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The Nicole model is a conformal field theory in a three-dimensional space. It has
topological soliton solutions classified by the integer-valued Hopf charge, and all
currently known solitons are axially symmetric. A volume-preserving flow is used to
construct soliton solutions numerically for all Hopf charges from 1 to 8. It is found
that the known axially symmetric solutions are unstable for Hopf charges greater
than 2 and new lower energy solutions are obtained that include knots and links.
A comparison with the Skyrme–Faddeev model suggests many universal features,
though there are some differences in the link types obtained in the two theories.
C© 2010 American Institute of Physics. [doi:10.1063/1.3525805]

I. INTRODUCTION

Hopf solitons arise in theories in three-dimensional space where the field takes values in a two-
sphere. The Skyrme–Faddeev model1 is the most famous example of a theory with Hopf solitons
and consists of the O(3) sigma model modified by the addition of a Skyrme term that is quartic in
the derivatives of the field. Substantial numerical work2–6 has led to a reasonable understanding of
the minimal energy solitons in this theory. There are axially symmetric solitons for all Hopf charges,
but they are stable only for charges 1, 2, and 4. For all other charges the minimal energy solitons are
less symmetric and include knotted and linked configurations. It is unknown whether the appearance
of knots and links as minimal energy solutions is a universal feature of Hopf solitons, since the
Skyrme–Faddeev model is currently the only theory in which nonaxial Hopf solitons have been
investigated.

The Nicole model7 is a conformal field theory with Hopf soliton solutions. The conformal
symmetry allows the consistent use of an axially symmetric ansatz in toroidal coordinates, which
reduces the partial differential equation of the static theory to a single ordinary differential equation
for a profile function.8 The toroidal ansatz involves a pair of integers (n, m) associated with angular
windings around the two generating circles of the torus, and the corresponding Hopf charge is
Q = mn. A field configuration of this type will be denoted by An,m and may be thought of as a
two-dimensional baby Skyrmion9 with winding number m embedded in the normal slice to a circle
in three-dimensional space, with a phase that rotates through an angle 2πn as it travels around the
circle once. The profile function and energy within the toroidal ansatz have been obtained7 in a
closed form when Q = 1 and have been computed numerically10 for a range of pairs (n, m). In this
paper we restrict to the case Q > 0, since the situation for Q < 0 is simply obtained by reversing
an orientation.

An upper bound has been derived10 for the minimal energy soliton E ≤ cQ
3
4 , where c is a known

constant. This upper bound takes the same form as in the Skyrme–Faddeev model.11 Furthermore,
in the Nicole model it has been shown that the energy Eaxial of the axial ansatz obeys a linear lower
bound Eaxial ≥ c̃Q, with a known constant c̃. Together these results imply that for a sufficiently
large Hopf charge the minimal energy Hopf soliton is not obtained from the axially symmetric
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toroidal ansatz. This suggests that Hopf solitons in the Nicole model may be similar to those in
the Skyrme–Faddeev model, where unstable axially symmetric solitons signal the appearance of
more exotic knotted and linked solutions. The purpose of this paper is to investigate this issue using
numerical simulations of the full nonlinear field theory, without any restrictions to axial symmetry.
This requires a numerical method that can overcome known technical difficulties associated with
simulations of a scale invariant field theory. We introduce a method of volume-preserving flow
to deal with this issue and present the results of this approach for all Hopf charges from 1 to 8.
A comparison with the Skyrme–Faddeev model suggests many universal features, including the
appearance of knotted and linked configurations, although there are some minor differences in the
details of particular links that appear at given Hopf charges.

II. THE NICOLE MODEL AND VOLUME-PRESERVING FLOW

The Nicole model7 is a rather exotic modification of the O(3) sigma model, although it involves
the same field φ : R3 �→ S2, which is realized as a real three-component vector φ = (φ1, φ2, φ3), of
unit length, φ · φ = 1. As we are concerned only with static solutions, then the Nicole model may
be defined by its static energy

E = 1

32π2
√

2

∫
(∂iφ · ∂iφ)

3
2 d3x, (2.1)

where the normalization is chosen for later convenience.
The fractional power in (2.1) is a novel modification of the sigma model energy density and is

clearly engineered to produce a conformal theory in three spatial dimensions. Although there is no
known physical motivation for this theory, there is a mathematical stimulus to investigate the model
as the conformal symmetry leads to interesting mathematical properties, including an explicit exact
solution for the Q = 1 Hopf soliton. By studying this theory it is possible to make comparisons
with Hopf solitons of the Skyrme–Faddeev model and hence determine which features appear to
be generic. This could help in understanding the properties of Hopf solitons in theories constructed
from more conventional terms.

Finite energy boundary conditions require that the field tends to a constant value at spatial
infinity, which is chosen to be φ = (0, 0, 1) ≡ e3. This boundary condition compactifies space to S3,

so that the field becomes a map φ : S3 �→ S2. There is a homotopy classification of such maps, given
by the Hopf charge Q ∈ Z = π3(S2). This integer has a geometrical interpretation as the linking
number of two curves obtained as the preimages of any two distinct points on the target two-sphere.

The position of the soliton is the closed curve obtained as the preimage of the point φ =
(0, 0,−1), which is antipodal to the vacuum value e3 on the target two-sphere. Hopf solitons are
therefore novel stringlike topological solitons.

The static field equation that follows from the variation of the energy (2.1) is the nonlinear
partial differential equation

∂i∂iφ + (∂iφ · ∂iφ)φ + (∂i∂ jφ · ∂ jφ)∂iφ

∂kφ · ∂kφ
= 0. (2.2)

Using combinations of stereographic projection and the standard Hopf map, the solution with
Hopf charge Q = 1 is explicitly given by7

φ1 + iφ2

1 + φ3
= 2λ(x1 + i x2)

r2 − λ2 + 2iλx3
. (2.3)

Here, r2 = xi xi and λ is an arbitrary positive real constant associated with the scale of the soliton. It
is easily seen from (2.3) that the position of the soliton is the circle in the plane x3 = 0 with center
the origin and radius λ. The fact that λ is arbitrary is a result of the conformal symmetry of the
Nicole model.

The energy of this soliton is E = 1, as a result of the convenient normalization of the energy
in (2.1). The soliton is axially symmetric and is of type A1,1.
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In this paper we are interested in Hopf solitons of the Nicole model with Q > 1, for which
explicit closed form solutions are not available. Numerical methods are therefore required to find
solutions of Eq. (2.2) that correspond to local minima of the energy (2.1), including the global energy
minimum in each sector with the Hopf charge Q that we consider.

The discretization (and restriction to a finite simulation region) involved in the numerical
simulation of a conformal field theory breaks the conformal invariance of the continuum theory and
leads to technical difficulties. This has been studied in detail for solitons in a simpler conformal
field theory, namely, the O(3) sigma model in two-dimensional space. The numerical discretization
is equivalent to studying a lattice version of the theory and in the planar case the resulting energy
minimization leads to an exceptional configuration on the lattice.12 In the continuum theory this is
associated with a reduction of the soliton scale until it is of the same order as the lattice spacing,
at which point the topology of the soliton is lost as it unwinds by essentially falling through the
lattice.13 In the case of the planar sigma model a novel lattice formulation has been devised14 that
preserves topology on the lattice. However, the topology of Hopf solitons in the Nicole model is
significantly more complicated than that of solitons in the planar sigma model, and no analogous
topology preserving lattice formulation is known.

As expected, a standard discretization and energy minimization of the Nicole model leads to
the same technical difficulties as described above. Namely, any initial condition with Q 	= 0 shrinks
until the size of the configuration is of the same order as the lattice spacing, upon which the topology
is lost, leading to a trivial vacuum solution with Q = 0. An additional, though related, issue is that
in numerical simulations Euclidean space is typically replaced by a finite region �, with the field
fixed to its vacuum value on the boundary of �. This will be a good approximation if � is large
compared to the soliton size. However, in a conformal theory there is no fixed soliton size and the
restriction to a finite volume also results in the shrinking of a soliton. To overcome these difficulties
we introduce a volume-preserving flow using ideas based on a similar approach developed in the
context of domain walls.15

To describe the construction of our volume-preserving flow, we initially concentrate on the
continuum theory defined in a finite region �, with vacuum boundary conditions, φ = e3 on ∂�. In
the later numerical simulations, � will be taken to be a cube.

A standard method to minimize the energy (2.1) is to evolve any given initial condition using
gradient flow. A flow which is proportional to gradient flow is given by

∂tφ = F, (2.4)

where the force F is the left-hand-side of the static field equation (2.2) and is proportional to
the variation of the energy (taking into account the constraint that φ lies on the unit two-sphere).
Theoretically, the end-point of this flow yields static solutions that solve Eq. (2.2). As described
above, a numerical discretization introduces a spatial lattice that breaks the conformal symmetry
of the theory, so that a numerical solution of a standard discrete version of (2.4) results in a Hopf
soliton that continually shrinks during the flow. A minimal energy Hopf soliton in the continuum
theory has zero modes (in particular a scale invariance) associated with the conformal symmetry,
and the spatial lattice produces negative modes associated with the broken zero modes. The idea is
to modify the standard gradient flow (2.4) by projecting out the component in the direction of the
zero mode. Then the subsequent discretization will not produce negative modes since their origin
has been removed from the flow.

Define the following volume associated with a field configuration

V =
∫

�

(1 − φ3) d3x . (2.5)

This volume will serve as a measure of the size of a soliton, since the integrand is maximal along
the position of the soliton and is zero if the field takes its vacuum value. In particular, the shrinking
of a soliton that results from the numerical discretization corresponds to a decrease of the volume V
during the gradient flow (2.4). The aim is to construct a modified version of the gradient flow that
preserves the volume V and hence fixes the soliton scale.
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Associated with the volume (2.5) is the gradient flow

∂tφ = e3 − φ3φ ≡ f, (2.6)

which results in a decrease in the volume V during this flow, since the force f is proportional to the
variation of V . Define the inner product as

〈f, g〉 =
∫

�

f · g d3x, (2.7)

then the volume-preserving flow is given by

∂tφ = F − 〈F, f〉
〈f, f〉 f. (2.8)

This flow has been constructed by taking the standard gradient flow and then projecting out the
component due to the volume reducing flow (2.6). The resulting flow is therefore orthogonal to
the volume reducing flow and hence preserves the volume. It is easy to prove that the volume-
preserving flow (2.8) indeed preserves the volume V and reduces the energy E : the proof is a simple
modification of that presented in Ref. 15 but the result should be obvious from the geometrical aspect
of its construction.

Equation (2.8) is a nonlinear partial differential equation, but it is also nonlocal because of
the appearance of the inner product. However, it can be solved numerically using standard finite
difference methods. In Sec. IV we shall present results for a scheme using fourth-order accurate
finite difference approximations to spatial derivatives on a cubic lattice consisting of 1513 points
with unit lattice spacing (taking advantage of the scale invariance of the continuum problem in R3).
The flow is evolved using a simple first-order accurate explicit method with timestep �t = 0.1. All
inner products are evaluated by approximating integrals by sums over lattice sites.

III. INITIAL CONDITIONS

Initial conditions, for a range of values of Q, need to be provided for the volume-preserving
flow algorithm discussed in Sec. II. We use the approach introduced in Ref. 6, which is briefly
reviewed in this section.

To construct an initial field the spatial coordinates (x1, x2, x3) ∈ R3 are first mapped to the
unit three-sphere via a degree one spherically equivariant map. Explicitly, introduce the complex
coordinates Z1, Z0 (on the unit three-sphere |Z1|2 + |Z0|2 = 1) as

(Z1, Z0) =
(

(x1 + i x2)
sin g

r
, cos g + i

sin g

r
x3

)
, (3.1)

where the profile function g(r ) is a monotonically decreasing function of the radius r , with boundary
conditions g(0) = π and g(∞) = 0.

The initial condition is obtained by taking the stereographic projection of φ to be a rational
function of Z1 and Z0. The simplest example is to take

φ1 + iφ2

1 + φ3
= Z1

Z0
, (3.2)

which has Q = 1 and is identical to the exact solution (1) if the profile function is taken to
be g = tan−1(2rλ/(r2 − λ2)).

Other choices of rational functions and profile functions do not give exact solutions but do
provide suitable initial conditions for the numerical simulation.

An obvious generalization of (3.2) is given by

φ1 + iφ2

1 + φ3
= Zn

1

Zm
0

. (3.3)

This is an axially symmetric field with Hopf charge Q = nm. As discussed later, under volume-
preserving flow this initial condition yields the solution of type An,m, obtained previously using
toroidal coordinates.10
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Initial fields that are not axially symmetric and include knots and links can be obtained from
less symmetric rational maps. For full details see Ref. 6, but some examples that are used in this
paper include the (a, b)-torus knot (here a and b are coprime positive integers with a > b),

φ1 + iφ2

1 + φ3
= Zα

1 Zβ

0

Za
1 + Zb

0

, (3.4)

where α is a positive integer and β is a non-negative integer. The Hopf charge of this field is
Q = αb + βa. The position of this field is an (a, b)-torus knot, and we denote a field of this type by
Ka,b. Of particular relevance will be the simplest torus knot, the trefoil knot, which corresponds to
(a, b) = (3, 2) and can be obtained with Q = 7 from the choice α = 2 and β = 1.

In all the configurations discussed above, the position curve contains only a single component.
However, Hopf solitons also exist in which the position curve contains disconnected components that
are linked. In the simplest case there are just two components and such a linked configuration will
be denoted by the type Lα,β

p,q , where p and q denote the Hopf charges of the two components if each
is taken in isolation, and α and β are the additional contributions to the Hopf charge due the linking
of each of the components with the other. The total Hopf charge is therefore Q = p + q + α + β.

Initial fields of this type can be constructed using a rational map in which the denominator is
reducible. As an example, the field

φ1 + iφ2

1 + φ3
= Zn+1

1

Z2
1 − Z2

0

, (3.5)

is of type L1,1
n,n . It consists of two Hopf solitons that are each of the topological type An,1 and are

linked once to create a field with Hopf charge Q = 2n + 2.

The construction described in this section is easily applied to the situation of a finite simulation
region � by replacing the profile function boundary condition g(∞) = 0 by the condition that g = 0
on the boundary ∂�.

IV. NUMERICAL RESULTS

In this section we present the results of numerical computations of Hopf solitons using the
volume-preserving flow algorithm, with initial conditions constructed as in Sec. III. The simulation
region � consists of the cube |xi | ≤ 75 with spatial derivatives approximated by fourth-order accurate
finite differences using a lattice spacing �x = 1. The flow is evolved using an explicit method with
timestep �t = 0.1 and is terminated once the energy has stabilized at a constant value.

In the continuum theory in Euclidean space the energy of a given solution is invariant under a
spatial rescaling. The simulation lattice and finite region � mean that the energy is not independent
of the volume V, but for a reasonable range of V we find that there is only a weak variation of
the energy. The results of varying V suggest that our quoted energies should be accurate to around
1%. In situations where there are two different solutions with the same value of Q, the comparisons
of energies are made using similar volumes. Generally, the profile function g(r ) is taken to have a
simple linear form, with a cutoff to ensure that the boundary condition is satisfied. Varying the cutoff
allows different values of V to be investigated, and the results are found to be consistent within the
errors mentioned above, of around 1%.

As a first test the A1,1 solution with Q = 1 is computed using initial conditions (3.2) with a
simple linear profile function. The energy is calculated to be E = 1.000, which agrees with the
exact solution to three decimal places. This accuracy is beyond that expected in general. Figure 1.1
displays the position curve for this Q = 1 soliton. For clarity, a tube around the position is displayed
by plotting an isosurface, where φ3 is slightly greater than −1. The stability of this solution has
been confirmed by applying perturbations and also by using initial conditions in which a squashing
perturbation is applied to break the axial symmetry of the A1,1 rational map constructed field. Under
the volume-preserving flow the axial symmetry is restored and the same solution is recovered.

The situation is similar for the Q = 2 solution of type A2,1, which is shown in Fig. 1.2 and
has been constructed using initial conditions (3.3) with (n, m) = (2, 1). This solution is found to be
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TABLE I. Energies and types of the known minimal energy solitons with 1 ≤ Q ≤ 8.

Q Type E E/Q
3
4

1 A1,1 1.000 1.000
2 A2,1 1.794 1.067
3 Ã3,1 2.535 1.112
4 L1,1

1,1 3.156 1.116

5 L1,1
1,2 3.739 1.118

6 L1,1
2,2 4.339 1.132

7 K3,2 4.843 1.125
8 L2,2

2,2 5.297 1.114

stable under perturbations that break the axial symmetry and its energy is computed to be E = 1.794.

This is expected to be the same solution as found using toroidal coordinates, though our energy is 3%
lower than that reported in Ref. 10. This difference is slightly more than that expected from studying
variations of the volume V . A comparison of our results for axially symmetric solutions with larger
values of Q reveals a better agreement with the toroidal computations in Ref. 10, so the origin of
the unusually large disagreement in the case of Q = 2 remains unclear. We have also computed a
solution of type A1,2 and confirmed the results of Ref. 10 that this solution has an energy greater
than that of type A2,1. This result agrees with the similar situation in the Skyrme–Faddeev model.

In the Skyrme–Faddeev model the axially symmetric Q = 3 solution of type A3,1 is unstable
to a perturbation that breaks the axial symmetry4 to form a twisted ring. The notation Ã3,1 is used
to denote the type of this solution to indicate that it has the same topological type as A3,1 but that
the axial symmetry is broken. We have confirmed that a similar situation occurs in the Nicole model
by first constructing the A3,1 solution, using initial conditions (3.3) with (n, m) = (3, 1), and then
applying a nonaxial perturbation. The resulting twisted ring solution is displayed in Fig. 1.3 and its
energy is listed in Table I, together with the energies of all the minimal energy solutions found for
1 ≤ Q ≤ 8.

In the Skyrme–Faddeev model, the minimal energy soliton with Q = 4 is axially symmetric
and is of type A2,2.5 A solution of this type has been constructed in the Nicole model using toroidal
coordinates.10 We have computed this solution using initial conditions (3.3) with (n, m) = (2, 2),
but found that in contrast to the Skyrme–Faddeev model, this solution is unstable to perturbations
that break the axial symmetry. Such a perturbation leads to the linked solution displayed in Fig. 1.4,
which is of type L1,1

1,1. We have also confirmed that the same solution is obtained by starting with the
initial conditions (3.5) with n = 1. The energy of this solution can be found in Table I.

Solitons with Q = 5, 6, 7, 8 have been constructed using a variety of initial conditions for each
Q, including perturbed axial fields, links, and knots. The resulting minimal energy solitons for each
Q are displayed in Fig. 1 and their energies and types are listed in Table I. For Q = 5, 6, the solitons

FIG. 1. (Color online) Position curves for the known lowest energy solitons with Hopf charges 1 ≤ Q ≤ 8.
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FIG. 2. The ratio of the energy E to the conjectured bound Q3/4 for the known minimal energy solitons with 1 ≤ Q ≤ 8.

are links and have the same type as in the Skyrme–Faddeev model. For Q = 7, the soliton is a trefoil
knot and again this agrees with the result of the Skyrme–Faddeev model. For Q = 8, the soliton is
a link of type L2,2

2,2. In the Skyrme–Faddeev model the minimal energy soliton with Q = 8 is also
a link, but it has the different type L1,1

3,3. In the Skyrme–Faddeev model, initial conditions of type
L2,2

2,2 develop reconnections during the energy minimization process and this produces the minimal
energy link L1,1

3,3.6

In the Skyrme–Faddeev model it has been shown16 that a lower bound on the energy exists of
the form E ≥ k Q

3
4 , where k is a known constant. To date, a similar lower bound has not been proved

for the Nicole model: see Ref. 10 for a discussion of the technical difficulties in adapting the proof
in Ref. 16 to the Nicole model. A conjectured lower bound for the Nicole model is E ≥ Q

3
4 , where

the constant has been set to unity, as this is the largest possible value consistent with the energy
of the explicit Q = 1 solution. In the final column of Table I we list the ratio of the energy to this
conjectured bound and plot this ratio in Fig. 2. It is clear that our numerical results are consistent
with the conjectured bound. Furthermore, for Q > 2 the excess above the bound appears to settle
down to a value around 12%, which suggests that the solutions we have found are good candidates
for the global energy minima for these values of Q.

V. CONCLUSION

By introducing a volume-preserving flow we have been able to numerically investigate Hopf
solitons and their stability in the Nicole model. It has been demonstrated that the known axially
symmetric Hopf solitons are unstable for Hopf charges greater than 2 and new lower energy solutions
have been computed that include links and knots. The formation of links and knots mirrors the
situation in the Skyrme–Faddeev model, suggesting that this is likely to be a universal feature of
Hopf solitons. However, for Hopf charges 4 and 8, links are formed in the Nicole model that are
not of the same topological type as in the Skyrme–Faddeev model. As the Hopf charge increases
there is an increased variety of possible link and knot types, so it seems likely that it becomes more
common for the soliton types to disagree in the two theories.

A lower bound on the energy has been conjectured that is consistent with the numerical results
we have obtained. A proof of this conjectured bound would signal another universal feature of Hopf
solitons.

The Aratyn–Ferreira–Zimerman (AFZ) model17 is another conformal field theory with Hopf
soliton solutions. As in the Nicole model, the conformal symmetry allows the consistent use of a
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toroidal ansatz to reduce to an ordinary differential equation for a profile function.8 In the AFZ model
the profile function and associated energy can be obtained exactly in closed form18 for all solutions
of type An,m . This is a consequence of an additional infinite-dimensional symmetry group acting on
a target space. It would be interesting to study the stability of these solutions and to investigate the
existence of knotted and linked Hopf solitons in the AFZ model. There are additional complications
in the AFZ model, related to the infinite-dimensional symmetry of the theory, as discussed in
Ref. 19. The approach of volume-preserving flow therefore needs some modification to be applicable
to this model. This issue is currently under investigation.
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