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ABSTRACT 
 

Bayesian analysis of radiocarbon dates on Holocene archaeological sites has become 

well established.  Application to Pleistocene sites dated by multiple techniques would 

be advantageous.  This paper develops the necessary mathematical apparatus in the 

form of likelihoods for luminescence dating, and uranium series dating, and considers 

the possibility for amino-acid racemisation dating.  Application of the new methods is 

illustrated using the stratigraphic sequences of dates from the sites of Saint Cesaire 

and La Chaise-de-Vouthon.  For application to amino-acid racemisation dating fuller 

publication of data is found to be required.  

Keywords: Bayesian statistics, luminescence dating, uranium-series dating amino-acid 

racemisation dating. 

 

INTRODUCTION 
 

Dating of Pleistocene archaeological and palaeoenvironmental sites is conducted 

using a wide range of chronometric techniques.  In the last 30 years we have moved 

from a situation where the gap between the capabilities of radiocarbon dating and 

potassium-argon dating could be described as “the muddle in the middle” (Isaac 

1975), to having the ability to apply a range of techniques (OSL, TL, ESR, Uranium-

series, amino-acid racemisation, etc.).  Often multiple techniques are applied at one 

site on samples with known stratigraphic relationships.  It is also frequently the case 

that the object whose age is of interest (e.g. a hominid specimen) is not directly dated, 

but dated by stratigraphic association or ordering.  In such cases we currently have no 

formal method to assess either the most likely age, or the uncertainty in that age, and 

as Ludwig (2003a) notes “for most studies the uncertainty of the date is no less 

significant than the date itself” (emphasis in original).   

 

In contrast, in the Holocene radiocarbon is the dominant technique used (though far 

from the only one).  Over the last 15 years Bayesian chronological modelling has been 

developed to the point of being a routine method for the analysis of stratigraphically 

related radiocarbon dates, allowing refinements in precision and the formal, numerical 

estimation of ages for objects related by stratigraphy to directly dated objects (Bayliss 

& Bronk Ramsey 2003, Buck 2003).  The analysis of the ages of Pleistocene deposits 

and their contents could be greatly enhanced if we had similar mathematical methods 

which could be applied to stratigraphic sequences dated with multiple techniques 

(Millard 2003).  This paper develops some of the necessary mathematical apparatus 

for such analyses and demonstrates its application to stratigraphic sequences of dates 

by single methods; extension to sequences dated by multiple methods will be treated 

in a future paper.   

 

Each technique requires separate consideration of the mathematical structure of the 

calculations, and this paper tackles luminescence dating, uranium-series dating and 

amino-acid racemisation dating.  ESR dating has been discussed elsewhere (Millard 

submitted). 

 

The Structure of Bayesian Chronological Models 
 

The basic idea of Bayesian chronological modelling is to combine dating information 

with the known ordering of the dates from stratigraphy: 
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refined dates  =  chronometry + stratigraphy, 

more formally this is expressed as a form of Bayes' theorem:  

 p(dates | chronometry)  p(chronometry | dates)  p(dates), 

where p(dates) expresses our prior beliefs about the dates of events before obtaining 

chronometric measurements, p(chronometry | dates) is the likelihood which uses a 

mathematical model to express the probability of obtaining our observations if the 

dates were known and p(dates | chronometry) expresses our posterior beliefs 

incorporating our prior beliefs and the data. The prior beliefs can include statements 

about relative ordering of events, and thus incorporate stratigraphic information. 

 

In addition, the dates of objects or strata not dated directly can be incorporated in the 

prior beliefs in order to obtain an estimate of their age given all the chronometric and 

stratigraphic data.  Within the analysis of radiocarbon dates, the mathematical 

statement of the model is usually as a stratigraphic ordering in time of dates within 

broad limits, plus a mathematical statement of how a calendar date translates to a 

radiocarbon date via the calibration curve and laboratory measurement process (Buck 

2003).  A similar structure is adopted here for other dating techniques, using a prior 

ordering statement combined with a likelihood describing the probability of observing 

the measured values given the age, chronometer mechanism and the measurement 

process.  Thus the form of the likelihood needs to be derived separately for each 

dating technique, based on its chronometer mechanism and the required 

measurements.  As in all previous models of prior ordering, the stratigraphic order is 

assumed known with certainty; although in principle uncertainty in stratigraphic 

ordering could be incorporated, the mathematical apparatus for doing this has not yet 

been developed. 

 

A broad structure for constructing a chronology using multiple chronometric 

techniques applied to samples from a stratigraphic sequence may be developed as 

follows (Lanos 2003).  The general equation governing the probability of a set of 

samples having a set of dates is: 

 p( | , ,S) p( | ,S, ) p(S| ) p( )θM g Mg θ θ θ , 

where  is the set of dates of interest, M are the chronometric measurements, g is any 

required set of calibration data or known parameters, and S is the stratigraphic 

information.  The likelihoods of observations in two chronometric techniques are 

independent of one another if the techniques depend on different properties of the 

samples and their environments.  In this case  

 
1

p( | , , ) p( | , , ) p( | ) p( )
J

M j j j

j

S S SθM g M g θ θ θ , 

and we can use separate expressions for the likelihood, p(Mj | gj, S, ) of technique j.  

Further, some techniques date each sample separately and any parameters in common 

between samples (e.g. a half-life) are assumed to have negligible uncertainty.  This is 

the usual assumption in the analysis of radiocarbon dates (Buck et al 1992) and is 

often applicable to closed-system uranium-series dates, but not to the other techniques 

considered here.  In this case the joint likelihood over all samples for the method can 

be decomposed into the product of a series of likelihoods for the individual samples: 

 
1

p( | , , ) p( | , , )
N

j j j ji j ji

i

S SM g θ M g , 
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and need only be derived for an individual sample.   

 

In certain cases, the assumption of independence of techniques breaks down where 

they utilise a parameter in common, e.g. TL and ESR dating of a site may depend on 

one set of environmental -doserate measurements.  In these cases, a joint likelihood 

needs to be derived.  This case is not tackled here.  Falsely assuming independence of 

the techniques will lead to an underestimate of the uncertainty on dates compared to 

the dependent calculation.  For sites where this occurs, the effort of deriving 

appropriate likelihoods should be weighed against the fact that commonality of one 

amongst many parameters may only lead to a small underestimate of uncertainty. 

 

PRIOR PROBABILITIES FOR DATES 
 

Early Bayesian modelling of radiocarbon dates assumed a uniform prior on all 

parameters, subject to the constraints of stratigraphic ordering and the limits of the 

radiocarbon calibration curve (e.g. Buck et al 1991, 1994a, 1994b, 1992).  This very 

simple model attempted to allow the stratigraphy but no other aspects of the prior to 

influence the posterior probability distribution.  Further research has shown that when 

there are large numbers of dates the choice of prior has little effect, but in cases with 

small numbers of dates (Nicholls & Jones 2001) or flat regions of the radiocarbon 

calibration curve (Steier & Rom 2000) the results can be significantly altered by 

choice of prior distribution.  Steier and Rom (2000) note that stratigraphic ordering 

simply constrains the difference between dates to be positive and there is no obvious 

reason why the prior probability of difference should be uniform on the difference 

rather than on its logarithm, square root or some other transformation.  Thus a 

uniform prior is mathematically convenient but has no strong modelling basis.   

 

Bronk Ramsey (1998) observed that the usual method of conversion from 
14

C/
12

C 

ratio to conventional radiocarbon age is equivalent to an exponential prior on the 

radiocarbon age, but if this is replaced with a uniform prior normalisation becomes 

difficult for dates near the limit of the technique.  He proposed the use of a prior 

proportional to the inverse square of age, as this is the “obvious choice 

mathematically”, being the lowest negative power which is integrable and scale 

invariant.   

 

The priors to be adopted before any stratigraphic constraints are imposed are thus not 

immediately obvious and deserve some consideration.  In any dating technique based 

on the decay of one isotope in comparison to a stable isotope, we have a likelihood of 

the form 

 ~ Norm(exp( ), )A s , 

where A is the observed ratio,  is the decay constant,  is the age and s is the 

observed standard deviation, assumed to be known exactly.  Where one isotope 

accumulates in relation to another, as in K-Ar or U-Pa dating then it is 1-A that is 

observed, but the principles remain the same.  Similar but more complex 

considerations apply in multiple isotope systems such as U-Th dating.  If a uniform, 

improper prior on positive values is adopted for  then the posterior probability is 

 
2 2p( | , , ) exp((exp( ) ) / 2 )A s A s . 
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This has a finite value when  is infinite whatever the values of the other parameters, 

and is therefore always improper.  Bronk Ramsey (1998) investigated this prior 

numerically and only found a problem for A/s < 6.  This is probably due to numerical 

underflow in computation of the probabilities for large  when A is far from zero.  

However, it seems unsatisfactory to use a prior which in principle gives an improper 

posterior distribution but in practice is often computable due to underflow.  

Likelihood based methods (e.g. Ludwig & Titterington 1994) do not have this 

problem; for Bayesian methods to produce the same distributions and confidence 

intervals as likelihood methods requires the assumption of a prior which is the 

differential of the dating equation, 

 p( ) exp( ) . 

The posterior is then  

 
2 2p( | , , ) exp((exp(- ) - ) / 2 )A s A s , (1) 

and is proper.  This might be an "obvious" choice of prior, but it has the disadvantage 

that the scale of the prior changes with the dating technique, so that when techniques 

are combined there is no "obvious" prior distribution.  Ludwig (2003a) has proposed a 

system for stratigraphically constrained Bayesian analysis of U-Th dates, with this 

type of prior implied.  If more than one technique were used (or even U-Th and U-Pa) 

there could be problems with the implied prior.  Ludwig’s implementation of the 

method in IsoPlot (Ludwig 2003b) allows either Gaussian errors or U-Th asymmetric 

errors, but not both in combination, and thus avoids the problem. 

 

Inspection of equation (1) shows that the posterior will remain proper for any 

exponential prior, so the prior may have a different “decay constant” 0 from the 

radioactive decay constant , and thus the posterior is: 

 2 2

0p( | , , ) exp((exp(- ) - ) / 2 )A s A s . 

 can be interpreted as the rate of a Poisson process which destroys potentially 

datable samples, and embodies an expectation that recent objects are more likely to be 

found than ancient ones (compare Joyce 1999).  This is a usable prior but requires an 

arbitrary choice of the value of .  However, from a Bayesian perspective,  is 

simply another parameter and need not take a specific value, but can be uncertain with 

a probability distribution as a hyper-prior, and under appropriate circumstances this 

can be integrated out before calculating any dates.  With an improper uniform hyper-

prior on , combined with the exponential prior proposed above, integrating  gives 

a prior on  of 
2p( ) , just as suggested by Bronk Ramsey (1998).  This is 

tantamount to saying that we have no knowledge of the rate of loss of datable objects, 

and assuming that any rate of loss is equally likely.  However the argument of Steier 

and Rom (2000) regarding choice of a vague prior on differences applies equally here.  

An alternative view might be that we are uncertain as to the mean lifetime of datable 

objects, and a uniform prior on 1/  should be taken.  Integrating out this hyperprior 

gives 
1p( ) .  

 

Although these hyperpriors have partial theoretical justification in terms of a loss 

process for datable samples, they both give a prior for  with the problem of an 

infinite mass at =0  and thus an improper posterior for all values of A, s and 0.  
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However the inverse square prior can be made proper with the small modification of 

setting an arbitrary small limit to the age (Bronk Ramsey 1998).  This can be justified 

on the grounds that when we date an object we don't believe it was formed the day 

before yesterday.  The inverse square prior is therefore a less arbitrary than might 

seem from Bronk Ramsey’s (1998) paper, and requires fewer arbitrary choices than 

the 1/  prior, which can only be proper if both upper and lower limits to  are set.   

 

A LIKELIHOOD FOR TL DATES 
 

Luminescence dating utilises a deceptively simple “dating equation”, which hides a 

series of complexities in the method.  The account given here is abbreviated and 

biased towards thermoluminescence dating but should be applicable to other forms of 

luminescence dating.  The dating principles of luminescence dating parallel those of 

the other trapped charge technique, ESR dating, and thus the statistical model here 

parallels that for ESR (Millard 2003, Millard submitted).  Roberts (1997) gives a more 

detailed treatment of the measurements and procedures required.  Rhodes et al. (2003) 

have applied Bayesian statistical techniques to OSL dates at Old Scatness Broch using 

OxCal (Bronk Ramsey 1995), but note that their method has the disadvantage that 

“there is no easy way to treat systematic errors in a rigorously Bayesian way.”  Here 

the systematic and random uncertainties are examined to produce a more coherent 

approach. 

 

The dating equation is simply: 

 
total exposure to radiation

age    or   
rate of exposure to radiation

E
D

D
 

When appropriately stimulated (by heat for thermoluminescence (TL) or light for 

optically stimulated luminescence (OSL)), the sample emits light in proportion to the 

radiation dose it has received since last being stimulated.  This palaeodose, DE, is 

determined by measurement of the luminescence of the sample and the changes in 

intensity of luminescence after application of additional artificial doses of radiation. 

 

The dose rate, D , is the sum of the rates from a series of sources of radiation, which 

are measured in a variety of ways: 

 the dose from sample itself, intD , determined by measuring the uranium, thorium 

and potassium content of the sample; 

 the gamma radiation dose from the sediment, D , determined either by in-situ 

gamma-spectrometry measurements or from chemical analysis of the U, Th and K 

content of the sediment and an assessment of the water content of the sediment; 

 the beta radiation dose from the sediment, D , estimated by the same means as 

the gamma-dose, and adjusted for the geometry of the sample using an attenuation 

factor.  In many cases using TL this dose is eliminated from consideration by 

removing the outer 2mm of the sample. 

All of these are measured with an associated error term. intD  is based on 

measurements with errors independent for each sample.  The same is assumed here 

for DE although there will be some correlated components of uncertainty error in this 

term, due to factors like calibration uncertainty of the artificial radiation sources; these 

constitute only a minor part of the overall uncertainty, most of which is due to scatter 
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in the measurements. D  (and D ) determinations usually apply to groups of dates, 

so their errors are not independent between samples in a group.  Such dependence 

needs to be taken into account in analysis of the dates.   

 

The likelihood expresses the probability of the observed DE values if we knew the true 

date and the true values of the components of the dose rate.  Consequently the dating 

equation is re-expressed as 
ED D .  Consideration of the components of the dose 

rate shows that where there are multiple samples they fall into a hierarchy of groups 

for these parameters (Figure 1), and therefore also for the associated uncertainties.  

The values for intD , -efficiency (if measured), and the -attenuation factor are 

unique to a measured sample, whilst one true (but unknown) date, , is shared by sub-

samples (or aliquots) from the same object.  The other parameters derive from 

measurements on the environment in common to different sets of samples.  The 

sediment beta dose is common to a group of samples from the same sediment.  The 

gamma dose, D , is homogenous on a larger spatial scale, often for all samples from 

a stratum, and all samples with the same beta dose will have the same gamma dose.  

Finally the cosmic rays dose, 
cosmicD  is the same across a whole site, but may be 

attenuated by varying overburdens of sediment for different samples; thus it usually 

parallels D  in grouping of samples, whilst the uncertainty is common to all samples. 

 

These differing associations of parameter determinations with different subsets of the 

dated samples are expressed in a statistical model with a hierarchy of parameters.  

Thus the model may be expressed as: 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

int DE cosmic

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

int int int

( )

cosmic

~ ,

~ ,

~ ,

~ ,

ijkl ijkl ijkl

E E E

ijkl l ijkl ijkl ijkl l jkl

E

l l l

ijkl ijkl kl

kl kl kl

ijkl ijkl ijkl

l

D N s

D D D D D

D N m s

D b

N m s

D N m s

D ( ) ( )

cosmic cosmic~ ,l lN m s

 

where i indexes over subsamples of sample j, from group k of samples with common 

sediment beta-doserate 
(kl)

 and from group l of samples with common gamma dose-

rate and with beta attenuation factor, b
(ijkl)

, for each subsample.  Depending on the 

site, the cosmic radiation dose may be common to all samples or particular samples.  

The equation as written assumes that it is common to the same groups as gamma dose.  

For any source of radiation, Z, Z is the true underlying value associated with the 

observed rate 
ZD , and sZ is its measured standard deviation.  Following the methods 

used for radiocarbon dating it is assumed that each sX is known, and the minor 

element of uncertainty in these values is ignored.  The uncertainties are all assumed to 

be normally distributed.   
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This set of assumptions and relationships follows a simplified form of those normally 

used for luminescence dating, with the addition of recognising the hierarchically 

correlated uncertainties.  As always, the results of the analysis cannot be better than 

its assumptions.  Using these methods it is possible to reanalyse published data only 

where sufficient detail of the dose-rate components is given.  For example, the 

sequences analysed by Rhodes et al (2003) would make a good test case for the new 

methodology, but they did not publish the breakdown of the dose-rate components. 

 

CASE STUDY – TL DATING OF BURNT FLINTS AT ST CÉSAIRE 
 

The site of the collapsed rock-shelter at Saint-Césaire, in the valley of a tributary of 

the Charente in western France, has yielded a stratigraphic sequence which covers the 

Middle to Upper Palaeolithic transition including Mousterian, Châtelperronian and 

Aurignacian stone-tool industries.  Within one of the Châtelperronian levels was a 

well preserved Neanderthal skeleton (Lévêque et al 1993).  The site is thus important 

for its lithic sequence and the fact that anatomically diagnostic human remains are 

associated with the “transitional” Châtelperronian industry. 

 

The Châtelperronian is argued by some to represent acculturation of Neanderthals by 

incoming modern humans with Aurignacian technology (Mellars 2004), whilst others 

argue for its development by Neanderthals before contact with modern humans 

(d'Errico et al 2003).  A key point of contention is whether the Châtelperronian clearly 

overlaps in time with the Aurignacian in the same region (Mellars 2004), or has 

clearly finished before the Aurignacian starts (d'Errico et al 2003).  Refining the 

chronology of sites like St Cesaire will help resolve these issues.  The placing of the 

Neanderthal remains at 36  3 ka (Mercier et al 1991) makes this one of the later 

dated specimens, and therefore important in understanding the wider picture of the 

tempo and mode of Neanderthal extinction. 

 

The stratigraphic sequence at Saint-Césaire comprises a series of units which were 

clearly separated on the basis of colour and texture (Miskovsky & Lévêque 1993).  

There is an upper ensemble jaune (EJ) and a lower ensemble gris (EG) with layers 

labelled on the basis of colour.  The primary dating of the site is by 20 TL dates on 

burnt flints (Mercier et al 1993, Mercier et al 1991).  Figure 2 shows schematically the 

part of the stratigraphy relating to those dates.  The luminescence measurements 

followed standard procedures.  The internal doserate was calculated using uranium, 

thorium and potassium contents measured by neutron activation analysis, after 

assessing the -efficiency using the method of Valladas and Valladas (1982).  The 

external -dose was measured by dosimeters placed in the site and a cosmic-ray dose 

was calculated following Prescott and Stephan (1982).  Only the total environmental 

doserate is reported by Mercier et al. (1993, 1991) 

 

The stratigraphic information is transformed into prior information for a Bayesian 

analysis following the method of Zeidler et al. (1998).  Within a layer no temporal 

ordering of flints is known, so they are all assumed a priori to be equally likely to fall 

anywhere between a start date n and an end date n+1 for that stratum (n).  There is 

no evidence for hiatus in deposition, so it is assumed continuous; so that the end date 

for one stratum is the start date for the next.  Transition dates between strata are 

assumed to be equally likely to take any dates between 0 and 1000ka, as long as they 

have the correct ordering.  Comparative calculations were also made using a prior 
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probability for dates proportional to the inverse square of age, subject to the ordering 

specified above. 

 

The mathematical model above is modified in the following ways, and additional 

assumptions made, to compute the required values from the published data: 

 uncertainty in the cosmic ray dose is ignored, as it is not given and Aitken 

(1985, Appendix B) argues that this uncertainty is negligible compared to the 

other uncertainties 

 the external doses are assumed independently measured (there were 40 

dosimeters for 20 flints), except where flints from the same layer are report to 

have exactly the same external dose, where the external doses are assumed the 

same. 

 the internal gamma dose is a fraction of the infinite matrix dose for the 

composition of the flint, depending on the geometry of the flint.  These 

geometric factors were reconstructed from the difference between internal 

dose and the sum of internal alpha and beta doses reported in Mercier et al. 

(1991), scaled by the infinite matrix dose calculated from the composition 

using the tables of Bell (1979) 

 uncertainty in the external dose is calculated by subtracting in quadrature the 

uncertainty in internal dose from the uncertainty in the total annual dose, and 

the 7% systematic uncertainty in the external dose. 

 All dose-rates were then re-calculated using the dose-rate conversion factors 

of Adamiec & Aitken (1998) and the -track lengths of Brennan and Lyons 

(1989).  Revised figures are included in Table 1. 

 

The model described above was implemented in WinBUGS 1.4 (Lunn et al 2000, 

Spiegelhalter et al 2004), after manipulation of the published data to the required form 

in a spreadsheet.  For comparison, dates were calculated following the same methods 

as Mercier et al. (1993, 1991), using the original dose-rate factors and revised ones.  

Using the original factors and methods, no differences were observed in comparisons 

with the original calculations. Revised dose-rates and dates are shown in Table 1.  The 

revised dose-rates increase the ages by 1-3% (0.4-1.3ka).  The Bayesian stratigraphic 

analysis reflects this increase in age but also reduces the uncertainty for most of the 

dates, leading to higher chronological resolution. 

 

The Neanderthal skeleton, placed at 36.3 2.7ka (95% CI 30.9-41.7ka) by Mercier et 

al. (1993, 1991), would be placed at 37.2 2.6ka (95% CI 32.0-42.4ka) using the 

revised dose-conversion factors now available and the same approach of considering 

only the mean of dates from stratum EJop sup (calculated using the methodology of 

Aitken (1985, Appendix B)).  The stratigraphic model used here considers not only 

the uncertainties in the individual dates, but also the additional uncertainty that the 

skeleton could come from anywhere in the time period of the stratum, and the 

additional data of the stratigraphic relationships between dates.  This now gives a 

mean for the dates of the stratum of 33.9-41.9 ka, and a date for the Neanderthal 

remains of 32.8-42.5 ka, at 95% credibility.   

 

A LIKELIHOOD FOR URANIUM-SERIES DATES 
 

Uranium-series dating is based upon the geochemical separation of uranium (U) and 

its decay products (progeny), deposition of that U in a new mineral and subsequent 
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build up of the progeny isotopes. An overview and summary is given by Latham 

(2001).  Thorium (Th) is insoluble in water under most natural circumstances, whilst 

U is soluble in oxidizing conditions, so the separation is often and easily obtained. 

The essential assumptions of the method are  

 no Th present at the time of formation of the mineral,  

 no gain or loss of U or Th after formation, except by radioactive decay.  

A system satisfying these conditions is called a closed system.  Equations for the 

activity ratios of various isotopes at time t from formation are readily derived 

(Ivanovich & Harmon 1992 Appendix A): 

 
230 238 238

0
0 0 4238 234 234

0 4

Th U U
1 exp 1 1 exp

U U U
 

where each isotope symbol represents the activity of that isotope (i.e. the rate of 

radioactive disintegration per unit mass of sample) and n is the decay constant for the 

isotope of mass 230+n. Typically, corals and detritus-free speleothems can be dated 

using this equation. The isotope ratios are determined with uncertainties. Here I 

follow the common implicit assumption in the literature that they can be 

approximated as normally distributed errors (Ludwig (2003b, p. 25) gives a rare 

explicit statement of this approximation). Hence likelihoods suitable for incorporation 

in chronological models for U-Th dating are  

 

04 04 04

48 48 48

0
04 0 48 48 0 4

0 4

| Norm ,

| Norm ,

1 exp / 1 1 exp

r s

r s  

where rnm is the observed ratio of isotope 230+n to 230+m, nm is the true underlying 

value and snm is the observed standard deviation of the ratio. A prior on  is specified 

from stratigraphic considerations, and a suitable prior is placed on 48, e.g. 

48 ~ Unif(0,20), would be a vague prior encompassing the entire range of values 

observed in natural systems.  

 

Modern, precise, TIMS (thermal ionization mass spectrometry) measurements lead to 

a further complication, in that the uncertainty in the decay constants is no longer 

negligible and must be accounted for. Such uncertainties are, of course, common to all 

U-series dates in a chronological model, and the independence assumption, which 

simplifies the calculations in radiocarbon chronological models, cannot be 

maintained.  

 

There are many attractive sample materials with high uranium contents and clear 

archaeological relevance that do not conform to the assumption of negligible initial 

Th.  Detrital contamination in calcites is usually tackled using an isochron approach. 

Several sub-samples are taken, either mechanically or by sequential leaching with 

acid, and measurements made on them. Given that they are of the same age, but 

usually contain varying amounts of detritus, they yield differing isotope ratios which 

can then be used in an appropriate regression to determine the composition when there 

is zero detritus. Ludwig and Titterington (1994) discuss the various ways in which 

this can be approached, and maximum-likelihood estimation of the parameters of 

interest, together with error estimates.  These methods can be adapted for Bayeisan 
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stratigraphic analyses (Millard 2003).  Alternatively, an initial 
230

Th/
232

Th ratio can be 

assumed, or measured on a suitable sample. 

 

CASE STUDY –U-SERIES DATING OF SPELEOTHEMS AT LA CHAISE DE 
VOUTHON 
 

La Chaise-de-Vouthon is a multi-chambered cave in the valley of the River Tardoir, 

in the Charente region of France.  It has yielded a long sequence of stone tools (from 

the Acheulean to the Aurignacian) and numerous hominid  remains, both Neanderthal 

and pre-Neanderthal.  Samples from two of the chambers have been analysed in 

several chronometric studies.  Blackwell et al. (1983) conducted the first full-scale 

study, dating various speleothems using uranium-series dating, and following up the 

initial study of Schwarcz and Debénath (1979).  The relatively well defined dates 

from Blackwell et al (1983) for the site have subsequently been used to test ESR 

dating of tooth enamel (Blackwell et al 1992) and uranium-series dating of bone (Rae 

et al 1987).  Both these later studies show underestimates of the age, which may be 

attributable to mobilisation of uranium in the deposits upsetting these techniques’ 

assumptions about uranium uptake processes. 

 

As an example of the application of the methods described above I present a re-

analysis of uranium-series results for the Borgeois-Delauney chamber of the cave.  

Uranium-series measurements were obtained on two flowstones, forming Beds 7 and 

11 of the stratigraphic sequence, plus stalagmites formed on top of Bed 7 before the 

deposition of Bed 6.  Intercalated between Beds 7 and 11 are Beds 8, 9 and 10.  Bed 8 

was “very poor”, and yielded little in the way of remains.  Beds 9 and 10 yielded 

pollen indicating a cool wet climate, in contrast to the pollen from the flowstones 

which indicated  a warm wet climate.  Tools described as transitional Acheulean to 

Mousterian were found in Beds 9 and 10.  Hominid remains were found at the very 

top of Bed 12, partly encrusted with the calcite of the Bed 11 flowstone. 

 

Blackwell et al (1983) obtained uranium-series dates from multiple, stratigraphically 

related samples within individual speleothem deposits.  The Bayesian analysis needs 

to respect these orderings and the ordering of the layers.  Figure 3 shows the 

chronological model adopted.  Stalagmite subsample LC11-2 of the original dataset 

has been omitted as it showed signs of recent recrystallisation, and flowstone sample 

LC13 has been omitted as there are some doubts about its stratigraphic integrity. 

 

Blackwell et al (1983) made a correction for detritial contamination using the 

measured 
230

Th/
232

Th ratio and assuming that the detritus did not contribute to the 

extracted uranium, and had an initial 
230

Th/
232

Th ratio of 1.25.  The same assumptions 

are followed here.  In Blackwell et al.’s (1983) table of dates, there is one significant 

anomaly in the that the date of sample LC47C-1 is reported as 112 5 ka, but the 

reported isotope ratios correspond to an age of 143 11 ka, and this date is mentioned 

in the text.  For the purposes of calculations reported here, I have assumed the isotope 

ratios to be correct and the reported age to be a typographical error, as it duplicates the 

age of LC47C-3. 

 

Of particular interest are the date of the hominid remains at the top of Bed 12, and the 

timing and duration of Beds 8-10, as well as the overall chronology.  The analysis was 

conducted using Markov-chain Monte Carlo in WinBUGS (Lunn et al 2000, 



 12 

Spiegelhalter et al 2004).  Comparison was made of uniform priors and inverse-square 

priors with an upper bound on the layer boundaries of 1Ma.  Use of a uniform rather 

than an inverse square prior made little difference to the results, so only results 

obtained using inverse-square priors are shown in Figure 4 and Table 2.  Bed 10 is 

found to start at 92-116 ka and Bed 8 to end at 87-110 ka (both at 95% credibility).  

The overall duration of Beds 8-10 is 0.2-20 ka, implying a deposition rate of 

approximately 0.07 to 7 mm per year.  The date of the hominid remains of Bed 12 is 

harder to evaluate, as there is no real constraint on their maximum age.  A 

conservatively young estimate is that they are similar in age to the oldest dated sample 

from Bed 11.  On this basis they are older than 151-188 ka. 

 

These results place the hominid remains somewhat earlier than Blackwell et al.’s 

(1983) estimate of 151 15 ka.  They also demonstrate that although the accumulation 

of layers 8 to 10 must have been rapid, considerable uncertainty remains about their 

duration.  The cool, wet climate found in layers 8-10 must correspond with some or 

all of oxygen isotope substages 5b-d. 

 

AMINO-ACID RACEMIZATION 
 

Amino-acid racemization (AAR) is a chemical dating technique reliant on the 

transformation of the L-amino-acids found in all living organisms to their mirror 

image molecules, D-amino-acids. After death the biochemical maintenance systems 

are no longer in place and L-amino-acids are gradually transformed to D-amino-acids 

until an equilibrium level is reached. AAR dating has been beset by problems caused 

by various processes which alter the D/L ratio, for example by leaching of amino-

acids, and these have led to its general abandonment, unless a closed system can be 

demonstrated. Of the materials which maintain a closed system, ostrich egg-shell is 

the most commonly dated.  For more details of the method see Aitken (1990) or  

Johnson & Miller (1997). 

 

Amino-acid racemisation in ostrich eggshell has been used in the dating of a number 

of important archaeological and palaeoanthropological sites, e.g., Border Cave, 

Apollo 11 Cave (Miller et al 1999), Equus Cave (Johnson et al 1997), Bir Tarfawi 

(Miller 1993, Miller et al 1991), and Semliki (Brooks et al 1995). 

 

On the basis of the published descriptions of the techniques it is in principle possible 

to develop a statistical model of the likelihood for AAR dating suitable for 

chronometric analyses similar to those described above for TL and uranium-series 

dating (Millard 2003).  This would be useful in improving chronologies at the sites 

mentioned and in integrating AAR dates with other chronometric methods. Such an 

analysis would rely on having the basic chronometric data, in the form of D/L ratios 

and other measurements for stratigraphically related individual samples.  However, 

this is where a major obstacle is encountered, as AAR data are rarely published for 

individual samples, but as averaged D/L ratios for layers.  Moreover, as variation 

within a layer is often greater than the analytical uncertainties, the latter are not 

reported.  I have found only two published AAR chronologies with individual sample 

measurements reported.  At Equus Cave (Johnson et al 1997) the deposits appear to be 

mixed, and a stratigraphic analysis is pointless.  At Bir Tarfawi, there are significant 

periods between most of the dated layers, (Miller 1993, Miller et al 1991) so that an 

analysis incorporating stratigraphy will produce little improvement in chronological 
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resolution.  If full data on AAR dates were published, as is routine for luminescence, 

ESR and uranium-series dating, then the data would be amenable to analysis, and 

incorporation in more comprehensive attempts at chronology building. 

 

CONCLUSIONS 
 

This paper has shown that it is possible to develop a mathematical apparatus suitable 

for the incorporation of luminescence, uranium-series and other dating techniques into 

the Bayesian statistical framework which is currently available primarily for 

radiocarbon dates.  This allows coherent analysis of stratigraphic and chronometric 

evidence, but reanalysis of published data relies on full publication of the parameters 

which go into calculation of a date.  As expected, the incorporation of the additional 

data about stratigraphic relationships allows us to arrive at more precise estimates of 

the dates of events, at times even though additional stratigraphic uncertainty is 

allowed for as well.  Although bespoke computer code is currently needed for each 

site, it should now be possible to start to integrate multiple techniques applied to a 

single site to obtain more coherent chronologies from Pleistocene archaeological and 

palaeoanthropological sites. 
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Figure 1: The hierarchy of parameters in common between different dating samples 

by luminescence.  Each inner box is repeated within the box surrounding it, with 

different values of the parameters for different samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Dating results for Saint Cesaire.  Thick grey bars represent two standard 

deviation results as reported by Mercier et al. (1991), thin black lines represent 95% 

posterior credible intervals for those dates using the model described in the text, thick 

black lines represent 95% posterior credible intervals of the boundaries between 

layers.  Layer names and cultural associations are shown. 
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Figure 3: Harris matrix showing Stratigraphic model for Bourgeois-Delauney 
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Figure 4: Dating results for Bourgeois Delauney.  Thick grey bars represent two 

standard deviation results as reported by Blackwell et al. (1983), thin black lines 

represent 95% posterior credible intervals for those dates using the model described in 

the text, thick black lines represent 95% posterior credible intervals of the boundaries 

between layers. 
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Table 1 Doserates and dates for St Cesaire 
Lab. no. Level U† Th† K† S ‡ D  D  Internal 

dose 

External 

dose§ 

Annual 

dose 

Paleodose Age Age (95% 

hpd) 

  (ppm) (ppm) (ppm)  ( Gy/(  cm
-2

)) ( Gy a
-1

) ( Gy a
-1

) ( Gy a
-1

) ( Gy a
-1

) ( Gy a
-1

) (Gy) (ka) (ka) 

96 6 0.53 0.491 666 1.99 240±7 143 388±27 610 998±104 31.23±1.20 31.3±3.4 26.2–37.1 

60 6 0.541 0.237 430 1.45 159±9 119 283±22 610 893±102 30.70±1.03 34.4±4.0 28.1–38.8 

95 8 0.687 0.466 1599 1.64 243±31 238 488±44 375 863±119 32.39±1.73 37.5±5.2 33.2–42.3 

48 8 0.836 0.197 178 1.29 208±12 141 359±29 395 754±104 29.35±1.04 38.9±5.4 33.3–42.4 

103 8 0.485 0.106 378 1.84 171±6 103 279±21 407 686±102 23.48±1.33 34.2±5.4 32.7–42.2 

53 8 0.614 0.029 240 2.71 305±15 109 418±35 402 820±106 30.82±1.38 37.6±4.9 33.1–42.2 

54 8 0.51 0.069 430 2.48 237±12 110 352±28 402 754±104 28.86±0.93 38.3±5.2 33.4–42.4 

82 8 0.719 0.397 484 1.85 278±18 154 439±35 418 857±115 31.30±1.08 36.5±4.9 33.0–42.3 

75 10 0.529 0.188 274 1.49 157±10 104 266±21 351 617±64 27.06±1.26 43.9±4.8 37.7–45.3 

107 10 0.946 0.26 732 1.77 326±17 202 539±42 352 891±81 36.20±1.95 40.6±3.9 37.5–45.0 

106 10 0.4 0.415 1206 1.69 158±3 164 326±21 359 685±63 27.29±1.75 39.8±4.3 37.4–45.1 

83 10 0.616 0.27 292 1.74 218±7 120 343±25 281 624±65 21.40±1.38 34.3±4.0 37.1–44.8 

66 10 0.461 0.12 440 1.79 160±11 105 270±22 315 585±55 25.35±1.18 43.3±4.2 37.8–45.4 

105 10 1.051 0.212 864 1.48 297±14 227 531±40 318 849±72 37.92±1.25 44.7±3.6 38.0–45.4 

111 10 0.652 0.289 780 1.93 256±18 164 426±34 315 741±69 29.64±1.02 40.0±3.5 37.3–44.8 

112 10 0.603 0.342 842 1.3 164±13 163 335±26 336 671±75 31.19±1.39 46.5±5.3 37.8–45.4 

25 10 0.472 0.389 610 1.84 193±10 127 329±24 310 639±65 30.82±1.56 48.3±5.2 37.9–45.5 

84 11 0.746 0.384 472 1.14 176±12 156 339±26 257 596±66 24.22±0.91 40.6±4.4 39.5–48.2 

78 11 0.452 0.337 364 1.67 165±8 104 274±20 284 558±54 20.96±0.74 37.6±3.6 39.4–47.8 

86 12 0.629 0.272 320 1.49 190±12 124 326±26 251 577±65 25.06±1.00 43.4±4.9 42.0–57.7 
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Table 2  Isotope ratios and dates for La Chaise 

 Sample 
230

Th/
234

U 
234

U/
238

U 
230

Th/
232

Th Original age (ka) 95%  posterior interval (ka) 

Bed 7 77 LC1-1 0.646±0.032 1.018±0.038 9.6±2.2 102±12 84–104 

 77 LC1-2 0.603±0.039 1.054±0.035 >1000 99±11 

 81 LC31-2 0.594±0.220 1.056±0.028 74.3±17.9 90±6 81–99 

 81LC31-3 0.57±0.022 1.077±0.026 58.1±16.8 90±5 

on Bed 7 79 LC11-1 top 0.483±0.026 1.108±0.030 5.6±0.9 58±7 58–74 

 79 LC11-3 top 0.526±0.031 1.117±0.057 15.6±4.9 75±9 

 79 LC12-1 base 0.511±0.021 1.076±0.033 15.1±2.7 72±5 64–80 

Bed 11 81 LC47C-1 0.738±0.029 1.042±0.026 81.4±23.9 112*±5 123–165 

 81 LC47C-2 0.666±0.027 1.073±0.030 >1000 117±8 112–135 

 81 LC47C-3 0.647±0.018 1.050±0.019 >1000 112±5 106–125 

 77 LC2-1 0.703±0.039 1.029±0.041 15.4±7.6 123±17 110–148 

 77 LC2-2 0.775±0.048 1.056±0.048 20.4±14.2 153±25 121–160 

 77 LC2-4 0.746±0.030 1.100±0.040 29.5±11.3 146±12 130–172 

 79 LC14A-1 0.802±0.053 1.136±0.053 9.7±0.7 159 32

25
 149–188 

 79 LC14A-2 0.787±0.027 1.041±0.032 52.8±11.4 164±13 

 79 LC14B 0.772±0.035 1.032±0.045 20.1±2.8 152±16 142–173 

 79 LC14C-1 0.631±0.023 1.037±0.029 30.0±8.0 107±6 136–161 

 79 LC14C-2 0.748±0.019 1.054±0.022 >1000 156±8 

 79 LC14D 0.759±0.034 1.045±0.047 28.6±6.8 151±4 124–156 

 


