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Under certain conditions, the quantum �-kicked harmonic oscillator displays quantum resonances. We con-
sider an atom-optical realization of the �-kicked harmonic oscillator and present a theoretical discussion of the
quantum resonances that could be observed in such a system. Having outlined our model of the physical
system we derive the values at which quantum resonances occur and relate these to potential experimental
parameters. We discuss the observable effects of the quantum resonances using the results of numerical
simulations. We develop a physical explanation for the quantum resonances based on symmetries shared
between the classical phase space and the quantum-mechanical time evolution operator. We explore the evo-
lution of coherent states in the system by reformulating the dynamics in terms of a mapping over an infinite
two-dimensional set of coefficients from which we derive an analytic expression for the evolution of a coherent
state at quantum resonance.
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I. INTRODUCTION

As the field of quantum chaos �1,2� has emerged over the
last few decades, much research has been directed toward the
quantal counterparts of classically chaotic Hamiltonian sys-
tems �3,4�. Among these systems, one-dimensional periodi-
cally kicked quantum systems have proved a popular target
for study. The dynamics of these systems, which are de-
scribed by discrete time evolution operators acting over the
period of one or more kicks, often display quantum reso-
nances and antiresonances, i.e., changes in the degree of lo-
calization of the dynamics which are strongly dependent on
the value of an effective Planck constant. Advances in the
cooling and trapping of atoms and ions have paved the way
for substantial direct experimental investigation of such ar-
chetypal quantum-chaotic systems particularly the �-kicked
rotor �5–15� and also the �-kicked accelerator �16–23�. An-
other possibility is the �-kicked harmonic oscillator �KHO�
�24–30�; many kicked atom �ion� configurations involve
trapping potentials which are to some degree harmonic, mak-
ing the dynamics of the KHO a relevant consideration for a
wide variety of experiments.

The classical KHO was originally developed as a model
for the interaction of charged particles with electromagnetic
fields �31–33�. The frequency degeneracy of orbits in the
harmonic oscillator renders the Kolmogorov-Arnol’d-Moser
�KAM� theorem inapplicable to the KHO �i.e., all invariant
tori of the harmonic oscillator may be destroyed at any finite
perturbation strength� �34�. In cases where the kicking period
rationally divides the natural oscillator period this allows the
KHO to display exotic non-KAM chaos manifest as inter-
linked regions of chaotic dynamics forming stochastic web
structures throughout phase space �33,35�. The quantum
KHO has also been studied in considerable depth
�28,36–39�, particularly in the case where it is kicked four
times per oscillator period, when it can be related to the
kicked Harper model �40–45�. Depending on the relative
alignment of the kicking potential with respect to the trap-
ping potential, the KHO can display either quantum reso-
nances �even kicking potentials� or quantum antiresonances
�odd kicking potentials� �38�.

In this paper, we consider the effects of quantum reso-
nances that may be observed in an atom-optical KHO. In
Sec. II we outline our model of the atom-optical KHO and
introduce the kick-to-kick Floquet operator. In Sec. III we
derive the structure of the quantum resonances and their ef-
fects on the dynamics. We consider the relation between the
quantum resonances, the eigenstates of the Floquet operator
for q kicks, and that Floquet operator’s expansion in terms of
phase space displacement operators; this leads to an alterna-
tive, physically intuitive explanation for the occurrence of
quantum resonances. In Sec. IV we consider the measurable
manifestation of quantum resonant dynamics in the atom-
optical KHO, including the experimental accessibility of the
necessary parameter regimes. Section V consists of the con-
clusions, which are then followed by the three technical Ap-
pendixes A–C.

II. ATOM-OPTICAL �-KICKED HARMONIC OSCILLATOR

A. System Hamiltonian

We consider a two-level atom �or ensemble of noninter-
acting atoms� or ion, subject to tight radial confinement and
relatively loose harmonic axial confinement, and periodically
driven by pulses from an off-resonant laser standing wave.
We assume the pulse duration to be sufficiently short for the
particle center of mass displacement during the pulse to be
negligible relative to the period of the standing wave
�Raman-Nath regime�. To a good approximation, the excited
internal state can be eliminated and the system can be de-
scribed by the one-dimensional single particle Hamiltonian
�29,30,46�

Ĥ =
p̂2

2M
+

M�2x̂2

2
+

��2tp

8�
cos�Kx̂� �

n=−�

�

��t − nT� , �1�

describing the center of mass motion in the axial direction
only. Here M is the particle mass and � is the frequency of
the harmonic trapping potential; the kicks are pulses of du-
ration tp, repeated with period T, from the laser standing
wave, detuned by � from the two-level transition and with
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Rabi frequency �, where K=4� /�L and �L is the laser
wavelength.1

We have set the origin of the x coordinate to be at the
minimum of the harmonic potential and choose the laser
standing wave to be aligned symmetrically about this mini-
mum. The resulting cosine potential is an even function in
Hamiltonian �1�; hence, we can expect quantum resonances,
i.e., particular parameter regimes associated with ballistic
growth in the system energy, to be observable �28,38�. Shift-
ing the standing wave by �L /8 yields a sine potential—an
odd function, producing antiresonances in parameter regimes
where quantum resonances occur for a cosine potential.
When the alignment of the laser standing wave with respect
to the trapping minimum lies between these extremes, inter-
mediate quantum resonant behavior can occur �28,38�. It is
therefore not essential for the laser standing wave to be
aligned perfectly symmetrically in order for quantum reso-
nant behavior to be observable, although from now on we
assume this, for simplicity. More important is that any kick-
to-kick variations in the standing wave alignment be negli-
gible compared to the standing wave period, otherwise, the
resulting randomness introduced into the dynamics will de-
stroy the desired quantum resonant behavior.

B. Time evolution

The time evolution of the quantum KHO is described by a

Floquet �discrete time evolution� operator, F̂, which maps the
state of the system at a time immediately prior to one kick
onto the state at a time immediately prior to the next. It is

convenient to describe the Floquet operator F̂ in terms of the
harmonic oscillator creation and annihilation operators â†

and â, where â=�m� /2��x̂+ ip̂ /m��. Hence,

F̂ = e−i�â†â+1/2�	e−i
 cos���â+â†��/�2�2
, �2�

where 	=�T is the dimensionless kicking period, 

=��2tpK2 /8�2�M� is the dimensionless kicking strength,
and �=K�� /2M� is the Lamb-Dicke parameter, which
characterizes the scale of the harmonic ground state relative
to the laser wavelength. The parameters 	 and 
 emerge
naturally from a rescaling to dimensionless dynamical vari-
ables of the KHO classical map �31–33�, whereas �2 now
assumes the role of an effective Planck constant �29�.

C. Phase space symmetries

We confine our attention to when the kicking period ra-
tionally divides the natural period of the oscillator, i.e., when
	=2�r /q for coprime natural numbers r, q. Except in the
special cases where q=1 or 2, the phase space of the classi-
cal KHO is then spanned by a stochastic web �33,35�, i.e.,
interconnected regions of chaotic dynamics penetrating
through all of phase space. If q�qc��1,2 ,3 ,4 ,6	 the clas-
sical phase space has a discrete translational �crystal� sym-
metry; otherwise, the stochastic web has a quasicrystal struc-
ture. These crystal symmetries are reflected in the quantum

regime through the existence of infinite sets of unitary dis-

placement operators2 D̂���=e�â†−��â commuting with F̂q, the
evolution operator for one natural oscillator period

�25,26,29,30�. This implies that eigenstates of F̂q for q�qc
have a comparable crystal structure, and, importantly, are
consequently extended in phase space. In the nontrivial crys-
tal cases q� �3,4 ,6	—when the displacement operators
form a two-dimensional crystal lattice in phase space—the

set of displacements commuting with F̂q is �D̂�
q�	, where


4 = k�/� + il�/� , �3�


3 = 
6 = k�1 + i/�3��/� + l�1 − i/�3��/� , �4�

for arbitrary integer k, l.3

III. ORIGIN OF QUANTUM RESONANCES

A. Quantum resonant values of �2

The general study of quantum resonances in systems with
periodic classical phase spaces has been carried out in con-
siderable theoretical detail by Dana �28,36,37�. Our intention
here is to provide an accessible derivation of the conditions
under which quantum resonances occur specifically for the
atom-optical KHO, as described in Sec. II.

With this in mind, we substitute 	=2�r /q into Eq. �2� and

rearrange F̂q into the product

F̂q = 

j=0

q−1

ei�â†â+1/2�2�jr/qe−i
 cos���â+â†��/�2�2
e−i�â†â+1/2�2�jr/q.

�5�

We use the identity eiâ†â	�â+ â†�e−iâ†â	= âe−i	+ â†ei	 to trans-

form each term of Eq. �5�, and write F̂q as

F̂q = 

j=0

q−1

exp�− i
 cos���âe−i2�jr/q + â†ei2�jr/q��/�2�2	 ,

�6�

that is, as a sequence of q cosine kicks directed along q axes
equally distributed in angle about the origin in phase space.

Using the identity �47�

ei� cos��� = �
j=−�

�

ijJj���eij� �7�

�the Jj are jth-order cylindrical Bessel functions�, we now

expand F̂q in terms of products of unitary displacement op-
erators:

1The quantity �K is therefore equal to two photon recoils.

2Here � is the conventional complex index of a coherent state,

such that D̂����0�= ��� and â���=����.
3To reinforce the connection to the classical stochastic web, one

can rescale the classical realization in terms of an appropriate di-
mensionless position-momentum pair and obtain �for the cases q
=3,4 ,6� the translations �3� and �4� with � set to unity �30�.
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F̂q = 

j=0

q−1

�
kj=−�

�

ikjJkj
�− 
/�2�2�D̂�ikj�ei2�jr/q� . �8�

Taking the commutation relation for the unitary displacement

operators D̂���D̂���=e���−���D̂���D̂��� �48�, it follows that
for �= ikm�ei2�mr/q, �= ikn�ei2�nr/q, then e���−���=1 �i.e., the
displacement operators commute� whenever

2�2kmkn sin
2�r�m − n�
q

� = 2�w , �9�

for integer w. If Eq. �9� is fulfilled for all m−n
� �0,1 , . . . ,q−1	 it follows that all displacement operators in
Eq. �8� mutually commute, and hence all of the product
terms in Eq. �6� must mutually commute. Hence, under these

conditions, the vth power of F̂q will describe a q-fold dif-
fraction exactly equivalent to Eq. �6� but with amplified
kicking strength 
v:

F̂qv = 

j=0

q−1

exp�− i
v cos���âe−i2�jr/q + â†ei2�jr/q��/�2�2	 .

�10�

This is analogous to the case where the quantum resonance
condition is fulfilled for the quantum �-kicked rotor, when
the free evolution operator between kicks collapses to the
identity, and the evolution induced by v iterations of the
Floquet operator is equivalent to that caused by a single kick
with v times the kicking strength �7,9,46�.

The values of �2 for which Eq. �9� is fulfilled therefore
determine when quantum resonances occur in the KHO. In
summary, Eq. �9� is fulfilled for: all values of �2 when q
� �1,2	; �2 equal to a multiple of � when q=4; and �2 equal
to a multiple of 2� /�3 when q� �3,6	 �see Appendix A�.
For q�qc it is impossible to satisfy Eq. �9�. Note that, for
q� �1,2	, Eq. �6� reduces to being exactly equivalent to what
one would expect for the quantum �-kicked rotor fulfilling
the conditions necessary for quantum resonance; the free
evolution between kicks has no net effect and the �time-
periodic� dynamics can be equivalently described by a single
amplified kick. However, the fact that the free evolution be-
tween kicks has no net effect is equally true classically �for
q=1 this simply means that after one oscillator period be-
tween kicks, the oscillator has returned to its original loca-
tion in phase space�, and one must therefore conclude that
quantum resonances do not occur for q� �1,2	, as is consis-
tent with the dynamics’ independence of the effective Planck
constant �2.

Consequently, the KHO displays quantum resonances
only if q� �3,4 ,6	, and for �2 equal to multiples of the
principal quantum resonance values: � when q=4, and
2� /�3 when q=3 or q=6. At further rational multiples a /b
of the principal quantum resonance values, commutativity
between kicks depends on the value of kmkn in Eq. �9�, and
only occurs for some terms within the summation in Eq. �8�,
generating higher-order quantum resonances. The proportion

of terms for which the displacements commute decreases
with the denominator b, and approaches zero as a /b ap-
proaches irrationality.

B. Relation to phase space symmetries of F̂q

When q� �3,4 ,6	, the set of unitary displacements in Eq.
�8� describes a two-dimensional crystal lattice in phase

space. In analogy with Sec. II C we denote this set �D̂��q�	,
where

�4 = k� + il� , �11�

�3 = �6 = k
�3 + i

2
�� + l
�3 − i

2
�� . �12�

Comparing Eqs. �11� and �12� with Eqs. �3� and �4�, one sees
that, at the principal quantum resonance values ��2=� �q
=4�, or �2=2� /�3 �q=3,6��, the set �D̂��q�	 of displace-

ments constituting F̂q is identical to the set �D̂�
q�	 of trans-

lational symmetries of the eigenstates of F̂q. Moreover, for
�2 equal to rational multiples a /b of these principal values,

D̂(�q�k , l�) remains an element of �D̂�
q�	 whenever k and l
are integer multiples of b. This �complete or partial� equiva-

lence of �D̂��q�	 and �D̂�
q�	 offers a physical explanation
for quantum resonances in the KHO; at quantum resonance
values of �2 the displacements constituting each kick are

translational symmetries of F̂q’s eigenstates, and conse-

quently commute with F̂q.

C. Evolution of an initial coherent state

1. Motivation

In the context of cold trapped atoms or ions, the initial
motional state of the atom�s� or ion in any experiment will
generally be as close to a zero-temperature state as is prac-
ticable for the specific experimental configuration. This pro-
vides a clear motivation to study the system evolution when
the initial condition is a harmonic oscillator ground state. In
the case of an initial atomic Bose-Einstein condensate, this
would describe the initial condensate mode if atom-atom in-
teractions could be neglected, which could potentially be
achieved with the aid of magnetic fields to exploit a Fesh-
bach resonance �49�.

Coherent states are harmonic oscillator ground states
which have been displaced in phase space, and as such can in
principle be accessed by displacing an initial ground state in
momentum �e.g., by application of a Bragg pulse� or position
�e.g., by suddenly changing the trap minimum�, possibly in
combination with a free evolution subsequent to the dis-
placement. In what follows we therefore consider the evolu-
tion of an initial coherent state analytically, which, in the
case of quantum resonance, proves to be comparatively trac-
table.

2. Phase space lattice state expansion

We begin by applying identity �7� to Floquet operator �2�,
yielding
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F̂ = e−i�â†â+1/2�2�r/q �
k=−�

�

ikJk���D̂�i�k� , �13�

where we have introduced �=−
 /�2�2=−�2tp /8�.4 It fol-

lows that applying F̂ to an arbitrary initial coherent state ���
will yield a weighted superposition of regularly spaced co-
herent states. More generally, we will show that if the state
of the system �� j� after j applications of Eq. �13� takes the
form of a “lattice state”

�� j� = �
m,n=−�

�

Mm,n
�j� D̂�i��m + ne−i2�r/q��e−i�jr/q��e−i2�jr/q� ,

�14�

then �� j+1�= F̂�� j� will take an essentially similar form. The
��e−i2�jr/q� in Eq. �14� are all coherent states and the Mm,n

�j� a
set of complex coefficients.

Applying Eq. �13� to Eq. �14� and using the identities

�48� D̂���D̂���=e����−����/2D̂��+�� and e−iâ†â	D̂������
= D̂��e−i	���e−i	�, now yields, in the first instance,

F̂�� j� = �
k,m,n=−�

�

ikJk���Mm,n
�j� eikn�2 sin�2�r/q�

�D̂�i���m + k�e−i2�r/q + ne−i4�r/q�	

�e−i�j+1�r/q��e−i2��j+1�r/q� . �15�

When q� �3,4 ,6	, e−i4�r/q can be written as an integer su-
perposition of unity and e−i2�r/q allowing Eq. �15� to be sim-
plified. From now on we assume r=1 to illustrate the proce-
dure:

e−i4�/q = �− 1 − e−i2�/q if q = 3,

− 1 if q = 4,

− 1 + e−i2�/q if q = 6.
� �16�

Using Eq. �16� to make replacements in Eq. �15�, one obtains

F̂�� j� = �
k,m,n=−�

�

ikJk���Mm,n
�j� eikn�2 sin�2�/q�

�D̂�i��− n + �m + n�q + k�e−i2�/q�	

�e−i�j+1�/q��e−i2��j+1�/q� , �17�

where we have introduced

�q = �− 1 if q = 3,

0 if q = 4,

1 if q = 6.
� �18�

Effecting a change of indices such that m→m�=−n and n
→n�=m+n�q+k now gives

F̂�� j� = �
k,m,n=−�

�

ikJk���Mm�q+n−k,−m
�j� e−ikm�2 sin�2�/q�

�D̂�i��m + ne−i2�/q��e−i�j+1�/q��e−i2��j+1�/q� ,

�19�

where we have dropped the primes for convenience. With
Eq. �19� we have an expression of the same form as Eq. �14�,
but for the state �� j+1�, and can obtain the evolution resulting

from F̂ as a mapping of the lattice coefficients:

Mm,n
�j+1� = �

k=−�

�

ikJk���Mm�q+n−k,−m
�j� e−ikm�2 sin�2�/q�. �20�

The coefficient mapping �20� fully describes the time evo-
lution of lattice states in general. The coherent state at the
center of the lattice state when j=0 mod q can be chosen
arbitrarily. Hence, choosing an initial set of coefficients,

Mm,n
�0� = �m,0�n,0, �21�

amounts to following the evolution of an initial coherent
state ���.

The general evolution of the coefficients over many kicks
described by Eq. �20� yields an ever-lengthening product of
nested sums that is not especially insightful. In the case of
quantum resonance, however, �2 sin�2� /q�=w�, which sim-
plifies the final exponent in Eq. �20�, allowing a simpler
expression for evolution over many kicks to be extracted. In
the next section we follow the evolution of an initial coher-
ent state, for q=4 and �2=�, by repeatedly applying map-
ping �20�.

3. Analytic solution at quantum resonance when q=4

Our initial condition is a single coherent state as described
by Eq. �21�. We first rearrange the indices to obtain
Mn−k,−m

�0� =�n−k,0�−m,0=�n,k�m,0, which we substitute into Eq.
�20�, yielding

Mm,n
�1� = �

k=−�

�

ikJk����n,k�m,0e−ikm� = inJn����m,0e−imn�.

�22�

We now repeat this procedure; rearranging the indices and
using the identity inJn���= i−nJ−n��� yields

Mn−k,−m
�1� = imJm����n,ke

i�n−k�m�, �23�

which we substitute into Eq. �20�:

Mm,n
�2� = imJm���inJn���e−imn�, �24�

⇒Mn−k,−m
�2� = in−kJn−k���imJm���ei�n−k�m�. �25�

We next substitute Eq. �25� into Eq. �20� accompanied by a
change in indices k→−k and use of ikJk���= i−kJ−k���:

4� will usually be a positive quantity, as this corresponds to red
detuning.

T. P. BILLAM AND S. A. GARDINER PHYSICAL REVIEW A 80, 023414 �2009�

023414-4



Mm,n
�3� = imJm���ineimn� �

k=−�

�

Jk���Jn+k���eik�. �26�

The summation over k can be reduced using Graf’s addition
theorem �Appendix B� to give

Mm,n
�3� = imJm���inJn�2��eimn�. �27�

We repeat the process, again with a change in indices
k→−k followed by the application of Graf’s theorem:

Mn−k,−m
�3� = in−kJn−k���imJm�2��e−i�n−k�m�, �28�

⇒Mm,n
�4� = imJm�2��ine−imn� �

k=−�

�

Jk���Jn+k���eik�

=imJm�2��inJn�2��e−imn�. �29�

The final expression obtained for Mm,n
�4� �Eq. �29�� is iden-

tical to that for Mm,n
�2� �Eq. �24�� but with � consistently re-

placed by 2�. Further evolution will see such cycles re-
peated; the time evolution of the coefficients is entirely
contained within the changing arguments of the Bessel func-
tions:

Mm,n
�N� = �− 1�mnimJm�Cm

�N���inJn�Cn
�N��� , �30�

where

Cm
�N� = �2�N−2�/2 N even

2�N−3�/2 N odd,
� �31�

Cn
�N� = �2�N−2�/2 N even

2�N−1�/2 N odd.
� �32�

As shown in Fig. 1, in the case of quantum resonance the
phases of the lattice state coefficients �Eq. �30�� take an ex-
tremely simple form, which repeats regularly across all of
phase space. We emphasize that this holds for any initial
coherent state.

We have chosen the case �2=� for simplicity, however,
the above analysis holds for all �2=w�. For more general �,
each application of Graf’s theorem introduces a k-dependent
phase �see Appendix B� preventing an end result as straight-
forward as Eq. �30�. As a consequence, no such regularity of
the phases, as shown in Fig. 1, is apparent for nonresonant
values of �2 beyond the first two kicks.

4. Analytic solution at quantum resonance when q=3,6

In these cases the locations in phase space of the coherent
states making up the lattice states �14� are defined in terms of
i and ie−i2�/q, which represent two nonorthogonal directions
in the complex plane. This nonorthogonality is necessary to
derive coefficient mapping �20�, but it adds complexity to the
evolution of the coefficients for a coherent state initial con-
dition. In contrast to the case q=4, where all coefficients
Mm,n

�j� are a direct function of m and n at quantum resonance,
in the cases q=3 and q=6 the coefficients Mm,n

�j� for j�3 can
only be expressed as a summation over products of three
Bessel functions even at quantum resonance.

Despite this added complexity, the cases q=3 and q=6
remain tractable at quantum resonance. There is a three-step
cycle in the coefficients, analogous to the two-step cycle in
the coefficients occurring when q=4, with the coefficients
Mm,n

�3�j+1�� being equal to Mm,n
�3j� but with the arguments of all

Bessel functions doubled. A derivation for the case q=6 is
given in Appendix C.

IV. MANIFESTATION OF QUANTUM RESONANCES

A. Ballistic phase space expansion

As for the atom-optical �-kicked rotor �8,46� or �-kicked
accelerator �50,51� systems, the primary observable effect of
the quantum resonances in the KHO is an enhanced absorp-
tion of energy from the kicking potential. This is visible as
an enhanced rate of expansion of the oscillator’s state
through phase space, as can be seen in Fig. 2, which shows Q

FIG. 1. �Color online� Phases of the coefficients Mm,n
�N� as given

by Eq. �30�, which describe the state of a KHO �with q=4� after the
application of N�N�2� kicks to an initial coherent state, for the
quantum resonant case �2=�. The phases shown neglect the parity
of the Bessel functions in the coefficient �that is, we actually plot
Mm,n

�N� /Jm�Cm
�N���Jn�Cn

�N���= �−1�mnim+n� so that the pattern remains
constant for all N�2.

FIG. 2. �Color online� Q functions Qj�� ,���= ��� j ����2 /� �48�
for the KHO �with q=4 and 
=−0.8� evolved from the harmonic
oscillator ground state. We contrast the nonresonant case, where
�2=�� ��= �1+�5� /2 is the golden ratio� for �a� j=36 kicks and
�b� j=108 kicks, with the resonant case �2=� for �c� j=36 and �d�
j=108. Although Qj�� ,����0.04 close to the origin in �b�, our
scale is fixed at this maximum to aid comparison between the
images.
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functions �Husimi distributions� �48� Qj�� ,���= ��� j ����2 /�
evolved from an initial harmonic oscillator ground state un-
der resonant and nonresonant conditions. The evident sym-
metry between the position and momentum quadratures of
the Q functions in Fig. 2 means in situ measurement of the
position density or time-of-flight determination of the mo-
mentum density would both provide equally effective signa-
tures of quantum resonant evolution, and the Q function it-
self may also in principle be determined directly �29,52�.
Note, however, that in any experiment the harmonic potential
cannot be infinite in extent; after a large number of kicks the
state of the oscillator will extend beyond the harmonic re-
gion. Consequently, the subsequent time evolution will de-
part from the predictions of our entirely harmonic model.

In the KHO, the expansion through phase space changes
from diffusive �energy growing linearly in time� to ballistic

�energy growing quadratically in time� at the quantum reso-
nance values. In Fig. 3�a� we have plotted the number of
kicks required for the KHO to achieve particular mean en-
ergy values, as a function of �2 when starting from an initial
ground state. This reveals distinct minima in the number of
kicks required when �2=w�, i.e., a quantum resonant value.
Other less prominent minima are associated with higher-
order resonances, i.e., when �2 is a rational multiple of �,
with the rate of energy absorption falling rapidly as the ra-
tional denominator increases. Figure 3�b� shows explicitly
how the mean energy grows quadratically as a function of
the number of kicks when �2=� or � /2 �ballistic expan-
sion�, quite distinct to the two cases we have shown when �2

is an irrational multiple of � �diffusive expansion�.

B. Hofstadter butterfly spectrum

The quantum resonances are also apparent in the quasien-

ergy spectra of F̂, i.e., the values � such that ei� is an eigen-

value of F̂. Taken as a function of �2, the quasienergy spec-
trum of the KHO is a Hofstadter butterfly-type multifractal
�38,53�, as shown in Fig. 4. The theory of butterfly-type
spectra in kicked quantum maps has been extensively studied
�40–45,54�: in summary, a pure point spectral component is
associated with localized behavior, while singularly continu-
ous and absolutely continuous spectral components are asso-
ciated with diffusive and ballistic expansion, respectively
�43,44�. For the KHO �when q� �3,4 ,6	� this means that the

quasienergy spectrum of F̂ switches between being singu-
larly continuous at irrational multiples and absolutely con-
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FIG. 3. �Color online� Mean energies yielded by KHO evolution
when q=4, 
=−0.8, and the initial condition is the harmonic oscil-
lator ground state. �a� Plots of the number of kicks required to reach
a mean energy of 50� �lower line� and 200�� �upper line� as a
function of �2. �b� Mean energy as a function of N for �2=�, � /2,
�3� /2, and �� ��= �1+�5� /2 is the golden ratio�.

FIG. 4. �Color online� Numerically determined quasienergy spectra of F̂ computed in a truncated Fock basis of 2000 states and plotted
against �2. �a� and �b� show the overall structure �inset� and detail from the uppermost band in the cases q=4 and q=6, respectively. A
Hofstadter butterfly-type structure �38,53� is seen in each individual band, the cell boundaries �points at which the spectrum becomes
continuous across the band� of which indicate the quantum resonant values of �2=w�. One half of a cell for the case q=4 is shown in detail
in �c�, better illustrating the division of the band into b continuous segments at rational fractions a /b of the cell width. In each case 

=−0.8. The overlap of the eigenstates with the harmonic oscillator ground state varies from �10−23 in the narrowest filaments �eigenvalues
colored blue online� to �10−1 in the nodes occurring at rational values of �2 /� or �3�2 /2� �eigenvalues colored red online�.
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tinuous at rational multiples of the primary quantum resonant
values of �2.

Kicked atom-optical systems have been proposed as can-
didates for direct observation of butterfly-type spectra �55�
and the atom-optical KHO considered here presents another
system in which this might be realized. The KHO also offers
the opportunity to directly explore the changes in the nature
of the butterfly spectrum across the quantum resonance/
antiresonance transition �that is, as a function of the relative
alignment of the kicking and trapping potentials�. These
changes have been explored theoretically for the case q=4
�38�.

C. Experimental realization

To observe, for example, the principal quantum resonance
in the case where q=4 requires a Lamb-Dicke parameter of
��K�� /2M�=��, and hence a suitable combination of
harmonic trapping angular frequency � and wave vector K.
This could be realized in a linear ion trap with relatively
weak axial confinement, perhaps in conjunction with a stand-
ing wave formed by two counterpropagating laser beams
overlapping at an acute angle. Typical experimental configu-
rations involving laser cooled alkali-metal atoms within a
magnetic trap yield much larger values of �; a configuration
equivalent to that used by Duffy et al. would require a trap
frequency of 4.8 kHz �24�. Such frequencies are nevertheless
within reach of recent generations of magnetic chip traps
�56�. Alternatively, a potentially quite flexible setup could be
achieved by generating the kicking field with a CO2 laser
�wavelength �=10.6 �m�. Applying the kicking field di-
rectly along the axis of harmonic confinement, values of the
Lamb-Dicke parameter around the principal quantum reso-
nances �e.g., from �2=� /2 up to �2=2�� could be reached
using trap frequencies ranging from 8–36 Hz �133Cs� up to
40–200 Hz �23Na�, and introducing the kicking field at an
angle to the trap axis would allow these frequencies to be
increased. Kicking strengths would be low because of the
extreme detuning of the CO2 laser, but the quantum reso-
nances will still be manifest at any value of 
 after a suffi-
cient number of kicks.

V. CONCLUSIONS

In this paper we have considered the characteristic quan-
tum resonances occurring in an atom-optical �-kicked har-
monic oscillator �KHO�, a system in which typically alkali-
metal atom�s� or an alkaline-earth-metal ion are trapped in an
approximately one-dimensional harmonic potential and peri-
odically driven by pulses of an off-resonant laser standing
wave. We have demonstrated that the atom-optical KHO dis-
plays quantum resonances dependent on the value of �2,
where � is the Lamb-Dicke parameter, equal to the ratio of
the width of the ground state of the harmonic trapping po-
tential to the wavelength of the laser standing wave.

When the oscillator is kicked a rational number of times
r /q per oscillator period, with q equal to 3, 4, or 6, quantum
resonances occur. At these values of q the eigenstates of the

Floquet operator F̂q also possess a crystal phase space sym-

metry. We have shown that the quantum resonances occur
at natural number multiples of a primary resonance value:
�2=� in the case q=4 and �2=2� /�3 in the cases q=3 and

q=6. At these values of �2 all q kicks within F̂q commute.
Further, secondary quantum resonances occur for �2 equal to
noninteger rational multiples of the primary values; at these
values of �2 there is a partial commutativity between the

kicks constituting F̂q. We have demonstrated that the quan-
tum resonances can be interpreted in terms of the relation

between F̂q and its own eigenstates; specifically, the quantum

resonances occur when F̂q can be decomposed in terms of a
set of displacement operators which is equivalent to the set
of crystal symmetries of the eigenstates. We have also de-
rived an expression for the time evolution of a coherent state
in the cases q=3,4 ,6 by recasting the dynamics in terms of
a mapping on a two-dimensional lattice of coefficients. At
quantum resonance values of �2 the evolution of these coef-
ficients is greatly simplified; we have shown that in this case
there is a direct expression for all the coefficients at a given
step.

Finally, we have considered the manifestation of quantum
resonances in an atom-optical KHO, in particular the ballistic
increase in the mean energy associated with quantum reso-
nances and the quasienergy spectrum. To this end we have
also discussed experimentally reasonable parameter regimes
in which to observe quantum resonant dynamics in the atom-
optical �-kicked harmonic oscillator.
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APPENDIX A: QUANTUM RESONANT VALUES OF �2

Because we are free to choose the sign of w on the right
side of Eq. �9� we can, without loss of generality, simplify
that commutation condition to

�2�sin�2�j/q�� = w�; j � �0, . . . ,q − 1�, w = 0,1,2, . . . .

�A1�

Quantum resonances occur when condition �A1� is satisfied
for all possible j.

Ignoring the trivial cases q=1 and q=2, where
sin�2�j /q�=0 for all possible j, �sin�2�j /q�� takes either
�q−2� /2 values other than zero �even q� or �q−1� /2 values
other than zero �odd q�. If we denote these nonzero values by
zn �where n ranges from 0 to �q−2� /2 �even q�, or from 0 to
�q−1� /2 �odd q��, the condition for quantum resonance be-
comes

�2 = w�/zn, ∀ zn. �A2�

Because the zn are the moduli of sines equally distributed
in angle, they cannot share a common factor other than unity.
Consequently, condition �A2� can be satisfied for all zn only
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if all of the zn are equal. The cases of interest are enumerated
pictorially in Fig. 5, where we see that �a� zn=�3 /2 for q
=3 ��2=w2� /�3 at quantum resonance�; �b� zn=1 for q=4
��2=w� at quantum resonance�; �c� there is more than one
value of zn for q=5 �there are no quantum resonances�; �d�
zn=�3 /2 for q=6 ��2=w2� /�3 at quantum resonance�. Fig-
ure 5�d� also illustrates the absence of quantum resonances
for q�6; the addition of another distinct point on the cir-
cumference of the circle shown necessitates at least a second
value of zn.

APPENDIX B: GRAF’S ADDITION THEOREM

Graf’s addition theorem for two Bessel functions of inte-
ger order and equal, real argument � is �57�

�
k=−�

�

Jn+k���Jk���eik� = Jn����ein�, �B1�

where �� and � are related to � and � by

�� = ��2�1 − cos���� , �B2�

��1 − cos���� = �� cos��� , �B3�

� sin��� = �� sin��� . �B4�

These relations are shown graphically for positive � in Fig. 6
for 0����. In the quantum resonant case we consider in
Sec. III C 3, �=�. Consequently, �=0 and we obtain

�
k=−�

�

Jn+k���Jk���eik� = Jn�2�� . �B5�

APPENDIX C: EVOLUTION OF AN INITIAL COHERENT
STATE WHEN q=6

In the case q=6 and at quantum resonance �2=2� /�3
mapping �20� becomes

Mm,n
�j+1� = �

k=−�

�

ikJk���Mm+n−k,−m
�j� e−ikm�. �C1�

As in the case q=4, we begin with the single coherent state
initial condition

Mm,n
�0� = �m,0�n,0. �C2�

Replacing the indices in the correct fashion we get

Mm+n−k,−m
�0� = �m+n,k�m,0 �C3�

and thus, substituting this into mapping �C1�,

Mm,n
�1� = im+nJm+n����m,0e−im�m+n��. �C4�

Again, as in the case q=4, we observe the more general
pattern of evolution by repeating this process until we obtain
the coefficients Mm,n

�q� . We begin by rearranging Eq. �C4� to
get

Mm+n−k,−m
�1� = in−kJn−k����m+n,ke

−i�m+n−k��n−k��. �C5�

Substituting this into mapping �C1� produces

Mm,n
�2� = im+nJm+n���imJm���e−im�m+n��, �C6�

where we have used the identity i−nJ−n���= inJn���. Rearrang-
ing Eq. �C6� we find that

Mm+n−k,−m
�2� = in−kJn−k���im+n−kJm+n−k���e−i�mn+n2+k2+mk��,

�C7�

and hence

Mm,n
�3� = �

k=−�

�

ikJk���in−kJn−k���im+n−kJm+n−k���e−i�mn+n2+k2��.

�C8�

Graf’s addition theorem �Appendix B� cannot be directly
applied to Eq. �C8� as there are three Bessel functions with
k-dependent indices. However, we accept this summation as
the final form of Mm,n

�3� and continue with the process using k�
as the new index of summation. Rearranging Eq. �C8� we
have

FIG. 5. �Color online� Pictorial representation of the values of
sin�2�j /q� �the vertical position of points� in the cases q=3, 4, 5,
and 6.

FIG. 6. Relation of variables appearing in Graf’s addition theo-
rem �B1� for two Bessel functions of integer order and equal, real,
positive argument �. Adapted from �57�.
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Mm+n−k�,−m
�3� = �

k=−�

�

ikJk���im+kJm+k���in−k−k�Jn−k−k����ei��m+n−k��m−m2−k2��, �C9�

which, when substituted into mapping �C1�, produces

Mm,n
�4� = �

k=−�

�

�
k�=−�

�

ik�Jk����ikJk���im+kJm+k���in−k−k�Jn−k−k����ei�mn−k2��

= �
k=−�

�

ikJk���im+kJm+k���in−kei�mn−k2�� �
k�=−�

�

Jk����Jn−k+k����eik��

= �
k=−�

�

ikJk���im+kJm+k���in−kJn−k�2��ei�mn−k2��, �C10�

where we have used Graf’s theorem to eliminate the summation over k�. Rearranging this we obtain

Mm+n−k�,−m
�4� = �

k=−�

�

ikJk���im+n−k�+kJm+n−k�+k���im+kJm+k�2��e−i�m�m+n−k��+k2��, �C11�

and hence

Mm,n
�5� = �

k=−�

�

�
k�=−�

�

ik�Jk����ikJk���im+n−k�+kJm+n−k�+k���im+kJm+k�2��e−i�m�m+n�+k2��

= �
k=−�

�

ikJk���im+kJm+k�2��im+n+ke−i�m�m+n�+k2�� �
k�=−�

�

Jk����Jm+n+k�+k���eik��

= �
k=−�

�

ikJk���im+kJm+k�2��im+n+kJm+n+k�2��e−i�m�m+n�+k2��. �C12�

Repeating the process one final time we have

Mm+n−k�,−m
�5� = �

k=−�

�

ikJk���im+n−k�+kJm+n−k�+k�2��in−k�+kJn−k�+k�2��e−i�mn+n2+k�2+k2−mk���,

and hence

Mm,n
�6� = �

k=−�

�

�
k�=−�

�

ik�Jk����ikJk���im+n−k�+kJm+n−k�+k�2��in−k�+kJn−k�+k�2��e−i�mn+n2+k�2+k2��. �C13�

If we define k=k�+�, then Eq. �C13� takes the form

Mm,n
�6� = �

�=−�

�

im+n+�Jm+n+��2��in+�Jn+��2��i�e−i�mn+n2+�2�� �
k�=−�

�

Jk����Jk�+����eik��. �C14�

By applying Graf’s theorem to the summation over k� in Eq. �C14� and then applying the transformation �→−� we obtain

Mm,n
�6� = �

�=−�

�

i�J��2��in−�Jn−��2��im+n−�Jm+n−��2��e−i�mn+n2+�2��, �C15�

that is, an analog of Mm,n
�3� with � replaced by 2� and k replaced by �. As in the case q=4, the evolution from this point on will

continue cyclically.
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