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Traces of CM values of modular functions

By Jan Hendrik Bruinier at Köln and Jens Funke*) at Las Cruces

Abstract. Zagier proved that the traces of singular moduli, i.e., the sums of the
values of the classical j-invariant over quadratic irrationalities, are the Fourier coe‰cients
of a modular form of weight 3=2 with poles at the cusps. Using the theta correspondence,
we generalize this result to traces of CM values of (weakly holomorphic) modular functions
on modular curves of arbitrary genus. We also study the theta lift for the weight 0 Eisen-
stein series for SL2ðZÞ and realize a certain generating series of arithmetic intersection num-
bers as the derivative of Zagier’s Eisenstein series of weight 3=2. This recovers a result of
Kudla, Rapoport and Yang.

1. Introduction

In [26], Zagier considers the normalized Hauptmodul JðzÞ ¼ jðzÞ � 744 for the group
Gð1Þ ¼ PSL2ðZÞ, where jðzÞ ¼ e�2piz þ 744 þ 196884e2piz þ � � � is the classical j-invariant
on the complex upper half plane H. Let D be a positive integer and write QD for the set of
positive definite integral binary quadratic forms ½a; b; c� of discriminant �D ¼ b2 � 4ac.
The group Gð1Þ acts on QD. If Q ¼ ½a; b; c� A QD we write Gð1ÞQ for the stabilizer of Q in

Gð1Þ and aQ ¼ �b þ i
ffiffiffiffi
D

p

2a
for the corresponding CM point in H. The values of j at such

points aQ are known as singular moduli. They play an important role in many branches of
number theory. The modular trace of J of index D is defined as

tJðDÞ ¼
P

Q AQD=Gð1Þ

1

jGð1ÞQj
JðaQÞ:ð1:1Þ

By the theory of complex multiplication, tJðDÞ can also be viewed as a suitable Galois
trace. It is a rational integer.

Zagier shows that the generating series
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� q�1 þ 2 þ
Py

D¼1

tJðDÞqDð1:2Þ

¼ �q�1 þ 2 � 248q3 þ 492q4 � 4119q7 þ 7256q8 þ � � �

is a meromorphic modular form of weight 3=2 for the Hecke subgroup G0ð4Þ whose poles
are supported at the cusps. Here q ¼ e2pit with t ¼ u þ iv A H. He gives two proofs of this
result. The first uses certain recursion relations for the tJðDÞ, the second uses Borcherds
products on SL2ðZÞ and an application of Serre duality. Both proofs rely on the fact that
(the compactification of ) Gð1ÞnH has genus zero. In [13], [14], Kim extended Zagier’s re-
sults to other modular curves of genus zero using similar methods.

It is quite interesting to compare this result with an older theorem of Zagier [25]

concerning the Hurwitz-Kronecker class numbers HðDÞ ¼
P

Q AQD=Gð1Þ

1

jGð1ÞQj
, which we

consider here as the trace t1ðDÞ of the constant modular function 1 of weight 0. Zagier con-
structs a certain Eisenstein series Fðt; sÞ of weight 3=2 and shows that for the special value
at s ¼ 1=2 (in our normalization)

F t;
1

2

� �
¼
Py

D¼0

t1ðDÞqD þ 1

16p
ffiffiffi
v

p
Py

N¼�y
bð4pN 2vÞq�N 2ð1:3Þ

is a non-holomorphic modular form of weight 3=2 for G0ð4Þ. Here

t1ð0Þ ¼ �1=12 ¼ vol
�
Gð1ÞnH

�
and bðsÞ ¼

Ðy
1

t�3=2e�st dt:

It is striking that while the positive Fourier coe‰cients of (1.2) and (1.3) are both traces
of modular functions, the negative coe‰cients are very di¤erent in nature. Furthermore,
Zagier’s proofs for (1.2) and (1.3) are totally di¤erent.

In [10], the second named author extended (1.3) to realize the generating series of the
class numbers of CM points for general congruence subgroups G as the holomorphic part
of a non-holomorphic modular form of weight 3=2. These modular forms take the same
form as in (1.3) and are obtained as a theta integral

Iðt; 1Þ ¼
Ð

GnH
1 � yLðt; z; jÞ

dx dy

y2
;ð1:4Þ

integrating the constant function 1 against a theta series associated to an even lattice L of
signature ð1; 2Þ and a certain Schwartz function j coming from [18].

In the present paper, we use the method of [10] to generalize (1.2) to traces tf of arbi-
trary modular functions f of weight 0 whose poles are supported at the cusps on modular
curves of higher genus. Namely, we consider the theta integral Iðt; f Þ replacing in (1.4) the
constant 1 by the more general modular function f . Here the starting point is that Iðt; f Þ
does converge since the decay of the theta kernel turns out to be faster than the exponential
growth of f at the cusps, see Proposition 4.1. Furthermore, the Schwartz function j under-
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lying the theta kernel is closely related to a Green function for the CM points constructed
by Kudla [16]. This approach also gives a unifying proof for (1.2) and (1.3). Furthermore,
we obtain geometric interpretations for the constant and the negative Fourier coe‰cients.
For instance, the constant coe‰cient can be interpreted as the ‘‘average value’’

� 1

2p

Ðreg

GnH
f ðzÞ dx dy

y2
;

of f on GnH. Here
Ðreg

GnH
indicates a certain kind of regularization of the divergent integral.

The negative coe‰cients involve data coming from infinite geodesics joining two cusps of
GnH.

To illustrate our result, we now describe a special case, see section 6. For the general
statement which is phrased in terms of the orthogonal group of a rational quadratic space
of signature ð1; 2Þ, see Theorem 4.5.

Let p be a prime (or p ¼ 1). For a positive integer D, we consider the subset QD;p of
quadratic forms ½a; b; c� A QD such that a1 0 ðmod pÞ. Note that G�

0ðpÞ, the extension of

the Hecke group G0ðpÞHGð1Þ with the Fricke involution Wp ¼ 0 �1

p 0

� �
, acts on QD;p

with finitely many orbits.

Let f be a modular function (of weight 0) for G�
0ðpÞ whose poles are supported at the

cusp and denote its Fourier expansion by f ðzÞ ¼
P

ng�y
aðnÞeðnzÞ. We define the modular

trace of f of index D by

t�f ðDÞ ¼
P

Q AQD; p=G
�
0 ðpÞ

1

jG�
0 ðpÞQj

f ðaQÞ;ð1:5Þ

where G�
0 ðpÞQ is the stabilizer of Q in G�

0ðpÞ. Finally, we put s1ð0Þ ¼ �1=24 and s1ðnÞ ¼
P
tjn

t

for n A Zf0 and s1ðxÞ ¼ 0 for x B Zf0.

Theorem 1.1. Let f be a modular function for G�
0ðpÞ and denote its Fourier expansion

as above. Assume that the constant coe‰cient að0Þ vanishes. Then

Gðt; f Þ ¼
P

D>0

t�f ðDÞqD þ
P
nf0

�
s1ðnÞ þ ps1ðn=pÞ

�
að�nÞ �

P
m>0

P
n>0

mað�mnÞq�m2

is a meromorphic modular form of weight 3=2, holomorphic outside the cusps, for the group

G0ð4pÞ satisfying the Kohnen plus space condition (see (6.7)). If að0Þ does not vanish, then in

addition non-holomorphic terms as in (1.3) occur.

For p ¼ 1, and f ¼ J, we recover (1.2).

One can also consider the theta lift Iðt; f Þ for other types of automorphic forms of
weight 0. We consider I

�
t;E0ðz; sÞ

�
, where E0ðz; sÞ is the (normalized) Eisenstein series for

SL2ðZÞ of weight 0. Via the Kronecker limit formula we then study I
�
t; logkDðzÞk

�
. Here

kDðzÞk is the suitably normalized Petersson metric of the Delta function DðzÞ.
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Theorem 1.2. We have

I
�
t;E0ðz; sÞ

�
¼ z� s þ 1

2

� �
Fðt; sÞ:ðiÞ

Here z�ðsÞ is the completed Riemann Zeta function. Moreover,

� 1

12
I
�
t; logkDðzÞk

�
¼ F 0 t;

1

2

� �
;ðiiÞ

where F 0ðt; 1=2Þ is the derivative of Zagier’s Eisenstein series at s ¼ 1=2.

Taking residues at s ¼ 1=2 in both sides of (i), we obtain another proof that the theta
integral (1.4) is equal to 2Fðt; 1=2Þ. This can be viewed as a special case of the Siegel-Weil
formula.

On the other hand, Iðt; logkDkÞ can be interpreted in terms of arithmetic geometry.
In that way, one can recover the main result of [24], to which we refer for background
information and further details. We let M be the Deligne-Rapoport compactification of
the moduli stack over Z of elliptic curves, so that MðCÞ is the orbifold SL2ðZÞnHWy.
For D A Z and v > 0, Kudla, Rapoport and Yang [20], [24] construct cycles ẐZðD; vÞ in the
extended arithmetic Chow group of M with real coe‰cients dCHCH1

RðMÞ, see [3], [21], [6], [23].
For D > 0, the complex points of the underlying divisor of ẐZðD; vÞ are the Gð1Þ-equivalence
classes of CM points of discriminant �D in H. Furthermore, we let ôo be the normalized
metrized Hodge bundle on M, which defines an element

ĉc1ðôoÞ ¼
1

12

�
y;�logkDðzÞk2�

in dCHCH1
RðMÞ. Finally, we let h ; i be the Gillet-Soulé intersection pairing. Since the divisor of

D over Z does not intersect ẐZðD; vÞ at the finite places, the D-th Fourier coe‰cient of

� 1

12
I
�
t; logkDðzÞk

�
turns out to be equal to 4hẐZðD; vÞ; ôoi.

Theorem 1.3 ([24]). We have

P
D AZ

hẐZðD; vÞ; ôoiqD ¼ 1

4
F 0 t;

1

2

� �
:ð1:6Þ

Note that the proof of Theorem 1.3 given in [24] relies on the explicit calculation and
comparison of the Fourier coe‰cients on both sides of (1.6), while our method does not
require that. Also note that we realize the ‘arithmetic’ theta series (Kudla) on the left-hand
side of (1.6) as an honest theta integral. Theorem 1.3 can be viewed as an instance of an
‘arithmetic’ Siegel-Weil formula envisioned and pursued by Kudla and his collaborators,
see e.g. [17], realizing the arithmetic theta series as the derivative of an Eisenstein series.

Finally, we show that for f a Maass cusp form of weight 0, the lift Iðt; f Þ is equiva-
lent to a theta lift first introduced by Maass [22] and later reconsidered by Duke [7] and
Katok and Sarnak [12].

We thank Ulf Kühn for suggesting to consider Iðt; logkDkÞ. We also thank Gautam
Chinta, Jürg Kramer, Steve Kudla and Steve Rallis for helpful discussions on this project.
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2. Preliminaries

Let V be a rational vector space of dimension 3 with a non-degenerate symmetric

bilinear form ð ; Þ of signature ð1; 2Þ. We write qðxÞ ¼ 1

2
ðx; xÞ for the associated quadratic

form and let d be the discriminant of V , chosen to be a square-free positive integer. We fix
an orientation for V once and for all. We let G ¼ SpinðVÞF SL2 viewed as an algebraic
group over Q and write G FPSL2 for the image in OðVÞ. We let D ¼ GðRÞ=K be the as-
sociated symmetric space, where K F SOð2Þ is a maximal compact subgroup of GðRÞ. We
have DFH, where H ¼ fz A C;=ðzÞ > 0g is the complex upper half plane. For our pur-
poses, it is most convenient to identify D with the space of lines in VðRÞ on which the bi-
linear form ð ; Þ is positive definite:

DF fzHVðRÞ; dim z ¼ 1 and ð ; Þjz > 0g:

Let LHVðQÞ be an even lattice of full rank and write LK for the dual lattice of L.
Let G be a congruence subgroup of SpinðLÞ which takes L to itself and acts trivially on the
discriminant group LK=L. We write M ¼ GnD for the attached locally symmetric space.
Throughout we will assume that M is a modular curve, i.e., non-compact. Note that this
happens if and only if V is isotropic over Q. We can then view VðQÞ as the trace zero part
B0ðQÞ of the indefinite quaternion algebra BðQÞ ¼ M2ðQÞ. So

VðQÞF X ¼ x1 x2

x3 �x1

� �
A M2ðQÞ

� �
ð2:1Þ

with qðXÞ ¼ d detðX Þ and ðX ;Y Þ ¼ �d trðXYÞ. In this setting the action of G F SL2 on B0

is the conjugation:

g:X :¼ gXg�1

for X A B0 and g A G. Moreover, GðQÞF SL2ðQÞ.

Notation. From now on, we will write z ¼ x þ iy for an element in the orthogonal
symmetric space DFH. The upper case letter X we reserve for vectors in VðRÞ, thought of
as elements in B0ðRÞ. Its coe‰cients we denote by xi. Later on, we will write t ¼ u þ iv A H

for a modular form variable in H; i.e., we consider t as a variable for the (symplectic) sym-
metric space associated to SL2 F Spð1Þ.

We make the previous discussion explicit by giving the following identification of D

with the upper half plane. We pick as base point of D the line z0 spanned by
0 1

�1 0

� �
,

and note that K ¼ SOð2Þ is its stabilizer in GðRÞ. For z A H, we define gz A GðRÞ=K by the
condition gzi ¼ z; the action is the usual linear fractional transformation on H. We obtain
the isomorphism H ! D,

z 7! gzz0 ¼ span

 
gz:

0 1

�1 0

� �!
:ð2:2Þ
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So for z ¼ x þ iy A H, the associated positive line is generated by

XðzÞ :¼ 1ffiffiffi
d

p gz:
0 1

�1 0

� �
¼ 1ffiffiffi

d
p

y

�ðz þ zÞ=2 zz

�1 ðz þ zÞ=2

 !
:ð2:3Þ

In particular, q
�
XðzÞ

�
¼ 1 and g:XðzÞ ¼ XðgzÞ for g A GðRÞ. For X ¼ x1 x2

x3 �x1

� �
A VðRÞ

we have

�
X ;XðzÞ

�
¼ �

ffiffiffi
d

p

y

�
x3zz � x1ðz þ zÞ � x2

�
ð2:4Þ

¼ � dðx3x � x1Þ2 þ qðXÞffiffiffi
d

p
x3y

�
ffiffiffi
d

p
x3y;

if x3 3 0. We let ð ; Þz be the minimal majorant of ð ; Þ associated to z A D. One easily sees
that ðX ;X Þz ¼

�
X ;X ðzÞ

�2 � ðX ;X Þ.

The set IsoðVÞ of all isotropic lines in VðQÞ can be identified with P1ðQÞ ¼ QWy,
the set of cusps of GðQÞ, by means of the map

c : P1ðQÞ ! IsoðVÞ; c
�
ða : bÞ

�
¼ span

�ab a2

�b2 ab

� �
A IsoðVÞ:ð2:5Þ

One easily checks that c is a bijection, commuting with the GðQÞ-actions, that is,
c
�
gða : bÞ

�
¼ g:c

�
ða : bÞ

�
. So the cusps of M, i.e., the G-classes of P1ðQÞ, can be iden-

tified with the G-classes of IsoðVÞ. The cusp y A P1ðQÞ is mapped to the isotropic line

l0 A IsoðVÞ spanned by X0 ¼ 0 1

0 0

� �
. For l A IsoðVÞ, we pick sl A SL2ðZÞ such that

sll0 ¼ l. We orient all lines l A IsoðVÞ by requiring that slX0 is a positively oriented basis
vector of l. We let Gl be the stabilizer of the line l. Then (if �1 A G)

s�1
l Glsl ¼ G

1 kal

0 1

� �
; k A Z

� �
;

where al A Q>0 is the width of the cusp l. Since sl A SL2ðZÞ, we see that al does not depend

on the choice of sl A SL2ðZÞ. For each l, there is a bl A Q>0 such that
0 bl
0 0

� �
is a

primitive element of l0 X s�1
l L. Finally, we write el ¼ al=bl. Note (see [10], Definition 3.2)

that el would be even well defined if we picked sl A SL2ðQÞ. The quantities al, bl, and el
only depend on the G-class of l.

We compactify M to a compact Riemann surface M in the usual way by adding a
point for each cusp l A GnIsoðVÞ; we also denote this point by l. For each l A IsoðVÞ, there
is a neighborhood Ul of l such that z ¼ gz 0 for some g A G and z; z 0 A Ul implies g A Gl. We
write Ql ¼ eðs�1

l z=alÞ with z A Ul for the local variable (and for the chart) around l A M.

6 Bruinier and Funke, Traces of CM values of modular functions

Brought to you by | University of Durham
Authenticated | 129.234.252.66

Download Date | 3/18/14 5:41 PM



For T > 0, we let D1=T ¼ w A C; jwj < 1

2pT

� �
, and note that for T su‰ciently big, the

inverse images Q�1
l D1=T are disjoint in M. We truncate M by setting

MT ¼ M �
‘

lnIsoðVÞ
Q�1

l D1=T :ð2:6Þ

In this setting, Heegner points in M are given as follows. For X A VðQÞ of positive
length, i.e., qðXÞ > 0, we put

DX ¼ spanðXÞ A D:ð2:7Þ

The stabilizer GX of X in GðRÞ is isomorphic to SOð2Þ and for X A LK, GX ¼ GX XG is

finite. We then denote by ZðXÞ the image of DX in M, counted with multiplicity
1

jGX j
. We

set DX ¼ j if qðX Þe 0.

For m A Q>0 and h A LK, G acts on Lh;m ¼ fX A L þ h; qðXÞ ¼ mg with finitely many
orbits. We define the Heegner divisor of discriminant m on M by

Zðh;mÞ ¼
P

X AGnLh;m

ZðXÞ:ð2:8Þ

On the other hand, a vector X A VðQÞ of negative length defines a geodesic cX in D

via

cX ¼ fz A D; z ? Xg:

We denote the quotient GXncX in M by cðX Þ. The stabilizer GX is either trivial (if the
orthogonal complement X? HV is isotropic over Q) or infinite cyclic (if X? is non-split
over Q). If GX is infinite, then cðXÞ is a closed geodesic in M, while cðXÞ is an infinite geo-
desic if GX is trivial. Note that the case X?HVðQÞ split is equivalent to qðX Þ A �dðQ�Þ2,
see for example [10], Lemma 3.6. In that case X is orthogonal to two isotropic lines

lX ¼ spanðYÞ and ~llX ¼ spanð ~YYÞ, with Y and ~YY positively oriented. We say lX is the line
associated to X if the triple ðX ;Y ; ~YY Þ is a positively oriented basis for V , and we write
X @ lX . Note ~llX ¼ l�X .

3. A Schwartz function of weight 3/2

3.1. Geometric aspects. In [18], Kudla and Millson explicitly construct a Schwartz
function jKM ¼ j on VðRÞ valued in W1;1ðDÞ, the di¤erential forms on D of Hodge type
ð1; 1Þ. It is given by

jðX ; zÞ ¼
�
X ;X ðzÞ

�2 � 1

2p

� �
e�pðX ;X Þzo;ð3:1Þ

where o ¼ dx5dy

y2
¼ i

2

dz5dz

y2
. We have jðg:X ; gzÞ ¼ jðX ; zÞ for g A GðRÞ. We define

j0ðX ; zÞ ¼ epðX ;X ÞjðX ; zÞ ¼
�
X ;X ðzÞ

�2 � 1

2p

� �
e�2pRðX ; zÞo;ð3:2Þ
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where, following [16], we set

RðX ; zÞ :¼ 1

2
ðX ;X Þz �

1

2
ðX ;XÞ ¼ 1

2

�
X ;X ðzÞ

�2 � ðX ;XÞ:ð3:3Þ

The quantity RðX ; zÞ is always non-negative. It equals 0 if and only if z ¼ DX , i.e., if X lies
in the line generated by XðzÞ. Hence, for X 3 0, this does not occur if qðX Þe 0.

The geometric significance of this Schwartz function lies in the fact that for qðX Þ > 0,
the 2-form j0ðX ; zÞ is a Poincaré dual form for the Heegner point DX , while j0ðX ; zÞ is
exact for qðX Þ < 0. Furthermore, Kudla [16] constructed a Green function x0 associated
to j0. We recall the construction of x0. We consider the exponential integral EiðwÞ for

w A C, defined by EiðwÞ ¼
Ðw

�y

et

t
dt, where the path of integration lies in the plane cut along

the positive real axis, see e.g. [1]. It is well known that EiðwÞ has a logarithmic singularity at
w ¼ 0. For X A VðRÞ, X 3 0, we define

x0ðX ; zÞ ¼ �Ei
�
�2pRðX ; zÞ

�
:ð3:4Þ

Hence x0ðX ; zÞ is a smooth function on DnDX . For qðXÞ > 0, the function x0ðX ; zÞ has
logarithmic growth at the point DX , while it is smooth on D if qðXÞe 0. In particular,
x0ðX ; zÞ is locally integrable.

We let q, q and d be the usual di¤erentials on D. We set d c ¼ 1

4pi
ðq� qÞ, so that

dd c ¼ � 1

2pi
qq.

Theorem 3.1 ([Kudla [16], Proposition 11.1). Let X 3 0. Away from the point DX

dd cx0ðX ; zÞ ¼ j0ðX ; zÞ:ð3:5Þ

The function x0ðX ; zÞ is a Green current of logarithmic type for DX associated to j0ðX ; zÞ
(see [23]), i.e., as currents

dd c½x0ðX ; zÞ� þ dDX
¼ ½j0ðX ; zÞ�;ð3:6Þ

where dDX
denotes the delta distribution concentrated at DX .

Proposition 3.2. For qðXÞ > 0, the di¤erential forms x0ðX ; zÞ, qx0ðX ; zÞ, qx0ðX ; zÞ,
and j0ðX ; zÞ are of ‘‘square-exponential’’ decay in all directions of D, i.e., they are

Oðe�Cx2Þ; as x !Gy;

Oðe�Cy2Þ; as y !y;

Oðe�C=y2Þ; as y ! 0;

for some constants C > 0, and uniformly in y in the first case, and uniformly in x in the

other two. In particular, the current equation (3.6) does not only hold for compactly support
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functions on D, but also for functions of ‘‘linear-exponential’’ growth in all directions, i.e.,
OðeCjxjÞ, OðeCyÞ, and OðeC=yÞ, respectively.

Proof. Write X ¼ x1 x2

x3 �x1

� �
. Since qðXÞ > 0, we have x3 3 0. By (2.4) we see

�2pRðX ; zÞ ¼ 2pðX ;XÞ � p
dðx3x � x1Þ2 þ qðX Þffiffiffi

d
p

x3y
þ

ffiffiffi
d

p
x3y

 !2

:

This implies the described decay of the above di¤erential forms. r

3.2. Automorphic aspects. For t ¼ u þ iv A H, we put g 0
t ¼

1 u

0 1

� �
v1=2 0

0 v�1=2

� �
,

and define

jðX ; t; zÞ :¼ v�3=4oðg 0
tÞjðX ; zÞ ¼ v

�
X ;XðzÞ

�2 � 1

2p

� �
epiðX ;XÞt; zo;ð3:7Þ

where ðX ;XÞt; z ¼ uðX ;XÞ þ ivðX ;XÞz ¼ tðX ;XÞ þ iv
�
X ;X ðzÞ

�2
. Hence

jðX ; t; zÞ ¼ e2piqðX Þtj0ð
ffiffiffi
v

p
X ; zÞ:ð3:8Þ

Then, see [19], [10], for h A LK=L, the theta kernel

yhðt; z; jÞ ¼
P

X A hþL

jðX ; t; zÞ A W1;1ðDÞGð3:9Þ

defines a non-holomorphic modular form of weight 3=2 with values in W1;1ðMÞ, for the con-
gruence subgroup GðNÞ of SL2ðZÞ, where N is the level of the lattice L (and for G0ðNÞ if
h ¼ 0). More precisely, we let Mp2ðRÞ be the two-fold cover of SL2ðRÞ realized by the two

choices of holomorphic square roots of t 7! jðg; tÞ ¼ ctþ d, where g ¼ a b

c d

� �
A SL2ðRÞ.

Then there is a certain representation rL of the inverse image G 0 of SL2ðZÞ in Mp2ðRÞ,
acting on the group algebra C½LK=L� (see [2], [4]). We denote the standard basis elements

of C½LK=L� by eh, where h A LK=L. For the generators S ¼
 

0 �1

1 0

� �
;
ffiffiffi
t

p
!

, and

T ¼
 

1 1

0 1

� �
; 1

!
of G 0, the action of rL is given by

rLðTÞeh ¼ e
�
ðh; hÞ=2

�
eh;

rLðSÞeh ¼
ffiffi
i

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jLK=Lj

p P
h 0 ALK=L

e
�
�ðh; h 0Þ

�
eh 0 :

We then define a vector valued theta series by

Yðt; z; jÞ ¼
P

h ALK=L

yhðt; z; jÞeh:

We have, see [18], [5],

Yðt; z; jÞ A A3=2;L nW1;1ðMÞ;

where A3=2;L denotes the space of Cy-automorphic forms of weight 3=2 with respect to the
representation rL, that is, for ðg 0; fÞ A G 0,
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Yðg 0t; z; jÞ ¼ f3ðtÞrLðg 0; fÞYðt; z; jÞ:

More generally, we denote the holomorphic modular forms of weight k for G 0 with respect
to rL by Mk;L, and write M !

k;L for those forms which are holomorphic on H but meromor-
phic at the cusp, see e.g. [2], [4].

To lighten the notation, we will frequently drop the argument j.

4. The theta integral

We now consider Yðt; zÞ as a vector valued top-degree di¤erential form on M ¼ GnD.
We want to pair it with suitable 0-forms f on M. We need the following result on the
growth of Yðt; zÞ in D.

Proposition 4.1 ([10], Proposition 4.1). For each h A LK and t A H and at each cusp l,
we have

yhðt; slzÞ ¼ Oðe�Cy2Þ as y ! y;

uniformly in x, for some constant C > 0.

Proof. This follows from the proof of [10], Proposition 4.1. Note however the con-
fusing typesetting errors in this proof; several occurrences of expð�Þ should be eð�Þ. We
therefore give a very brief sketch of the argument given there.

It is easy to see that it is su‰cient to assume L ¼ Z3 in (2.1) and that it su‰ces to
show that yhðt; zÞ is rapidly decreasing as y ! y. For simplicity we assume d ¼ 1. Note

h ¼ h1 0

0 �h1

� �
with h1 ¼ 0 or h1 ¼ 1=2. So we have to consider the growth of

yhðt; zÞ ¼
P

x1 AZþh1
x2;x3 AZ

j

 
x1 x2

x3 �x1

� �
; t; z

!

as y ! y. Applying partial Poisson summation with respect to x2, we obtain

yhðt; zÞ ¼ � y

v3=2

P
x1 AZþh1
w;x3 AZ

ðw þ x3tÞ2
eð�tx2

1Þeð�½w þ x3t�½x3zz � 2x1x�Þð4:1Þ

� exp �p
y2

v
ðw þ x3tÞ2

� �
dx dy:

¼ � y

v3=2

P
x1 AZþh1
w;x3 AZ

ðw þ x3tÞ2
e
�
�tðx1 � x3xÞ2�

e
�
2ðx1 � x3x=2Þxw

�

� exp �p
y2

v
jw þ x3tj2

� �
dx dy:

The assertion follows. r

10 Bruinier and Funke, Traces of CM values of modular functions

Brought to you by | University of Durham
Authenticated | 129.234.252.66

Download Date | 3/18/14 5:41 PM



We denote by M !
0ðGÞ the space of (scalar valued) weakly holomorphic modular forms

of weight 0 with respect to G. It consists of those modular functions for G which are holo-
morphic on DFH and meromorphic at the cusps of G. Hence any f A M !

0ðGÞ has a Four-
ier expansion at the cusp l of the form

f ðslzÞ ¼
Py

n A 1
al
Z

alðnÞeðnzÞ;ð4:2Þ

with alðnÞ ¼ 0 for nf 0. In particular,

f ðslzÞ ¼ Oðe2pNyÞ ðy ! yÞ

for some N > 0.

We define the theta lift of f by

Iðt; f Þ ¼
Ð

M

f ðzÞYðt; zÞ ¼
P

h ALK=L

� Ð
M

f ðzÞyhðt; zÞ
�
eh:ð4:3Þ

We also write

Ihðt; f Þ ¼
Ð

M

f ðzÞyhðt; zÞð4:4Þ

for the individual components. Proposition 4.1 implies the convergence of (4.3). Then it is
clear that Iðt; f Þ defines a (in general non-holomorphic) modular form on the upper half
plane of weight 3=2.

Definition 4.2 (Modular trace for positive index). For m A Q>0 and h A LK=L, we
then define the modular trace function of f by

tf ðh;mÞ ¼
P

z AZðh;mÞ
f ðzÞ ¼

P
X AGnLh;m

1

jGX j
f ðDX Þ:ð4:5Þ

Definition 4.3 (Modular trace for m ¼ 0). For m ¼ 0, we set

tf ðh; 0Þ ¼ � dh;0

2p

Ðreg

M

f ðzÞ dx dy

y2
:

For f non-constant, the integral
Ð

M

f ðzÞ dx dy

y2
is divergent, and is regularized by setting

Ðreg

M

f ðzÞ dx dy

y2
¼ lim

T!y

Ð
MT

f ðzÞ dx dy

y2
;ð4:6Þ

where MT is the truncated surface defined by (2.6). The regularized integral is computed in
Remark 4.9 below.
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Definition 4.4 (Modular trace for negative index). If n A Q<0 is not of the form
n ¼ �dm2 with m A Q>0 we put tf ðh; nÞ ¼ 0. If n ¼ �dm2 with m A Q>0 we define
tf ðh;�dm2Þ as follows: Let X A Lh;�dm2 such that X? is split over Q, and cðX Þ is an infinite
geodesic. We can choose the orientation of V such that

s�1
lX

X ¼ m r

0 �m

� �
for some r A Q. In this case the geodesic cX is explicitly given in DFH by

cX ¼ slX
fz A H;<ðzÞ ¼ �r=2mg:

We call the quantity �r=2m the real part of the infinite geodesic cðXÞ and denote it by
Re
�
cðXÞ

�
. Recall that for the cusp lX , we denote the corresponding local variable by

QlX
¼ eðs�1

lX
z=alX

Þ. We write QcðXÞ ¼ QlX
e2pi ReðcðX ÞÞ=alX . We now define

h f ; cðXÞi ¼ �
P
n<0

alX
ðnÞe2pi ReðcðXÞÞn �

P
n<0

al�X
ðnÞe2pi Reðcð�XÞÞn

¼ ResQlX
¼0

f ðQcðXÞÞ
QlX

� 1

� �
þ ResQl�X

¼0

f ðQcð�X ÞÞ
Ql�X

� 1

� �
:

We then put

tf ðh;�dm2Þ ¼
P

X AGnL
h;�dm2

h f ; cðX Þi:

Theorem 4.5. Let f A M !
0ðGÞ with Fourier expansion as in (4.2), and assume that the

constant coe‰cients of f at all cusps of M vanish. Then the Fourier expansion of Ihðt; f Þ is

given by

Ihðt; f Þ ¼
P

mf0

tf ðh;mÞqm þ
P

m>0

tf ðh;�dm2Þq�dm2

;

with q ¼ e2pit, and where tf ðh;mÞ is the modular trace function defined above.

If the constant coe‰cients of f do not vanish, then Ihðt; f Þ is non-holomorphic, and in

the Fourier expansion the following terms occur in addition:

1

2p
ffiffiffiffiffi
vd

p
P

lAGnIsoðVÞ
lXLþh3j

alð0Þel þ
P

m>0

P
X AGnL

h;�dm2

alX
ð0Þ þ al�X

ð0Þ
8p

ffiffiffiffiffi
vd

p
m

bð4pvdm2Þq�dm2

;

where bðsÞ ¼
Ðy
1

t�3=2e�st dt.

Remark 4.6. (i) The theta lift Iðt; f Þ was studied in [10] for the constant function
f ¼ 1 A M !

0ðGÞ. There it was shown that Ihðt; 1Þ is non-holomorphic and

Ihðt; 1Þ ¼
P

mf0

t1ðh;mÞqm þ 1

2p
ffiffiffiffiffi
vd

p �ðhÞ þ
P

m>0

P
X AL

h;�dm2

1

4p
ffiffiffiffiffi
vd

p
m
bð4pvdm2Þq�dm2

:
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Here �ðhÞ ¼
P

lAGnIsoðVÞ
dlðhÞel with dlðhÞ ¼ 1 if lXL þ h3j and zero otherwise. This gen-

eralizes Zagier’s non-holomorphic Eisenstein series of weight 3=2 [25].

(ii) If M is compact, i.e., a Shimura curve, then M !
0ðGÞ ¼ M0ðGÞ ¼ C, and Ihðt; 1Þ

was considered by Kudla-Millson, see e.g. [19]. Here one has

Ihðt; 1Þ ¼
P

mf0

t1ðh;mÞqm:

We will now show that the trace function tf ðh;�dm2Þ vanishes for large m > 0, so
that Iðt; f Þ A M !

3=2;L. For this, we sort the infinite geodesics according to the cusps from
where they originate. For m A Q>0, we define Lh;�dm2;l ¼ fX A Lh;�d 2m;X @ lg and see

Lh;�dm2 ¼
Q

lAGnIsoðVÞ

Q
g AGlnG

g�1Lh;�dm2;l:

Furthermore

KGnLh;�dm2 ¼
P

lAGnIsoðVÞ
KGlnLh;�dm2;l

so that we conclude

nlðh;�dm2Þ :¼KGlnLh;�dm2;l ¼
2mel if Lh;�dm2;l 3j;

0 else;

�
ð4:7Þ

with el ¼ al=bl as in section 2 (see [10], Lemma 3.7).

Proposition 4.7. Let f A M !
0ðGÞ with Fourier expansion as in (4.2). Then

tf ðh;�dm2Þ ¼ �
P

lAGnIsoðVÞ
nlðh;�dm2Þ

P
n A 2m

bl
Z<0

alðnÞe2pirn

�
P

lAGnIsoðVÞ
nlð�h;�dm2Þ

P
n A 2m

bl
Z<0

alðnÞe2pir 0n;

with r ¼ Re
�
cðX Þ

�
for any X A Lh;�dm2;l and r 0 ¼ Re

�
cðX Þ

�
for any X A L�h;�dm2;l. In par-

ticular,

tf ðh;�dm2Þ ¼ 0 for mg 0:

Proof. We have

tf ðh;�dm2Þ ¼ �
P

X AGnL
h;�dm2

P
n A 1

al
Z<0

alX
ðnÞe2pi ReðcðXÞÞnð4:8Þ

�
P

X AGnL
h;�dm2

P
n A 1

al
Z<0

al�X
ðnÞe2pi Reðcð�XÞÞn:

We denote the first term in (4.8) by Gðh;�dm2Þ. So the second term in (4.8) is equal to
Gð�h;�dm2Þ. We have
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Gðh;�dm2Þ ¼
P

lAGnIsoðVÞ
Gðh;�dm2; lÞ;

where

Gðh;�dm2; lÞ ¼ �
P

X AGnL
h;�dm2 ; l

P
n A 1

al
Z<0

alðnÞe2pi ReðcðXÞÞn:

We can assume that a set of representatives for GlnLh;�dm2;l is given by

Yk ¼ slm
1 2r þ kbl=m

0 �1

� �
; k ¼ 0; . . . ; 2mel � 1

� �
for some r A Q. In particular, Re

�
cðYkÞ

�
¼ �r � k

bl
2m

. Thus,

Gðh;�dm2; lÞ ¼ �
P2elm�1

k¼0

P
n AZ<0

alðn=alÞe�2piðrþkbl=2mÞn=al

¼ �
P

n AZ<0

alðn=alÞe�2pirn=al
P2elm�1

k¼0

e�2pink=ð2melÞ

¼ �2mel
P

n A 2melZ<0

alðn=alÞe�2pirn=al :

The other term, Gð�h;�dm2Þ, is treated in the same way. r

Theorem 4.5 and Proposition 4.7 imply

Corollary 4.8. Assume that all constant coe‰cients of f A M !
0ðGÞ vanish. Then

Iðt; f Þ A M !
3=2;L:

Remark 4.9. One can compute tf ðh; 0Þ as follows. We consider the Eisenstein series
for G of weight 2 at the cusp l0, i.e., at y:

E2ðz; sÞ ¼
P

g AGl0
nG

jðg; zÞ�2j jðg; zÞj�2s;ð4:9Þ

where jðg; zÞ ¼ cz þ d for g ¼ a b

c d

� �
. Then, see e.g., [15], the series E2ðz; sÞ converges

for s > 0 and has a meromorphic continuation to C. At s ¼ 0, E2ðz; sÞ is holomorphic, and
we put E2ðzÞ ¼ E2ðz; 0Þ which defines a (non-holomorphic) modular form of weight 2 for
G. The Fourier expansion E2;lðzÞ ¼ jðsl; zÞ�2

E2ðslzÞ at a cusp l is of the form

E2;lðzÞ ¼ blð0Þ þ cð0Þ 1

y

� �
þ
Py
n¼1

blðn=alÞe2pinz=al :ð4:10Þ

Here blð0Þ ¼ dl;l0
is the Kronecker delta and cð0Þ ¼ � al0

voloðMÞ is independent of l.

Using Stokes’ theorem and the fact that q
�
E2;lðzÞ dz

�
¼ cð0Þ dx dy

y2
one sees similarly

to [2], section 9 that the regularized divergent integral
Ðreg

GnD

f ðzÞ dm is equal to
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� 1

cð0Þ
P

lAGnIsoðVÞ
al

P
n A 1

al
Zf0

alð�nÞblðnÞ:ð4:11Þ

In particular, if G is a congruence subgroup of SL2ðZÞ, we may make this more ex-
plicit, using the Fourier expansion

E2ðzÞ ¼ � 3

py
� 24

Py
n¼0

s1ðnÞe2pinz

of the (non-holomorphic) Eisenstein series E2ðzÞ of weight 2 for SL2ðZÞ. Here s1ð0Þ ¼ � 1

24
and s1ðnÞ ¼

P
tjn

t for n A Z>0. Arguing as in [2], section 9 we find in this case

Ðreg

GnD

f ðzÞ dx dy

y2
¼ �8p

P
lAGnIsoðVÞ

al
P

n AZf0

alð�nÞs1ðnÞ:ð4:12Þ

For f ¼ 1 we recover the well known relation
P

lAGnIsoðVÞ
al ¼ ½PSL2ðZÞ : G�.

Proof of Theorem 4.5. We give the outline of the structure of the proof, which re-
duces the theorem to the computation of several orbital integrals. We will compute these
integrals in the next section.

We define

yh;mðt; zÞ ¼
P

X ALh;m

jðX ; t; zÞ and y0
h;mðv; zÞ ¼

P
X ALh;m

j0ð
ffiffiffi
v

p
X ; zÞ:ð4:13Þ

By (3.8) we then have

Ihðt; f Þ ¼
Ð

M

P
m AQ

f ðzÞyh;mðt; zÞ ¼
P

m AQ

� Ð
M

f ðzÞy0
h;mðv; zÞ

�
qm;ð4:14Þ

which is the Fourier expansion of Ihðt; f Þ. (Hence interchanging summation and integra-
tion is valid in the last step.)

For m3 0, GnLh;m is finite. Therefore, for these m, we obtain for the latter integral in
(4.14): Ð

M

f ðzÞy0
h;mðv; zÞ ¼

Ð
M

P
X AGnLh;m

P
g AGXnG

f ðzÞj0ðg�1
ffiffiffi
v

p
X ; zÞð4:15Þ

¼
P

X AGnLh;m

Ð
M

P
g AGXnG

f ðzÞj0ð
ffiffiffi
v

p
X ; gzÞ;

provided the interchange of summation and integration is valid, i.e., the integral in (4.15)
converges for all X .

Then the statement about the positive Fourier coe‰cients of Iðt; f Þ follows from
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Proposition 4.10. Let X A L þ h such that qðXÞ > 0. ThenP
g AGXnG

f ðzÞj0ð
ffiffiffi
v

p
X ; gzÞ A L1ðMÞ;

and

Ð
M

P
g AGXnG

f ðzÞj0ð
ffiffiffi
v

p
X ; gzÞ ¼ 1

jGX j
f ðDX Þ:

For qðXÞ < 0, the space X?HV has signature ð1; 1Þ, and we have to distinguish two
cases, depending on whether X? is isotropic over Q or not. If X? is isotropic over Q, then
GX is trivial and qðX Þ A �dðQ�Þ2. If not, GX is infinite cyclic and qðX Þ B �dðQ�Þ2 (see [10],
Lemma 4.2).

For m B �dðQ�Þ2, (4.15) reduces the statement about the m-th coe‰cient to

Proposition 4.11. Let X A Lh;m with m < 0 such that m B �dðQ�Þ2. Hence GX is in-

finite cyclic. Then P
g AGXnG

f ðzÞj0ð
ffiffiffi
v

p
X ; gzÞ A L1ðMÞ

and Ð
M

P
g AGXnG

f ðzÞj0ð
ffiffiffi
v

p
X ; gzÞ ¼ 0:

For the split case, we have

Proposition 4.12. Let X A Lh;�dm2 (with m A Q>0) so that GX ¼ 1. ThenÐ
M

P
g AG

f ðzÞj0ð
ffiffiffi
v

p
X ; gzÞ A L1ðMÞ

and

Ð
M

P
g AG

f ðzÞj0ð
ffiffiffi
v

p
X ; gzÞ ¼

�
alX

ð0Þ þ al�X
ð0Þ
� 1

8p
ffiffiffiffiffi
vd

p
m
bð4pvdm2Þ

�
P
n<0

alX
ðnÞe2pi ReðcðXÞÞn �

P
n<0

al�X
ðnÞe2pi Reðcð�XÞÞn:

It remains to compute the constant coe‰cient of Ihðt; f Þ, which is given byÐ
M

P
X ALþh
qðXÞ¼0

f ðzÞj0ð
ffiffiffi
v

p
X ; zÞ:ð4:16Þ

We would like to split this integral into two pieces; one for X ¼ 0 (if h ¼ 0) and the

other for X 3 0. However, for X ¼ 0, we simply have jðt;X Þ ¼ � 1

2p
o and thereforeÐ

M

f ðzÞj0ð0; zÞ does not converge due to the exponential growth of f . In order to split the

integral (4.16) we therefore have to regularize it, as explained in (4.6). We obtain
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Ð
M

y0
h;0ð

ffiffiffi
v

p
; zÞ ¼ � dh;0

2p

Ðreg

M

f ðzÞoþ
Ðreg

M

P
X ALh; 0

X30

f ðzÞj0ð
ffiffiffi
v

p
X ; zÞ:ð4:17Þ

The first term is tf ðh; 0Þ.

Proposition 4.13. For the second regularized integral in (4.17), we have

Ðreg

M

P
X ALh; 0

X30

f ðzÞj0ð
ffiffiffi
v

p
X ; zÞ ¼ 1

2p
ffiffiffiffiffi
vd

p
P

lAGnIsoðVÞ
lXLþh3j

alð0Þel:

This finishes the (outline of the) proof of Theorem 4.5. r

5. Orbital integrals

In this part of the paper, we will prove Propositions 4.10, 4.11, 4.12, and 4.13.

We begin with a lemma on Fourier transforms, which we will need later. For a

function gðtÞ on the real line, let ĝgðwÞ ¼
Ðy

�y
gðtÞe2pitw dt be its Fourier transform.

Lemma 5.1. For a; b > 0, let

hðtÞ ¼ tðt � ibÞ e�a2t2

t2 þ b2
:

Then

ĥhðwÞ ¼ � 1

a
ea2b2

 
pabe2pbw erfc

a2b þ pw

a

� �
�

ffiffiffi
p

p
e
�a4b2þp2w2

a2

!
:

Here erfcðxÞ is the standard complementary error function given by

erfcðxÞ ¼ 2ffiffiffi
p

p
Ðy
x

e�u2

du:

Proof of Lemma 5.1. By [9], p. 74, (26), the Fourier transform of f ðtÞ ¼ t
e�a2t2

t2 þ b2
is

f̂f ðwÞ ¼ pi

2
ea2b2�

e�2pbw erfcðab � pw=aÞ � e2pbw erfcðab þ pw=aÞ
�
;

(note the di¤erent normalization there). By di¤erentiating under the integral, we see that

the Fourier transform of tf ðtÞ ¼ t2 e�a2t2

t2 þ b2
is given by the derivative � i

2p
f̂f 0ðwÞ. Since

hðtÞ ¼ tf ðtÞ � ibf ðtÞ, we obtain for the Fourier transform of h:
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ĥhðwÞ ¼ � i

2p
f̂f 0ðwÞ � ibf̂f ðwÞ:

But

� i

2p
f̂f 0ðwÞ ¼ � pb

2
ea2b2�

e�2pbw erfcðab � pw=aÞ þ e2pbw erfcðab þ pw=aÞ
�

þ 2
ffiffiffi
p

p

a
ea2b2

e�ða2b2þp2w2=a2Þ:

Lemma 5.1 follows. r

Proof of Proposition 4.10. Let X A LK such that qðX Þ > 0. Then GX is a finite cyclic
group. Using the G-invariance of f , we seeÐ

GnD

f ðzÞ
P

g AGXnG
j0ð

ffiffiffi
v

p
X ; gzÞ ¼

Ð
GXnD

f ðzÞj0ð
ffiffiffi
v

p
X ; zÞð5:1Þ

¼ 1

jGX j
Ð
D

f ðzÞj0ð
ffiffiffi
v

p
X ; zÞ:

By Proposition 3.2, the decay of j0ð
ffiffiffi
v

p
X ; zÞ o¤sets the growth of f . Therefore the last in-

tegral in (5.1) exists, which implies the existence of the first integral and the validity of the
unfolding. By Theorem 3.1, Proposition 3.2, and D ffiffi

v
p

X ¼ DX we seeÐ
D

f ðzÞj0ð
ffiffiffi
v

p
X ; zÞ ¼ f ðDX Þ þ

Ð
D

x0ð
ffiffiffi
v

p
X ; zÞdd cf ðzÞ:

But dd cf ¼ 0, since f is holomorphic. This proves Proposition 4.10. r

Proof of Proposition 4.11. Let qðXÞ ¼ m < 0 for X A V , so X? has signature ð1; 1Þ.
Assume that X? is non-split, so that GX is infinite cyclic. By conjugation, we can always

assume that X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�m=d

p 1 0

0 �1

� �
. Then GX ¼ � 0

0 ��1

� �� 	
with some � > 1. Using

(2.4) we find for our particular choice of X that
�
X ;XðzÞ

�2 ¼ �4m
x2

y2
. Therefore, in view

of the explicit formula for j0ðX ; zÞ, we obtain by (formally) unfolding the orbital in-
tegral: Ð

GnD

f ðzÞ
P

g AGXnG
j0ð

ffiffiffi
v

p
X ; gzÞ ¼

Ð
GXnD

f ðzÞj0ð
ffiffiffi
v

p
X ; zÞ

¼ e4pmv
Ð

GXnD

f ðzÞ �4mv
x2

y2
� 1

2p

� �
e

4pmv x2

y2
dx dy

y2
:

A fundamental domain G of GXnD is the domain bounded by the semi arcs jzj ¼ 1 and
jzj ¼ �2 > 1 in the upper half plane:

G ¼ fz A D; 1e jzj < �2g:ð5:2Þ
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But in this region, the rapid decay of j0ðX ; zÞ o¤sets the growth of f ðzÞ as z approaches the
boundary of G. So all considered integrals actually exist and unfolding is allowed. Finally,
by Theorem 3.1 we haveÐ

GXnD

f ðzÞj0ð
ffiffiffi
v

p
X ; zÞ ¼

Ð
GXnD

x0ð
ffiffiffi
v

p
X ; zÞdd cf ðzÞ ¼ 0;

since f is holomorphic. This proves Proposition 4.11. r

Proof of Proposition 4.12. Here we consider the case that qðX Þ ¼ �dm2 ðm > 0Þ.
Note that the proof of Proposition 4.11 does not carry over, since for X A Lh;�dm2 and GX

trivial, the integral
Ð
D

f ðzÞj0ð
ffiffiffi
v

p
X ; zÞ does not exist. (Even for f ¼ 1, see [10].) Since f is

holomorphic, by Stokes’ theorem we have

Ð
M

f ðzÞ
P
g AG

j0ð
ffiffiffi
v

p
X ; gzÞ ¼ 1

2pi

Ð
M

f ðzÞqq
P
g AG

x0ð
ffiffiffi
v

p
X ; gzÞ

¼ 1

2pi

Ð
M

d

�
f ðzÞq

P
g AG

x0ð
ffiffiffi
v

p
X ; gzÞ

�

¼ 1

2pi
lim

T!y

Ð
qMT

f ðzÞ
P
g AG

qx0ð
ffiffiffi
v

p
X ; gzÞ:

Note here

qx0ðX ; zÞ ¼ � qRðX ; zÞ
RðX ; zÞ e�2pRðX ; zÞ:ð5:3Þ

For an isotropic line l, we write qMT ;l for the boundary component of MT at the cusp
corresponding to l. So qMT ¼

‘
lAGnIsoðVÞ

qMT ;l.

For any X A L�dm2 , there is an involution JX A GðQÞ taking X to �X and inter-
changing the lines lX and ~llX . (It could be made unique be requiring in addition that

JX ðlX XLÞ ¼ ~llX XL.) For example, for X ¼ m
1 2r

0 �1

� �
, we can take JX ¼ T�rJTr

where J ¼ 0 1

�1 0

� �
and Tr ¼

1 r

0 1

� �
. So for an arbitrary X A L�dm2 , we can take

JX ¼ slX
JX 0s�1

lX
where X 0 ¼ s�1

lX
X .

Lemma 5.2.

lim
T!y

Ð
qMT

f ðzÞ
P
g AG

qx0ð
ffiffiffi
v

p
X ; gzÞ ¼ lim

T!y

Ð
qMT ; lX

f ðzÞ
P

g AGlX

qx0ð
ffiffiffi
v

p
X ; gzÞð5:4Þ

þ lim
T!y

Ð
qMT ; ~llX

f ðzÞ
P

g AG~llX

qx0ð
ffiffiffi
v

p
X ; gzÞ:

Proof. Choosing the orientation of V appropriately, we have

X 0 :¼ s�1
lX

X ¼ m
1 2r

0 �1

� �
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for some r A Q. Then

lim
T!y

Ð
qMT

f ðzÞ
P
g AG

qx0ð
ffiffiffi
v

p
X ; gzÞð5:5Þ

¼ � lim
T!y

P
lAGnIsoðVÞ

ÐalþiT

z¼iT

f ðslzÞ
P
g AG

qx0ð
ffiffiffi
v

p
X ; gslzÞ

¼ � lim
T!y

P
lAGnIsoðVÞ

ÐalþiT

z¼iT

f ðslzÞ
P
g AG

qx0ð
ffiffiffi
v

p
X 0; s�1

lX
gslzÞ:

We have

�
X 0;X ðzÞ

�2 ¼ 4dm2 ðx þ rÞ2

y2
¼ 4dm2 1

=ðzÞ=
�
Jðz þ rÞ

�� 1

 !
:ð5:6Þ

If g ¼ a b

c d

� �
A GðRÞ, we see by means of (3.3) and (5.6) that

RðX 0; gzÞ ¼ 2dm2 1

=ðgzÞ=ðJX 0gzÞ ¼ 2dm2 jcz þ dj2jða þ rcÞz þ b þ rdj2

y2

with JX 0 ¼ T�rJTr as above.

Let ~GG be an arithmetic subgroup of GðQÞ. Then there is an e > 0 such that
RðX 0; gzÞ > e for all g A ~GG, uniformly on y > 1. Moreover, using (5.3), one easily checks
that there is a d > 0 such that

qx0ð
ffiffiffi
v

p
X 0; gzÞf e�dðjczþdj2þjðaþrcÞzþbþrdj2Þe�dy2

dz

for all g ¼ a b

c d

� �
A ~GG with c3 0 and a þ rc3 0, uniformly for y > 1.

This implies that

� lim
T!y

P
lAGnIsoðVÞ

ÐalþiT

z¼iT

f ðslzÞ
P
g AG

cðs�1
lX
gslÞ30;

cðJX 0s�1
lX
gslÞ30

qx0ð
ffiffiffi
v

p
X 0; s�1

lX
gslzÞ ¼ 0;

where cðgÞ denotes the lower left entry of g A SL2ðRÞ. Consequently, in (5.5) we only have
to consider the terms with cðs�1

lX
gslÞ ¼ 0 or cðJX 0s�1

lX
gslÞ ¼ 0. But cðs�1

lX
gslÞ ¼ 0 is equiva-

lent to s�1
lX
gsll0 ¼ l0. Hence l ¼ sll0 is G-equivalent to lX ¼ slX

l0 and therefore we may
assume l ¼ lX . Now cðs�1

lX
gslX

Þ ¼ 0 implies g A GlX
. We obtain the first summand on the

right-hand side of (5.4).

On the other hand, cðJX 0s�1
lX
gslÞ ¼ 0 means gsll0 ¼ slX

JX 0l0 ¼ JXlX ¼ ~llX . Hence l
is G-equivalent to ~llX . So we assume l ¼ ~llX and hence g A G~llX

. This gives rise to the second
summand on the right-hand side of (5.4). r
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Lemma 5.3. For X A Lh;�dm2 , we have

1

2pi
lim

T!y

Ð
qMT ; lX

f ðzÞ
P

g AGlX

qx0ð
ffiffiffi
v

p
X ; gzÞð5:7Þ

¼ 1

8p
ffiffiffiffiffi
vd

p
m

alX
ð0Þbð4pvdm2Þ �

P
n A 1

alX

Z<0

alX
ðnÞe2pi ReðcðXÞÞn:

Proof. As before, we can write X 0 :¼ s�1
lX

X ¼ m
1 2r

0 �1

� �
for some r A Q. Hence

Re
�
cðXÞ

�
¼ �r. For simplicity, we write a ¼ alX

and gðzÞ ¼ f ðslX
zÞ with Fourier expan-

sion gðzÞ ¼
P

n A 1
a
Z

aðnÞeðnzÞ. We first see

1

2pi
lim

T!y

Ð
qMT ; lX

f ðzÞ
P

g AGlX

qx0ð
ffiffiffi
v

p
X ; gzÞð5:8Þ

¼ � 1

2pi
lim

T!y

ÐaþiT

z¼iT

gðzÞ
P
n AZ

qx0

 ffiffiffi
v

p
m

1 2ðr þ anÞ
0 �1

� �
; z

!
:

For Y ¼ m
1 2ðr þ anÞ
0 �1

� �
, we note

RðY ; zÞ ¼ 2dm2

y2
ðx þ r þ anÞ2 þ 2dm2;

qRðY ; zÞ ¼ 2dm2

y2
ðx þ r þ anÞ 1 þ i

y
ðx þ r þ anÞ

� �
:

Therefore by (5.3):

qx0ð
ffiffiffi
v

p
Y ; zÞ ¼ �i

y
e�4pdm2vðx þ r þ anÞðx þ r þ an � iyÞ e�4pvdm2ðxþrþanÞ2=y2

ðx þ r þ anÞ2 þ y2
dz:

We set t ¼ x þ r þ an, a ¼ 2

ffiffiffiffiffiffiffiffi
pvd

p
m

y
, and b ¼ y, and obtain

qx0ð
ffiffiffi
v

p
Y ; zÞ ¼ � i

b
e�a2b2

tðt � ibÞ e�a2t2

t2 þ b2
dz ¼ � i

b
e�a2b2

hðtÞ dz

with hðtÞ as in Lemma 5.1. Hence, the Fourier transform of h1ðtÞ ¼ hðx þ r þ atÞ is given
by

ĥh1ðwÞ ¼
1

a
e�2piðxþrÞw=aĥhðw=aÞ:

By Poisson summation, Lemma 5.1 therefore gives
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P
n AZ

qx0

 ffiffiffi
v

p
m

1 2ðr þ anÞ
0 �1

� �
; z

!
¼
P

w A 1
a
Z

i

2a
ffiffiffiffiffi
vd

p
m

e�2piðxþrÞw

�
�
2p

ffiffiffiffiffi
vd

p
me2pwy erfcð2

ffiffiffiffiffiffiffiffi
pvd

p
m þ

ffiffiffi
p

p
wy=2

ffiffiffiffiffi
vd

p
mÞ

� e�4pvdm2�pw2y2=4vdm2�
dz:

Inserting the Fourier expansion for g and carrying out the integration we get for the quan-
tity in (5.8):

� 1

4p
ffiffiffiffiffi
vd

p
m

lim
T!y

P
w A 1

a
Z

aðwÞe�2pirwe�2pwT

�
�
2p

ffiffiffiffiffi
vd

p
me2pwT erfcð2

ffiffiffiffiffiffiffiffi
pvd

p
m þ

ffiffiffi
p

p
wT=2

ffiffiffiffiffi
vd

p
mÞ � e�4pvdm2�pw2T 2=4vdm2�

¼ � 1

4p
ffiffiffiffiffi
vd

p
m

lim
T!y

P
w A 1

a
Z

aðwÞe�2pirw

�
�
2p

ffiffiffiffiffi
vd

p
m erfcð2

ffiffiffiffiffiffiffiffi
pvd

p
m þ

ffiffiffi
p

p
wT=2

ffiffiffiffiffi
vd

p
mÞ � e�pð2

ffiffiffiffi
vd

p
mþwT=2

ffiffiffiffi
vd

p
mÞ2�

:

The square exponential decay of e�pð2
ffiffiffiffi
vd

p
mþwT=2

ffiffiffiffi
vd

p
mÞ2

for w3 0 implies that the contri-
bution corresponding to these terms vanishes in the limit. Therefore the above quantity is
equal to

� 1

4p
ffiffiffiffiffi
vd

p
m

að0Þ
�
2p

ffiffiffiffiffi
vd

p
m erfcð2

ffiffiffiffiffiffiffiffi
pvd

p
mÞ � e�4pvdm2�ð5:9Þ

� 1

2
lim

T!y

P
w A 1

a
Znf0g

aðwÞe�2pirw erfcð2
ffiffiffiffiffiffiffiffi
pvd

p
m þ

ffiffiffi
p

p
wT=2

ffiffiffiffiffi
vd

p
mÞ:

Using the identity bðtÞ ¼ 2
�
e�t �

ffiffiffiffiffi
pt

p
erfcð

ffiffi
t

p
Þ
�

we find that the first term in (5.9) is equal
to

1

8p
ffiffiffiffiffi
vd

p
m

að0Þbð4pvdm2Þ:

For the second term in (5.9), we first note that erfcðtÞ ¼ Oðe�t2Þ as t ! þy and
lim

t!�y
erfc t ¼ 2. Hence the second term in (5.9) is equal to

�
P

w A 1
a
Z<0

aðwÞe�2pirw:

This gives Lemma 5.3. r

This finishes the proof of Proposition 4.12. r

Proof of Proposition 4.13. We now consider Proposition 4.13; the sum over the non-
zero isotropic vectors. We write Xl for the primitive positive oriented vector in LX l. We
can write lX ðL þ hÞ ¼ ZXl þ hl for some hl A L þ h if dlðhÞ3 0. We then have
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Ðreg

GnD

f ðzÞ
P

X ALh; 0

X30

j0ð
ffiffiffi
v

p
X ; zÞ ¼

Ðreg

GnD

f ðzÞ
P

lAGnIsoðVÞ

P
X A lXðLþhÞ

X30

P
g AGlnG

j0ð
ffiffiffi
v

p
g�1X ; zÞ

¼
P

lAGnIsoðVÞ
dlðhÞ30

Ðreg

GnD

f ðzÞ
P

g AGlnG

P 0
y

n¼�y
j0
� ffiffiffi

v
p

ðnXl þ hlÞ; gz
�
:

Here
P 0 indicates that we omit n ¼ 0 in the sum in the case of the trivial coset. As before,

we obtain by Stokes’ theorem

Ðreg

GnD

f ðzÞ
P

X ALh; 0

X30

j0ð
ffiffiffi
v

p
X ; zÞð5:10Þ

¼ 1

2pi

P
lAGnIsoðVÞ
dlðhÞ30

lim
T!y

Ð
qMT

f ðzÞ
P

g AGlnG

P 0
y

n¼�y
qx0
� ffiffiffi

v
p

ðnXl þ hlÞ; gz
�
:

Note
�
X ;X ðzÞ

�
¼

ffiffiffi
d

p
r=y for X ¼ 0 r

0 0

� �
. By (5.3) we find for g ¼ a b

c d

� �
A GðRÞ that

qx0ð
ffiffiffi
v

p
X ; gzÞ ¼ � i

ðcz þ dÞ2=ðgzÞ
e�pvdr2==ðgzÞ2

dz:

Similarly to the proof of Proposition 4.12, we then see that on the right-hand side of (5.10)
in the limit the terms for g3 1 vanish, while for g ¼ 1, we have a contribution at the bound-
ary component corresponding to the cusp l. Thus

Ðreg

GnD

f ðzÞ
P

X ALh; 0

X30

j0ð
ffiffiffi
v

p
X ; zÞ ¼ 1

2p

P
lAGnIsoðVÞ
dlðhÞ30

lim
T!y

ÐiTþal

iT

f ðzÞ
P 0
y

n¼�y

1

y
e�pvdðnblþklÞ2=y2

dx:

Here s�1
l ðXl þ hlÞ ¼

0 bl þ kl

0 0

� �
for some number kl. Note that in the limit a possible

term for n ¼ 0 and kl ¼ 0 vanishes. Then, by carrying out the integral and Poisson summa-
tion we obtain

Ðreg

GnD

f ðzÞ
P

X ALh; 0

X30

j0ð
ffiffiffi
v

p
X ; zÞ ¼

P
lAGnIsoðVÞ
dlðhÞ30

al

2p
alð0Þ lim

T!y

Py
n¼�y

1

T
e�pvdðnblþklÞ2=T 2

¼
P

lAGnIsoðVÞ
dlðhÞ30

elalð0Þ
2p

ffiffiffiffiffi
vd

p lim
T!y

P
w AZ

eð�wkl=blÞe�pw2T 2=ðvdb2
l Þ

¼
P

lAGnIsoðVÞ
dlðhÞ30

el

2p
ffiffiffiffiffi
vd

p alð0Þ:

This concludes the proof of Proposition 4.13. r
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6. Example

We explain how to obtain the example from the introduction. Let p be a prime. We
consider the quadratic space VðQÞ as in (2.1) with the quadratic form qðXÞ ¼ detðX Þ. We
let L be the lattice

L ¼ b 2c

2ap �b

� �
; a; b; c A Z

� �
:

Then L has level 4p and is stabilized by G0ðpÞ. The modular curve M ¼ G0ðpÞnD is com-
pactified by adding the two cusps y, 0 of G0ðpÞ, which are represented by the isotropic
lines

l0 ¼ span
0 1

0 0

� �
; l1 ¼ span

0 0

�1 0

� �
:ð6:1Þ

We may take sl0
¼ 1 and sl1

¼ 0 �1

1 0

� �
. One checks that al0

¼ 1, bl0
¼ 2, el0

¼ 1=2, and
al1

¼ p, bl1
¼ 2p, el1

¼ 1=2.

The Heegner points now can be described as follows. If X ¼ b 2c

�2ap �b

� �
A L is a

vector of positive norm �D ¼ qðXÞ, then the matrix

Q ¼ ap b=2

b=2 c

� �
¼ 1

2

0 �1

1 0

� �
Xð6:2Þ

defines a definite integral binary quadratic form of discriminant D ¼ b2 � 4pac ¼ �qðX Þ.
Here the G0ðpÞ-action on L corresponds to the natural right action on quadratic forms,
and the cycle DX coincides with the CM point aQ (resp. a�Q) corresponding to Q (resp.
�Q) if Q is positive (resp. negative) definite as in the introduction. We then easily see

Zð0;�DÞ ¼
P

Q AQ�D; p=G0ðpÞ

2

jG0ðpÞQj
aQ:ð6:3Þ

Let f A M !
0

�
G0ðpÞ

�
be a weakly holomorphic modular form and denote its Fourier

expansions at the cusps y, 0 by

f ðzÞ ¼
P

n AZ
aðnÞeðnzÞ and f ðsl1

zÞ ¼
P

n A 1
p
Z

bðnÞeðnzÞ;

respectively. By (6.3), we have

tf ð0;�DÞ ¼
P

Q AQ�D; p=G0ðpÞ

2

jG0ðpÞQj
f ðaQÞ:ð6:4Þ

By means of Remark 4.9, we see that

tf ð0; 0Þ ¼ 4
P

n AZf0

�
að�nÞs1ðnÞ þ pbð�nÞs1ðnÞ

�
:

24 Bruinier and Funke, Traces of CM values of modular functions

Brought to you by | University of Durham
Authenticated | 129.234.252.66

Download Date | 3/18/14 5:41 PM



We find a di¤erent expression for tf ð0; 0Þ by applying the residue theorem to the meromor-
phic 1-form f ðzÞ

�
E2ðzÞ � E2j2ðWpÞðzÞ

�
dz on G0ðpÞnH. This yieldsP

n AZf0

að�nÞ
�
s1ðnÞ � ps1ðn=pÞ

�
¼

P
n AZf0

bð�n=pÞ
�
s1ðnÞ � ps1ðn=pÞ

�
;

and therefore

tf ð0; 0Þ ¼ 2
P

n AZf0

�
að�nÞ þ bð�n=pÞ

��
s1ðnÞ þ ps1ðn=pÞ

�
:ð6:5Þ

For the modular traces of f with negative index n, we first recall that by Proposition

4.7, we have tf ð0; nÞ ¼ 0 unless n ¼ �m2 with m A N. Furthermore,
m 0

0 �m

� �
A L0;�m2;l0

and
�m 0

0 m

� �
A L0;�m2;l1

. This implies that the quantities r and r 0 in Proposition 4.7 are

equal to 0. Thus

tf ð0;�m2Þ ¼ �2m
P

k AZ>0

�
að�mkÞ þ bð�mk=pÞ

�
:ð6:6Þ

Collecting the terms (6.4), (6.5), (6.6) now shows that Theorem 4.5 implies Theorem
1.1 of the introduction: For f A M !

0

�
G�

0ðpÞ
�

(i.e., f is in the þ1-eigenspace for the Fricke
involution Wp), we have aðnÞ ¼ bðn=pÞ, and tf ð0;NÞ ¼ 2t�f ðNÞ for N > 0. Thus, if að0Þ ¼ 0,
then

Gðt; f Þ ¼ 1

4
I0ðt; f Þ:

Finally note that �qðXÞ is congruent to a square modulo 4p for X A L (which we write
as �qðXÞ1r ð4pÞ). Consequently, Gðt; f Þ belongs to M

þ; !
3=2ðpÞ, the Kohnen plus space

of weakly holomorphic modular forms of weight 3=2 for the group G0ð4pÞ having a Fourier
expansion of the form

gðtÞ ¼
P

n AZ
�n1r ð4pÞ

cðnÞqn:ð6:7Þ

If f A M !
0

�
G0ðpÞ

�
is in the �1-eigenspace for Wp, we have aðnÞ ¼ �bðn=pÞ, and

I0ðt; f Þ ¼ 0;

since we directly see tf ð0;NÞ ¼ 0 for N > 0, while for N e 0 we have tf ð0;NÞ ¼ 0 by (6.5),
(6.6).

For p ¼ 1, we get Gðt; f Þ ¼ 1

2
I0ðt; f Þ, and for f ¼ J, we recover Zagier’s result.

7. Extensions

In this section, we consider other automorphic forms of weight 0 for G as input for
the theta lift under consideration in this paper.
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7.1. The lift of the weight 0 Eisenstein series and log|D|. For z A H and s A C, we
let

E0ðz; sÞ ¼
1

2
z�ð2s þ 1Þ

P
g AGynSL2ðZÞ

�
=ðgzÞ

�sþ1
2

be the (normalized) real analytic Eisenstein series of weight 0 for SL2ðZÞ. Here

Gy ¼ 1 Z

0 1

� �
and z�ðsÞ ¼ p�s=2Gðs=2ÞzðsÞ is the completed Riemann Zeta function.

Recall that E0ðz; sÞ converges for <ðsÞ > 1=2 and has a meromorphic continuation to C

with a simple pole at s ¼ 1=2 with residue 1=2. Furthermore, it is well known that
E0ðz;�sÞ ¼ E0ðz; sÞ.

We consider the quadratic space VðQÞ as in (2.1) with the quadratic form
qðXÞ ¼ detðX Þ. For simplicity, we let L in this section be the lattice

L ¼ b c

a �b

� �
; a; b; c A Z

� �
:

We have LK=LGZ=2Z, the level of L is 4, and G ¼ SL2ðZÞ takes L to itself and acts trivi-
ally on LK=L. We let e0, e1 be the standard basis of C½LK=L� corresponding to the cosets

h ¼ h1 0

0 �h1

� �
with h1 ¼ 0 and h1 ¼ 1=2, respectively.

We let K be the one-dimensional lattice Z together with the negative definite bilinear
form ðb; b 0Þ ¼ �2bb 0. We naturally have LK=LFKK=K . We define a vector valued Eisen-
stein series E3=2;Kðt; sÞ of weight 3=2 for the representation rK by

E3=2;Kðt; sÞ ¼ � 1

4p
s þ 1

2

� �
z�ð2s þ 1Þ

P
g 0 AG 0

ynG 0
ðv

1
2
ðs�1

2
Þe0Þj3=2;Kg

0;

where the Petersson slash operator is defined on functions f : H ! C½KK=K � by

ð f j3=2;Kg
0ÞðtÞ ¼ fðtÞ�3r�1

K ðg 0Þ f ðgtÞ

for g 0 ¼ ðg; fÞ A G 0. Here G 0
y is the inverse image of Gy inside G 0. Again we have

E3=2;Kðt;�sÞ ¼ E3=2;Kðt; sÞ, as we will also see below. We set

Fðt; sÞ ¼
�
E3=2;Kð4t; sÞ

�
0
þ
�
E3=2;Kð4t; sÞ

�
1
:ð7:1Þ

Then the value of Fðt; sÞ at s ¼ 1=2 is a (non-holomorphic) modular form of weight 3=2
for G0ð4Þ and is equal to Zagier’s Eisenstein series as in [11], [25]. This can be seen as fol-
lows. The right-hand side of (7.1) realizes the isomorphism of vector valued modular forms
of type rK with the space of modular forms for G0ð4Þ satisfying the Kohnen plus-space
condition, see [8], section 5. On the other hand, Zagier’s Eisenstein series is the only Eisen-
stein series of weight 3=2 for G0ð4Þ in the plus-space and has the same constant coe‰cient
as Fðt; 1=2Þ. Note that our Fðt; sÞ has a di¤erent normalization as Zagier’s Fðt; sÞ, see
also [24], section 3.
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Theorem 7.1. With the notation as above, we have

I
�
t;E0ðz; sÞ

�
¼ z� s þ 1

2

� �
E3=2;Kðt; sÞ:ð7:2Þ

Proof. As in [2], section 4 we define the theta series

YKðt; a; bÞ ¼
P

h AKK=K

P
x1 AKþh

e
�
�tðx1 þ bÞ2�

e
�
�ðx1 þ b=2; aÞ

�
eh:

By (4.1) we then have

Yðt; zÞ ¼ � y

v3=2

P
w;x3 AZ

ðw þ x3tÞ2 exp �p
y2

v
jw þ x3tj2

� �
YKðt;�wx;�x3xÞ dx dy

¼ � y

v3=2

Py
n¼1

n2 P
c;d AZ

gcdðc;dÞ¼1

ðctþ dÞ2 exp �p
n2y2

v
jctþ dj2

� �
YKðt;�ndx;�ncxÞ dx dy:

Now take a; b A Z such that g 0 ¼
 

a b

c d

� �
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ctþ d

p
!
A G 0. By [2], Theorem 4.1 we

find

YKðt;�ndx;�ncxÞ ¼ ðctþ dÞ�1=2r�1
K ðg 0ÞYKðg 0t;�nx; 0Þ:ð7:3Þ

Hence

Yðt; zÞ ¼ � y

v3=2

Py
n¼1

n2 P
g 0 AG 0

ynG 0
ðctþ dÞ3=2 exp �p

n2y2

v
jctþ dj2

� �
� r�1

K ðg 0ÞYKðg 0t;�nx; 0Þ dx dy:

Then by the standard Rankin-Selberg unfolding trick we obtain for <ðsÞ > 1:

I
�
t;E0ðz; sÞ

�
¼ z�ð2s þ 1Þ

Ð
GynH

Yðt; zÞysþ1
2

¼ �v�3=2z�ð2s þ 1Þ
Py
n¼1

n2 P
g 0 AG 0

ynG 0
ðctþ dÞ3=2

�
Ðy
0

exp �p
n2y2

v
jctþ dj2

� �
ysþ5

2
dy

y

� r�1
K ðg 0Þ

�Ð1
0

YKðg 0t;�nx; 0Þ dx

�

¼ �z�ð2s þ 1ÞG
 

1

2
s þ 1

2

� �
þ 1

!
p� 1þ1

2
sþ1

2ð Þð Þz s þ 1

2

� �
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� 1

2

P
g 0 AG 0

ynG 0

v
1
2

s�1
2ð Þ

jctþ djs�
1
2

1

ðctþ dÞ3=2
r�1

K ðg 0Þe0

¼ z� s þ 1

2

� �
E3=2;Kðt; sÞ: r

Taking residues at s ¼ 1=2 on both sides of (7.2) we obtain

Corollary 7.2.

Iðt; 1Þ ¼ 2E3=2;K t;
1

2

� �
:

We let

DðzÞ ¼ e2piz
Qy
n¼1

ð1 � e2pinzÞ24

be the Delta function. We normalize the Petersson metric of D such that

kDðzÞk ¼ e�6C jDðzÞð4pyÞ6j;

with C ¼ 1

2
ðgþ log 4pÞ.

Theorem 7.3. We have

� 1

12
I
�
t; log

�
kDðzÞk

��
¼ E 0

3=2;K t;
1

2

� �
:

Proof. Recall that the Kronecker limit formula states

� 1

12
log
�
jDðzÞy6j

�
¼ lim

s!1
2

�
E0ðz; sÞ � z�ð2s � 1Þ

�
:ð7:4Þ

By (7.4), Theorem 7.1 and Corollary 7.2 we have

� 1

12
I
�
t; log

�
jDðzÞy6j

��
¼ lim

s!1
2

�
I
�
t;E0ðz; sÞ

�
� I
�
t; z�ð2s � 1Þ

��
¼ lim

s!1
2

 
z� s þ 1

2

� �
E3=2;Kðt; sÞ � 2z�ð2s � 1ÞE3=2;K t;

1

2

� �!

¼ E 0
3=2 t;

1

2

� �
þ 1

2

�
logð4pÞ � g

�
E3=2;K t;

1

2

� �
:

Here we used

z�ðsÞ ¼ 1

s � 1
� 1

2

�
logð4pÞ � g

�
þ Oðs � 1Þ:
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The theorem now follows from

� 1

2
I
�
t; logð4pÞ � C

�
¼ � 1

2

�
logð4pÞ � g

�
E3=2;K t;

1

2

� �
: r

With the notation as in the introduction, the cycles ẐZðm; vÞ for m > 0 with
�m1 0; 1 mod 4, are given by, see [24], section 3,

ẐZðm; vÞ ¼
�
ZðmÞ;Xðm; vÞ

�
A dCHCH1

RðMÞ:

Here ZðmÞ is the divisor in M given by the moduli stack over Z of elliptic curves E

such that there is an embedding Om ,! EndðEÞ, where Om is the order of discriminant �m

in Qð
ffiffiffiffiffiffiffiffi
�m

p
Þ. Thus ZðmÞðCÞ ¼ Qm=SL2ðZÞ ¼: ZðmÞ (with each elliptic curve counted with

multiplicity
1

KAutðEÞ). Moreover,

Xðm; vÞ ¼ 1

4

P
X ALK

1
2
ðX ;X Þ¼m

x0ð2
ffiffiffi
v

p
XÞ

is a Green function for ZðmÞ. For me 0, the ẐZðm; vÞ are defined similarly using x0 with
the divisor either supported at y (if m ¼ �n2 or m ¼ 0) or empty (otherwise).

Remark 7.4. In [24] and in section 6 (with p ¼ 1), the cycles ZðmÞ are constructed

using the trivial coset of the lattice ~LL ¼ b 2c

2a �b

� �
; a; b; c A Z

� �
in VðQÞ. Since ~LL ¼ 2LK,

we can use L instead. On the other hand, for the proof of Theorem 7.1, the setting of vector
valued modular forms and theta series, in particular (7.3), is quite convenient. Via (7.1) we
then can go back to the scalar valued situation.

Theorem 7.5. We have

P
m AZ

hẐZðm; vÞ; ôoiqm ¼ 1

4
F 0 t;

1

2

� �
:ð7:5Þ

Proof. We only show this for m > 0. For the other coe‰cients we refer to [24]; they
can be done with the methods developed in this paper as well. We have

F 0 t;
1

2

� �
¼ � 1

12

Ð
M

P
X ALK

j0ð2
ffiffiffi
v

p
X ;ZÞ log

�
kDðzÞk

�
epiðX ;X Þ4t:

This follows from (7.2). By (3.6) we have

� 1

12

P
X ALK

1
2
ðX ;XÞ¼m

Ð
M

j0ð2
ffiffiffi
v

p
XÞ log

�
kDðzÞk

�
¼ � 1

3

P
z AZðmÞ

log
�
kDðzÞk

�

þ 1

2p

Ð
M

Xðm; vÞ dx dy

y2
:

ð7:6Þ

Since the divisor of D over Z is disjoint to ZðmÞ, we now easily see using the definition of
the star product that (7.6) is equal to 4hẐZðm; vÞ; ôoi. r
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Our method should generalize to modular curves of higher level. Furthermore, the
results above suggest that one should consider Iðt; logk f kÞ for other modular forms than
D. In particular, the case when f is a Borcherds lift [2], [4] could be of interest.

7.2. The lift of Maass cusp forms. We let L2
cuspðGnDÞ be the space of cuspidal square

integrable functions on GnD ¼ M. It is clear that we consider Iðt; f Þ for f A L2
cuspðGnDÞ

as well. It turns out that this lift is closely relating to another theta lift first considered by
Maass [22] and later reconsidered by Duke [7] and Katok and Sarnak [12]. Namely, they
considered, in our notation, the space V�, which is the space V together with the negative
bilinear form �ð ; Þ. Hence V� has signature ð2; 1Þ. The Siegel theta series for V� is given
by

yhðt; z; j2;1Þ ¼
P

X ALþh

j2;1ðX ; t; zÞ

with j2;1ðX ; t; zÞ ¼ vepið�uðX ;XÞþivðX ;X ÞzÞ. Then yhðt; z; j2;1Þ is automorphic with weight 1=2
for t A H. We can then define

IMðt; f Þ ¼
P

h AL�=L

� Ð
M

f ðzÞyhðt; z; j2;1Þ
dx dy

y2

�
eh

for f A L2
cuspðGnDÞ. In fact, in [22], [12] only Maass forms are considered, that is, eigen-

functions of the hyperbolic Laplacian D ¼ �y2 q2

qx2
þ q2

qy2

 !
.

For the relationship between I and IM , first recall that the Maass raising and lowering

operators are given by Rk ¼ 2i
q

qt
þ kv�1 and Lk ¼ �2iv2 q

qt
. Hence Rk�2Lk ¼ �D 0

k, where

D 0
k is the weight k Laplacian for t A H as in [4]. We also need the operator xk which maps

forms of weight k to forms of ‘‘dual’’ weight 2 � k. It is given by

xkð f ÞðtÞ ¼ vk�2Lk f ðtÞ ¼ R�kvkf ðtÞ:

Lemma 7.6. The two kernel functions jKM ¼ j and j2;1 of the two lifts I and IM sat-

isfy the following fundamental relationship:

x1=2j2;1ðX ; t; zÞ � o ¼ �pjKMðX ; t; zÞ:

Furthermore, we have

�4D 0
1
2

j2;1ðX ; t; zÞ ¼ Dj2;1ðX ; t; zÞ:

Proof. This can be easily seen by a direct and straightforward calculation. Alterna-
tively, one can switch to the Fock model of the Weil representation, see e.g. [5], section 4,
and perform the calculation there. r

Theorem 7.7. For f A L2
cuspðGnDÞ, we have

x1=2IMðt; f Þ ¼ �pIðt; f Þ:

If f is an eigenfunction of D with eigenvalue l, then we also have
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x3=2Iðt; f Þ ¼ � l

4p
IMðt; f Þ:

Proof. The first assertion immediately follows from the lemma. For the second, note
that x3=2x1=2 ¼ R�3=2L1=2 ¼ �D 0

1=2. Then by the adjointness of D we see

x3=2Iðt; f Þ ¼ � 1

p
x3=2x1=2IMðt; f Þ ¼ 1

p
D 0

1=2IMðt; f Þ

¼ � 1

4p
IMðt;Df Þ ¼ � l

4p
IMðt; f Þ: r

The theorem shows that the two lifts are equivalent on Maass forms. Note however,
that due to the moderate growth of yhðt; z; j2;1Þ one cannot define IMð f Þ on M !

0. On the
other hand, since Iðt; f Þ is holomorphic for f A M !

0, we have x3=2Iðt; f Þ ¼ 0.

7.3. The lift of weak Maass forms. In [5], section 3, we introduced the space of weak
Maass forms HkðGÞ. It consists of those forms f ðzÞ on D of weight k for G which are anni-
hilated by the weight k Laplacian and satisfy f ðslzÞ ¼ OðeCyÞ as z ! y for some constant
C. Here we are only interested in H0ðGÞ. A form f A H0ðGÞ can be written as f ¼ f þ þ f �,
where the Fourier expansions of f þ and f � are of the form

f þðslzÞ ¼
P

n A 1
al
Z

aþl ðnÞeðnzÞ;

f �ðslzÞ ¼ a�l ð0Þv þ
P

n A 1
al
Z�f0g

a�l ðnÞeðnzÞ;

where aþl ðnÞ ¼ 0 for nf 0 and a�l ðnÞ ¼ 0 for ng 0. We let Hþ
0 ðGÞ be the subspace of those

f that satisfy a�l ðnÞ ¼ 0 for nf 0 (for all l). It consists for those f A H0ðGÞ such that f � is
exponentially decreasing at the cusps. Its significance lies in the fact that x0 maps Hþ

0 ðGÞ
onto S2ðGÞ, the space of weight 2 cusp forms for G. We define tf ðh;mÞ for mf 0 as before,
while we define the modular trace of negative index tf ðh;�dm2Þ by replacing alðnÞ with the
holomorphic coe‰cients aþl ðnÞ.

Theorem 7.8. Let f A Hþ
0 ðGÞ and assume that aþ

l ð0Þ ¼ 0 for all l. Then

Ihðt; f Þ ¼
P

mf0

tf ðh;mÞqm þ
P

m>0

tf ðh;�dm2Þq�dm2

:

Proof. Since f is harmonic, the proofs for the positive coe‰cients and for

qðXÞ ¼ m B �dðQ�Þ2, the non-split case, are still valid. That is, Propositions 4.10 and 4.11
carry over with no change. The term for X ¼ 0 stays also the same. Hence we only need to
analyze the orbital integrals over the isotropic lines and for the split case, qðX Þ ¼ �dm2.
For the extension of Proposition 4.12, we let X A L�dm2 and see

Ð
M

f ðzÞ
P
g AG

j0ð
ffiffiffi
v

p
X ; gzÞ ¼ 1

2pi

Ð
M

f ðzÞqq
P
g AG

x0ð
ffiffiffi
v

p
X ; gzÞ

¼ 1

2pi

Ð
M

d

�
f ðzÞq

P
g AG

x0ð
ffiffiffi
v

p
X ; gzÞ

�
� 1

2pi

Ð
M

�
qf ðzÞ

�
q
P
g AG

x0ð
ffiffiffi
v

p
X ; gzÞ:
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The first term is handled in exactly the same manner as in the proof of Proposition 4.12.
Only at the end of the proof of Lemma 5.3, when inserting the Fourier expansion of f ,
an extra term occurs. But one easily sees that this extra term vanishes in the limit. For the
second term, we have

Ð
M

�
qf ðzÞ

�
q
P
g AG

x0ð
ffiffiffi
v

p
X ; gzÞ ¼ �

Ð
M

d

�
qf ðzÞ

P
g AG

x0ð
ffiffiffi
v

p
X ; gzÞ

�
þ
Ð

M

�
qqf ðzÞ

�P
g AG

x0ð
ffiffiffi
v

p
X ; gzÞ:

But the first summand vanishes by Stokes’ theorem, since qf ðzÞ is rapidly decreasing as
f A Hþ

0 , while the second term is zero since qqf ðzÞ ¼ 0 as f is harmonic. The orbital inte-
grals over the isotropic lines are treated in the same manner. r
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