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Abstract
We study the growth rate of the number of maximal arithmetic subgroups of bounded
covolumes in a semisimple Lie group using an extension of the method developed by
Borel and Prasad.

1. Introduction
A classical theorem of Wang [W] states that a simple Lie group not locally isomor-
phic to SL2(R) or SL2(C) contains only finitely many conjugacy classes of discrete
subgroups of bounded covolumes. This theorem, which describes the distribution of
lattices in the higher-rank Lie groups, also brings attention to the quantitative side of
the distribution picture. To date, several attempts have been made toward a quantitative
analogue of Wang’s theorem, but with inconclusive results.

The problem of determining the number of discrete subgroups of bounded co-
volumes naturally splits into two parts: the first part is to count maximal lattices, and
the second is to count subgroups of bounded index in a given lattice. A recent project
initiated by Lubotzky [Lu] resulted in significant progress toward understanding the
subgroup growth of lattices and also allowed general conjectures to be formulated
on the asymptotic of the number of lattices of bounded covolumes in semisimple Lie
groups (see [BGLM], [GLP], [LN], [LS]). In this article, we consider another aspect
of the problem: counting maximal lattices in a given semisimple Lie group.

Let H be a product of groups Hs(ks), s ∈ S, where S is a finite set, each ks is an
archimedean local field (i.e., ks = R or C), and Hs(ks) is an absolutely almost simple
ks-group. Then H is a semisimple Lie group. Throughout this article, we consider
only semisimple Lie groups of this form. We assume, moreover, that H is connected
and that none of the factors Hs(ks) is compact or has type A1. In particular, H can be
a noncompact simple Lie group (real or complex) not locally isomorphic to SL2(R)
or SL2(C).

Let mu
H (x) and mnu

H (x) denote the number of conjugacy classes of maximal
cocompact irreducible arithmetic subgroups and the number of conjugacy classes of
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maximal non-cocompact irreducible arithmetic subgroups in H of covolume less than
x, respectively. If the real rank of H is greater than 1, then by Margulis’s theorem
[M, Th. 1, p. 2], these numbers are equal to the numbers of the conjugacy classes
of maximal uniform and nonuniform irreducible lattices in H of covolume less than
x. In the real rank 1 case, there may also exist nonarithmetic lattices that we do not
consider here.

THEOREM 1
(A) If H contains an irreducible cocompact arithmetic subgroup (or, equivalently,

if H is isotypic), then there exist effectively computable positive constants A

and B that depend only on the type of almost simple factors of H such that for
sufficiently large x,

xA ≤ mu
H (x) ≤ xBβ(x),

where β(x) is a function that we define for an arbitrary ε > 0 as β(x) =
C(log x)ε , C = C(ε) being a constant that depends only on ε.

(B) If H contains a non-cocompact irreducible arithmetic subgroup, then there
exist effectively computable positive constants A′, which depend only on the
type of almost simple factors of H , and B ′, which depends on H , such that for
sufficiently large x,

xA′ ≤ mnu
H (x) ≤ xB ′

.

Conjecturally, the function β(x) in part (A) can also be replaced by a constant; the
constant B ′ in part (B) depends only on the type of almost simple factors of H .
This would require, in particular, a polynomial bound on the number of fields with a
bounded discriminant. The existence of such a bound is an old conjecture in number
theory which may derive from Linnik; it appears in a stronger form in Cohen’s book [C,
Conj. 9.3.5]. In fact, we can show an equivalence of the conjecture “β(x) = const” to
Linnik’s conjecture (see Sec. 6.6) as a corollary from the proof of Theorem 1.

Theorem 1 is motivated by the problem of distribution of lattices in semisimple
Lie groups. An application of these results (and their corollaries) to the problem is
part of a joint work in progress with Lubotzky [BL].

To conclude this introduction, let us briefly outline the proof of Theorem 1.
Our method is based on the work of Borel and Prasad [BP]. What distinguishes our
task from theirs is that besides proving the finiteness of the number of arithmetic
subgroups of bounded covolumes, we give bounds or, at least, asymptotic bounds for
the number. This requires certain modifications to the method on one side and some
special number-theoretic results on the other. In Proposition 3.3, we improve a number-
theoretic result from [BP, Sec. 6], which enables us to effectively count the possible
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fields of definition of the maximal arithmetic subgroups. The proof of this proposition
is technical and is safely skipped in the first reading. The key ingredient for a good
upper bound for the number of fields is an elaboration of recent work of Ellenberg
and Venkatesh [EV], which we formulate in Proposition 3.1 and for which a proof is
given in the appendix. After bounding the number of possible fields of definition k, we
count admissible k-forms, corresponding collections of local factors, and conjugacy
classes of arithmetic subgroups. Here, we use some Galois cohomology techniques,
the Hasse principle, and the basic number-theoretic Proposition 3.2. Altogether, these
lead to the proof of the upper bounds in Theorem 1, which is given in Section 4. The
lower bounds, which are easier, are established in Section 5.

2. Preliminaries on arithmetic subgroups
This section presents a short account of the fundamental results of Borel and Prasad
([BP], [P]) which are used in this article. We encourage the reader to look into the
original articles cited above for a better understanding of the subject. Our modest
purpose here is to fix the notation and to recall some formulas for future reference.

2.1
Throughout this article, k is a number field, Ok is its ring of integers, V = V (k)
is the set of places (valuations) of k which is the union of V∞(k) archimedean and
Vf (k) nonarchimedean places, and A = Ak is the ring of adèles of k. The number
of archimedean places of k is denoted by a(k) = #V∞(k). Let r1(k), r2(k) denote the
number of real and complex places of k, respectively, so a(k) = r1(k) + r2(k). As
usual, Dk and hk stay for the absolute value of the discriminant of k/Q and the class
number of k. For a finite extension l of k, Dl/k denotes the Q-norm of the relative
discriminant of l over k.

All logarithms in this article are in base 2, unless stated otherwise.

2.2
Let G/k be an algebraic group defined over a number field k so that there exists a
continuous surjective homomorphism φ : G(k ⊗Q R)o → H with a compact kernel.
We call such fields k, and we call k-groups G admissible. If S ⊂ V∞(k) is the set of
archimedean places of k over which G is isotropic (i.e., noncompact), then φ induces
an epimorphism GS = ∏

v∈S G(kv)o → H whose kernel is a finite subgroup of GS .
We consider G as a k-subgroup of GL(n) for large enough n. We define a subgroup

� of G(k) to be arithmetic if it is commensurable with the subgroup of k-integral points
G(k) ∩ GL(n, Ok); that is, the intersection � ∩ GL(n, Ok) is of finite index in both
� and G(k) ∩ GL(n, Ok). The subgroups of H which are commensurable with φ(�)
for some admissible G/k are called arithmetic subgroups of H defined over the
field k.
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We restrict ourselves to the irreducible lattices, which implies that in the definition
of the arithmetic subgroups, it is enough to consider only simply connected, absolutely
almost simple algebraic groups G (see [M, Chap. 9.1]).

2.3
A semisimple Lie group contains irreducible lattices if and only if all its almost
simple factors have the same type (H is isotypic). For example, we can take H =
SL(2, R)a × SL(2, C)b or H = SO(p1, q1) × SO(p2, q2) (p1 + q1 = p2 + q2), but in
H = SL(2, R) × SL(3, R), all lattices are reducible. Sufficiency of this condition is
provided by the Borel-Harder theorem [BH], and its necessity is discussed elsewhere
(e.g., in [M, Chap. 9.4]). Note that, in general, the assumption that H is isotypic does
not imply that H contains nonuniform irreducible lattices, as is shown in an example
suggested by Prasad (see [Wi, Prop. 12.31]). This is the reason why we impose an
additional assumption concerning the existence of nonuniform irreducible lattices in
Theorem 1(B).

2.4
The methods of Borel and Prasad depend to a considerable degree on the Bruhat-Tits
theory of reductive groups over local fields. We assume familiarity with the theory
and recall only some basic definitions. An extensive account of what we need can be
found in Tits’s survey article [T].

Let K be a nonarchimedean local field of characteristic zero (a finite extension of
the p-adic field Qp), and let G be an absolutely almost simple, simply connected K-
group. The Bruhat-Tits theory associates to G/K a simplicial complex B = B(G/K)
on which G(K) acts by simplicial automorphisms that are special. (This implies, in
particular, that if an element of G(K) leaves a simplex of B stable, then it fixes the
simplex pointwise.) The complex B is called the affine building of G/K . A parahoric
subgroup P of G(K) is defined as a stabiliser of a simplex of B. Every parahoric
subgroup is compact and open in G(K) in the p-adic topology. Minimal parahoric
subgroups, called Iwahori, are defined as subgroups of G(K) fixing chambers (i.e.,
maximal simplexes) in B. All Iwahori subgroups are conjugate in G(K). Maximal
parahoric subgroups are the maximal compact subgroups of G(K); they are charac-
terised by the property of being stabilisers of the vertices of B. A maximal parahoric
subgroup is called special if it fixes a special vertex of B. A vertex x ∈ B is special if
the affine Weyl group W of G(K) is a semidirect product of the translation subgroup
by the isotropy group Wx of x in W . In this case, Wx is canonically isomorphic to
the (finite) Weyl group of the K-root system of G. If G is quasi-split over K and
splits over an unramified extension of K , then G(K) contains hyperspecial parahoric
subgroups. (We refer to [T, Sec. 1.10] for the definition of hyperspecial parahorics.)



COUNTING MAXIMAL ARITHMETIC SUBGROUPS 5

An important property of these subgroups is that they have maximal volumes among
all parahoric subgroups (see [T, Sec. 3.8.2]).

2.5
We now define a Haar measure µ on H with respect to which the volumes of arith-
metic quotients are computed. Of course, the final result then holds for any other
normalization of the Haar measure on H . The definition and most of the subsequent
facts come from [P] and [BP].

Let G be an admissible simply connected algebraic k-group. If v ∈ Vf (k), we let
µv be the Haar measure on G(kv) which assigns volume 1 to the Iwahori subgroups
of G(kv). If v is archimedean, we first consider the case where kv = R. There exists
a unique anisotropic R-form Gcpt of G which has a natural Haar measure giving the
group volume 1. This measure can be transferred to G(kv) in a standard way, and we
define µv as its image; it is a canonical Haar measure on G(R). In the case where
kv = C, we have G(kv) = G1(R) with G1 = ResC/RG, and we define µv to be equal to
the canonical measure on G1(R). The Haar measure µS on GS is defined as a product
of µv , v ∈ S. This also induces the measure µ on H , and it is easy to check that µ

does not depend on a choice of G and the epimorphism φ : GS → H .

2.6
A collection P = (Pv)v∈Vf

of parahoric subgroups Pv of a simply connected k-
group G is called coherent if

∏
v∈V∞ G(kv) · ∏

v∈Vf
Pv is an open subgroup of the

adèle group G(Ak). A coherent collection of parahoric subgroups P = (Pv)v∈Vf

defines an arithmetic subgroup � = G(k) ∩ ∏
v∈Vf

Pv of G(k), which is called the
principal arithmetic subgroup associated to P . The corresponding arithmetic subgroup
�′ = φ(�) ⊂ H is also called principal.

The covolume of a principal arithmetic subgroup with respect to the measure µ

defined as above is given by Prasad’s formula [P, Th. 3.7]:

µ(H/�′) = µS(GS/�) = Ddim(G)/2
k (Dl/D[l:k]

k )s/2
( r∏

i=1

mi!

(2π)mi+1

)[k:Q]
τk(G) E(P ),

where
(i) dim(G) and mi denote the dimension and Lie exponents of G;
(ii) l is a Galois extension of k defined as in [P, Sec. 0.2] (if G is not a k-form

of type 6D4, then l is the split field of the quasi-split inner k-form of G, and
if G is of type 6D4, then l is a fixed cubic extension of k contained in the
corresponding split field; in all the cases, [l : k] ≤ 3);

(iii) s = s(G) is an integer defined in [P, Sec. 0.4], and in particular, s = 0 if G is
an inner form of a split group, while s ≥ 5 if G is an outer form;
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(iv) τk(G) is the Tamagawa number of G over k since G is simply connected and k

is a number field τk(G) = 1; and
(v) E(P ) = ∏

v∈Vf
ev is an Euler product of the local factors ev = e(Pv); for

v ∈ Vf , ev is the inverse of the volume of Pv with respect to the Haar measure
γvω

∗
v defined in [P, Secs. 1.3, 2.1].

The local factors can be computed using the Bruhat-Tits theory. (In particular,
ev > 1 for every v ∈ Vf ; see [P, Prop. 2.10(iv)].)

2.7
Any maximal arithmetic subgroup � of H can be obtained as a normaliser in H of
the image �′ of some principal arithmetic subgroup of G(k) (see [BP, Prop. 1.4(iv)]).
Moreover, the collections of parahoric subgroups which are associated to the maximal
arithmetic subgroups have maximal types as shown in Rohlfs [R] (see also [RC]). So,
in order to compute the covolume of a maximal arithmetic subgroup, we need to be
able to compute the index of a principal arithmetic subgroup in its normaliser. In a
general setting, the upper bound for the index was obtained in [BP, Sec. 2]:

[� : �′] ≤ nε#S · #H1(k, C)ξ ·
∏
v∈Vf

#��v
.

Here, n and ε are constants defined below, so nε#S depends only on H and does not
depend on the choice of G(k) and �. The group H1(k, C)ξ is a finite subgroup of the
first Galois cohomology group of k with coefficients in the center of G, as is defined
in [BP, Sec. 2.10]. The order of H1(k, C)ξ can be further estimated (see [BP, Sec. 5]);
the following bound is a combination of [BP, Props. 5.1, 5.6]:

#H1(k, C)ξ ≤ 2hε′
l nεa(k)+ε′a(l)+ε#T (Dl/D[l:k]

k )ε
′′
,

where
(i) n = r + 1 if G is of type Ar ; n = 2 if G is of type Br , Cr (r arbitrary), Dr

(with r even), or E7; n = 3 if G is of type E6; n = 4 if G is of type Dr (with r

odd); n = 1 if G is of type E8, F4 or G2;
(ii) ε = 2 if G is of type Dr (with r even), and ε = 1 otherwise (so the center

C = C(G) is isomorphic to (Z/nZ)ε and #C = nε);
(iii) ε ′ = ε if G is an inner form of a k-split group, and ε ′ = 1 otherwise;
(iv) ε ′′ = 1 if G/k is an outer form of type Dr (r even), and ε = 0 otherwise; and
(v) T is the set of places v ∈ Vf for which G splits over an unramified extension

of kv but is not quasi-split over kv .
Finally, ��v

is a subgroup of the automorphism group of the affine Dynkin diagram
which comes from the adjoint group and preserves the type �v of Pv . In particular,
#��v

≤ r + 1, and #��v
= 1 if Pv is special.
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2.8
As a result, we have the following lower bound for the covolume of �:

µ(H/�) ≥ (2nεa(k)+ε′a(l)hε′
l )−1Ddim(G)/2

k

( Dl

D[l:k]
k

)s ′( r∏
i=1

mi!

(2π)mi+1

)[k:Q]
τk(G)F,

where
(i) s ′ = s/2−1 if G/k is an outer form of type Dr , r even, but s ′ = s/2 otherwise;

and
(ii) F = ∏

v∈Vf
fv with fv = ev(#��v

)−1 = ev if G is quasi-split over kv and

Pv is hyperspecial (which is true for almost all v), fv = evn
−ε(#��v

)−1 if
G splits over an unramified extension of kv but is not quasi-split over kv , and
fv = ev(#��v

)−1 in the rest of the cases.
Using the computations in [BP, Apps. A, C], it is not hard to check that fv > 1

for every v ∈ Vf .
More details about this formula can be found in [BP, Secs. 5, 7].

3. Number-theoretic results

3.1
Let Nk,d(x) be the number of k-isomorphism classes of extensions l of k such that
[l : k] = d , Dl/k < x, and let N (x) be the number of isomorphism classes of number
fields with discriminant less than x.

PROPOSITION

For large enough positive x, we have the following:
(i) given a number field k and a fixed degree d , there exist constants c, b1, b2 > 0,

depending only on d , such that Nk,d(x) ≤ cDb1
k xb2; and

(ii) for every ε > 0, there exists a constant C = C(ε) > 0 such that
N (x) ≤ xβ(x), β(x) = C(log x)ε .

Proof
Effectively, the proof
(i) follows, for example, from [EV, Th. 1.1]; and
(ii) it follows from the general method used in [EV] but requires some extra work,

namely, that we have to know how the implicit constants in [EV, Th. 1.1]
depend on the degree of the extensions in order to be sure that this does not
change the expected upper bound; this is carried out in detail in the attached
appendix provided by Ellenberg and Venkatesh. �

3.2
Let Qk(x) be the number of squarefree ideals of k of norm at most x.
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PROPOSITION

For a number field k, we have
(i) Qk(x) = (Ress=1(ζk)/ζk(2)) x + o(x) for x → ∞; and
(ii) there exist absolute constants b3, b4 (not depending on k) such that

Qk(x) ≤ Db3
k xb4 .

Proof
Of the two items in the preceding proposition, we have the following.
(i) The proof is a known fact from analytic number theory. For a short and con-

ceptual proof, we refer to [Se, Th. 14].
(ii) As far as we do not claim that b4 = 1, the proof is easy. Consider the Dedekind

zeta function of k:

ζk(s) =
∞∑

n=1

an

ns
,

where an is the number of ideals of k of norm n, s > 1.
Let Ik(x) denote the number of ideals of k of norm less than x. We have

Ik(x) = a1 + a2 + · · · + a[x],

ζk(s) · xs ≥ Ik(x).

Taking s = 2, we obtain

Qk(x) ≤ Ik(x) ≤ ζk(2) · x2 ≤
(π2

6

)[k:Q]
x2 ≤ c

log Dk

1 x2 = Db3
k xb4 .

Here, we used inequalities ζk(2) ≤ ζ (2)[k:Q] and for k �= Q, [k : Q] ≤ c log Dk . The
first inequality follows from the definition of the functions ζ and ζk , and the second is
a well-known corollary of Minkowski’s discriminant bound. �

3.3
Finally, we need an improved version of a number-theoretic result from [BP, Sec. 6].
The main idea is that instead of using Ddim(G)/2

k to absorb the small factors in the
volume formula, we use only part of it, saving the rest for a later occasion. This is easy
to achieve for the groups of a large-enough absolute rank; when the rank becomes
small, the estimates become much more delicate.

Let G/k be an absolutely almost simple, simply connected algebraic group of
absolute rank r ≥ 2, so that the numbers n, ε, ε ′, s ′ and m1 ≤ · · · ≤ mr are fixed and
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defined as in Section 2. Let

B(G/k) = Ddim(G)/2
k n−εa(k)−ε′a(l)h−ε′

l (Dl/D[l:k]
k )s

′
( r∏

i=1

mi!

(2π)mi+1

)[k:Q]
.

Then by Section 2.8, we have µ(H/�) ≥ (1/2)B(G/k)τk(G)F ≥ (1/2)B(G/k) for
every arithmetic subgroup � of H which is associated to G/k.

PROPOSITION

There exist positive constants δ1, δ2 depending only on the absolute type of G such
that B(G/k) ≥ Dδ1

k Dδ2
l/k for almost all number fields k.

Proof
Given an absolutely almost simple, simply connected algebraic group G of an absolute
type T and rank r , we show that for almost all k,
(i) B(G/k) ≥ D dim(G)/2−2

k Dl/k if r ≥ 30;
(ii) B(G/k) ≥ DkDl/k if r < 30 and T is not A2, A3, B2;
(iii) B(G/k) ≥ D 0.1

k Dl/k if T is A3 or B2;
(iv) B(G/k) ≥ D 0.01

k D0.5
l/k if T is A2.

Clearly, these four inequalities all together imply the proposition.
First, assume that G is not a k-form of type 6D4. We have

[l : k] ≤ 2,

n−εa(k)−ε′a(l) ≥ n−ε(a(k)+a(l)) ≥ (r + 1)−3[k:Q].

It is known that

hl ≤ 102
( π

12

)[l:Q]
Dl (1)

(see [BP, proof of Prop. 6.1]; let us point out that this bound holds without any
assumption on the degree of the field l);

Dl/D[l:k]
k = Dl/k ≥ 1. (2)

Combining the above inequalities, we obtain

B(G/k) = Ddim(G)/2
k n−εa(k)−ε′a(l)h−ε′

l (Dl/D[l:k]
k )s

′
( r∏

i=1

mi!

(2π)mi+1

)[k:Q]

≥ 10−2ε′Ddim(G)/2−2
k

( π

12

)−ε′[l:Q]
Dl/k

( 1

(r + 1)3

r∏
i=1

mi!

(2π)mi+1

)[k:Q]

≥ 10−2ε′Ddim(G)/2−2
k Dl/k

( 1

(π/12)(r + 1)3

r∏
i=1

mi!

(2π)mi+1

)[k:Q]
.
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(If G is k-split, then s ′ = 0, l = k, Dl/k = 1; in the nonsplit case, we use the fact that
s ′ > 2.)

Since for i large enough, mi! � (2π)mi+1, it is clear that for large enough r ,

1

(π/12)(r + 1)3

r∏
i=1

mi!

(2π)mi+1
> 1.

An easy, direct computation shows that starting from r = 30,

10−2ε′Ddim(G)/2−2
k Dl/k

( 1

(π/12)(r + 1)3

r∏
i=1

mi!

(2π)mi+1

)[k:Q]
≥ Ddim(G)/2−2

k Dl/k.

So, for r ≥ 30, δ = dim(G)/2 − 2, and any field k, we have B(G/k) ≥ Dδ
kDl/k , the

finite set of the exceptional fields is empty, and case (i) is proved.
To proceed with the argument, let us remark that

B(G/k) ≥ D dim(G)/2−2
k Dl/kc,

where c > 0 depends only on the absolute type of G and degree d = [k : Q]. So, if
the degree d is fixed, then for any z > 0 that is chosen later, we have

B(G/k) ≥ D dim(G)/2−2−z

k Dl/kDz
kc ≥ D dim(G)/2−2−z

k Dl/k (3)

for all k with Dk ≥ c−z. Since there are only finitely many number fields with a
bounded discriminant, (3) holds for all but finitely many k of degree d . Since we
always have dim(G)/2 > 2, this allows us to assume (at least when G is not 6D4) that
the degree of k is large enough.

We now come to case (ii). Let G be not of type 6D4. By the previous remark, we
can suppose that [k : Q] is large enough. Due to Odlyzko [O, Th. 1], we have the
following lower bound for Dk:

if [k : Q] > 105, then Dk ≥ 55r1(k)212r2(k). (4)

So, for [k : Q] > 105,

B(G/k) ≥ 10−2ε′
( 21dim(G)/2−2−δ

(π/12)(r + 1)3

r∏
i=1

mi!

(2π)mi+1

)[k:Q]
Dδ

kDl/k.

A direct case-by-case verification shows that for δ = 1, the latter expression is at least
Dδ

kDl/k . So, if we put z = dim(G)/2 − 3 in (3), then we obtain that for all but finitely
many k, B(G/k) ≥ DkDl/k .
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Let now G/k be a triality form of type 6D4. We have

ε = 2, ε ′ = 1, n = 2, s ′ = 2.5, {mi} = {1, 3, 5, 3},
[l : k] = 3, and a(l) ≤ 3[k : Q].

So, if [k : Q] > 105,

B(G/k) ≥ 10−2
( 2114−3−δ

(π/12) · 23
· 6 · 120 · 6

(2π)16

)[k:Q]
D δ

k Dl/k.

For δ = 1, it is ≥ DkDl/k . If [k : Q] ≤ 105, we still have the inequality (3) (the
precise formula for the constant c would be different, but it is not essential), so that,
for all but finitely many k, again B(G/k) ≥ DkDl/k . The case (ii) is now settled
completely.

Let G/k be of type A3 or B2. As before, we can assume [k : Q] > 105. We have

B(G/k) ≥ 10−2
( π

12

)−[l:Q](21dim(G)/2−[l:k]−δ

n1+[l:k]

r∏
i=1

mi!

(2π)mi+1

)[k:Q]
D δ

k Dl/k.

Now, n = 4 and n = 2 for the types A3 and B2, respectively; if l �= k, then [l : Q] =
2[k : Q]. Using this, it is easy to check that if δ = 0.1, then B(G/k) ≥ D δ

k Dl/k in
each of the possible cases.

It remains for us to consider (iv). This is the most difficult case; the proof almost
repeats the argument of [BP, Prop. 6.1(vi)].

With the notation of [BP], for [l : Q] > 105 we have

B(G/k) = D4
k · 3−a(k)−a(l)h−1

l (Dl/D[l:k]
k )5/2

( 1

24π5

)[k:Q]

= Dδ
kD2−δ/2

l (Dl/k)
1/23−a(k)−a(l)h−1

l

( 1

24π5

)[k:Q]

≥ Dδ
k(Dl/k)

1/2 0.02

s(s − 1)

( 55(4−δ−s)/2

2 · 33/2 · π (6−s)/2

)r1(l)( 21(4−δ−s)

2(4−s) · 32 · π (5−s)

)r2(l)

× exp

(
(3 − δ − s)Zl(s) − (4 − δ − s)

(c1

2
+ (s − 1)−1

)

+ (
0.1 − (c3 + c4)(s − 1)

)
a(l)

)
.

Now, let δ = 0.01. Since

552.99/2(2 · 33/2 · π5/2)−1 > 2.19, 212.99(23 · 32 · π4)−1 > 1.28,

and

exp
(
(3 − δ − s)Zl(s)

) ≥ 1 if s < 2 − δ,
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by choosing s > 1 sufficiently close to 1, we obtain that there is an absolute constant
c6 such that

D4
k · 3−a(k)−a(l)h−1

l (Dl/D[l:k]
k )5/2

( 1

24π5

)[k:Q]
≥ D0.01

k (Dl/k)
1/22.19r1(l)1.28r2(l)c6.

The right-hand side is at least D0.01
k (Dl/k)1/2 if [l : Q] is large enough, say, [l : Q] > dl

(and dl ≥ 105).
If [l : Q] < dl , then [k : Q] < dl , and by (3) for all but finitely many fields k, we

have

B(G/k) ≥ DkDl/k ≥ D 0.01
k D 0.5

l/k . �

Remark. The proof provides explicit values of δ1, δ2 for each of the types; however,
in many cases, the bound for B(G/k) can be improved. This requires more careful
argument and is useful for particular applications.

4. Proof of Theorem 1: The upper bound
As before, H denotes a connected semisimple Lie group whose almost simple factors
are all noncompact and have the same type different from A1; G is an absolutely
almost simple, simply connected k-group admissible in the sense that there exists a
continuous surjective homomorphism G(k ⊗Q R)o → H with a compact kernel.

4.1. Counting number fields
For a (maximal) arithmetic subgroup � of H , we have (see Sec. 2.8)

µ(H/�) ≥ 1

2
B(G/k)τk(G)F, (5)

where
(i) k is the field of definition of �,
(ii) G/k is a k-form from which � is induced (see Sec. 2.2),
(iii) B(G/k) = D dim(G)/2

k n−εa(k)−ε′a(l)h−ε′
l (Dl/D[l:k]

k )s
′( ∏r

i=1 mi!/(2π)mi+1
)[k:Q]

,

(iv) τk(G) = 1, and
(v) F = ∏

v∈Vf
fv > 1 is considered later.

By Proposition 3.3, for all but finitely many number fields k,

µ(H/�) ≥ c1D δ1
k D δ2

l/k,

where δ1, δ2 are the constants determined by the absolute type of G (which is the type
of almost simple factors of H ).

So, for large enough x, if µS(H/�) < x, then Dk < (x/c1)1/δ1 , Dl/k <

(x/c1)1/δ2 .
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By Proposition 3.1(ii), the number of such fields k is at most

( x

c1

)β((x/c1)1/δ1 )
≤ xc2β(x),

and by Proposition 3.1(i), for each k the number of such extensions l is at most

cD b1
k

( x

c1

)b2/δ2 ≤ c
( x

c1

)b1/δ1
( x

c1

) b2/δ2 ≤ xc3 .

It follows that the number of all admissible pairs (k, l) is bounded by

xc2β(x)+c3,

and moreover, since k �= Q implies [k : Q] ≤ c log Dk , for all admissible k we have

a(k) ≤ c4 log x.

4.2. Non-cocompact case
If � is non-cocompact, the degree of the field of definition of � is bounded. Indeed,
the non-cocompactness of � implies that the corresponding algebraic group G is
k-isotropic, so G/kv is noncompact for every v ∈ V . It follows that the number
of infinite places of k is equal to the number #S of almost simple factors of H , so
[k : Q] ≤ 2#S.

Now, in Section 4.1, we can consider only the number fields k with [k : Q] ≤ 2#S

and the number fields l with [l : Q] ≤ 3[k : Q] ≤ 6#S. By Proposition 3.1(i), for
large enough x the number of admissible pairs (k, l) is at most

xc5, c5 = c5(#S).

(In fact, here we can use a weaker result from Schmidt [S], who showed that the
number of degree n extensions l of k with Dl/k < x is bounded by C(n, k)x(n+2)/4.)

4.3. Counting k-forms
Given an admissible pair (k, l) of number fields, there exists a unique quasi-split k-
form G for which l is the splitting field (or a certain subfield of the splitting field if G is
of type 6D4 and [l : Q] = 3). So, we have an upper bound for the number of quasi-split
groups for which there can exist an inner form that defines an arithmetic subgroup
of covolume less than x. We now fix a quasi-split k-form G and estimate the number
of admissible inner forms. Since every inner equivalence class of k-forms contains a
unique quasi-split form, this gives us a bound on the total number of admissible G/k.

By the assumption,
∏

v∈V∞(k) G(kv) is isogenous to H × K (K is a compact
Lie group), so the kv-form of G is almost fixed at the infinite places of k. More
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precisely, let ch be the number of nonisomorphic almost simple factors of H . For each
v ∈ V∞(k), G(kv) is isomorphic to one of ch noncompact (simply connected) groups
or is compact. Let nh denote the number of places v at which G(kv) is noncompact.
By the assumption, nh = #S. This implies that the number of variants for G(kv) at the
infinite places of k is bounded by

c
nh

h

(
a(k)

nh

)
<

(
cha(k)

)nh ≤ (log x)c6,

where
(·
·
)

denotes the binomial coefficient.
Let now v be a finite place of k. The inner kv-forms of G correspond to the

elements of the first Galois cohomology set H1(kv, G), where G is the adjoint group of
G. The order of H1(kv, G) can be computed from the cohomological exact sequence

H1(kv, G) → H1(kv, G)
δ→ H2(kv, C),

which corresponds to the universal kv-covering sequence of groups

1 → C → G → G → 1.

For a simply connected kv-group G, the first cohomology H1(kv, G) is trivial by
Kneser’s theorem (see [K]), so δ is injective. Furthermore, the group H2(kv, C) can be
identified with a subgroup of the Brauer group of kv and then explicitly computed using
results from the local class field theory (see [PR, Chap. 6] for details and explanations).
As a corollary here, we have that the number of inner kv-forms is bounded by nε in
the notation of Section 2.7. (Recall that nε = #C is the order of the center of G.)

Let T1 ⊂ Vf (k) be a (finite) subset of the nonarchimedean places of k such that
G is not quasi-split over kv for v ∈ T1. It follows from [P, Prop. 2.10] that there exists
a constant δ > 0, which depends only on the absolute type of G, such that for every
v ∈ T1,

fv ≥ n−ε(#��v
)−1ev ≥ qδ

v (6)

(qv denotes the order of the residue field of k at v).
Indeed, we can take δ = log(2rvn−ε) if the absolute type of G is not A2 and

δ = log(22 · 3−1) = 0.415 . . . for the type A2, and we can then check that δ > 0 and
inequality (6) holds going through the case-by-case consideration in [BP, App. C.2].

To a set T ⊂ Vf (k), we can assign an ideal IT of Ok given by the product of
prime ideals defining the places in T . Conversely, each squarefree ideal of Ok uniquely
defines a subset T in Vf (k) corresponding to its prime decomposition. Note also that∏

v∈T qv = Norm(IT ).
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Now, for an arithmetic subgroup � induced from G, we have

µ(H/�) = 1

2
B(G/k)τk(G)F ≥ c7

∏
v∈T1

qδ
v .

This implies that if µ(H/�) ≤ x, then Norm(IT1 ) = ∏
v∈T1

qv ≤ xc8 . By Proposi-
tion 3.2(ii), the number of variants for T1 is bounded by xc9 . Moreover, since for every
v ∈ Vf , qv ≥ 2, for every such a set T1 we have #T1 ≤ c10 log x.

Now, the Hasse principle implies that a k-form of G is uniquely determined by
(G(kv))v∈V (k). The Hasse principle for semisimple groups is valid due to the work of
Kneser, Harder, and Chernousov (see [PR, Chap. 6]). So, the number of the admissible
k-forms is at most

(log x)c6xc8nεc10 log x ≤ xc11 .

4.4. Counting collections of parahorics
For a given large enough x, we have defined a collection of G/k for which there exists
a (centrally) k-isogenous group G′ that may give rise to the arithmetic subgroups
� ⊂ H with µ(H/�) < x. The number of such k-groups G is finite and can
be bounded as in Section 4.3, but each G/k still defines countably many maximal
arithmetic subgroups. We now fix a group G/k and estimate the number of coherent
collections of parahoric subgroups of G which can give rise to the maximal arithmetic
subgroups with covolumes less than x. In the classical language, what we are going
to do in this section is count the number of admissible genera.

We use again the local-to-global approach. Let us fix a central k-isogeny i : G →
G′ with G′ so that G′

S projects onto H . Every maximal arithmetic subgroup � ⊂ G′
S

is associated to some coherent collection P = (Pv)v∈Vf
of parahoric subgroups of G

(see [BP, Prop. 1.4]):

� = NG′
(
i(�)

)
, � = G(k) ∩

∏
v∈Vf (k)

Pv.

The image of � in H is an arithmetic subgroup, and every maximal arithmetic subgroup
of H can be obtained as a projection of some such �.

For almost all finite places v of k, G is quasi-split over kv and splits over an
unramified extension of kv . Moreover, for almost all such v, Pv is hyperspecial. Any
two hyperspecial parahoric subgroups of G(kv) are conjugate under the action of the
adjoint group G(kv) (see [T, Sec. 2.5]), so P is determined up to the action of G(Af )
by the types of Pv at the remaining places. Using this, we now count the number of
P ’s.



16 MIKHAIL BELOLIPETSKY

As in Section 4.3, let T1 denote the set of places of k for which G is not quasi-split.
By the previous argument, we have

#T1 ≤ c10 log x, #(variants for T1) ≤ xc9 (see Sec. 4.3).

Let R denote the set of places for which G is quasi-split but is not split over an
unramified extension of kv . For such places v ∈ Vf , lv = l ⊗k kv is a ramified
extension of kv , and so, by the formula from [P, App.], each of such places contributes
to Dl/k a power of qv . Again, using Proposition 3.2(ii) and the inequality Dl/k ≤ xc

from Section 4.1, we obtain

#R ≤ c12 log x, #(variants for R) ≤ xc13 .

Finally, let T2 ⊂ Vf \(T1 ∪ R) be the set of places for which Pv is not hyperspecial. If
v ∈ T2, then by [P, Prop. 2.10(iv)],

ev ≥ (qv + 1)−1qrv+1
v .

Similarly to (6), this implies that

fv ≥ qδ
v .

By Proposition 3.2(ii) and the volume formula,

#T2 ≤ c14 log x, #(variants for T2) ≤ xc15 .

For a given v ∈ Vf , the number of the possible types of parahoric subgroups
(parametrised by the subsets of the set of simple roots) is bounded by a constant ct that
depends only on the absolute type of G. We conclude that for a given G, the number
of P ’s up to the action of G(Af ) is at most

c#(T1∪R∪T2)
t #(variants for T1 ∪ R ∪ T2) ≤ c

(c10+c12+c14) log x
t xc9+c13+c15 = xc16 .

4.5. Counting conjugacy classes
In this final step, we give an upper bound for the number of conjugacy classes of
arithmetic subgroups associated to a fixed group G′/k and a given G(Af )-orbit of
collections of parahoric subgroups P of a simply connected group G centrally k-
isogenous to G′. We are interested in the G(k)-conjugacy classes of maximal subgroups
associated to P which are indexed by the double cosets G(k)\G(A)/G∞P , where
G∞ = ∏

v∈V∞ G(kv), P v is the stabiliser of Pv in G(kv), and P = ∏
v∈Vf

P v is a

compact open subgroup of Gf = ∏
v∈Vf

G(kv) (see [BP, Prop. 3.10]). The number

c(P ) of the double cosets is called the class number of G with respect to P . The
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argument is similar to [BP, proof of Prop. 3.9], except that we need to get an explicit
upper bound for c(P ).

Let ω be a nonzero invariant exterior k-form of top degree on G; such a form
is unique up to multiplication by an element of k∗ and is called a Tamagawa form.
We denote by |ω| the Haar measure on the adèle group G(A) determined by ω. The
natural embedding of k into A gives an embedding of G(k) in G(A); it is well known
that the image of G(k) is a lattice in G(A). By the product formula, its covolume
with respect to the measure |ω| does not depend on the choice of the form ω; thus

the number τk(G) := D− dim(G)/2
k |ω|(G(k)\G(A)) is correctly defined. It is called the

Tamagawa number of G/k. By a theorem of Ono in [On], τk(G) is bounded by a
constant multiple of the order of the center of the simply connected covering group
G multiplied by τk(G). According to the Weil conjecture, the Tamagawa number of a
simply connected group is equal to 1; this has been proved completely for the groups
over number fields, thanks to the work of many people (see [P, Sec. 3.3] for a short
discussion). Therefore, we have

|ω|(G(k)\G(A)
) = τk(G)Ddim(G)/2

k ≤ c17Ddim(G)/2
k , (7)

where c17 depends only on the absolute type of G.
Coming back to the problem of bounding the class number c(P ), we recall that

the double cosets G(k)\G(A)/G∞P correspond bijectively to the orbits of G∞P on
G(k)\G(A), which are open. Given an upper bound for |ω|(G(k)\G(A)), in order to
give a bound for c(P ) it is enough to obtain a uniform lower bound for the |ω|-volumes
of these orbits. The double cosets are represented by elements of Gf , so it is sufficient
to consider the orbit of the image of a ∈ Gf which is isomorphic to �a\G∞aPa−1,
�a = G(k) ∩ G∞aPa−1. Let �′

a be the projection of �a to G∞ with respect to the
decomposition G(A) = G∞ × Gf . As aPa−1 is a compact open subgroup of Gf , �′

a

is an arithmetic subgroup of G∞. We have

|ω|(�a\G∞aPa−1) = |ω|∞(�′
a\G∞)|ω|f ( P ),

where |ω|∞, |ω|f denote the product measures on G∞, Gf corresponding to ω.
In order to estimate the factors in the right-hand side of the formula, for each

v ∈ V (k) we relate the measure |ω| to the canonical measure |ωGv
| on G(kv) defined

in [G, Secs. 4, 11]. In particular, if G is simply connected, then the measure |ωGv
|

coincides with the measure γvω
∗
v that is used for the local computations in [P]; for

v ∈ V∞(k), |ωGv
| is equal to the measure µ on G(kv) defined as in Section 2.5; and

for all but finitely many v, |ωGv
| = |ω|v . Let γv denote the ratio |ωGv

|/|ω|v , which by
the previous remark is equal to 1 for all but finitely many places v. Hence,

|ω|(�a\G∞aPa−1) = µ∞(�′
a\G∞)

∏
v∈Vf

|ωGv
|( P v)/

∏
v∈V

γv.
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We now recall the main result of [BP], which implies that covolumes of arithmetic
subgroups of G∞ with respect to the measure µ are bounded from below by a universal
constant, and thus, µ∞(�′

a\G∞) ≥ µ0.
The crucial ingredient that allows us to carry out the required estimates is the

product formula for γv . It was obtained in [P, Th. 1.6] for the simply connected groups
and later extended by Gross to arbitrary reductive groups defined over number fields
(see also [Ku] for the groups over global function fields). Thus, by [G, Th. 11.5], we
have

∏
v∈V

γv = (Dl/D[l:k]
k )s/2

( r∏
i=1

mi!

(2π)mi+1

)[k:Q]
.

Finally, we make use of the following inequality.

CLAIM

We have |ωGv
|( P v) ≥ |ωGv

|(Pv) = e(Pv)−1.

The proof of this claim, which is given below, is quite technical but not conceptually
new; related questions were studied in detail and full generality in [G] and [Ku]. The
argument falls into several steps.

Proof
Let K = kv be a nonarchimedean local field, let O be its ring of integers, let G be
a simply connected semisimple K-group, let i : G → G′ be a central K-isogeny
(we actually need only the case G′ = G), and let X = X(G) denote the Bruhat-Tits
building of G/K .

(1) We assume first that the groups G and G′ are quasi-split over K . Let x ∈ X

be a special vertex in X chosen as in [G, Sec. 4] (see also [P, Sec. 1.2]). The Bruhat-
Tits theory assigns to G′/K and x ∈ X(G) a smooth affine group scheme G′0

x over
O. Its generic fiber is isomorphic to G′/K , and its special fiber G′0

x is connected.
Let Px = Gx(O)(= G0

x(O)), P ′
x = G′0

x(O). Then Px (resp., P ′
x) is an open compact

subgroup of G(K) (resp., G′(K)), Px is the stabiliser of x in G(K), and P ′
x is contained

in the stabiliser of x in G′(K) with finite index. Recall also that the measure |ωG| (resp.,
|ωG ′ |) corresponds to a differential ωG (resp., ωG′) of top degree on G (resp., G′) over
K which has good reduction (see [G, Sec. 4]). This brings us to the conditions of [Oe,
Prop. 1.2.5], which implies

|ωG|(Px) = #Gx(Fq)q−dim G, |ωG ′ |(P ′
x) = #G′0

x( Fq)q−dim G′
.

(Fq denotes the residue field of K .)
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Since G and G′ are isogenous, Gx and G′
x are isogenous. Hence, dimG = dimG′,

and by Lang’s theorem (see [L]), #Gx(Fq) = #G′0
x(Fq). Thus, we obtain |ωG|(Px) =

|ωG ′ |(P ′
x).

(2) Now, let C be a chamber of X which contains x, and let � be a subset of C.
Denote by IC (resp., I ′

C) the Iwahori subgroup of G(K) (resp., G′(K)) corresponding
to C. Note that by definition, I ′

C is the preimage in G′(K) of a Borel subgroup B
′

of G′0
x(Fq). Let P� (resp., P ′

�) be the parahoric subgroup of G(K) (resp., G′(K))
associated to �; so P� = G�(O), P ′

� = G′0
�(O), and any parahoric subgroup of

G(K) is conjugate to some P�. The inclusion � ⊂ C induces a group scheme

homomorphism ρ�C : G′0
C → G′0

� whose reduction maps the group G
′0
C onto a Borel

subgroup B
′
of G′0

�. Therefore, we have

[P ′
� : I ′

C] = [G′0
�( Fq) : B

′
] = [G�( Fq) : B] = [P� : IC],

as G′0
� is isogenous to G�, B ′ is isogenous to B, and all the groups are connected. It

follows that |ωG ′ |(P ′
�) = |ωG|(P�).

(3) We finally note that P ′
� ⊂ P ′

� (P
′
� denotes the stabiliser of � in G′(K)), and

thus, |ωG ′ |(P ′
�) ≥ |ωG ′ |(P ′

�) = |ωG|(P�), which implies the desired inequality in the
quasi-split case.

(4) In order to extend this result to the general case, we have to recall the definition
of the canonical measure |ωG| for the general G by pullback from the quasi-split
inner form (see [G, p. 294]) and its interpretation in terms of the volume form νG

associated to an Iwahori subgroup of G(K) described in [G, pp. 294 – 295]. The
latter allows us to apply the argument similar to step (1) to Iwahori subgroups IC

and I ′
C corresponding to a chamber C of X(G), proving |ωG|(IC) = |ωG ′ |(I ′

C). All
the rest of the proof does not depend on the quasi-split assumption, and the claim
follows. �

Let us collect together the results of this section. We obtain

c(P ) ≤ |ω|(G(k)\G(A))
∏

v∈V γv

µ0
∏

v∈Vf
e(Pv)−1

≤ 1

µ0
Ddim(G)/2

k (Dl/D[l:k]
k )s/2

( r∏
i=1

mi!

(2π)mi+1

)[k:Q]
τk(G)E(P ). (8)

This formula can be viewed as an extension of the upper bound for the class number
from [P, Th. 4.3].

We now bound the right-hand side of (8). By Sections 4.1 and 4.2, we have
Dk < (x/c1)1/δ1 , Dl/k < (x/c1)1/δ2 , and [k : Q] ≤ c log Dk . By (7), τk(G) ≤ c17.
From Sections 4.3 and 4.4, it follows that if µ(H/�) ≤ x, then

∏
v∈Vf

ev ≤ xc18 for
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some constant c18 that depends only on the type of almost simple factors of H . Hence,
it follows from (8) that there exists a constant c19 such that

c(P ) ≤ xc19 .

4.6. The upper bounds

It remains to combine the results of the previous sections to get the upper bounds. By
Sections 4.1, 4.3, 4.4, and 4.5,

mu
H (x) ≤ xc2β(x)+c3xc11xc16xc19 ≤ xBβ(x),

and constant B depends only on the type of almost simple factors of H .
By Sections 4.2, 4.3, 4.4, and 4.5,

mnu
H (x) ≤ xc5xc11xc16xc19 ≤ xB ′

,

and constant B ′ depends on the type and the number of almost simple factors of H .

5. Proof of Theorem 1: The lower bound

5.1. Cocompact case
A theorem of Borel and Harder [BH] implies that a semisimple group over a local
field of characteristic zero contains cocompact arithmetic lattices. The method of [BH]
actually proves the existence of such lattices defined over a given field k, which satisfies
a natural admissibility condition, for any isotypic semisimple Lie group. So, if H has
a1 real and a2 complex almost simple factors (all of the same type) and k is a number
field with greater than a1 real and precisely a2 complex places, then H contains a
cocompact arithmetic subgroup �1 defined over k.

Let �0 be a maximal arithmetic subgroup of H which contains �1. There exists
an absolutely almost simple, simply connected k-group G and a principal arithmetic
subgroup �0 of G such that �0 = NH (φ(�0)).

We assume that x is large enough and estimate the number of principal arithmetic
subgroups � ⊂ G(k) which are associated to the coherent collections of parahoric
subgroups of O-maximal types (see [R], [RC]) and such that µS(GS/�) < x. Then for
� = NH (φ(�)), we also have µS(GS/�) < x. Moreover, by Rohlfs’s theorem, each
such � is a maximal arithmetic subgroup of H and all maximal arithmetic subgroups of
H are obtained as the normalizers of the images of the principal arithmetic subgroups
corresponding to O-maximal collections of parahorics.

The condition of maximality for the type of a collection of parahoric subgroups
P = (Pv)v∈Vf

is a local condition on the types of Pv at each v ∈ Vf , while O-
maximality requires an additional global restriction that is needed to further narrow
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down the set of admissible collections of parahoric subgroups of maximal types. We
do not give precise definitions here, referring the reader to the articles [R] and [RC].
What is important for our argument is that given P0 = (P0,v)v∈Vf

, a collection of
parahoric subgroups of O-maximal type, for every v0 ∈ Vf there exists another O-
maximal collection P = (Pv)v∈Vf

such that for v �= v0, Pv = P0,v and Pv0 �∼= P0,v0 .
This is clearly true. For the groups of the absolute rank greater than one (which is
our standing assumption), it is enough to consider the maximal types corresponding
to single vertices of the affine Dynkin diagram, and for such types, O-maximality can
be easily checked.

We have

µS(GS/�) = Ddim(G)/2
k (Dl/D[l:k]

k )s/2
( r∏

i=1

mi!

(2π)mi+1

)[k:Q]
τk(G) E(P )

= c1

∏
v∈T

e(Pv)/e(P0,v)

≤ c1

∏
v∈T

e(Pv), c1 = µS(GS/�0),

where Pv (resp., P0,v) is the closure of � (resp., �0) in G(kv), v ∈ Vf ; T is a finite
subset of the nonarchimedean places of k for which Pv �∼= P0,v; and the constant c1

depends on G/k and �0 but does not depend on the choice of �.
If

∏
v∈T e(Pv) < x/c1, then µS(GS/�) < x. There exists a constant δ determined

by the absolute type of G such that for every v ∈ Vf and every parahoric subgroup
Pv ⊂ G(kv), e(Pv) ≤ qδ

v (e.g., take δ = dim(G)). This implies

∏
v∈T

e(Pv) ≤
∏
v∈T

qδ
v .

Hence,
∏

v∈T qv < (x/c1)1/δ is sufficient for µS(G/�) < x. The number of variants
for such sets T is controlled via Proposition 3.2(i). (Note that the field k is fixed.) We
obtain that for large enough x, there are at least

c2

( x

c1

)1/δ

≥ xA

variants for T , where the constant A > 0 is determined by δ and, thus, depends only
on the absolute type of G.

It remains to recall that for each T , there exists a collection of parahoric subgroups
P = (Pv)v∈Vf

such that Pv = P0,v for v ∈ Vf \ T , Pv �∼= P0,v for v ∈ T , and P has
O-maximal type. Each such collection defines a maximal arithmetic subgroup of H of
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covolume less than x, and subgroups corresponding to different T ’s are not conjugate.
The number of maximal arithmetic subgroups obtained this way is at least xA with
A > 0, a constant depending only on the absolute type of G. This proves the lower
bound for mu

H (x).
Note that all the maximal arithmetic subgroups constructed in this section are

commensurable. It is also possible to construct different commensurability classes
that contain arithmetic subgroups of covolumes less than x. This may enlarge the
constant A in our asymptotic inequality but, since it follows from the first part of
the proof and the conjecture on the number of isomorphism classes of fields with
discriminant less than x, would hardly change the type of the asymptotic.

5.2. Non-cocompact case
Let now �1 be a nonuniform irreducible lattice in H which exists by the assumption
of Theorem 1(B), and let G be a corresponding algebraic k-group. Arithmetic sub-
groups of H which are induced from G(k) are all noncocompact. (They are actually
commensurable with �1.) To prove the lower bound for mnu

H (x), it remains to repeat
the argument of Section 5.1 for the group G.

Note that contrary to the compact case, the existence of non-cocompact arithmetic
lattices in H generally is not guaranteed by the condition that H is isotypic (for
a counterexample, see Sec. 2.3). The conditions under which such examples can
be constructed are rather exceptional; in most cases, isotypic groups contain both
cocompact and non-cocompact arithmetic subgroups.

The theorem is now proved. �

6. Corollaries, conjectures, remarks

6.1
COROLLARY

There exists a constant C1 that depends only on the type of almost simple factors of H

such that if � is a principal arithmetic subgroup of H and � = NH (�) has covolume
less than x, then [� : �] ≤ xC1 .

Proof
By [BP] (see Sec. 2.7 for the notation and precise references),

[� : �] ≤ nε#S · 2hε′
l nεa(k)+ε′a(l)+ε#T (Dl/D[l:k]

k )ε
′′ ·

∏
v∈Vf

#��v
. (9)

Now, since µ(H/�) ≤ x, the group � has to satisfy the conditions on the subgroups
of covolume less than x obtained in the proof of the upper bound of Theorem 1. (In
Theorem 1, only maximal arithmetic subgroups are considered, but the proof of the
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upper bound applies without a change to arbitrary principal arithmetic subgroups and
their normalisers, thus providing a somewhat stronger result to which we appeal here.)
We have

Dl/D[l:k]
k = Dl/k ≤ xc1, a(k) ≤ c2 log x (Sec. 4.1),

#T ≤ #T1 ≤ c3 log x (Sec. 4.3),

{v ∈ Vf , #��v
�= 1} ⊂ T1 ∪ R ∪ T2

as for the rest of v, Pv is special, so

#{v ∈ Vf , #��v
�= 1} ≤ #(T1 ∪ R ∪ T2) ≤ c4 log x (Sec. 4.4).

Also, recall that #��v
≤ r + 1, r is the absolute rank of G; hl ≤ c[l:Q]Dl ≤ xc5 (see,

e.g., the proof of Prop. 3.3); and a(l) ≤ 3a(k) (as [l : k] ≤ 3). Altogether, these imply
the corollary. �

6.2
For some particular cases, the bound in Corollary 6.1 can be improved. Let us assume
that the degrees of the fields of definition of the arithmetic subgroups are bounded.
Thus,

[k : Q] ≤ d, (10)

which is the case, for example, if we consider only nonuniform lattices in H .
Assumption (10) implies that the number m of different prime ideals P1, . . . , Pm

of Ok such that Norm(P1 · · · Pm) ≤ x is bounded by c log x/ log log x, c = c(d)
(instead of the bound log x that we used for the general case). Indeed, k = Q follows
from the prime number theorem, and the case of arbitrary k of bounded degree can be
easily reduced to the rational case.

Therefore, assumption (10) implies that most of the terms in (9) are
at most clog x/ log log x with c = c(d). What remains is Dl/k = Dl/D[l:k]

k (for type
Dr , r even) and hl (or hk if l = k). The former, in fact, appears in the formula as an
upper bound for 2#R (see [BP, Sec. 5.5]), which again can be improved to clog x/ log log x

by the same argument. What remains is the class number.
Going back to [BP, Sec. 5, Prop. 0.12], we see that what occurs in the formula

is not hl but the order of the group Cn(l), which consists of the elements of the class
group C(l) whose orders divide n. (As before, n is a constant determined by the type
of H .) Instead of using the trivial bound #Cn(l) ≤ hl , let us keep it as it is. We now
come to the following formula:

[� : �] ≤ clog x/ log log x#Cn(l), x ≥ µ(H/�). (11)
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If n = p is a prime, let ρp(l) denote the p-rank of C(l). Then, clearly, #Cp(l) ≤
pρp(l), and in general, for n = p

α1
1 · · ·pαm

m , #Cn(l) ≤ p
α1ρp1 (l)
1 · · · pαmρpm (l)

m . So, we are
interested in the upper bounds for p-ranks of the class groups.

Apparently, even though this and related questions have been much studied, there
are very few results beyond Gauss’s celebrated theorem, which can be applied in our
case. We have the fact that
(i) if [l : Q] = 2, then ρ2(l) ≤ tl − 1 (by Gauss);
(ii) if [k : Q] = 2 and [l : k] = 2, then ρ2(l) ≤ 2(tl + tk − 1) (by [Co, Th. 2]),
where tk (resp., tl) denotes the number of primes ramified in k/Q (resp., l/k).

From this, we obtain

#Cn(l) ≤ nc log x/ log log x (12)

if n is a power of 2 and l is as in (i) or (ii).
Similar results for other n and other fields can only be conjectured; even ρ3(k)

for quadratic fields k seems to be out of reach with the currently available methods.
Nevertheless, estimates (11) and (12) imply the following corollary.

6.3
COROLLARY

Let H be a simple Lie group of type A2α−1 (α > 1), Br , Cr , Dr (r �= 4), E7, E8, F4, or
G2. There exists a constant C2 that depends only on the type of H such that if � is a
non-cocompact principal arithmetic subgroup of H and if � = NH (�) has covolume
less than x, then [� : �] ≤ C

log x/ log log x

2 .

Proof
Indeed, the assumption that H has one of the given types implies that n is a power of
2 (see the definition of n in Sec. 2.7). Since H is simple and the arithmetic subgroup
is noncompact, its field of definition k is either Q or an imaginary quadratic extension
of Q, depending on whether H is a real or complex Lie group (see also Sec. 4.2).
Finally, the fact that the type of H is not D4 implies that [l : k] ≤ 2. The corollary
now follows from the discussion in Section 6.2. �

We expect similar estimates to be valid for the nonuniform lattices in other groups,
but we do not know how to prove it.

6.4
Remark. Concerning the general case, let us point out that if the degrees of the fields
are a priori not bounded, then we cannot expect a (log x/ log log x)-bound for the
p-rank of the class group. An example of a sequence of fields ki for which ρ2(ki)
grows as log Dki

was constructed by Hajir [H, Sec. 5]. The fields ki in Hajir’s example
form an infinite class field tower. This remark together with the previous estimates
motivates the following question:
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Is the estimate in Corollary 6.1 sharp?; that is, given a group H , is there a constant
C0 = C0(H ) > 0 such that there exists an infinite sequence of pairwise nonconjugate
principal arithmetic subgroups �i in H for which [�i : �i] ≥ µ(H/�i)C0 , where
�i = NH (�i) and µ is a Haar measure on H?

Corollaries 6.1 and 6.3 are important in [BL], in which the growth rate of the number
of irreducible lattices in semisimple Lie groups is studied.

6.5
Remark. Groups of type A1 have been consistently excluded here. It is not feasible to
use the formula from Section 2.8 combined with an analogue of Proposition 3.3 for
this case, even to prove a finiteness result. However, one can follow another method,
also due to Borel, and employ geometric bounds for the index of a principal arithmetic
subgroup in a maximal arithmetic. This indeed allows us to establish the finiteness of
the number of arithmetic subgroups of bounded covolume in SL(2, R)a × SL(2, C)b

(see [B]). The problem is that the quantitative bounds that can be obtained this way
are only exponential. We suppose that the true bounds should be similar to the general
case (and conjecturally polynomial), although we do not know how to prove this
conjecture and leave it as an open problem.

Problem
Find the growth rate of the number of maximal arithmetic subgroups for the
semisimple Lie groups whose almost simple factors have type A1 or obtain a better-
than-exponential upper bound for the growth.

6.6
The following two conjectures were mentioned in the introduction.

CONJECTURE 1
There exists an absolute constant B such that for large enough x, the number of
isomorphism classes of number fields with discriminants less than x is at most xB .

CONJECTURE 2
Given a connected semisimple Lie group H without almost simple factors of type A1

and without compact factors, there exists a constant BH > 0 which depends only on
the type of almost simple factors of H such that for large enough x, the number of
conjugacy classes of maximal irreducible arithmetic subgroups of H of covolumes
less than x is at most xBH .

We now prove the following proposition.
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PROPOSITION

Conjectures 1 and 2 are equivalent.

Proof
The implication that 1 → 2 follows directly from the proof of the upper bounds in
Theorem 1. Consider the implication that 2 → 1. Assume that Conjecture 2 is true but
that Conjecture 1 is false (i.e., mu

H (x) + mnu
H (x) ≤ xBH for every x > x0, and for an

arbitrary C, there exists x > x0 such that N (x) > xC). Some additional assumptions
on x0 are needed, a fact that becomes clear later; these could have been imposed from
the beginning. So, let us fix C > 1, and let x > x0 be such that N (x) > xC .

Let Ni,j (x) denote the number of extensions of Q of discriminant less than x

which have precisely i real and j complex places. We have

N (x) =
∑

i=1,...,n
j=1,...,m

Ni,j (x).

The condition that the discriminants of the fields are less than x implies, by Minkow-
ski’s theorem, that the degrees of the extensions are bounded by c log x for an absolute
constant c, and so the number of summands is less than (c log x)2. By Dirichlet’s box
principle, there exists a pair (i, j ) such that Ni,j (x) > xC/(c log x)2 ≥ xC−1. (This
inequality requires (c log x)2 ≤ x, which is true for large enough x and gives a first
condition on x0.) Let K be the set of such number fields, #K = Ni,j (x) > xC−1.
Consider a simply connected semisimple Lie group H that has i split real simple
factors and j complex simple factors all of the same type. For each k ∈ K, let G/k

be a simply connected, absolutely simple split group of the same absolute type as the
simple factors of H , defined over k. Let P = (Pv)v∈Vf

be a coherent collection of
parahoric subgroups of G which are all hyperspecial (such a collection exists since G
splits over k), and let � be the principal arithmetic subgroup of H defined by P . We
have
(a) for S = V∞(k), GS

∼= H ;
(b) µ(H/�) = D dim(G)/2

k

( ∏r

i=1 mi!/(2π)mi+1
)[k:Q]E(P ) by Prasad’s formula.

Using the orders of finite groups of Lie type, the Euler product E(P ) can be
expressed as a product of the Dedekind zeta function of k, and certain Dirichlet L-
functions at the integers mi + 1, mi are the Lie exponents of G (see [P, Rem. 3.11]).
Obvious inequalities L(s, χ) ≤ ζk(s) and ζk(s) ≤ ζ (s)[k:Q], for s ≥ 2, imply that
there exists a constant c1 that depends only on the type of simple factors of H and
such that each zeta or L-function in the product is bounded from above by c

[k:Q]
1 . Since

[k : Q] ≤ c log x, we have E(P ) ≤ (cc log x

1 )r . By definition of the set K, k ∈ K
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implies Dk ≤ x. Therefore, we obtain

µ(H/�) ≤ xdim(G)/2c
c log x

2 (cc log x

1 )r ≤ xδ,

where δ is greater than 1 and depends only on the type of simple factors of H . The
latter inequality may require that x be larger than a certain value that depends on the
type of simple factors of H and that gives us the second condition on x0. Clearly, both
conditions do not depend on C, and both could be imposed from the beginning.

For each k ∈ K, we have at least one maximal arithmetic subgroup of H of
covolume less then xδ . Now, if we take C = δBH + 1, we arrive at a contradiction
with Conjecture 2 for H and xδ > x0. �

Let us note that in the proof, Conjecture 2 is used only for non-cocompact arithmetic
subgroups of semisimple groups H which have simple factors of a fixed type. It then
implies Conjecture 1, which in turn implies Conjecture 2 in the whole generality. It is
possible to specify further the relation between two conjectures, but we do not go into
details. What we emphasise is that our result provides a new geometric interpretation
for a classical number-theoretic problem. An optimistic expectation would be that
study of the distributions of lattices in semisimple Lie groups can give a new insight
on the number fields and their discriminants.

Appendix

JORDAN ELLENBERG and AKSHAY VENKATESH

A.1
Let N (X) denote the number of isomorphism classes of number fields with discrimi-
nant less than X.

THEOREM

For every ε > 0, there is a constant C(ε) such that log N (X) ≤ C(ε)(log X)1+ε for
every X ≥ 2.

In fact, we prove the more precise upper bound that

log N (X) ≤ C6 log X exp(C7

√
log log X)

for absolute constants C6, C7.
This theorem (almost) follows from [EV, Th. 1.1], the only point being to control

the dependence of implicit constants on the degree of the number field.
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We refer to [EV] for further information and for some motivational comments
about the method. In the proof, C1, C2, . . . denote certain absolute constants.

A.2
Let K be an extension of Q of degree d ≥ 200. Denote by �(K) the set of embeddings
of K into C (#�(K) = d), and denote by �(K) a set of representatives for �(K)
modulo complex conjugation (in the notation of the article, �(K) = V∞(K)). We
regard the ring of integers OK as a lattice in K ⊗Q R = ∏

σ∈�(K) Kσ . We endow the
real vector space K ⊗Q R with the supremum norm (i.e., ‖(xσ )‖ = supσ |xσ |). Here,
| · | denotes the standard absolute value on C. In particular, we obtain a “norm” on OK

by restriction. Explicitly, for z ∈ OK , we have ‖z‖ = supσ∈�(K) |σ (z)|.
We denote by Md(Z) (resp., Md(Q)) the algebra of d by d matrices over Z

(resp., Q).
By trace form we mean the pairing (x, y) �→ TrK/Q(xy). It is a symmetric

nondegenerate Q-bilinear pairing on K2.
Let s be a positive integer that can be specified later. We denote by y =

(y1, y2, . . . , ys) an ordered s-tuple of elements of OK , and we write ‖y‖ :=
max(‖y1‖, . . . , ‖ys‖). For y = (y1, . . . , ys) ∈ Os

K and l ≥ 1, we set

S(l) = {
(k1, . . . , ks) ∈ Zs : k1 + · · · + ks ≤ l, k1, . . . , ks ≥ 0

}
,

S(y, l) = {
y

k1
1 y

k2
2 · · · yks

s : (k1, . . . , ks) ∈ S(l)
} ⊂ OK.

(13)

IfS is a subset ofS(l), we denote byS(y) the set {yk1
1 y

k2
2 · · · yks

s : (k1, . . . , ks) ∈ S}.

A.3
LEMMA

Let S be a subset of S(l) such that S(y) spans a Q-linear subspace of K with dimension
strictly greater than d/2. Let S + S be the set of sums of two elements of S. Then
(S + S)(y) spans K over Q.

Proof (see [EV, Lem. 2.1])
Suppose that there existed z ∈ K which was perpendicular, with respect to the trace
form, to the Q-span of (S + S)(y). Since (S + S)(y) consists precisely of all products
αβ, with α, β ∈ S(y), it follows that

TrK/Q(zαβ) = 0 (α, β ∈ S(y)). (14)

Call W ⊂ K the Q-linear span of S(y). Then (14) implies that zW is perpendicular
to W with respect to the trace form, contradicting dim(W ) > d/2. �
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A.4
LEMMA

Let C ⊂ OK be a finite subset containing 1 and generating K as a field over
Q. Let z1, z2, . . . , zd be a Q-linear basis for K . For each u ∈ C, let M(u) =
(TrK/Q(uzizj ))1≤i,j≤d ∈ Md(Q). Then the Q-subalgebra of Md(Q) generated by
M(u)M(1)−1, as u ranges over C, is isomorphic to K .

Proof (see [EV, Lem. 2.2])
In fact, M(u)M(1)−1 gives the matrix of multiplication by u, in the basis {zi}. �

A.5
We denote by DK the absolute value of the discriminant of K .

LEMMA

There is an absolute constant C1 ∈ R such that for any K as above, there exists a
basis γ1, γ2, . . . , γd for OK over Z such that

‖γj‖ ≤ ‖γj+1‖,
d∏

i=1

‖γi‖ ≤ D1/2
K Cd

1 , ‖γi‖ ≤ (Cd
1 D1/2

K )1/(d−i) (i < d).

(15)

Proof
This is Minkowski’s second theorem, applied exactly as in [EV, Prop. 2.5]. The final
statement of (15) follows from the preceding statements, in view of the fact that
‖γj‖ ≥ 1 for each j . �

A.6
Let r, l be integers so that d/2 < r ≤ |S(l)| = (

l+s

s

)
.

LEMMA

Suppose that W ⊂ K is a Q-linear subspace of dimension r , and let S ⊂ S(l) be a
subset of size r . Then there exists y = (y1, y2, . . . , ys) ∈ Ws such that the elements
of S(y) are Q-linearly independent.

Proof
This is precisely [EV, Lem. 2.3]. �

A.7
LEMMA

Let � = Zγ1 + Zγ2 + · · · + Zγr , and let S ⊂ S(l) be a subset of size r . Then there
is y = (y1, y2, . . . , ys) ∈ �s such that the elements of S(y) are linearly independent
over Q, and ‖y‖ ≤ r2l(Cd

1 D1/2
K )1/(d−r).
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Proof
Considering �s as a Z-module of rank rs, the proof of [EV, Lem. 2.3] shows that
there is a polynomial F of degree at most rl in the rs variables so that the elements of
S(y) are linearly independent over Q whenever F (y) �= 0. Lemma 2.4 of [EV] then
shows that we can choose such a y whose coefficients are at most (1/2)(rl + 1) ≤ rl.
It follows that

‖yi‖ ≤ r2l(Cd
1 D1/2

K )1/(d−r)

for i = 1, 2, . . . , s. �

A.8
LEMMA

The number of number fields with degree d ≥ 200 and discriminant of absolute value
at most X is at most

(C3d)d exp(C4
√

log d)Xexp(C5
√

log d).

Proof
Fix once and for all a total ordering of S(2l). We denote the order relation as
(k1, . . . , ks) ≺ (k′

1, . . . , k
′
s). Choose S ⊂ S(l) of cardinality r as above.

Let K have degree d over Q and satisfy DK < X. Choose y as in Lemma A.7. By
Lemma A.3, S(2l)(y) spans K over Q. It follows that there exists a subset � ⊂ S(2l)
of size d such that {z1, . . . , zd} := {yk1

1 y
k2
2 · · · yks

s : (k1, k2, . . . , ks) ∈ �} forms a Q-
basis for K and such that the ordering z1, . . . , zd conforms with the specified ordering
on � ⊂ S(2l).

We apply Lemma A.4 to {z1, . . . , zd} and C = (1, y1, y2, . . . , ys). Then each
product uzizj (u ∈ C, 1 ≤ i, j ≤ d) is contained in S(4l + 1).

Put A = (TrK/Q(yk1
1 y

k2
2 · · · yks

s ))(k1,k2,...,ks )∈S(4l+1). For each K , the collection of
matrices M(u) is determined by A and �. Since |TrK/Q(z)| ≤ d‖y‖4l+1 for any
z ∈ S(y, 4l + 1), the number of possibilities for A is at most (d‖y‖4l+1)|S(4l+1)|; since
� is a subset of |S(2l)|, the number of possibilities for � is at most 2|S(2l)|.

Lemma A.4 now yields that the number of possibilities for the isomorphism class
of K is at most 2|S(2l)|(d‖y‖4l+1)|S(4l+1)|. By our bound on ‖y‖, we now have that the
number of possibilities for K is at most

2|S(2l)|(d(r2l(Cd
1 D1/2

K )1/(d−r))4l+1
)|S(4l+1)|

. (16)

Note that |S(4l + 1)| = (
s+4l+1

s

)
.

Now, just as in the paragraph following [EV, (2.6)], we choose s to be the greatest
integer less than

√
log d and l to be the least integer greater than (ds!)1/s . Note
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that l < exp(C2
√

log d). Now, |S(l)| = (
s+l

s

)
is at least d , so we may choose r

between d/2 and 3d/4. In particular, r2l < d3. Also,
(
s+4l+1

s

)
is at most 10sd and

|S(2l)| = (
s+2l

s

) ≤ 6sd . Finally, s < 2
√

log d .
Substituting these values into (16), we get the fact that the number of possible K

is at most

26sd
(
d(d3(Cd

1 X1/2)4/d)5 exp (C2
√

log d)
)10sd

,

which is in turn at most

(C3d)d exp(C4
√

log d)Xexp(C5
√

log d).
�

A.9
PROPOSITION

There are absolute constants C6, C7 with

log N (X) ≤ C6 log X exp(C7

√
log log X).

Proof
By Minkowski’s discriminant bound, there is an absolute constant C6 > 1 such that
DK > C

[K:Q]
6 for any extension K/Q. Therefore, we may take d to be bounded by

a constant multiple of log X. From Lemma A.8, it now follows that the logarithm of
the number of extensions K/Q with DK < X and [K : Q] ≥ 200 is bounded by
C6 log X exp(C7

√
log log X). Trivial bounds suffice to show that the number of K

with DK < X and [K : Q] < 200 is at most C8X
200. �
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