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Abstract—Wind generation must trade in forward electricity
markets based on imperfect forecasts of its output and reatime
prices. When the real-time price differs for generators tha are
short and long, the optimal forward strategy must be based orthe
opportunity costs of charges and payments in real time rathe
than a central estimate of wind output. We present analytich
results for wind’s optimal forward strategy. In the risk-ne utral
case, the optimal strategy is determined by the distributia of
real-time available wind capacity, and the expected realiine
prices conditioned on the forward price and wind out-turn; our
approach is simpler and more computationally efficient than
formulations requiring specification of full joint distrib utions or
a large set of scenarios. Informative closed-form exampleare
derived for particular specifications of the wind-price dependence
structure. In the usual case of uncertain forward prices, tre
optimal bidding strategy generally consists of a bid curve dr
wind power, rather than a fixed quantity bid. A discussion of
the risk-averse problem is also provided. An analytical reslt is
available for aversion to production volume risk; however, we
doubt whether wind owners should be risk-averse with respec
to the income from a single settlement period, given the lamg
number of such periods in a year.

Index Terms—Power generation economics, Wind power gen-
eration, Risk analysis.

I. INTRODUCTION

. Analytical Results
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output must be rectified in the real-time market. In some
systems, there is a single real-time price seen by gensrator
irrespective of whether they are short or long with respect
to their forward-contracted volumes [1]. In others, there a
different real-time prices for generators that are shottbog.
Examples include the Great Britain [2], Scandinavian [3]
and lberian [4] markets. Forward market bidding by wind
generation is thus a problem of optimisation under unasstai
regarding both the production out-turn and the real-timeepr
as the forward market bid must be made before precise
information on these real-time quantities is available.
Optimal trading strategies for wind generation have resmbiv
comparatively little attention in the literature. [5] inttuced
the concept of optimising the forward market bid based on
imbalance costs, in both risk-neutral and risk-averse fdam
tions. [6] then introduced a closed form expression for the o
timal contract volume in the forward market given the foravar
and real-time prices; the same optimisation approach wed us
in [7], which compares strategies based on point predictiah
probabilistic wind forecasts, and also discusses risksioe.
[3] presented a stochastic mixed integer linear program (LP
formulation, based on representing the uncertainty in vouid
turn using a finite number of discrete scenarios; this has bee

HE penetration of wind generation is increasing in pOW@xtended to goordinated operation of wind and hydro genera-
systems worldwide. In contrast to conventional plantion in [8]. This LP approach was extended from a two-market

whose availability is mainly a matter of mechanical avallab system (forward and real-time) to a three-market (day-ahea

ity, the availability of wind generation capacity is prinigr adjustment and real-time) system in [4]; in addition, a more

determined by the weather. efficient continuous LP model was presented, in which risk-
As a consequence, the statistical properties of wind capadiverse preferences could be modelled. Other relevant work

availability are very different from conventional plangth on

includes a detailed discussion of utility metrics for riskerse

planning and operating timescales. On a planning timescdkaders [9], assessment of the cost of wind forecast erfds [

this manifests itself as a probability distribution for dable

and real-time prices [11], advanced wind forecasting nmagho

capacity at some distant time in the future. On an operatibitg], operational strategies coordinating wind generatidth
timescale, which will be considered here, the relevant proteserves, storage and hydro (e.g., [13]-[15]), and designi

ability distribution is that for wind out-turn conditionain

power markets to minimise imbalance costs to wind genesator

the information available when decisions are taken; a windi6]. Relevant market modelling results have been pregente

generation owner cannot contract a level of output in a foswain [17] (the effect of wind forecasts on forward market psie

market and be sure that this precise amount will be deliverghd [18] (the statistical relationship between real-tinmel a
When generators contract to sell power in forward markeforward prices).

imbalances between the forward-contracted volume andiactu This paper presents closed-form methods for optimising
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a wind generation owner’'s forward market bid in a two-
settlement (forward and real-time) system. These reqitltere
evaluation of a single formula, or numerical solution of a
specified integral or equation. New results are presented fo
uncertain real-time prices that are correlated with thevéod
price and real time (RT) wind output, and also for risk-aeers
bidding strategies; for the simpler case of uncorrelateddwi
out-turn and real-time prices, the more general derivation
clarifies that the expected (in the mathematical sense} real



time prices should be used as the price forecast in the mrgleva «
expressions. The benefits of analytical methods over pusvio
approaches requiring solution of LP models are: .

Bidding in ancillary services markets based on revenue
foregone in the energy market.
Bidding in one geographical location’s market based on

« Transparency of resultdn closed form expressions and
direct formulas, it is much easier to identify what param-
eters drive the results obtained.

revenue foregone by not selling in other areas.
Arbitrage between forward and real-time markets (called
"virtual bidding” in U.S. markets).

Hydro power with a finite water resource; bids would
reflect revenue sacrificed at other times.
Finite pollution permits for fossil fuel units.

« Computational efficiencythe expressions presented here *®
may be evaluated more quickly than LP models.

« Reduced data requirementShe methods in this paper ° X Detit )
require only specification of expectation values for real- « FOr peaking units, if a maximum number of starts per
time prices conditioned on the forward price and wind ~ Year under maintenance contracts.
out-turn, not full joint distributions or a scenario tree. In all these situations, selling in one product market at one

An analytical approach is particularly valuable when thime or place means that sell!ng n other markets may_not be

optimal bidding strategy model must be embedded in a |ard%955|ble, and the cost of §eII|ng in the former should in part

model, perhaps of the entire power market, or of generati{)‘ﬁﬂeCt foregone revenues in the latter.

investment decisions. In contrast, it is highly undesiabl ) ) )

to have to embed a large stochastic LP model for wind® Single Real-Time Price

strategy in such a whole-market model. This paper provides arhe simplest case of the forward contracting problem con-

computationally simpler alternative. siders a wind operator selecting a contract volugmevith
Section 1l describes the simplest case of a single re&rward pricerr (often called the system marginal price, SMP,

time price. Section Ill then describes how multiple reaidgi or market clearing price, MCP), with a single real-time (RT)

prices are used in some systems, and presents the optimalfside* II applied to all imbalancedI and production out-

strategy in this case. Sections V-Vl illustrate how thisynbe turn W (conditioned on the available information at time of

applied, including cases with both independent and cdaela contracting) are random variables with joint probabiligndity

wind output and real-time prices, and also known or uncertaiunction fr w (7, w). The expected total income is then

forward price. In the usual case of uncertain forward prites
Trq + //w(w —q) fi,w (7, w)drdw. (1)

optimal bidding strategy generally consists of a bid cumwe f
wind power, rather than a fixed quantity bid. Finally SeCtioE?gferentiating with respect to; to find the optimal bidg
gassuming no bounds aj):

VII generalises some of the results to the case of aversion
g = //wfn,w(w,w)dwdw = E[I]. (2)

the risk of low real-time wind output. Throughout, example

are based on British data; the methods may also be applied to

related market designs such as in Scandinavia [3].
This is a standard result (assuming risk-neutral behavigur
market players) that arbitrage between the RT and forward
markets means that the forward price is the expected RT.price

A. Forward Trading Based On Opportunity Cost Similar undramatic results may be obtained from various

Like any other form of generation, a wind generator mageneralisations of the single real-time price problemhsas
contract in the forward market to deliver power in real-tjmed market where a number of identical wind owners bid simul-
whether this be through a bilateral trading or pool system. tRneously, and where the real-time price is obtained endoge
might then deviate from its forward-contracted positioithw nously within the model via a supply curve for conventional
any resulting system imbalance being rectified in the regleneration. These generalisations will not be discussedeu
time market. In contrast to conventional generation, haevin this paper, because the final result is not very excitirtglev
wind in real-time will almost always generate at precisey i the necessary algebra can become quite complex.
maximum available capacity due to its very low marginal cost
of production. Exceptions may include curtailment on syste 'l QUANTITY BIDDING: DIFFERENT SHORT AND LONG
security grounds at very high penetrations, or where there i PRICES
limited transmission capacity. This paper assumes cotiygeti  In this section, we consider the problem of the optimal
markets in which individual wind owners are price-takers] a quantity to schedule in the forward market, in the face of a
wind always generates at available capacity. known forward price and uncertain balancing prices thdedif

Optimising wind’s strategy in the forward market is a nondepending on whether the generator is short or long in the
trivial problem based on uncertainty in real-time wind cwta  real-time market. In Section V, we generalise this to biddin
and power prices. Thepportunitycost of a forward contract in a forward market in which the forward price is unknown;
in terms of foregone revenue in the real-time market in ti@ general, this can result in a wind generator submitting a
real-time market is then relevant, rather than the negdégibsloped bid curve rather than a fixed quantity.

internal marginal cost of supply. Opportunity costs arevaht | _
Throughout, the convention that lower case letters (e;pdenote numbers

in many aspects of power systems operations and bidding [1§]d capital letters (e.gly’) denote random variables; the probability density
[20], such as: function for W is fiy (w).

IIl. OPTIMAL VOLUME: SINGLE REAL-TIME PRICE



A. Introduction: GB Market Design i
200 -

In some power markets the prices felt by generators or - - Short price ,‘
trades in the real-time market differ depending on whether 150 — Forward price H
they are short or long. Examples of this setup include the g ] — Long price ol
British [2], Nordic [3] and Iberian [4] markets. If the wind =
generator is short/long in real-time (delivers more/ldssnt c‘ﬁ‘mo
the forward-contracted volume), then this imbalance wél b é
rectified at the short pricers / long price 7; these may
respectively be greater/less than the forward market price %01
wr. This differentiation is justified on the grounds that if a
generator is in imbalance then the System Operator (SO) has 0 T T T
to take actions to make good the imbalance of power, and that 30% 50% 70% 90%
the cost of such actions should then be charged to those who Demand [% of 2008 peak]

caused them. It should be emphasised that in many (perhaps

even a majority of) power markets worldwide, wind is notig. 1. Smoothed short and long prices, and forward MarkdexnPrice
penalised in this way for being short or long; the discussidMIP) from the GB market in 2008. The raw price data is takenfr[23],
; : : ; : : and demand data from [24].

in Section 1I-B of a single real-time price then applies [1].

1) Great Britain (GB) Market Design:

This section describes how prices are set in the Grahen takeA. As each time series includes the data from all
Britain power market; the situation in Scandinavia is veralf hour periods (not differentiating between hours whes t
similar (in terms of divergence of short and long prices imarket was long or short), this graph presents the data as see
real-time; see Section Il of [3].) The forward market in GBat the time of the forward market when players do not yet
formally operates by bilateral trading (Chapter 10 of [21]know whether the market will be long or short. As expected,
there is no centralised pool or power exchange. Trades ketwehe overall trend is for all the prices to increase as demand
generators and demands are reported to the system operiaigieases. However, there are clear local maxima in thepric
(SO) by Gate Closure, which is one hour ahead of real-timgemand curves at around 72% and 92% of peak demand, and
There are however independent power exchanges, and theg5i@ss prominent one at 79%.
publishes a forward price index as a time series for each half
hour settlement period, based on data from these exchanggs.

In real-time, the market might either be long (total forward 1) Model Definition:
contracted generation greater than out-turn demand) at sho : . - -

. If the wind owner is willing to make decisions on the
(contracted generation less than out-turn demand). Each BSsi . ; o ;
o i . : asis of its expected income, then it is termed risk-neutral
riod’s short price (paid by trades which are short, callegl tr] ; . : - )
) . . If it demands a risk premium due to the possibility of its
system buy price in GB) and long price (paid to trades whlcﬁ : :
; . ! income being less than the expected value then it would be
are long, called in GB the system sell price) are defined 5es
a

follows [22] (forward prices are based on market index dat rmed r|s!<-a_\verse [2.5]' It is gssumed here that the wind
enerator is indeed risk-neutral; due to the large humber of

Quantity Bidding: Risk-Neutral Case

o Market short time periods over which annual profit is measured, provided
— Short price: average price of offers to increase Outpmere iS no SyStematiC biaS in the prObabI|Ity diStI‘ibuﬁtulsed,
accepted by SO. any random fluctuations away from the mean will cancel to a
— Long price: the forward price. good approximation.

In this risk-neutral case (and indeed if the wind generator
is assumed averse to quantity risk but neutral to price risk)
— SBP: the forward price. it is necessary to specify only expectation values for ttzd-re
— SSP: average price of bids to reduce output accepi@the prices conditional on wind out-turn, rather than a full

by SO (typically offers will be topay the SO, as a joint probability distribution. Working in terms of expect

reduction in output represents a saving on fuel costshlues for prices does not sacrifice any generality, save for

Imbalances in the opposite direction to the market are thtfiese issues around risk-aversion.

settled at the forward price. The given justification forstis ~ The forward price is assumed to be known precisely at the

that such imbalances are helpful to the market, and shotige the forward contract volume is chosen (bid curves fer th

therefore not be penalised relative to the income from raore general case of uncertain forward price will be disedss

perfectly balanced contract. in Section V.) The wind owner must therefore decide on its
2) Great Britain Historic data: trading strategy in the forward market, given the uncetyaim

The historic short, long, and forward market index price'gS output in real-time and the real-time prices. The getiena

from 2008 are displayed in Fig. 1. In order to reveal trend/tturn W and the real-ime prices (short pridés, and
as .demanq varies, the half hour penon are ranked n Ord_@rPoints are not plotted for the highest and lowest 50 demasdfie moving
of increasing demand, and a 101-point moving average a&rage would then be unbalanced.

o Market long



400

long pricell), conditioned on the information available when

trading in the forward market, are then modelled as random :fg:;g’rrif:

variables. In GB these expected prices must take into a¢coun 300 4| = = 1.2x [fwd price]
that, if the wind owner is in imbalance in the opposite diia@tt ---0.7x [fwd price]
to the market, then in real time the owner pays or is paid the =  { [ 1.0 x [fwd price]

forward price. It is convenient to define the following exfest

. 200
short and long penalties

Real Time Prices (101 pt average)

E[A5|w,7rp] = E[Hs|w,7TF]—7TF (3) 100
E[AL|U},7TF] = WF—E[HLl’w,ﬂ'F], (4)
where E[Il (s, 1)|w, 7r] are the expected real-time prices con- 0 : . . . .
ditioned on wind out-turn and forward price. 0 100 200 300
2) Derivation of Optimal Forward Volume: Forward Price
The expected net revenue, which the risk-neutral wind
owner seeks to maximise, is then gigt. 2. Expected real-time prices as a function of forwaritepin Great
ritain.
q
BIR) = meq- [ Ellslne.ulla - w)f(w)de
wt 0 IV. APPLICATION |: UNCORRELATEDWIND OUT-TURN
+/ EMlg|mp, w)(w — q) f(w)dw (5) AND REAL-TIME PRICES
1 q A. Expression for Optimal Forward Contract Volume
= 7pE[W|rp] —/ ElAs|mr, w](q — w) f(w)dw If the short and long penalties are independent of the wind
ot 0 out-turn, then the expression for the optimal forward cacttr
_/ E[AL|mpr, w](w — q) f (w)dw, (6) quantity (7r) simplifies to
? E[Ap|mp]

. . . _ _ p(W < d(np)) = : (8)
where f(w) is the estimated probability density function for E[Ag|mp] + E[AL|TF]
_real-tim_e output. This differs_ from expressions in [6], [7_]NhereE[A(57L)|7rF] is the expected value oA g 1) given
in that it does not assume independence between real-tifgRvard price 7. This expression fits with intuition; for
prices and wind out-turn, and from the equivalent expressigstance, if the expected short price is very high, then the
in [3] in that it uses continuous probability distributiorether  gptimal forward volume is small, reducing exposure to this
than discrete scenarios. This latter difference enablemushigh short price.
derive closed-form solutions as described below, this typeThis expression is similar to those in [6], [7]. The derivati
of derivation not being possible in the scenario approadfere makes it explicit that expected penalties given thedod

Differentiating, the optimal volumé is price should be used, clarifying the statement in [7] that-re
; wt time price ‘forecasts or estimates’ must be used.
/ dwE[Ag|mp, w]f(w) = / AwE[AL|mp, w]f (w). The fprmula for th_e optimal volume is Comp_le_tely closed-
0 g form, with the benefits of transparency and minimal compu-

(7) tational effort that this brings. However, with a substahti
The key features of this expression are as follows: installed wind capacity and consequent large forecastrerro

« In order to evaluate the optimal forward contract volumd) MW terms, independence of real-time prices and wind out-
it is sufficient to specify just the expected real-timdurn might not be a good approximation; in this case the more
prices/penalties, conditioned on the forward price arienerally applicable expressions in Section VI are of great
wind out-turn. This is much more straightforward thafelevance.
specifying a full joint distribution for prices and wind
out-turn, or specifying a large set of discrete scenariosB. Examples

e (7) may be solved using direct numerical methods (nu- 1) Wind Owner in Great Britain:

merical integration and equation solving). It is not neces- gy nected real-time prices conditioned on the forward price
sary to use a mathematical optimisation algorithm, whigd, Great Britain in 2008 are displayed in Fig. 2, the data
is required in LP formulations such as [3], [4]. used being the same as in Fig. 1. These expected RT prices
The imbalance prices clearly also depend on the total reate calculated by ordering half hour periods by forwardgric
time imbalance volume. The model accounts implicitly fasth and taking a 101 point moving average. This carries an
dependence through the conditional probability distidng implicit assumption that the expected RT prices depend only
for prices; this reflects the fact that the market imbalan@m the forward price, with no seasonal and diurnal effects;
volume does not affect the wind-owner’s behaviour directlgomparison with plots considering one season only shows tha
but rather through its effect on real-time prices. this is reasonable for an illustrative example such as h&re.



0%

high, then the benefits of the optimal strategy can be very
substantial indeed. This greater potential effect of thertsh
price is simply due to the expected long price usually being
constrained to values above zero, the most common exception
being when wind is the marginal generator.

-10%

-20%

V. FORWARD MARKET BID CURVES

30% { | Long price =20 RN A. Uncertain Forward Price in a Pool of Exchange

— — Long price =50 S

----Long price = 80

income lost by bidding mean (%)

If the forward market price is known with certainty at the
time the bidding strategy is devised, then the above approac
of contracting a fixed volume is sufficient. Also, as seen i (8
if the ratio of expected short and long penalties is indepahd
of forward price, then the same forward contract volume will

Fig. 3. Percentage decrease in expected revenue from fibseatracting  pe optimal irrespective of the forward price.
expected out-turn, compared to revenue from the optimategy presented .
here. The out-turn wind load factor conditioned on the infation available In general' however, the opt|mal forward contract volume

at time of forward contracting follows tha7(0.5,0.125) distribution. can depend on the out-turn forward price (and the resulting
expected penalties). If a bid must be submitted to a pool or
power exchange, then at the time the bid is devised the forwar
full analysis of the historic price data from GB is beyond thgrice cannot be known with certainty; account should bertake
scope of this paper, and will be addressed in future researofithis when devising the form of the bid. The result is that, i
Over a wide range of forward prices the expected regleneral, a sloped bid curve is optimal, in which the forward
time, short and long prices are approximated welllbyr» quantity bid is a function of the forward price. This curve
and 0.7 respectively, givingE[Ag|rr] ~ 027y and reflects the opportunity cost of selling in the forward marke
E[AL|nr] ~ 0.37F (the highest and lowest forward pricegather than the real-time market.
require a more detailed statistical treatment.) Filgalso

shows the line RT price = forward price (i.e., no penaltiesB. Dependence of Optimal Quantity on Forward Price
the vertical distance between that line and the linekrg

and 0.7z is equal to the penalty for being short and long Th timal bid titv (8 b d
respectively. Over this range, the ratio of the short andjlon e optimal bid quantity (8) may be rearranged as
E[As|rr] ) -

-40%

100 200 300 400 500
Short price

penalties remain constant, and the optimal contract volisme W < () = (1 +
given by p(W < §) = 0.6. The actual MW optimal volume P = airr)) = E[AL|nF]

depends on the probability distribution for wind out-turn. Thus, for a given forward price, the optimal quantity is dete
This penalty structure has not remained constant over ed by the ratio of the expected short and long penalties.

years. In the early years of the present market structuee, BQS the forward price increases, the raBeA ||/ E[Ar |r]

short penalty was typically higher. For instance, in 2004, Efnay increase, stay constant, or decrease. The optimal fdrwa

equival_ent analysis WO_UId give an expected short penalty Wlume then has the following relationship with that ratio:
approximately0 4, with the expected long penalty again « If the ratio increasesthen the optimal forward volume
around0.37g.

9)

2) Benefits of Optimal Strategy: . ﬂircwree?;t?j ,is constantthen the optimal forward volume
The benefits of following this optimal strategy, instead of is constant:
forward-contracting expected out-turn, are demonstrated ¢ yo ratio decreasesthen the optimal forward volume
Fig. 3. The wind load factor here is normally distributedwit increases.
mean 0.5 and standard deviation (SD) 0.125. This distobuti _. h les f h of these. Wit _
is consistent with the day-ahead forecast accuracy useg},in E'g' 4 shows examples for eac ' [ﬁs|7TF] N
and is similar to four-hour ahead data from GB. The forecage”F» @1d Ellls|rr] = 0.37p + o wherex = 0 (e,

SD in GB is, however, about half the size at Gate Closuregiltio cor_wstant), 10 (i.e., ratio increasing) and -10 (iretio
hour ahead. ecreasing).

The forward price is assumed to be 100 units, with expected o )
long prices down to a factor of 5 below this, and expectdg: Derivation of Bid Curves
short prices up to a factor of 5 above. It may be seen that
for small expected penalties (differences between foraadi A bid curve for a pool or power exchange may be derived by
expected real-time prices), the benefits of the optimategsisa swapping the axes on a plot of optimal quantity versus fodwar
are not very great. With a moderate short price, optimisingice; the bid curve indicates what price is required for the
under a very low long price does not provide benefits of mogenerator to supply a given quantity in the forward market. F
than a few percent over the alternative of contracting etgaec the cases where the ratio of expected short to long penéaties
out-turn volume. However, if the expected short price isyveconstant with price (i.e., a fixed optimal volume independen



0.7 a dependence of the short and long penalties on the wind out-

______________________ turn based on the competitive (price-taker) case.
S The thermal supply quantity resulting from the expected
'§> wind out-turn isq = d — Nuy . Making a quadratic approx-
g 06 imation to the thermal supply function about this point, we
4 obtain:
E
£ os ] mr(@) = wrld— Nuw) +erlg - (d - Nyw))
n .
é ———x=10 +02(q - (d - NNW))Q- (10)
o —_—x=-10 .
_ z=0 For a convex thermal supply function, the constantandc;
04 are positive. Assuming the same form for the dependence of
60 80 100 120 140 the short and long prices on the wind out-turn,
Forward price [£/MWh] E[AS|7TF7 w] _ E[AS|7TF7 w = /LW] _ clN(w _ ,LLw)
20 2
Fig. 4. Optimal bid volume as a function of forward price fapected short teN (w HW) (11)
price E[Ag|mr] = 0.27 5 and expected long pricB[A |7 ] = 0.37p+, E[AL|np,w] = E[AL|rr,w=pw]+c1N(w— pw)
wherexz = (—10, 0,10) /MWh. 2 2
— o N*(w — pw)=. (12)

. o . ) ~ For simplicity, this assumes that if the wind generator idl we
of forward price,z = 0 in Fig. 4), or decreasing (implying pejow (above) its expected real time output then the market
optimal volume increasing with forward price,= —10), the g definitely short (long); for the illustrative example behis

bid curve will have a typical non-decreasing form. assumption is reasonable at high wind penetrations.
The case where the ratio of expected short to long penaltyrhe optimal bid quantity; is then given by

increases as the forward price increases, however, imalies

bid curve where price required decreases as quantity isesea (W <§) = E[As|mr, W = pw] — caofy

(z = 10). This could not occur where the bid strategy - EAglrp, W = pw] + E[AL|np, W = pw]
reflects internal short run marginal costs of supply, as then . . ) (13) )
generator would never wish to decrease its supply quamity%‘?mpa”son ywth the expression for uncorrelated real-time
price increases. Indeed, in some markets only non-deaggadi’ices and wind out-turmn (8) shows that thechoy,’ term

bid curves are permitted, as a protection against exerdise3§!S S @ correction to the numerator of the expression for
market power. For the situation here where the forward mark¥"V < §), decreasing the optimal forward contract volume
strategy is not based on internal supply costs, the bid azame I the thermal supply curve is convex (i.e., positive second
in principle be negative sloping for certain penalty stoues, derivative). This fits Wlth intuition, as with a convex theam_
as demonstrated in (8) and Fig. 4. It should be further notHPP!y curve the real-time prices increase more when wind
that the forward contract volume does not usually affectiigin IS Short than they decrease when wind is long. Hence wind

behaviour in real time, when it will generate at the maximufiould tend more towards being long to avoid this enhanced
available output level. short penalty. This substantial correction term appeaspitke

the assumption that the wind owner’s behaviour in the fodwar
market does not affect the forward price.
In competitive markets, it is unusual to assume that one
player knows in advance that all competitors will make the
This section presents two applications of the model devalame decision, and furthermore knows what that decision wil
oped in Section IlI-B, in which the wind out-turn and reah# be. However, in this case the wind owners do not really make
prices are not independent. Both provide closed-form tesuh decision regarding their output, rather they all inewitab
for the optimal bid volume, which give insight into drivers o generate at the maximum available capacity due to having a
the optimal bidding behaviour. negligible short-run marginal cost of supply in real timdeT
correction—cy0, above follows from an assumption that the
day-ahead error in forecasting the wind owner’s out-tuadlo
factor follows the same probability distribution as theoefin
Suppose that the GB wind owner’s portfolio is wellforecasting the overall GB wind out-turn load factor. Hoeev
distributed across the country, so that if its outputiighen in fully realistic cases where this statistical relatioipsis less
the total GB wind output isVw for some constan¥V. If there  strong, this correction term will be reduced somewnhat.
were a single real-time price in a perfectly competitive kear
this would then bergp = 7p(d — Nw), wherenr(q) is the
marginal cost of supply by thermal generation at quantity ;
As described above, the GB market does not have a singi#ion
real-time price. However, one can gain insight into how This example demonstrates a more flexible approach to
wind out-turn affects the optimal bid strategy by assumingodelling the dependence structure, while still providang

VI. APPLICATION II: CORRELATED WIND OUT-TURN AND
REAL-TIME PRICES

A. Expected Penalties Based on Thermal Supply Function

B. Dependence Structure From a Multivariate Normal Distri-



direct method for obtaining the optimal forward contraanost common measures used to analyse risk-averse trading

guantity through numerical solution of an equation. strategies are Value at Risk (VaR) and Conditional Value at
The wind out-turn is assumed to follow a normal distribuRisk (CVaR) [26].
tion, with probability density function The VaR for the revenud at the o confidence level is
1 (w0 — )2 defined as the revenue, such thatp(R < r,) = 1 — «.
fww) = ——=—=exp [—72} (14) The CVaR for the revenu® at thea confidence level is then
ow /2w 201y defined as the expected revenue conditioned on the revenue
The expected short penalty given wind out-turris then being belowr,, i.e., in mathematical notation the CVaR is
0505 E[R|R < 14).
E[As|W =w] = us + ( p ) (w—p"). (15) CVaR is more commonly used as the objective function

when optimising risk-averse strategies, because unlikeé Va
A similar expression holds for the long penalty in terms of pat exhibits appropriate mathematical behaviour under gane
rametersr,, pur, andoy,. In a multivariate normal distribution, conditions (‘coherence’) [26], and can be included withid L
these would be the correlation coefficient between wind oybrmulations [27]. CVaR also allows a smooth transitiomfro
turn and prices, and the mean and standard deviation of #¥x-neutral behaviour (i.eq = 0) to increasing degrees of
prices, but this assumption of the distribution’s precisen risk aversion by varying the parameter
is not required for the results which follow. The specifioati
of parameters in (15) must account for the possibility of th®. Risk-averse Forward Trading Strategy
real-time price being set equal to the forward price if thadvi oy approach of deriving closed-form expressions may be
owner is in imbalance in the opposite direction to the markedytended to risk-averse behaviour, provided that the lomy a
Substituting in (7), assuming that the probability of outpshort real-time prices can be treated using expected values
near maximum or minimum is negligible, the following equathe wind owner would then be assumed to be averse to
tion for the optimal forward contract volumgis obtained: quantity risk but not price risk. Aversion to price risk réms
(s + pL)p(W < §) = eyall_JatiQn of vario_us double ir}tegrals of the joint pro_Hie;bi
R 9 distribution for prices and wind out-turn. While this full
L+ Mexp {—M] (16) risk-averse problem is numerically tractable, the degree o
V2 2oy transparency seen in other results from this paper is not
Once again, this may be regarded as adding correction terawsilable.
to the ‘uncorrelated’ case (8). It does not provide a congfet ~ Given the large number of time periods over which a trading
closed-form expression for the optimal quantity, but thisym strategy will be used, in practice the degree of risk aversio
be evaluated by direct numerical solution of the equation.that wind owners demonstrate in any single period may be
is possible to analyse the effects of the relationship betwelimited; in the long run, a large degree of cancellation is to
the wind out-turn and prices as follows: be expected between the consequences of below-average and
« If the short penalty is negatively correlated with the win@bove-average wind out-turns for single periods. A casentig
out-turn (which is likely to be the case) then, compared ¢ made that aversion to price-risk is equally important as
the independent case, the wind owner reduces the forw&l¢pntity risk, due to the possibility of extreme spikes ie th
contract volume at a given price. This behaviour mitigateort price. Given that the GB market as a whole is typically
the consequences of an increased short price when g, further investigation of whether (and in what way)ceri
wind out-turn is low. risk aversion is exhibited would be valuable. However, the
« If the long penalty is positively correlated with the windgreatest long-run risk could well be systematic error in the
out-turn (Wthh is ||ke|y to be the Case) then' Compare@timatEd wind diStribUtion, so that the calculated Opltima
to the independent case, the wind owner increases #iiéantity has a bias towards being either above or below the
forward contract volume at a given price. This behaviodfue optimum. In this case, quantity risk aversion could be

mitigates the consequences of a decreased long prigere important. _ _ _
when the wind out-turn is high. Based on this limited picture of aversion to wind out-turn

As a result, the behaviour of wind relative to the indepemdeHSk' assuming a k_nown forward prigg- and real-timg prices
case is determined by the relative volatilities of the Shollqdependent of wind out-turn, the CVaR at theconfidence

and long prices, as well as by the degree to which they al?éﬂal is

correlated with the wind out-turn. CVaR, = mpq— Ells|mr] /q dw(q — w) f(w)
“ 1—a Jy
VIl. R1Sk-AVERSE TRADING BEHAVIOUR +E[HL|7TF] /wa dw(w — q)f(w), (A7)
A. VaR and CVaR l—a Jg

The previous results have all been for risk-neutral behayioWherep(W < w,) = 1—a. Itis also assumed that the optimal
where the wind owner seeks to maximise expected revenffgwvard quantity is less tham,, (which is reasonable for small
without any consideration of variance of revenues or of haw f<)- Differentiating to obtain the optimal bid volumg
the revenue can decrease below that expected value. We now . E[Ap|mF]

pW<g=(010-a

relax that assumption and consider risk-averse behavider. )E[AS|7TF] + E[AL|np] (18)




s
o

= averse to production volume risk. Examples based on data
§ from Great Britain have been presented. The methods are also
© directly applicable to other markets such as those destiibe

= ——Expected revenue [31, [4].

E‘ %0 - - 95%\aR The new methods presented here require specification only
s of the expected real-time prices given the forward price and
E wind out-turn; this is simpler than specifying a full joint

5 20 distribution or a representative finite set of scenariose Th
S e new analytical approach is also much more computation-
§ ally efficient than previous linear programming formulatso

s Moreover, in the risk-neutral case the new approach does not
& 10 . . . . sacrifice any generality in the optimisation problem forrayte

0% 40%  50% period. When the forward price is unknown, the result is in
o general a sloped bid curve, reflecting the opportunity cést o
trading in the forward as opposed to real-time market.

0% 10% 20%

Fig. 5. Expected revenue, and 95%-VaR, for varying risk gieerparameter
«. The revenue is measured in units of [forward price] mutiplby [installed
wind capacity]. ACKNOWLEDGMENT
We acknowledge valuable discussions with R. Green, D.

h dimal q tracted Vol q Newberry, M. Roberts, their partners in the Supergen-Fexn
€ optimal forward contracted volume decreases as_%‘(?nsortium, and the Probability and Stochastic Models grou

degree _Of risk aversion Increases. This is as antlp_lparglbs at Heriot-Watt University. We express particular thanks to
under risk aversion, the increased expected utility ragylt

from long payments does not compensate for the loss
expected utility resulting from penalties for being shdrat
is, poorer outcomes are weighted more highly than good
outcomes under risk-aversion.

(1]
C. Example

This section presents an illustrative example, with pararﬁ-
eters based on wind and price data from GB. The short al (23J
long prices are assumed to be respectively 120% and 70% of
the forward price, based on the data in Fig. 2. The out-turf¥!
wind load factor is assumed to have a normal distributio wit
mean(.42 and standard deviatiol12. These parameters are [4]
based on the variation in wind out-turn for those hours in@00
during which the 4 hour ahead load factor was between 40%]
and 50%.

Results using the wind-volume-risk-averse strategy (18) a

shown in Fig. 5. When the risk aversion parametés below (6]

n

N(ftional Grid for sharing historic data on Great Britain din
é’ eration.
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