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Abstract

We study the growth rate of the number of maximal arithmetic subgroups of bounded
covolumes in a semisimple Lie group using an extension of the method devel oped by
Borel and Prasad.

1. Introduction

A classical theorem of Wang [W] states that a smple Lie group not locally isomor-
phic to SL,(R) or SL,(C) contains only finitely many conjugacy classes of discrete
subgroups of bounded covolumes. This theorem, which describes the distribution of
lattices in the higher-rank Lie groups, aso brings attention to the quantitative side of
thedistribution picture. To date, several attempts have been madetoward aquantitative
analogue of Wang's theorem, but with inconclusive resuilts.

The problem of determining the number of discrete subgroups of bounded co-
volumes naturally splits into two parts: the first part is to count maximal lattices, and
the second isto count subgroups of bounded index in agiven lattice. A recent project
initiated by Lubotzky [Lu] resulted in significant progress toward understanding the
subgroup growth of lattices and also allowed general conjectures to be formulated
on the asymptotic of the number of lattices of bounded covolumesin semisimple Lie
groups (see [BGLM], [GLP], [LN], [LS]). In this article, we consider another aspect
of the problem: counting maximal latticesin a given semisimple Lie group.

Let H be aproduct of groups H,(k,), s € S, where S isafinite set, each k, isan
archimedean local field (i.e., k, = R or C), and H,(k,) is an absolutely almost simple
ks-group. Then H is a semisimple Lie group. Throughout this article, we consider
only semisimple Lie groups of this form. We assume, moreover, that H is connected
and that none of the factors H,(k,) is compact or hastype A;. In particular, H can be
anoncompact simple Lie group (real or complex) not locally isomorphic to SL,(R)
or SL,(C).

Let m' (x) and m}/(x) denote the number of conjugacy classes of maximal
cocompact irreducible arithmetic subgroups and the number of conjugacy classes of
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maximal non-cocompact irreducible arithmetic subgroupsin H of covolume lessthan
x, respectively. If the real rank of H is greater than 1, then by Margulis's theorem
[M, Th. 1, p. 2], these numbers are equal to the numbers of the conjugacy classes
of maximal uniform and nonuniform irreducible latticesin H of covolume less than
x. Inthereal rank 1 case, there may also exist nonarithmetic lattices that we do not
consider here.

THEOREM 1

(A) If H contains anirreducible cocompact arithmetic subgroup (or, equivalently,
if H isisotypic), then there exist effectively computable positive constants A
and B that depend only on the type of almost simple factors of H such that for
sufficiently large x,

Xt < mly(x) < xBP),

where B(x) is a function that we define for an arbitrary ¢ > 0 as f(x) =
C(logx)<, C = C(¢) being a constant that depends only on €.

(B) If H contains a non-cocompact irreducible arithmetic subgroup, then there
exist effectively computable positive constants A’, which depend only on the
type of almost simple factors of H, and B’, which dependson H, such that for
sufficiently large x,

x4 < mi(x) < X7

Conjecturally, the function g(x) in part (A) can also be replaced by a constant; the

constant B’ in part (B) depends only on the type of almost simple factors of H.

This would require, in particular, a polynomia bound on the number of fields with a

bounded discriminant. The existence of such a bound is an old conjecture in number

theory which may derivefrom Linnik; it appearsin astronger formin Cohen’sbook [C,

Conj. 9.3.5]. In fact, we can show an equivalence of the conjecture“ 8(x) = const” to

Linnik’s conjecture (see Sec. 6.6) as a corollary from the proof of Theorem 1.

Theorem 1 is motivated by the problem of distribution of lattices in semisimple
Lie groups. An application of these results (and their corollaries) to the problem is
part of ajoint work in progress with Lubotzky [BL].

To conclude this introduction, let us briefly outline the proof of Theorem 1.
Our method is based on the work of Borel and Prasad [BP]. What distinguishes our
task from theirs is that besides proving the finiteness of the number of arithmetic
subgroups of bounded covolumes, we give bounds or, at least, asymptotic bounds for
the number. This requires certain maodifications to the method on one side and some
special number-theoretic resultson the other. In Proposition 3.3, weimprove anumber-
theoretic result from [BP, Sec. 6], which enables us to effectively count the possible
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fields of definition of the maximal arithmetic subgroups. The proof of this proposition
is technical and is safely skipped in the first reading. The key ingredient for a good
upper bound for the number of fields is an elaboration of recent work of Ellenberg
and Venkatesh [EV], which we formulate in Proposition 3.1 and for which a proof is
given in the appendix. After bounding the number of possiblefields of definition k, we
count admissible k-forms, corresponding collections of local factors, and conjugacy
classes of arithmetic subgroups. Here, we use some Galois cohomology techniques,
the Hasse principle, and the basic number-theoretic Proposition 3.2. Altogether, these
lead to the proof of the upper boundsin Theorem 1, which is given in Section 4. The
lower bounds, which are easier, are established in Section 5.

2. Preliminaries on arithmetic subgroups

This section presents a short account of the fundamental results of Borel and Prasad
(IBPY, [P]) which are used in this article. We encourage the reader to look into the
original articles cited above for a better understanding of the subject. Our modest
purpose here isto fix the notation and to recall some formulas for future reference.

21

Throughout this article, k is a number field, ¢, isitsring of integers, V = V (k)
is the set of places (valuations) of k which is the union of V. (k) archimedean and
V; (k) nonarchimedean places, and A = A, is the ring of adéles of k. The number
of archimedean places of k is denoted by a(k) = #V. (k). Let r1(k), ro(k) denote the
number of real and complex places of k, respectively, so a(k) = ri(k) + ro(k). As
usual, &, and h; stay for the absolute value of the discriminant of k/Q and the class
number of k. For afinite extension [ of k, &,/ denotes the Q-norm of the relative
discriminant of / over k.

All logarithmsin this article are in base 2, unless stated otherwise.

2.2
Let G/ k be an agebraic group defined over a number field k so that there exists a
continuous surjective homomorphism ¢ : G(k ®¢ R)? — H with acompact kernel.
We call such fields k, and we call k-groups G admissible. If S C V. (k) isthe set of
archimedean places of £ over which G isisotropic (i.e., hnoncompact), then ¢ induces
an epimorphism Gy = [[,., G(k,)” — H whose kernel is afinite subgroup of Gs.
Weconsider G asak-subgroup of GL () for large enough n. We define asubgroup
" of G(k) to bearithmeticif itiscommensurablewith the subgroup of k-integral points
G(k) N GL(n, 0); that is, the intersection I' N GL(n, ;) is of finite index in both
I" and G(k) N GL(n, O}). The subgroups of H which are commensurable with ¢(I")
for some admissible G/ k are called arithmetic subgroups of H defined over the
field k.
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Werestrict ourselvesto theirreduciblelattices, which impliesthat in the definition
of the arithmetic subgroups, it isenough to consider only simply connected, absolutely
almost simple algebraic groups G (see [M, Chap. 9.1]).

2.3

A semisimple Lie group contains irreducible lattices if and only if all its almost
simple factors have the same type (H is isotypic). For example, we can take H =
SL(2, R)* x SL(2, C)" or H = SO(p1. 1) x SO(p2. g2) (p1+ g1 = p2+g2), butin
H = SL(2,R) x SL(3, R), al lattices are reducible. Sufficiency of this condition is
provided by the Borel-Harder theorem [BH], and its necessity is discussed elsewhere
(e.g.,in[M, Chap. 9.4]). Note that, in general, the assumption that H isisotypic does
not imply that H contains nonuniform irreducible lattices, asis shown in an example
suggested by Prasad (see [Wi, Prop. 12.31]). This is the reason why we impose an
additional assumption concerning the existence of nonuniform irreducible lattices in
Theorem 1(B).

24

The methods of Borel and Prasad depend to a considerable degree on the Bruhat-Tits
theory of reductive groups over loca fields. We assume familiarity with the theory
and recall only some basic definitions. An extensive account of what we need can be
found in Tits's survey article[T].

Let K beanonarchimedean local field of characteristic zero (afinite extension of
the p-adic field ), and let G be an absolutely almost simple, simply connected K -
group. The Bruhat-Titstheory associatesto G/ K asimplicial complex 4 = #(G/K)
on which G(K) acts by simplicial automorphisms that are special. (This implies, in
particular, that if an element of G(K) leaves a simplex of 4 stable, then it fixes the
simplex pointwise.) The complex 4 is caled the affine building of G/ K . A parahoric
subgroup P of G(K) is defined as a stabiliser of a simplex of %. Every parahoric
subgroup is compact and open in G(K) in the p-adic topology. Minimal parahoric
subgroups, called Iwahori, are defined as subgroups of G(K) fixing chambers (i.e.,
maximal simplexes) in 4. All lwahori subgroups are conjugate in G(K). Maximal
parahoric subgroups are the maximal compact subgroups of G(K); they are charac-
terised by the property of being stabilisers of the vertices of 4. A maximal parahoric
subgroup is called special if it fixesaspecial vertex of 4. A vertex x € 4 isspecid if
the affine Weyl group W of G(K) is a semidirect product of the translation subgroup
by the isotropy group W, of x in W. In this case, W, is canonically isomorphic to
the (finite) Weyl group of the K-root system of G. If G is quasi-split over K and
splits over an unramified extension of K, then G(K') contains hyperspecial parahoric
subgroups. (We refer to [T, Sec. 1.10] for the definition of hyperspecial parahorics.)
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An important property of these subgroups s that they have maximal volumes among
all parahoric subgroups (see [T, Sec. 3.8.2]).

25
We now define a Haar measure  on H with respect to which the volumes of arith-
metic quotients are computed. Of course, the final result then holds for any other
normalization of the Haar measure on H. The definition and most of the subsequent
facts come from [P] and [BP].

Let G be an admissible simply connected algebraic k-group. If v € V,(k), welet
W, be the Haar measure on G(k,) which assigns volume 1 to the Iwahori subgroups
of G(k,). If v isarchimedean, we first consider the case where k, = R. There exists
aunique anisotropic R-form Ggy of G which has a natural Haar measure giving the
group volume 1. This measure can be transferred to G(k,) in a standard way, and we
define w, asitsimage; it is a canonical Haar measure on G(R). In the case where
k, = C,wehaveG(k,) = G1(IR) withG; = Res¢/rG, and wedefine 1, to beequal to
the canonical measure on G;(R). The Haar measure w5 on Gy is defined as a product
of u,, v € S. Thisaso induces the measure .« on H, and it is easy to check that
does not depend on a choice of G and the epimorphism ¢ : Gy — H.

2.6
A collection P = (P,)yey, Of parahoric subgroups P, of a simply connected k-
group G is called coherent if [],., G(k,) - [],ey, P is an open subgroup of the
adele group G(A;). A coherent collection of parahoric subgroups P = (P,)ycv,
defines an arithmetic subgroup A = G(k) N Hvev, P, of G(k), which is called the
principal arithmetic subgroup associated to P. The corresponding arithmetic subgroup
AN = ¢(A) C H isdsocaled principal.

The covolume of a principal arithmetic subgroup with respect to the measure 1
defined as above is given by Prasad’sformula [P, Th. 3.7]:

m,‘!
(2m)ymi+t

u(H/N) = ps(Gs/A) = ZE™ (@, 7y 2T ) @ e
i=1

where

0) dim(G) and m; denote the dimension and Lie exponents of G;

(i) [ isaGalois extension of k defined asin [P, Sec. 0.2] (if G is not a k-form
of type Dy, then I is the split field of the quasi-split inner k-form of G, and
if G is of type ®Dy, then [ is a fixed cubic extension of k contained in the
corresponding split field; in all the cases, [/ : k] < 3);

(iii) s = s(G) isaninteger defined in [P, Sec. 0.4], and in particular, s = 0 if Gis
an inner form of a split group, whiles > 5if G isan outer form;
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(iv)  7(G) isthe Tamagawa number of G over k since G issimply connected and &
isanumber field 7, (G) = 1; and
v) &(P) = ]_[vevf e, is an Euler product of the local factors e, = e(P,); for
v e Vy, e, istheinverse of the volume of P, with respect to the Haar measure
Yo defined in [P, Secs. 1.3, 2.1].
The local factors can be computed using the Bruhat-Tits theory. (In particular,
e, > 1forevery v e V; see[P, Prop. 2.10(iv)].)

2.7

Any maximal arithmetic subgroup I of H can be obtained as a normaliser in H of
theimage A’ of some principal arithmetic subgroup of G(k) (see [BP, Prop. 1.4(iv)]).
Moreover, the collections of parahoric subgroups which are associated to the maximal
arithmetic subgroups have maximal types as shown in Rohlfs[R] (see aso [RC]). So,
in order to compute the covolume of a maximal arithmetic subgroup, we need to be
able to compute the index of a principal arithmetic subgroup in its normaliser. In a
general setting, the upper bound for the index was obtained in [BP, Sec. 2]:

[[: A] <n®  #H (k. O) - [] #Eo,.

UEV/

Here, n and € are constants defined below, so n<*S depends only on H and does not
depend on the choice of G(k) and A. The group H(k, C); is afinite subgroup of the
first Galois cohomology group of k with coefficients in the center of G, asis defined
in [BP, Sec. 2.10]. The order of H(k, C): can be further estimated (see [BP, Sec. 5));
the following bound is a combination of [BP, Props. 5.1, 5.6]:

#Hl(k, C)S < 2hl€,nm(k)+€,a(l)+€#]-(@]/@][(l:k])GH,

where

Q) n=r+1if Gisof typeA,; n = 2if Gisof type B,, C, (r arbitrary), D,
(withr even), or E7; n = 3if Gisof typeEs; n = 4if Gisof typeD, (withr
odd); n = 1if Gisof type Eg, F4 or Gy;

(i) e =2if Gisof type D, (with r even), and ¢ = 1 otherwise (so the center
C = C(G) isisomorphic to (Z/nZ)* and #C = n°);

(iii) € = eif Gisaninner form of ak-split group, and ¢’ = 1 otherwise;

(iv) €” =1if G/kisanouter form of type D, (r even), and ¢ = O otherwise; and

(v) T isthesetof placesv € V, for which G splits over an unramified extension
of k, but isnot quasi-split over k,.

Finally, E¢, isasubgroup of the automorphism group of the affine Dynkin diagram

which comes from the adjoint group and preserves the type ®, of P,. In particular,

#Bo, <r+ 1, and#Ee, = 1if P, isspecial.
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2.8
As aresult, we have the following lower bound for the covolume of T:

€a €'a €'\— i l ' ! [k:Ql T
a1/ 1) = @< () (] ) o

where
0] s' = 5/2—1if G/ kisanouter formof typeD,, r even, but s’ = s5/2 otherwise;
and
iy 7 = Hvev,- fo with f, = e,(#E0,) ! = e, if G is quasi-split over k, and
P, is hyperspecial (which is true for amost al v), f, = e,n (#Ee,)t if
G splits over an unramified extension of &, but is not quasi-split over k,, and
fo = e,(#Eo,) "t in the rest of the cases.
Using the computationsin [BP, Apps. A, C], it isnot hard to check that f, > 1
forevery v € V.
More details about this formula can be found in [BP, Secs. 5, 7].

3. Number-theoretic results

31

Let N 4(x) be the number of k-isomorphism classes of extensions ! of k such that
[[:k]l =d, Z;x < x,andlet N(x) bethe number of isomorphism classes of number
fields with discriminant less than x.

PROPOSITION

For large enough positive x, we have the following:

(1) given anumber field k and a fixed degree d, there exist constants ¢, b1, b, > 0,
depending only on d, such that N 4(x) < cZ?x"; and

(i)  for every e > 0, there existsa constant C = C(¢) > 0 such that
N(x) < xP®), B(x) = C(logx)-.

Proof

Effectively, the proof

() follows, for example, from [EV, Th. 1.1]; and

(i) it followsfrom the general method used in [EV] but requires some extrawork,
namely, that we have to know how the implicit constants in [EV, Th. 1.1]
depend on the degree of the extensions in order to be sure that this does not
change the expected upper bound; thisis carried out in detail in the attached
appendix provided by Ellenberg and Venkatesh. O

32
Let O (x) bethe number of squarefree ideals of k£ of norm at most x.
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PROPOSITION

For anumber field k, we have

(i) Ow(x) = (Res=1(8) /¢ (2)) x + o(x) for x — oo; and

(i)  there exist absolute constants b3, b4 (not depending on k) such that
0i(x) < DPxl.

Proof

Of the two items in the preceding proposition, we have the following.

) The proof is a known fact from analytic number theory. For a short and con-
ceptual proof, werefer to [Se, Th. 14].

(i)  Asfaraswedonot claimthat b, = 1, the proof iseasy. Consider the Dedekind
zetafunction of k:

o0
an

Gi(s) = —
n=1 n
where a,, isthe number of idealsof k of normn, s > 1.

Let I;(x) denote the number of ideals of k of norm less than x. We have
L(x)=a1+ax+ - +ap.
Ci(s) - X7 = Li(x).
Taking s = 2, we obtain

772\ [kQ] o
Ou(x) < Iix) < (2) - x* < <€) x2 < PN = gleahe,

Here, we used inequalities ¢;(2) < ¢(2%9 and for k # Q, [k : Q] < clogZ,. The
first inequality follows from the definition of the functions ¢ and ¢;, and the second is
awell-known corollary of Minkowski’s discriminant bound. O

3.3
Finally, we need an improved version of a number-theoretic result from [BP, Sec. 6].
The main idea is that instead of using 2™ /? to absorb the small factors in the
volumeformula, we use only part of it, saving therest for alater occasion. Thisiseasy
to achieve for the groups of a large-enough absolute rank; when the rank becomes
small, the estimates become much more delicate.

Let G/k be an absolutely almost simple, ssimply connected algebraic group of

absoluterank r > 2, so that the numbersn, €, €/, s’ andm; < --- < m, arefixed and
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defined asin Section 2. Let

m;! [+:Q]
_ dlm(G)/Z €ak)—¢'a(l) [l:k]Ns
B(G/K) = hi (@) 2 (H i)
Then by Section 2.8, wehave u(H/T") > (1/2)B(G/ k)t (G)# > (1/2)B(G/ k) for
every arithmetic subgroup I of H which isassociated to G/ k.

PROPOSITION
There exist positive constants 1, 5, depending only on the absolute type of G such
that B(G/k) > 2,2y, for almost all number fields k.

Proof
Given an absolutely almost simple, simply connected algebraic group G of an absolute
type T and rank r, we show that for almost all %,
() B(G/k) = 2™ %y, if r > 30;
(||) B(G/k) > gk@l/k if r <30and T isnot A2, A3, Bz,
(iv)  B(G/k) = 20273 if TisA,.
Clearly, these four inequalities al together imply the proposition.
First, assume that G is not a k-form of type 6D,. We have

[[:k] <2
n—sa(k)—e’a(l) > n—s(a(k)+a(l)) > (r + l)—3[k:@].

It is known that
[:Q]
2
h <10 ( 2) 7 )

(see [BP, proof of Prop. 6.1]; let us point out that this bound holds without any
assumption on the degree of the field [);

219" = 9, > 1. )

Combining the above inequalities, we obtain

di —ea(k)—€'a —€' ks - m,—! [k:Q]
s =510 ] )
i=1

_2¢' dim(G) —€'[1:Q] | [k:Q]
> 10 2 @ m(G)/2= 2<12> 91/k<( +l)3 l_[ (27-[)"1 +1>

' m;! [k:Q]
- 10’26,@61”“(6)/272@ .
- ¢ ”"<<n/12)(r +1)2 H ACIR +1>
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(If Gisk-split, thens’ = 0,1 = k, Z;;x = 1; inthe nonsplit case, we use the fact that
s'>2)
Sincefor i large enough, m;! > (27)™+1, it isclear that for large enough r,

1 i m,‘!
w26+ L @y 7

An easy, direct computation shows that starting from » = 30,

1 : m;! [k:Q] dim(G)/2_2
>9 9
(r/12)(r + 1)3 E (zn)mi+1> = Zk 1/k

10-2 92‘ m(G)/2-2 Di (
So, for r > 30, § = dim(G)/2 — 2, and any field k, we have B(G/k) > 2,9, the
finite set of the exceptional fieldsis empty, and case (i) is proved.

To proceed with the argument, let us remark that

B(G/k) > @fim@/zfz%/kc,

where ¢ > 0 depends only on the absolute type of G and degreed = [k : Q]. So, if
the degree d isfixed, then for any z > O that is chosen later, we have

B(G/k) > @]gim(G)/272fz@l/k@iC > @]?im(G)/272fz@l/k (3)

for al k with &, > ¢~*. Since there are only finitely many number fields with a
bounded discriminant, (3) holds for al but finitely many k& of degree d. Since we
always have dim(G)/2 > 2, this allows us to assume (at least when G is not °D,) that
the degree of k islarge enough.

We now come to case (ii). Let G be not of type 6D,. By the previous remark, we
can suppose that [k : Q] is large enough. Due to Odlyzko [O, Th. 1], we have the
following lower bound for &;:

if [k : Q] > 10°, then 7, > 552122 (4)
So, for [k : Q] > 10°,

21dim(G)/27278 r mi!

/12 + 8 L ey

2! el s
B(G/k) > 10 ( ) DT

A direct case-by-case verification showsthat for § = 1, the latter expressionisat least
DD, S0, if weput z = dim(G)/2 — 3in (3), then we obtain that for all but finitely
many k, B(G/k) > @k@l/k-
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Let now G/ k be atriality form of type ®D4. We have

e=2  €=1 n=2  § =25 {[m}={1353),
[[:k]=3, ad a()<3k:Ql.

So,if [k : Q] > 10°,

2113%%  6.120- 6)[k:@1 5

B(G/ k)210_2<(n/12)-23' @n)® C

For§ = 1,itis> 2,9, If [k : Q] < 10°, we still have the inequality (3) (the
precise formula for the constant ¢ would be different, but it is not essential), so that,
for al but finitely many k, again B(G/k) > 2:%;,. The case (ii) is now settled
completely.

Let G/ k be of type A3 or B,. As before, we can assume [k : Q] > 10°. We have

R R o i L C T R
B(G/k) > 10 <I2> ( T

mi!
i+1
] (27-[)171

ka
) m

Now, n = 4 and n = 2 for thetypes Az and B,, respectively; if [ £ k, then[l : Q] =
2[k : Q). Using this, it is easy to check that if § = 0.1, then B(G/k) > 2/, in
each of the possible cases.

It remains for us to consider (iv). Thisisthe most difficult case; the proof amost
repeats the argument of [BP, Prop. 6.1(vi)].

With the notation of [BP], for [/ : Q] > 10° we have

1 \[kQ]
55

[k:Ql
2-8/2, () —a(l) 1 —
= D TFV(@,),) 23w (’)h,1<24—715>

554-38-s)/2 r1(l) 214-5-s) ra(l)
2.33%/2. 7-[(6_5)/2> (2(4_5) .32. 7-[(5_5))

B(G/k) = . g-alb)- a([)h 1(9 /9[1 k])5/2(

0.02
> @2(@1/1«)1/2S(S — 1)(

Cc1

x EXD((3 —8—5)Zi(s)—(4—68— S)<E + (s — 1)_1>

+ (01— (c3+ ca)(s — 1) a(l)>
Now, let 6 = 0.01. Since
55°%/2(2.3%%. 7%t > 219, 217%(2°- 3 7% > 1.28,
and

exp((3— 5 — s)Zl(s)) >1 ifs<2-36,
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by choosing s > 1 sufficiently closeto 1, we obtain that there is an absol ute constant
ce such that
@4 . 3*”(1()*“(1)]1_1(@ /@[l:k])5/2<i>[k:(@] > @0.01(@ )1/22 191‘1(1)1 28r2(l)c

k l /2 24,5 = 1/k . . 6.
Theright-hand sideisat least 2%°(2,,,)Y/2if [1 : Q] islargeenough, say, [1 : Q] > d,
(and d; > 10°).

If[/: Q] < d, then[k : Q] < d;, and by (3) for all but finitely many fields k, we
have

B(G/k) = 44D = 2093 0

Remark. The proof provides explicit values of 1, §, for each of the types; however,
in many cases, the bound for B(G/ k) can be improved. This requires more careful
argument and is useful for particular applications.

4. Proof of Theorem 1: The upper bound

Asbefore, H denotes a connected semisimple Lie group whose almost simple factors
are al noncompact and have the same type different from A;; G is an absolutely
amost simple, ssimply connected k-group admissible in the sense that there exists a
continuous surjective homomorphism G(k ®¢ R)? — H with acompact kernel.

4.1. Counting number fields
For a (maximal) arithmetic subgroup I" of H, we have (see Sec. 2.8)

W(H/T) = 2 BG/ (@7 (5)

where

Q) k isthefield of definition of ",

(i)  G/kisak-form from which I' isinduced (see Sec. 2.2),

(i) B(G/k) = glgim(e)/zn—ea(k)—e’a(/)hl—é'(@[/@][(Iik])s’ ( 1_[;:1 m; !/(Zn)mi+l)[k:Q] ’
(iv) w(G)=1and

V) 7 =]l,ey, v > 1 isconsidered later.

By Proposition 3.3, for al but finitely many number fields k,

n(H/T) > Clglglgla/zkv

where 41, §, are the constants determined by the absolute type of G (which isthetype
of amost simple factors of H).

So, for large enough x, if us(H/T) < x, then 2, < (x/c))V™, Dy <
(x/c)V%.
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By Proposition 3.1(ii), the number of such fields k is at most

<x )ﬁ((X/Cl)wl) < ye2BW)
C1 - ’

and by Proposition 3.1(i), for each k the number of such extensions! is at most

b2/82 X \P1/81 / x \ b2/52

by X i

c@k1<—> < c(—) (—) < x“.
C1 C1 C1

It follows that the number of all admissible pairs (k, 1) is bounded by

yCc2B)+es

and moreover, sincek # Q implies[k : Q] < clog %, for al admissible k we have

a(k) < cqlogx.

4.2. Non-cocompact case
If I" is non-cocompact, the degree of the field of definition of I is bounded. Indeed,
the non-cocompactness of I implies that the corresponding algebraic group G is
k-isotropic, so G/ k, is noncompact for every v € V. It follows that the number
of infinite places of & is equal to the number #S of almost simple factors of H, so
[k : Q] < 2#S.

Now, in Section 4.1, we can consider only the number fieldsk with [k : Q] < 2#S
and the number fields/ with [I : Q] < 3[k : Q] < 6#S. By Proposition 3.1(i), for
large enough x the number of admissible pairs (k, [) is at most

x%,  c5 = cs(#S).

(In fact, here we can use a weaker result from Schmidt [S], who showed that the
number of degree n extensions ! of k with &;,; < x isbounded by C (n, k)x+2/4))

4.3. Counting k-forms
Given an admissible pair (k, [) of number fields, there exists a unique quasi-split k-
form % for which/ isthe splitting field (or acertain subfield of the splitting field if % is
of type®D, and [/ : Q] = 3). So, we have an upper bound for the number of quasi-split
groups for which there can exist an inner form that defines an arithmetic subgroup
of covolume less than x. We now fix a quasi-split k-form % and estimate the number
of admissible inner forms. Since every inner equivalence class of k-forms contains a
unique quasi-split form, this gives us abound on the total number of admissible G/ k.
By the assumption, ]_[vevw(k) G(k,) isisogenous to H x K (K is a compact
Lie group), so the k,-form of G is amost fixed at the infinite places of k. More
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precisely, let ¢, bethe number of nonisomorphic amost simple factorsof H. For each
v € Vy(k), G(k,) isisomorphic to one of ¢, noncompact (simply connected) groups
or is compact. Let n;, denote the number of places v at which G(k,) is noncompact.
By the assumption, n, = #S. Thisimpliesthat the number of variantsfor G(k,) at the
infinite places of k is bounded by

k n .
() = (o) < Gogy
np
where () denotes the binomial coefficient.
Let now v be a finite place of k. The inner k,-forms of G correspond to the
elements of thefirst Galois cohomology set H(k,, G), where G isthe adjoint group of
G. The order of HY(k,, G) can be computed from the cohomological exact sequence

H(k,, G) — H(k,, G) > H2(k,, C),
which corresponds to the universal k,-covering sequence of groups
1-C>G—>G— 1

For a simply connected k,-group G, the first cohomology H(k,, G) is trivial by
K neser's theorem (see [K]), so § isinjective. Furthermore, the group H?(k,, C) can be
identified with asubgroup of the Brauer group of &, and then explicitly computed using
resultsfromthelocal classfield theory (see[PR, Chap. 6] for detailsand explanations).
As acorollary here, we have that the number of inner k,-forms is bounded by € in
the notation of Section 2.7. (Recall that n© = #C isthe order of the center of G.)

Let 71 C V,(k) be a(finite) subset of the nonarchimedean places of k such that
G isnot quasi-split over k, for v € Ty. It followsfrom [P, Prop. 2.10] that there exists
aconstant § > 0, which depends only on the absolute type of G, such that for every
v e Ty,

fu > n_é(#E('DU)_lev > qi (6)

(g, denotes the order of the residue field of k at v).
Indeed, we can take § = log(2n~<) if the absolute type of G is not A, and
8§ =log(2?-371) = 0.415 ... for thetype A,, and we can then check that § > 0 and
inequality (6) holds going through the case-by-case consideration in [BP, App. C.2].
Toaset T C V,(k), we can assign an ideal .7 of (; given by the product of
primeidealsdefining the placesin T'. Conversely, each squarefreeideal of (;, uniquely
definesasubset T in V,(k) corresponding to its prime decomposition. Note also that

[T,er 9v = Norm(# 7).



COUNTING MAXIMAL ARITHMETIC SUBGROUPS 15
Now, for an arithmetic subgroup I" induced from G, we have

1
WH/T) = SBG/Nn@)F = er [ | 4.

UETl

Thisimpliesthat if 4(H/T) < x, then Norm(#7,) = [[,.1, o < x°. By Proposi-
tion 3.2(ii), the number of variantsfor Ty isbounded by x“. Moreover, since for every
v eV, q, > 2 forevery such aset 7; we have #7; < cyglogx.

Now, the Hasse principle implies that a k-form of G is uniquely determined by
(G(ky))vev (- The Hasse principle for semisimple groups is valid due to the work of
Kneser, Harder, and Chernousov (see[PR, Chap. 6]). So, the number of the admissible

k-formsisat most

(|ng)CGXCSnec'1o|09x < xn,

4.4. Counting collections of parahorics
For agiven large enough x, we have defined acollection of G/ k for which there exists
a (centrally) k-isogenous group G’ that may give rise to the arithmetic subgroups
' ¢ H with u(H/T) < x. The number of such k-groups G is finite and can
be bounded as in Section 4.3, but each G/ k till defines countably many maximal
arithmetic subgroups. We now fix a group G/ k and estimate the number of coherent
collections of parahoric subgroups of G which can give riseto the maximal arithmetic
subgroups with covolumes less than x. In the classical language, what we are going
to do in this section is count the number of admissible genera.

We use again the local-to-global approach. Let usfix acentral k-isogeny i : G —
G with G’ so that G| projects onto H. Every maximal arithmetic subgroup I' C Gj
is associated to some coherent collection P = (P,),v, oOf parahoric subgroups of G
(see [BP, Prop. 1.4]):

I'=Ng(i(a)., A=GKE) N[] P

‘UEVf (k)

Theimageof I" in H isanarithmetic subgroup, and every maximal arithmetic subgroup
of H can be obtained as a projection of somesuch I'.

For almost al finite places v of k, G is quasi-split over k, and splits over an
unramified extension of k,. Moreover, for amost all such v, P, is hyperspecial. Any
two hyperspecia parahoric subgroups of G(k,) are conjugate under the action of the
adjoint group G(k,) (see [T, Sec. 2.5]), so P is determined up to the action of G(A ;)
by the types of P, at the remaining places. Using this, we now count the number of
P’s.
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Asin Section 4.3, let T; denotethe set of placesof k for which G isnot quasi-split.
By the previous argument, we have

#T1 < cyologx, #(variantsfor T7) < x“ (see Sec. 4.3).

Let R denote the set of places for which G is quasi-split but is not split over an
unramified extension of k,. For such placesv € Vi, [, = [ ® k, is a ramified
extension of k,, and so, by theformulafrom [P, App.], each of such places contributes
to Z,,, apower of g,. Again, using Proposition 3.2(ii) and the inequality &, < x¢
from Section 4.1, we obtain

#R < cpplogx, #(variantsfor R) < x®.

Finaly, let T, C V,\(T1 U R) bethe set of places for which P, isnot hyperspecial. If
v € Ty, then by [P, Prop. 2.10(iv)],

ey > (qu+1) gt
Similarly to (6), thisimplies that
fo=q).
By Proposition 3.2(ii) and the volume formula,
#T, < cislogx, #(variantsfor T;) < x».

For a given v € V/, the number of the possible types of parahoric subgroups
(parametrised by the subsets of the set of simpleroots) isbounded by aconstant ¢, that
depends only on the absolute type of G. We conclude that for a given G, the number
of P’sup to the action of G(A ;) isat most

KRR gvariants for Ty U R U Ty) < ¢zt l00 yeotatas — ya,

4.5. Counting conjugacy classes

In this final step, we give an upper bound for the number of conjugacy classes of
arithmetic subgroups associated to a fixed group G'/k and a given G(A )-orbit of
collections of parahoric subgroups P of a ssimply connected group G centraly k-
isogenousto G'. Weareinterested in the G(k)-conjugacy classes of maximal subgroups
associated to P which are indexed by the double cosets G(k)\G(A)/G. P, where
Gso = [l,ev. Glky), P, is the stabiliser of P, in G(k,), and P = [Tev, P,isa
compact open subgroup of G, = [Toev, G(k,) (see [BP, Prop. 3.10]). The number
c(P) of the double cosets is called the class number of G with respect to P. The
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argument is similar to [BP, proof of Prop. 3.9], except that we need to get an explicit
upper bound for ¢(P).

Let  be a nonzero invariant exterior k-form of top degree on G; such a form
is unique up to multiplication by an element of k* and is called a Tamagawa form.
We denote by |w| the Haar measure on the adéle group G(A) determined by . The
natural embedding of k into A gives an embedding of G(k) in G(A); it iswell known
that the image of G(k) is a lattice in G(A). By the product formula, its covolume
with respect to the measure |w| does not depend on the choice of the form w; thus
the number 7,(G) := 7, ™20 |(G(k)\G(A)) is correctly defined. It is called the
Tamagawa number of G/ k. By a theorem of Ono in [On], (G) is bounded by a
constant multiple of the order of the center of the simply connected covering group
G multiplied by 7;(G). According to the Weil conjecture, the Tamagawa number of a
simply connected group is equal to 1; this has been proved completely for the groups
over number fields, thanks to the work of many people (see [P, Sec. 3.3] for a short
discussion). Therefore, we have

01(GUNG(A) = (@7 < ey 7™, ™

where ¢17 depends only on the absolute type of G.

Coming back to the problem of bounding the class number ¢(P), we recall that
the double cosets G(k)\G(A)/G4 P correspond bijectively to the orbits of G,, P on
G(k)\G(A), which are open. Given an upper bound for |w|(G(k)\G(A)), in order to
giveabound for ¢(P) itisenough to obtain auniform lower bound for the |w|-volumes
of these orbits. The double cosets are represented by elements of G r, SO itissufficient
to consider the orbit of the image of a € G; which isisomorphic to I',\Gua Pa™?,
I, = G(k) N GoaPa™t. Let T/, be the projection of T', to G, with respect to the
decomposition G(A) = G, x G;. AsaPa~! isacompact open subgroup of G, T/
is an arithmetic subgroup of G,. We have

|0|(Te\GxaPa™) = |0|oo(I\Geo) @] (P,

where |o|«, |@|; denote the product measures on Goo, Gf corresponding to w.

In order to estimate the factors in the right-hand side of the formula, for each
v € V (k) werelate the measure |w)| to the canonical measure |wg, | on G(k,) defined
in [G, Secs. 4, 11]. In particular, if G is simply connected, then the measure |wg, |
coincides with the measure y,w} that is used for the local computations in [P]; for
v € Vyo(k), g, | isequal to the measure 14 on G(k,) defined as in Section 2.5; and
for al but finitely many v, |og, | = |w|,. Let y, denotetheratio |wg, |/|w|,, which by
the previous remark is equal to 1 for al but finitely many places v. Hence,

|0l(C\GxaPa™) = poo(T\Go) [ | los, I(P0)/ [ | 12

veVy veV
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We now recall the main result of [BP], whichimpliesthat covolumes of arithmetic
subgroups of G, with respect to the measure 1 are bounded from below by auniversal
constant, and thus, ., (I",\G.) > wo.

The crucial ingredient that alows us to carry out the required estimates is the
product formulafor y,. It wasobtained in [P, Th. 1.6] for the simply connected groups
and later extended by Gross to arbitrary reductive groups defined over number fields
(see aso [Ku] for the groups over global function fields). Thus, by [G, Th. 11.5], we
have

H Vo = (@z/ggikl)s&(lg ( 2:;![+1>[-k@]

veV

Finally, we make use of the following inequality.

CLAIM
We have |w6,,|(ﬁv) > |wg, I(P) = e(Pv)il-

The proof of this claim, which is given below, is quite technical but not conceptually
new; related questions were studied in detail and full generality in [G] and [Ku]. The
argument fallsinto several steps.

Proof

Let K = k, be anonarchimedean local field, let ¢ be its ring of integers, let G be
a simply connected semisimple K-group, leti : G — G’ be a central K-isogeny
(we actually need only the case G' = G), and let X = X(G) denote the Bruhat-Tits
building of G/K .

(1) We assume first that the groups G and G’ are quasi-split over K. Let x € X
be a specia vertex in X chosen asin [G, Sec. 4] (see dso [P, Sec. 1.2]). The Bruhat-
Tits theory assignsto G'/K and x € X(G) a smooth affine group scheme gg over
0. Its generic fiber is isomorphic to G'/K, and its specia fiber G{S is connected.
Let P, = G (0)(= G°(0)), P, = G'°(0). Then P, (resp., P.) is an open compact
subgroup of G(K) (resp., G'(K)), P, isthestabiliser of x inG(K), and P, iscontained
inthestabiliser of x in G'(K') withfiniteindex. Recall also that the measure |wg| (resp.,
|we|) correspondsto adifferential wg (resp., wg) of top degree on G (resp., G') over
K which has good reduction (see[G, Sec. 4]). Thisbrings usto the conditions of [Oe,
Prop. 1.2.5], which implies

— _di / —,0 —di 4
logl(P,) = #G,(F,)g *™®,  |we|(P)) = #G' (F,)g “™°.

(F, denotestheresiduefield of K.)
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Since G and G’ areisogenous, G, and G/, areisogenous. Hence, dimG = dimG’,
and by Lang's theorem (see [L]), #G, (F,) = #@S(Fq). Thus, we obtain |wg|(P;) =
lwe |(P).

(2) Now, let C be achamber of X which contains x, and let 2 be a subset of C.
Denote by /¢ (resp., () the Iwahori subgroup of G(K) (resp., G'(K)) correspondi ng
to C. Note that by definition, 7/, is the preimage in G'(K’) of a Borel subgroup B
of G/x(Fq). Let P (resp., PS) be the parahoric subgroup of G(K) (resp., G'(K))
associated to 2; so Po = G (0), P, = g/%(@), and any parahoric subgroup of
G(K) is conjugate to some Pq. The inclusion @ C C induces a group scheme
homomorphism pq¢ : Q/OC — gg whose reduction maps the group@f onto aBorel
subgroup B’ of G’g. Therefore, we have

[P, 1.] = [G'o(F,) : Bl =[Ga(F,) : Bl = [Pa : Ic],

as@?2 isisogenousto G, B’ isisogenousto B, and all the groups are connected. It
followsthat |we |(Pg) = |ws|(Pg).

(3) Wefinally notethat P, c P, (P, denotesthe stabiliser of Q in G'(K)), and
thus, |o |(Ph) > |we [(PL) = los|(Pg), whichimpliesthe desired inequality in the
quasi-split case.

(4) In order to extend thisresult to the general case, we haveto recall the definition
of the canonical measure |wg| for the general G by pullback from the quasi-split
inner form (see [G, p. 294]) and its interpretation in terms of the volume form vg
associated to an Iwahori subgroup of G(K) described in [G, pp. 294—295]. The
latter allows us to apply the argument similar to step (1) to Iwahori subgroups I¢
and 1. corresponding to a chamber C of X(G), proving |wc|(Ic) = lws (1) All
the rest of the proof does not depend on the quasi-split assumption, and the claim
follows. O

Let us collect together the results of this section. We obtain

|0l (GUNGA) [T,ev ¥
Mo Huevf e(Pv)7

c(P) <

1 am©)2 ys : m;! Q@
- E@g ©12(, 1 My /2<,11 (2;z)—+1) w(©)&P). (8
This formula can be viewed as an extension of the upper bound for the class number
from [P, Th. 4.3].

We now bound the right-hand side of (8). By Sections 4.1 and 4.2, we have
D < (x/c)V™, Dy < (x/c))V, and [k : Q] < clogZy. By (7), w(G) < cur.
From Sections 4.3 and 4.4, it follows that if w(H/T) < x, then ]'[vev/ e, < xsfor
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some constant ¢, that depends only on the type of almost simple factorsof H. Hence,
it follows from (8) that there exists a constant c¢19 such that

c(P) < x°.

4.6. The upper bounds

It remains to combine the results of the previous sections to get the upper bounds. By
Sections 4.1, 4.3, 4.4, and 4.5,

ml;[(x) < xC2B()+es en ey cro < xBﬁ(X)’

and constant B depends only on the type of aimost simple factors of H.
By Sections 4.2, 4.3, 4.4, and 4.5,

m(x) < xxCxCExCe < )CB/,
and constant B” depends on the type and the number of almost simple factors of H.
5. Proof of Theorem 1: Thelower bound

5.1. Cocompact case

A theorem of Borel and Harder [BH] implies that a semisimple group over a loca
field of characteristic zero contains cocompact arithmetic | attices. The method of [BH]
actually provestheexistence of such | atticesdefined over agivenfield k, which satisfies
anatural admissibility condition, for any isotypic semisimple Lie group. So, if H has
ay real and a, complex almost simple factors (all of the same type) and k is a number
field with greater than a, real and precisely a, complex places, then H contains a
cocompact arithmetic subgroup I'; defined over k.

Let 'y be amaximal arithmetic subgroup of H which contains I';. There exists
an absolutely almost simple, simply connected k-group G and a principal arithmetic
subgroup Ag of G such that 'y = Ny (¢ (Ao)).

We assume that x islarge enough and estimate the number of principal arithmetic
subgroups A C G(k) which are associated to the coherent collections of parahoric
subgroups of ¢-maximal types (see[R], [RC]) and suchthat 1s(Gs/A) < x. Thenfor
I' = Ny(¢p(A)), wealso have us(Gs/T') < x. Moreover, by Rohlfs's theorem, each
such I isamaximal arithmetic subgroup of H and all maximal arithmetic subgroups of
H are obtained as the normalizers of theimages of the principal arithmetic subgroups
corresponding to @¥-maximal collections of parahorics.

The condition of maximality for the type of a collection of parahoric subgroups
P = (P,),ev, is alocal condition on the types of P, at each v € V, while (-
maximality requires an additional global restriction that is needed to further narrow
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down the set of admissible collections of parahoric subgroups of maximal types. We
do not give precise definitions here, referring the reader to the articles [R] and [RC].
What is important for our argument is that given Py = (Po,).ev,, @ collection of
parahoric subgroups of ¢-maximal type, for every vy € V, there exists another (-
maximal collection P = (P,),ev, such that for v # vo, P, = Po, and Py, Z Poy,.
This is clearly true. For the groups of the absolute rank greater than one (which is
our standing assumption), it is enough to consider the maximal types corresponding
to single vertices of the affine Dynkin diagram, and for such types, (-maximality can
be easily checked.
We have

MS(GS/A)=92“@/2(@1/@&“”)”2(H )@ )
=1

(2 )m +1

= 1_[ €(PU)/6(PO,U)

veTl

<c l_[e(Pv), c1 = ps(Gs/Ao),

veT

where P, (resp., Py,) isthe closure of A (resp., Ao) in G(k,), v € Vy; T isafinite
subset of the nonarchimedean places of k for which P, Z P, ,; and the constant c¢;
dependson G/ k and A but does not depend on the choice of A.

If [[,cr e(Py) < x/c1, then us(Gs/A) < x. Thereexistsaconstant § determined
by the absolute type of G such that for every v € V; and every parahoric subgroup
P, C G(k,), e(P,) < q° (e.g., take § = dim(G)). Thisimplies

[Ter) <]

veT veT

Hence, [1,cr 90 < (x/c1)Y? issufficient for j5(G/A) < x. The number of variants
for such sets T is controlled via Proposition 3.2(i). (Note that the field & isfixed.) We
obtain that for large enough x, there are at least

x\Ll/8
Cz(—) > x4
C1

variants for T', where the constant A > 0 is determined by § and, thus, depends only
on the absolute type of G.

It remainstorecall that for each T, there existsacollection of parahoric subgroups
P = (P,)vev, suchthat P, = P, forv e V,\ T, P, % P, forv e T,and P has
(-maximal type. Each such collection defines a maximal arithmetic subgroup of H of
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covolumelessthan x, and subgroups corresponding to different 7’'s are not conjugate.
The number of maximal arithmetic subgroups obtained this way is at least x* with
A > 0, a constant depending only on the absolute type of G. This proves the lower
bound for m¥, (x).

Note that all the maximal arithmetic subgroups constructed in this section are
commensurable. It is aso possible to construct different commensurability classes
that contain arithmetic subgroups of covolumes less than x. This may enlarge the
constant A in our asymptotic inequality but, since it follows from the first part of
the proof and the conjecture on the number of isomorphism classes of fields with
discriminant less than x, would hardly change the type of the asymptotic.

5.2. Non-cocompact case

Let now I'; be anonuniform irreducible lattice in H which exists by the assumption
of Theorem 1(B), and let G be a corresponding algebraic k-group. Arithmetic sub-
groups of H which are induced from G(k) are al noncocompact. (They are actually
commensurable with I';.) To prove the lower bound for m’}}' (x), it remains to repeat
the argument of Section 5.1 for the group G.

Notethat contrary to the compact case, the existence of non-cocompact arithmetic
lattices in H generaly is not guaranteed by the condition that H is isotypic (for
a counterexample, see Sec. 2.3). The conditions under which such examples can
be constructed are rather exceptional; in most cases, isotypic groups contain both
cocompact and non-cocompact arithmetic subgroups.

The theorem is now proved. O

6. Corollaries, conjectures, remarks

6.1

COROLLARY

There exists a constant C; that depends only on the type of almost simple factors of H
suchthat if A isa principal arithmetic subgroup of H andI" = Ny (A) has covolume
lessthan x, then [I" : A] < x©.

Proof
By [BP] (see Sec. 2.7 for the notation and precise references),

[F : A] < ne#S X 2hle’nea(k)+e’a(l)+e#T(9[/95(]1/(])6” X 1_[ #E@)U- (9)

vevy

Now, since u(H/T") < x, thegroup I' hasto satisfy the conditions on the subgroups
of covolume less than x obtained in the proof of the upper bound of Theorem 1. (In
Theorem 1, only maximal arithmetic subgroups are considered, but the proof of the



COUNTING MAXIMAL ARITHMETIC SUBGROUPS 23

upper bound applies without a change to arbitrary principal arithmetic subgroups and
their normalisers, thus providing asomewhat stronger result to which we appeal here.)
We have

D) = Gy < x4, a(k) < calogx (Sec. 4.1),
#T < #T1 < c3logx  (Sec. 4.3),
{veV, #8o, #1) CTIURU T

asfor therest of v, P, isspecial, so

Hv eV, #80, #1} <#HT1URUT) < calogx (Sec. 4.4).

Also, recall that #2¢, < r + 1, r isthe absolute rank of G; h; < c"U g, < x¢ (see,
e.g., the proof of Prop. 3.3); and a(/) < 3a(k) (as[/ : k] < 3). Altogether, theseimply
the corollary. O

6.2

For some particular cases, the bound in Corollary 6.1 can be improved. Let us assume
that the degrees of the fields of definition of the arithmetic subgroups are bounded.
Thus,

[k:Q] =d, (10)

which isthe case, for example, if we consider only nonuniform latticesin H.

Assumption (10) impliesthat the number m of different primeideals 2., ..., 2,
of O, such that Norm(Z2,---2,,) < x isbounded by clogx/loglogx, ¢ = ¢(d)
(instead of the bound log x that we used for the general case). Indeed, k = Q follows
from the prime number theorem, and the case of arbitrary k& of bounded degree can be
easily reduced to the rational case.

Therefore, assumption (10) implies that most of the terms in (9) are
at most ¢'%9+/1991%0x with ¢ = ¢(d). What remains is 2, = 2,/Z'™ (for type
D,, r even) and h; (or hy if [ = k). The former, in fact, appears in the formula as an
upper bound for 2% (see [BP, Sec. 5.5]), which again can be improved to ¢!09*/ 09109
by the same argument. What remains is the class number.

Going back to [BP, Sec. 5, Prop. 0.12], we see that what occurs in the formula
is not &; but the order of the group C, (1), which consists of the elements of the class
group C(/) whose orders divide n. (As before, n is a constant determined by the type
of H.) Instead of using the trivial bound #C, (1) < h,, let uskeep it asit is. We now
come to the following formula:

[[: A] < clo9v/loglodxye (1), x > u(H/T). (12)
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If n = pisaprime, let p,(I) denote the p-rank of C(I). Then, clearly, #C,(I) <
p?O and in general, for n = p{*--- po, #C,(l) < pi’”’“m e ® 56 we are
interested in the upper bounds for p-ranks of the class groups.

Apparently, even though this and related questions have been much studied, there
are very few results beyond Gauss's celebrated theorem, which can be applied in our
case. We have the fact that
) if [/ : Q] = 2,then p»(I) < 1, — 1 (by Gauss);

@iy if[k:Q]=2and[l: k] =2, then po(I) < 2(t; + 1, — 1) (by [Co, Th. 2]),
where 1, (resp., ;) denotes the number of primes ramified in k/Q (resp., 1/ k).
From this, we obtain

#Cn (l) < nclogx/ loglog x (12)

if nisapower of 2and/ isasin (i) or (ii).

Similar results for other n and other fields can only be conjectured; even p3(k)
for quadratic fields £ seems to be out of reach with the currently available methods.
Nevertheless, estimates (11) and (12) imply the following corollary.

6.3

COROLLARY

Let H beasimple Liegroup of type A3 (o > 1), B,, C,, D, (r # 4), E7, Eg, F4, Or
G,. There exists a constant C, that depends only on the type of H such that if A isa
non-cocompact principal arithmetic subgroup of H andif I' = Ny (A) has covolume
lessthan x, then [T" : A] < €9/

Proof

Indeed, the assumption that H has one of the given typesimpliesthat » is a power of
2 (seethe definition of n in Sec. 2.7). Since H is simple and the arithmetic subgroup
isnoncompact, itsfield of definition k iseither (Q or an imaginary quadratic extension
of Q, depending on whether H is areal or complex Lie group (see aso Sec. 4.2).
Finally, the fact that the type of H isnot D4 impliesthat [/ : k] < 2. The corollary
now follows from the discussion in Section 6.2. O

We expect similar estimates to be valid for the nonuniform lattices in other groups,
but we do not know how to proveit.

6.4

Remark. Concerning the general case, let us point out that if the degrees of the fields
are a priori not bounded, then we cannot expect a (logx/loglogx)-bound for the
p-rank of the class group. An example of a sequence of fields k; for which p,(k;)
growsaslog Z,, was constructed by Hajir [H, Sec. 5]. Thefieldsk; in Hajir'sexample
form an infinite class field tower. This remark together with the previous estimates
motivates the following question:
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Istheestimatein Corollary 6.1 sharp?; thatis, givenagroup H, isthereaconstant
Co = Co(H) > 0such that there exists an infinite sequence of pairwise nonconjugate
principal arithmetic subgroups A; in H for which [I'; : A;] > w(H/T;), where
I = Ny(A;) and  isa Haar measure on H?

Corollaries 6.1 and 6.3 are important in [BL], in which the growth rate of the number
of irreducible lattices in semisimple Lie groups is studied.

6.5

Remark. Groups of type A; have been consistently excluded here. It is not feasible to
use the formula from Section 2.8 combined with an analogue of Proposition 3.3 for
this case, even to prove a finiteness result. However, one can follow another method,
also dueto Borel, and employ geometric boundsfor theindex of aprincipal arithmetic
subgroup in amaximal arithmetic. Thisindeed allows us to establish the finiteness of
the number of arithmetic subgroups of bounded covolumein SL(2, R)¢ x SL(2, C)*
(see [B]). The problem is that the quantitative bounds that can be obtained this way
are only exponential. We suppose that the true bounds should be similar to the general
case (and conjecturaly polynomial), athough we do not know how to prove this
conjecture and leave it as an open problem.

Problem

Find the growth rate of the number of maximal arithmetic subgroups for the
semisimple Lie groups whose almost simple factors have type A; or obtain a better-
than-exponential upper bound for the growth.

6.6
The following two conjectures were mentioned in the introduction.

CONJECTURE 1
There exists an absolute constant B such that for large enough x, the number of
isomor phism classes of number fields with discriminants lessthan x is at most x 2.

CONJECTURE 2

Given a connected semisimple Lie group H without almost simple factors of type A
and without compact factors, there exists a constant By > 0 which depends only on
the type of almost simple factors of H such that for large enough x, the number of
conjugacy classes of maximal irreducible arithmetic subgroups of H of covolumes
lessthan x isat most x5,

We now prove the following proposition.
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PROPOSITION
Conjectures 1 and 2 are equivalent.

Proof
The implication that 1 — 2 follows directly from the proof of the upper bounds in
Theorem 1. Consider theimplicationthat 2 — 1. Assumethat Conjecture 2 istrue but
that Conjecture 1 isfalse (i.e., mY, (x) + m’(x) < x®# for every x > xo, and for an
arbitrary C, there exists x > xq such that N(x) > x). Some additional assumptions
on xg are needed, afact that becomes clear later; these could have been imposed from
the beginning. So, let usfix C > 1, and let x > xq be such that N(x) > x€.

Let N, ;(x) denote the number of extensions of Q of discriminant less than x
which have precisely i real and j complex places. We have

NEx) = > Nij).

The condition that the discriminants of the fields are less than x implies, by Minkow-
ski'stheorem, that the degrees of the extensions are bounded by ¢ log x for an absolute
constant ¢, and so the number of summandsis less than (c log x)?2. By Dirichlet’s box
principle, there exists a pair (i, j) such that N; ;(x) > x€/(clogx)? > x“~1. (This
inequality requires (clogx)? < x, which is true for large enough x and gives a first
condition on xo.) Let #" be the set of such number fidds, #4° = N, ;(x) > x“1,
Consider a smply connected semisimple Lie group H that has i split real simple
factors and j complex simple factors all of the sametype. For each k € 7, let G/ k
be asimply connected, absolutely simple split group of the same absolute type as the
smple factors of H, defined over k. Let P = (P,),cv, be a coherent collection of
parahoric subgroups of G which are all hyperspecial (such a collection exists since G
splitsover k), and let A be the principal arithmetic subgroup of H defined by P. We
have
@ for S =V,(k),Gs = H;
b)  w(H/A) = 2™ ([T, mit /2y g (P) by Prasad's formula.
Using the orders of finite groups of Lie type, the Euler product &(P) can be
expressed as a product of the Dedekind zeta function of k, and certain Dirichlet L-
functions at the integers m; + 1, m; are the Lie exponents of G (see [P, Rem. 3.11]).
Obvious inequalities L(s, x) < &(s) and ¢i(s) < ¢(s)*9, for s > 2, imply that
there exists a constant ¢, that depends only on the type of simple factors of H and
such that each zetaor L-function in the product is bounded from above by c[lk:Q]. Since
[k : Q] < clogx, we have &(P) < (c'®"). By definition of the set #", k € A’



COUNTING MAXIMAL ARITHMETIC SUBGROUPS 27

implies 2, < x. Therefore, we obtain
w(H/A) < xdim(G)/2C§|OQX(Ci|OQX)r < xa’

where § is greater than 1 and depends only on the type of simple factors of H. The
latter inequality may require that x be larger than a certain value that depends on the
type of simplefactorsof H and that gives us the second condition on xg. Clearly, both
conditions do not depend on C, and both could be imposed from the beginning.

For each k € ", we have at least one maximal arithmetic subgroup of H of
covolume less then x®. Now, if we take C = § By + 1, we arrive at a contradiction
with Conjecture 2 for H and x° > xo. O

Let us note that in the proof, Conjecture 2 is used only for non-cocompact arithmetic
subgroups of semisimple groups H which have simple factors of afixed type. It then
implies Conjecture 1, which in turn implies Conjecture 2 in the whole generality. It is
possible to specify further the relation between two conjectures, but we do not go into
details. What we emphasise is that our result provides a new geometric interpretation
for a classica number-theoretic problem. An optimistic expectation would be that
study of the distributions of lattices in semisimple Lie groups can give a new insight
on the number fields and their discriminants.

Appendix
JORDAN ELLENBERG and AKSHAY VENKATESH

Al
Let N(X) denote the number of isomorphism classes of number fields with discrimi-
nant less than X.

THEOREM
For every € > 0, thereis a constant C () such that log N(X) < C(e)(log X)**+< for
every X > 2.

In fact, we prove the more precise upper bound that

log N(X) < Cglog X exp(C7+/loglog X)

for absolute constants Cg, C-.
Thistheorem (almost) followsfrom [EV, Th. 1.1], the only point being to control
the dependence of implicit constants on the degree of the number field.
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We refer to [EV] for further information and for some motivational comments
about the method. In the proof, Cq, C», ... denote certain absolute constants.

A2
Let K bean extension of (Q of degreed > 200. Denoteby X (K) the set of embeddings
of K into C (#X(K) = d), and denote by = (K) a set of representatives for £(K)
modulo complex conjugation (in the notation of the article, ©(K) = V..(K)). We
regard the ring of integers U asalatticein K ®g R = [[, .y (x) Ko We endow the
real vector space K ®q R with the supremum norm (i.e., [|(x, )|l = sup, |x.|). Here,
| - | denotes the standard absolute value on C. In particular, we obtain a“norm” on (g
by restriction. Explicitly, for z € Ok, we have [|z|| = SUpP, .5 k) |0 (2)I-

We denote by M,(Z) (resp., M,(Q)) the algebra of d by d matrices over Z
(resp., Q).

By trace form we mean the pairing (x, y) — Trg,o(xy). It is a symmetric
nondegenerate Q-bilinear pairing on K 2.

Let s be a positive integer that can be specified later. We denote by y =
(y1, ¥2, ..., ys) an ordered s-tuple of elements of (O, and we write |y| :=
max([[yll. ... [lysll)- Fory = (y1. ... y,) € O and > 1, we set

S(Z)Z{(kl,...,kS)EZS:kl—l—-"—i-ksfl,kl,...,

>
Sy 1) = {35t yE ke .. k) € SO} C O

}

9
K-

0
(13)
0

If S isasubset of S(7), wedenoteby S(y) theset {yi'y5? - - -y © (ky, ..., k) € S).

A3

LEMMA

Let S beasubset of S(I) suchthat S(y) spansa Q-linear subspaceof K with dimension
strictly greater than d/2. Let S 4 S be the set of sums of two elements of S. Then
(S + S)(y) spans K over Q.

Proof (see[EV, Lem. 2.1])

Suppose that there existed z € K which was perpendicular, with respect to the trace
form, to the Q-span of (S + S)(y). Since (S + S)(y) consists precisely of all products
aB, witha, B € S(y), it follows that

Trgjo(zap) =0 (o, B € S(Y)). (14)

Cal W c K the Q-linear span of S(y). Then (14) implies that zW is perpendicular
to W with respect to the trace form, contradicting dim(W) > d /2. O
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A4

LEMMA

Let ¥ C Ok be a finite subset containing 1 and generating K as a field over
Q. Let z1,20,...,24 be a Q-linear basis for K. For each u € €, let M(u) =
(Trejo(ziz;)i<i j<a € Ma(Q). Then the Q-subalgebra of M,(Q) generated by
M(u)M(1)~1, asu ranges over %, isisomorphicto K.

Proof (see[EV, Lem. 2.2])
Infact, M (u) M (1)~* gives the matrix of multiplication by «, in the basis {z,}. O

A5
We denote by & the absolute value of the discriminant of K.

LEMMA
There is an absolute constant C; € R such that for any K as above, there exists a
basis y1, y2, . .., ya for Ok over Z such that
d
il <yl [TIwl = 22¢E wll < (C{2%Y4D (i < a).
i=1
(15
Proof

Thisis Minkowski’s second theorem, applied exactly asin [EV, Prop. 2.5]. The final
statement of (15) follows from the preceding statements, in view of the fact that
lly;ll = 1foreach j. O

A6
Letr, ! beintegerssothatd/2 < r < [S()| = ().

s

LEMMA
Supposethat W C K isa Q-linear subspace of dimension r, and let S C S(I) bea
subset of size . Then there existsy = (y1, yo, ..., y;) € W* such that the elements
of S(y) are Q-linearly independent.

Proof
Thisisprecisely [EV, Lem. 2.3]. O

A7

LEMMA

Let A =Zy,+Zy,+---+ Zy,,and let S C S(I) be a subset of size r. Then there
isy = (y1, y2, - - -, ¥s) € A* such that the elements of S(y) are linearly independent
over Q, and |ly|| < r2(C{y?) M@,
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Proof

Considering A* as a Z-module of rank rs, the proof of [EV, Lem. 2.3] shows that
thereisapolynomia F of degreeat most r/ in the rs variables so that the elements of
S(y) are linearly independent over Q whenever F(y) # 0. Lemma 2.4 of [EV] then
shows that we can choose such ay whose coefficients are at most (1/2)(rl + 1) < rl.
It follows that

lyill < ré(ci gy

fori=12,...,5. a

A8

LEMMA

The number of number fields with degree d > 200 and discriminant of absolute value
at most X isat most

(ng)d exp(Cav/ ogd)XeXp(Csv ogd) .

Proof
Fix once and for al a total ordering of S(2/). We denote the order relation as
(k1, ..., ks) < (K7, ..., k). Choose S C S(/) of cardinality r as above.

Let K havedegreed over Q and satisfy Zx < X.Choosey asinLemmaA.7. By
LemmaA.3, S(2/)(y) spans K over Q. It follows that there exists asubset IT C §(2/)
of sized suchthat {z1, ..., z4} = {yi'y5’ - - y* : (ki ko, ..., k,) € T1} forms a Q-
basisfor K and such that the ordering z4, . . ., z4 conformswith the specified ordering
onIT C S(2).

We apply Lemma A4 t0 {z1,...,z4} and € = (1, y1, y2, ..., ys). Then each
product uz;z; (u € ¢,1<1i, j <d)iscontainedin S(4/ + 1).

Put A = (Trio(31 y52 - - %)) toko. .. k)es@r1)- FOr €ach K, the collection of
matrices M (u) is determined by A and T1. Since |Trg o(z)| < d|ly||*** for any
z € S(y, 41 + 1), the number of possibilitiesfor A isat most (d|y||*+1)S@+9I; since
IT is asubset of [S(2/)|, the number of possibilities for IT is at most 2/5@)I,

LemmaA.4 now yields that the number of possibilitiesfor theisomorphism class
of K isat most 25@)(q]y||#*1)S@+D1 By our bound on |ly], we now have that the
number of possibilitiesfor K isat most

|S(41+1)]

2|S(21)|(d(r2l(cf@31-(/2)1/(d—r))4l+1) (16)

Notethat [S(4! + 1) = (*+¥*).
Now, just asin the paragraph following [EV, (2.6)], we choose s to be the greatest
integer less than /Togd and I to be the least integer greater than (ds!)*. Note
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that I < exp(Coy/Togd). Now, |S(1)| = (**) is at least d, so we may choose r
between d/2 and 3d /4. In particular, 12 < d°. Also, (****%) is at most 10°d and
1S@)| = (**?) < &d. Findly, s < 2,/Togd.

Substituting these valuesinto (16), we get the fact that the number of possible K
isat most

254 (d(d3(C4 X112 H)5ep (C2T0g) 04

which isin turn at most
(C3d)d exp(C4+/T0gd) Xap(csw@)'

A9
PROPOSITION
There are absolute constants Cg, C; with

logN(X) < Cglog X exp(C++/loglog X).

Proof

By Minkowski’s discriminant bound, there is an absolute constant Cs > 1 such that
7« > CFY for any extension K /Q. Therefore, we may take d to be bounded by
a constant multiple of log X. From Lemma A.8, it now follows that the logarithm of
the number of extensions K /Q with Z2x < X and [K : Q] > 200 is bounded by
Cslog X exp(C74/Toglog X). Trivia bounds suffice to show that the number of K
with Zx < X and[K : Q] < 200 isa most CgX?®. O
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