs applied point-wise) whenever w ∈ (κσ(A)∪ {sA(x1), . . . , sA(xm), um+1, . . . ,
ud})b and either

• B is an array symbol, of arity b, say, and different from the associated array
symbol of α, if there is one

or

• there is an associated array symbol A of α, B = A and wi = sA(xi), for each
i ∈ {1, 2, . . . , f}

(note that, by Lemma 10, πs(sA(B[w])) is always well-defined). If sA and sB are
array-consistent at (um+1, um+2, . . . , ud) and (vm+1, vm+2, . . . , vd), for every um+1,
um+2, . . . , ud ∈ |A| and vm+1, vm+2, . . . , vd ∈ |B| for which

(A, sA(x1), . . . , sA(xm), um+1, . . . , ud) ≡Ld
∞ω (B, sB(x1), . . . , sB(xm), vm+1, . . . , vd)

then we say that sA and sB are array-consistent (note that the notion of array-
consistency is symmetric).

23

We shall proceed by induction on the building process for the constituent blocks
of ρ. The following will be our induction hypothesis: ‘For all images ImA(α) and
ImB(α), if As ≡Ld

∞ω Bs and sA and sB are array-consistent then At ≡Ld
∞ω Bt and tA

and tB are array-consistent ’. If we can prove our induction hypothesis then, as ρ is
essentially a finite sequence of blocks of instructions, we can apply it to the program
scheme ρ on input A and B as follows. If sA and sB are the sources of the (unique)
images of the first block of ρ and tA and tB are the sinks of the (unique) images of the
last block of ρ then the facts that As ≡Ld

∞ω Bs and sA and sB are array-consistent
implies that, in particular, At ≡Ld

∞ω Bt, with all variables of ρ on input A being set
at max on termination if, and only if, all variables of ρ on input B are set at max on
termination.

Base Case The block α is an assignment-block.

Let ImA(α) and ImB(α) be such that As ≡Ld
∞ω Bs and sA and sB are array-

consistent.
Base Case (a) Suppose that α consists of an instruction of the form xi := τ , for some
term τ (note that m+ 1 ≤ i ≤ k).
We begin by proving that At ≡Ld

∞ω Bt. If τ is a variable or a constant symbol
then trivially At ≡Ld

∞ω Bt. Hence, we suppose that τ is an array term of the form
B[τ1, τ2, . . . , τb]. As tA(xj) = sA(xj) and tB(xj) = sB(xj), for each j ∈ {1, 2, . . . ,m},
we have that

(A, tA(x1), tA(x2), . . . , tA(xm)) ≡Ld
∞ω (B, tB(x1), tB(x2), . . . , tB(xm)).

Hence, we need to show that

• tA(xi) = tA(xj) and tB(xi) = tB(xj), for some j ∈ {1, 2, . . . ,m}
or

• tA(xi) = CA and tB(xi) = CB, for some C ∈ κσ.

As sA and sB are array-consistent,

πs(sA(B[sA(τ1), sA(τ2), . . . , sA(τb)]))
= sB(B[πs(sA(τ1)), πs(sA(τ2)), . . . , πs(sA(τb))])

(use Lemma 10 and the fact that As ≡Ld
∞ω Bs). Again, by Lemma 10 and the fact

that As ≡Ld
∞ω Bs, we have that

πs(sA(B[sA(τ1), sA(τ2), . . . , sA(τb)])) = sB(B[sB(τ1), sB(τ2), . . . , sB(τb)]),

thus
πs(tA(xi)) = tB(xi)

as required (note that, as remarked in Definition 13, Lemma 10 results in our state-
ments being well defined).

We now show that tA and tB are array-consistent. Suppose that um+1, um+2, . . . ,
ud ∈ |A| and vm+1, vm+2, . . . , vd ∈ |B| are such that

(A, tA(x1), . . . , tA(xm), um+1, . . . , ud) ≡Ld
∞ω (B, tB(x1), . . . , tB(xm), vm+1, . . . , vd),

24

and let πt be the natural map from κσ(A) ∪ {tA(x1), . . . , tA(xm), um+1, . . . , ud} to
κσ(B) ∪ {tB(x1), . . . , tB(xm), vm+1, . . . , vd}. As it is the case that sA(xj) = tA(xj),
for all j ∈ {1, 2, . . . ,m}, we have that

(A, sA(x1), . . . , sA(xm), um+1, . . . , ud) ≡Ld
∞ω (B, sB(x1), . . . , sB(xm), vm+1, . . . , vd)

and πt is identical to πs. The fact that no value of any array element changes in the
transitions from sA to tA and from sB to tB makes it routine to check that tA and tB

are array-consistent.
Base Case (b) Suppose that α consists of an instruction of the form A[τ1, τ2, . . . , τa] :=
τ , for some terms τ1, τ2, . . . , τa, τ , and where A is the associated array symbol of α.

As no variable value has changed in the transitions from sA to tA and from sB to
tB, we trivially have that At ≡Ld

∞ω Bt.
We now show that tA and tB are array-consistent. By arguing as in Base Case

(a), above, the only array element we need to consider is A[τ1, τ2, . . . , τa] in tA

and tB. Let πs be the natural map from κσ(A) ∪ {sA(x1), . . . , sA(xm)} to κσ(B) ∪
{sB(x1), . . . , sB(xm)}, with πt defined similarly. We have that

πt(tA(A[sA(τ1), sA(τ2), . . . , sA(τa)]))
= πt(sA(τ))
= πs(sA(τ))

= sB(τ) (as As ≡Ld
∞ω Bs and sA and sB are array-consistent)

= tB(A[sB(τ1), sB(τ2), . . . , sB(τa)])

= tB(A[πs(sA(τ1)), πs(sA(τ2)), . . . , πs(sA(τa)])) (as As ≡Ld
∞ω Bs)

as required.
Thus, whatever the form of the assignment-block α, we have that At ≡Ld

∞ω Bt

and tA and tB are array-consistent.

Inductive Case (i) Let α be a forall-do-od-block of the form

FORALL xm+1 WITH Ap DO forall-do-instruction
α1 block of instructions
α2 block of instructions
. . .
αl block of instructions

OD forall-od-instruction

where our induction hypothesis holds for the blocks α1, α2, . . . , αl. Let ImA(α) and
ImB(α) be images of α such that As ≡Ld

∞ω Bs and sA and sB are array-consistent.
Note that A is the associated array symbol of α and that we may assume that xi is
active in A for βi at index i, for each i ∈ {1, 2, . . . ,m+ 1} (renaming α as βm+1).

We begin by showing that At ≡Ld
∞ω Bt. Pick some um+1 ∈ |A| and let sAm+1 be

the child of sA in G(ρA) for which sAm+1(xm+1) = um+1. Let vm+1 ∈ |B| be such that

(A, sA(x1), sA(x2), . . . , sA(xm), um+1) ≡Ld
∞ω (B, sB(x1), sB(x2), . . . , sB(xm), vm+1)

25

(at least one such vm+1 exists since m < d) and let sBm+1 be the son of sB in G(ρB)
for which sBm+1(xm+1) = vm+1. Rewriting, we obtain that

(A, sAm+1(x1), sAm+1(x2), . . . , sAm+1(xm+1))

≡Ld
∞ω (B, sBm+1(x1), sBm+1(x2), . . . , sBm+1(xm+1))

and so Asm+1 ≡Ld
∞ω Bsm+1 .

Now we turn to the array-consistency of sAm+1 and sBm+1. Let um+2, um+3, . . . , ud ∈
|A| and vm+2, vm+3, . . . , vd ∈ |B| be such that

(A, sAm+1(x1), . . . , sAm+1(xm+1), um+2, . . . , ud)

≡Ld
∞ω (B, sBm+1(x1), . . . , sBm+1(xm+1), vm+2, . . . , vd).

Rewriting, we obtain that

(A, sA(x1), . . . , sA(xm), um+1, . . . , ud) ≡Ld
∞ω (B, sB(x1), . . . , sB(xm), vm+1, . . . , vd),

and the corresponding maps πsm+1 and πs are identical. By assumption, sA and
sB are array-consistent at (um+1, um+2, . . . , ud) and (vm+1, vm+2, . . . , vd). As the
transitions from sA to sAm+1 and from sB to sBm+1 cause no array element to change
value, we must have that sAm+1 and sBm+1 are array-consistent at (um+2, um+3, . . . , ud)
and (vm+2, vm+3, . . . , vd). That is, sAm+1 and sBm+1 are array-consistent.

By the induction hypothesis applied to α1, α2, . . . , αl, we have that Atm+1 ≡Ld
∞ω

Btm+1 and tAm+1 and tBm+1 are array-consistent, where tAm+1 (resp. tBm+1) is the parent
of tA (resp. tB) for which tAm+1(xm+1) = um+1 (resp. tBm+1(xm+1) = vm+1).

We have just proved that for every ‘child process’ in the image ImA(α), there is a
‘similar’ process in ImB(α). Now we must show that the converse is true. Pick some
vm+1 ∈ |B| and let sBm+1 be the child of sB in G(ρB) for which sBm+1(xm+1) = vm+1.
Let um+1 ∈ |A| be such that

(B, sB(x1), . . . , sB(xm), vm+1) ≡Ld
∞ω (A, sA(x1), . . . , sA(xm), um+1).

An identical argument to the above yields that Btm+1 ≡Ld
∞ω Atm+1 and tBm+1 and

tAm+1 are array-consistent (where the notation is as above). Consequently, either

• tA(xm+1) = 0 and tB(xm+1) = 0

or

• tA(xm+1) = max and tB(xm+1) = max;

so At ≡Ld
∞ω Bt.

What remains to be shown is that tA and tB are array-consistent. Let um+1, um+2,
. . . , ud ∈ |A| and vm+1, vm+2, . . . , vd ∈ |B| be such that

(A, tA(x1), . . . , tA(xm), um+1, . . . , ud) ≡Ld
∞ω (B, tB(x1), . . . , tB(xm), vm+1, . . . , vd),

with πt defined as usual. There are two cases, according to the definition of array-
consistency and the array symbol involved.

26

Inductive Case (i)(a) Let B be an array symbol, of arity b, say, and different from
A, and let w ∈ (κσ(A) ∪ {tA(x1), . . . , tA(xm), um+1, . . . , ud})b. Rewriting, we obtain
that

(A, sA(x1), . . . , sA(xm), um+1, . . . , ud) ≡Ld
∞ω (B, sB(x1), . . . , sB(xm), vm+1, . . . , vd)

and, with πs defined as usual, πs is identical to πt. Consequently, by assumption,

πs(sA(B[w])) = sB(B[πs(w)]).

Note that no transition from sA to tA and from sB to tB causes an array element of
B to change value and so

πt(tA(B[w])) = tB(B[πt(w)]).

Inductive Case (i)(b) Let w ∈ (κσ(A) ∪ {tA(x1), . . . , tA(xm), um+1, . . . , ud})a with
wi = tA(xi), for each i ∈ {1, 2, . . . ,m}. Note that the value of A[w] at tA (resp.
A[πt(w)] at tB) is identical to the value of A[w] at tAm+1 (resp. A[πt(w)] at tBm+1),
where tAm+1 (resp. tBm+1) is the parent of tA (resp. tB) for which tAm+1(xm+1) = wm+1

(resp. tBm+1(xm+1) = πt(wm+1)).
In particular, as wm+1 ∈ κσ(A) ∪ {tA(x1), . . . , tA(xm), um+1, . . . , ud},

(A, tA(x1), . . . , tA(xm), wm+1, um+2, . . . , ud)

≡Ld
∞ω (B, tB(x1), . . . , tB(xm), πt(wm+1), vm+2, . . . , vd).

Rewriting yields that

(A, tAm+1(x1), . . . , tAm+1(xm), tAm+1(xm+1), um+2, . . . , ud)

≡Ld
∞ω (B, tBm+1(x1), . . . , tBm+1(xm), tBm+1(xm+1), vm+2, . . . , vd).

Furthermore, πtm+1 is either identical to πt or a restriction of πt; either way, πtm+1 is
identical to πt on the domain of πtm+1 . Thus

πt(tA(A[w]))
= πt(tAm+1(A[w]))

= πtm+1(t
A
m+1(A[w])) (by Lemma 10)

= tBm+1(A[πtm+1(w)])

= tBm+1(A[πt(w)])

= tB(A[πt(w)]).

Thus, we have that At ≡Ld
∞ω Bt and tA and tB are array-consistent.

Inductive Case (ii) Let α be a forall-do-od-block of the form

FORALL xm+1 DO forall-do-instruction
α1 block of instructions
α2 block of instructions
. . .
αl block of instructions

OD forall-od-instruction

27

where our induction hypothesis holds for the blocks α1, α2, . . . , αl. Let ImA(α) and
ImB(α) be images of α such that As ≡Ld

∞ω Bs and sA and sB are array-consistent.
The proof of Case (i) can be applied when some βi, for i ∈ {1, 2, . . . ,m} has an active
control variable and also when no such βi has an active control variable. (Note that
so far in the proof of the theorem we have not needed to use the fact that |A| = |B|.)
Inductive Case (iii) Let α be a repeat-do-od-block or an if-then-fi-block. In both
cases, immediate applications of the induction hypothesis yield the required result.
Note that we require for the case when α is a repeat-do-od-block that |A| = |B| as
in order for our reasoning to hold, the number of iterations of α in the corresponding
computations must be identical.

Consequently, we have that the induction hypothesis holds for every constituent
block of ρ. Let sA and tA be the source and the sink of G(ρA), with sB and tBS

the source and the sink of G(ρB). Clearly, As ≡Ld
∞ω Bs and sA and sB are array-

consistent. Hence, At ≡Ld
∞ω Bt and tA and tB are array-consistent, and our result

follows.

Let RFDPSd be those program schemes of RFDPS with depth of nesting at most
d (and also the class of problems definable by such program schemes). Note that
RFDPSd is a logic (in Gurevich’s sense).

Corollary 14

RFDPS0 ⊂ RFDPS1 ⊂ . . . ⊂ RFDPSd ⊂ RFDPSd+1 ⊂ . . .

Proof Let σ = 〈E,C,D〉, where E is a binary relation symbol and C and D are
constant symbols. Hence, a σ-structure can be thought of as a directed graph with
two distinguished vertices. Fix d ≥ 1. Define the σ-structure Ad+1 as follows. The
vertices CAd+1 and DAd+1 are distinct vertices of in-degree 0 and out-degree d + 3
so that they have no neighbour in common (this constitutes all vertices and edges of
Ad+1). Define the σ-structure Bd+1 as follows. The vertices CBd+1 and DBd+1 are
distinct vertices of in-degree 0 and out-degree d + 2 and d + 4, respectively, so that
they have no neighbour in common (this constitutes all vertices and edges of Bd+1).

Consider the following program scheme ρd+1 of RFDPSd+1.

INPUT(x1, x2, . . ., xd+1, y)
FORALL x1 DO

FORALL x2 DO
. . .
FORALL xd+1 DO

y := max
IF

∧
i�=j xi �= xj ∧

∧
i(xi �= 0 ∧ xi �= max) ∧ ∧

iE(C, xi)
∧E(C, 0) ∧ E(C,max) THEN

y := 0
FI

OD
. . .

OD

28

OD
IF x1 = 0 THEN

(x,y) = (max, max)
ELSE

(x,y) = (0, 0)
FI
OUTPUT(x1, x2, . . ., xd+1, y)

Clearly, Ad+1 is accepted by ρd+1 but Bd+1 is not. Suppose that the problem accepted
by ρd+1 is accepted by some program scheme ρ of RFDPSd. As Duplicator clearly
has a winning strategy in the d-pebble game on Ad+1 and Bd+1, by Theorem 1
Ad+1 ≡Ld

∞ω Bd+1. Hence, Theorem 11 yields a contradiction. The result follows (as
clearly RFDPS0 ⊂ RFDPS1).

Note that the proof of Corollary 14 can be used to show that the problem consisting
of all those digraphs for which every vertex has even out-degree is not in RFDPS.

Corollary 15 There are problems in P which are not in RFDPS.

Let ϕ be a formula of inflationary fixed-point logic. The quantifier-rank q.r.(ϕ) of
ϕ is defined inductively as follows.

• If ϕ is first-order quantifier-free then q.r.(ϕ) = 0.

• If ϕ is of the form ¬ψ then q.r.(ϕ) = q.r.(ψ).

• If ϕ is of the form ψ1 ∨ ψ2 or ψ1 ∧ ψ2 then q.r.(ϕ) = max{q.r.(ψ1), q.r.(ψ2)}.
• If ϕ is of the form ∃ψ or ∀ψ then q.r.(ϕ) = 1 + q.r.(ψ).

• If ϕ is of the form IFP[λx, R, ψ(x,y, R)](z) then q.r.(ϕ) = |x| + q.r.(ψ).

Let IFPd be those formulae of inflationary fixed-point logic with quantifier rank at
most d (and also the class of problems definable by such sentences). The proof of
Corollary 14 suffices to prove the following.

Corollary 16 IFP0 ⊂ IFP1 ⊂ . . . ⊂ IFPd ⊂ IFPd+1 ⊂ . . .

The above corollary has not been studied before but, as pointed out by Martin
Grohe in a personal communication, it follows quite easily from known results. The
fragment IFPd is contained in Ld

∞ω. This implies that the problem consisting of
all those structures over the empty signature having at least d + 1 elements is not
expressible in IFPd; but it clearly is in IFPd+1 (actually in FOd+1). We remark that
our proof of Corollary 16 relies on no existing results from finite model theory (and
not even on an understanding and appreciation of bounded-variable infinitary logic).

29

6 Conclusion

Whilst our concerns in this paper have been the development of the class of program
schemes RFDPS and an investigation of its refined structure, we feel that RFDPS
will make a good stepping-off point in the quest for a logic for P, as we now explain.
Throughout any computation by a program scheme of RFDPS, we construct arrays of
values. It will be relatively straightforward to incorporate Lindström quantifiers (see
[5]) into the program schemes of RFDPS by extending if-instructions so that the test
can be an application of some Lindström quantifier to some arrays, the values of whose
elements are either 0 or max (so that the arrays model relations as in the proof of
Theorem 9). It will also be entirely natural to include variables of a different type. For
instance, one might allow an additional universe {0, 1, . . . , n− 1}, when the input to
some program scheme is a structure of size n, with some appropriate numeric relations
and a mechanism for ‘tying’ the two universes together; for example, an instruction
x := ϕ(y), where x has numeric type and ϕ is first-order, whose semantics are such
that the number of values of y for which ϕ(y) holds is assigned to the variable x. We
shall pursue such extensions in future work.

A natural question to consider is how the class of problems accepted by the pro-
gram schemes of RFDPS (and any extensions we might developed, as in the preceding
paragraph) compares with those accepted by the programs of C̃PTime and by other
models more prevalent in database theory. We have not so far considered this ques-
tion: however, let us remark that the problem consisting of those digraphs for which
every vertex has even out-degree is not accepted by any program scheme of RFDPS
yet can be accepted by a program of [14].

Whereas we feel that it will be fruitful to extend the program schemes of RFDPS,
as hinted above, and investigate the expressive power of any resulting class of program
schemes, there are still questions to be asked of RFDPS. For example, as was the case
for the program schemes NPS, NPSS and NPSA of [2, 16, 18], can the class of problems
accepted by the program schemes of RFDPS be realized as a vectorized Lindström
logic? Does this class of problems have a complete member (via some suitable logical
translation)? Is this class of problems nothing other than an extension of inflationary
fixed-point logic?

Acknowledgement The authors are extremely grateful to an anonymous referee for
his or her excellent remarks as regards an earlier draft of this paper.

References

[1] S. Abiteboul and V. Vianu, Generic computation and its complexity, Proceedings
of ACM Symposium on Theory of Computing , ACM Press (1991) 209–219.

[2] A.A. Arratia-Quesada, S.R. Chauhan and I.A. Stewart, Hierarchies in classes of
program schemes, Journal of Logic and Computation 9 (1999) 915–957.

[3] A. Blass, Y. Gurevich and S. Shelah, Choiceless polynomial time, Annals of Pure
and Applied Logic 100 (1999) 141–187.

[4] J. Cai, M. Fürer and N. Immerman, An optimal lower bound on the number of
variables for graph identification, Combinatorica 12 (1992) 389–410.

30

[5] H.-D. Ebbinghaus and J. Flum, Finite Model Theory , Springer-Verlag (1995).

[6] F. Gire and H.K. Hoang, An extension of fixpoint logic with a symmetry-based
choice construct, Information and Computation 144 (1998) 40–65.

[7] M. Grohe, Bounded-arity hierarchies in fixed-point logics, Proceedings of Com-
puter Science Logic (ed. E. Börger, Y. Gurevich, K. Meinke), Lecture Notes in
Computer Science Vol. 832, Springer-Verlag (1994) 150–164.

[8] M. Grohe, Arity hierarchies, Annals of Pure and Applied Logic 82 (1996) 103–
163.

[9] M. Grohe and L. Hella, A double arity hierarchy theorem for transitive closure
logic, Archive for Mathematical Logic 35 (1996) 157–171.

[10] Y. Gurevich, Logic and the challenge of computer science, Current Trends in
Theoretical Computer Science (ed. E. Börger), Computer Science Press (1988)
1–57.

[11] Y. Gurevich, Evolving algebras 1993: Lipari guide, Specification and Validation
(ed. E. Börger), Oxford University Press (1995) 9–36.

[12] Y. Gurevich, May 1997 Draft of the ASM Guide, Technical Report, EECS De-
partment, University of Michigan (1997).

[13] N. Immerman, Relational queries computable in polynomial time, Information
and Control 68 (1986) 86–104.

[14] F. Neven, M. Otto, J. Tyszkiewicz, and J. Van den Bussche, Adding for-loops to
first-order logic, Information and Computation 168 (2001) 156–186.

[15] I.A. Stewart, Logical and schematic characterization of complexity classes, Acta
Informatica 30 (1993) 61–87.

[16] I.A. Stewart, Program schemes, arrays, Lindström quantifiers and zero-one laws,
Theoretical Computer Science 275 (2002) 283–310.

[17] I.A. Stewart, Using program schemes to logically capture polynomial-time on cer-
tain classes of structures, London Mathematical Society Journal of Computation
and Mathematics 6 (2003) 40–67.

[18] I.A. Stewart, Program schemes with binary write-once arrays and the complexity
classes they capture, submitted for publication.

31

