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Abstract

We consider the problem of designing for complex high-dimensional computer models which can

be evaluated at different levels of accuracy. Ordinarily, this requires performing many expensive

evaluations of the most accurate version of the computer model in order to obtain a reasonable

coverage of the design space. In some cases, it is possible to supplement the information from the

accurate model evaluations with a large number of evaluations of a cheap, approximate version

of the computer model to enable a more informed design choice. We describe an approach which

combines the information from both the approximate model and the accurate model into a single

multiscale emulator for the computer model. We then propose a design strategy for the selection of

a small number of expensive evaluations of the accurate computer model based on our multiscale

emulator and a decomposition of the input parameter space. The methodology is illustrated with

an example concerning a computer simulation of a hydrocarbon reservoir.

Keywords: Computer experiments; Experimental design; Bayes linear methods; Multiscale emu-

lation; Hydrocarbon reservoir.
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1. INTRODUCTION

Computer models are widely used in many areas of scientific research to gain insight into complex

physical systems. Evaluating such models for a given choice of input values can be very expensive in

time and computation. Therefore, the number of evaluations that can be performed within a fixed

budget is limited, resulting in substantial uncertainty associated with the output of the model away

from these known values. To represent this uncertainty, we construct a stochastic representation of

the simulator, known as an emulator, by combining the available model evaluations with appropriate

prior knowledge (Sacks, Welch, Mitchell, and Wynn, 1989b; Craig, Goldstein, Rougier, and Seheult,

2001; Santner, Williams, and Notz, 2003; Kennedy and O’Hagan, 2001).

Often, the computer model can be evaluated at different levels of accuracy resulting in different

versions of the computer model of the same system (Kennedy and O’Hagan, 2000; Craig, Goldstein,

Seheult, and Smith, 1998). For example, this can arise from simplifying the underlying mathemat-

ics, by adjusting the model gridding, or by changing the accuracy of the model’s numerical solver.

Lower accuracy models can often be evaluated for a fraction of the cost of the full computer model,

and can share many qualitative features with the original. Often, the coarsened computer model

is informative for the accurate computer model, and hence for the physical system itself. By using

evaluations of the coarse model in addition to those of the full model, we can construct a single

multiscale emulator of the computer simulation (Craig et al., 1998; Kennedy and O’Hagan, 2000;

Qian and Wu, 2008).

As the accurate computer model is expensive to evaluate, our number of potential evaluations is

limited and hence these evaluations must be carefully chosen. Designing for computer experiments

and emulators has a long history (Sacks et al., 1989b; Currin, Mitchell, Morris, and Ylvisaker, 1991;

Sacks, Schiller, and Welch, 1989a). Popular design methods include space-filling techniques such

as Latin hypercubes (Morris and Mitchell, 1995), or criterion-based methods using, for example,

maximum entropy or mean square prediction error (Santner et al., 2003, Chapter 6). However,

for functions with high-dimensional output spaces, each function evaluation is important for each

of a large number of output quantities, and choosing a small collection of design points that are

informative for all the outputs is very challenging.

In this paper, we describe a methodology for constructing a multiscale emulator by using many

approximate model runs. Secondly, we propose a tractable strategy for making such small-sample

designs for high-dimensional computer model output by decomposing the problem into smaller de-
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sign problems based on a version of the conditional independence representation of the structure of

the design. The structure of this paper is as follows: In Section 2 we describe our general method-

ology for constructing a multiscale emulator of a complex computer model. Section 3 discusses

the structure of the design problem, and introduces our input space decomposition and design

construction strategy. The methodology is illustrated by application to a computer simulation of

a hydrocarbon reservoir in Section 4, and we conclude with discussion in Section 5.

2. MULTISCALE EMULATION OF COMPLEX COMPUTER MODELS

2.1 Analysis of an Uncertain Multiscale Computer Model

We begin with a complex physical system, represented by a q-vector of system attributes, y. The

computer simulator, F (·), is a deterministic function which models this system. The inputs, x, to

the computer model comprise a vector of quantities which influence the value of F (·) (and hence

y), and must be specified before the simulator can be evaluated. The resulting output, F (x), is

a q-vector, corresponding to the system attributes y. Evaluating the simulator F (x) at a given x

can be expensive both in time and resources. This severely limits the number of evaluations that

we can make, and restricts the available information on F (·). Consequently, there is substantial

uncertainty about the simulator at any x which has not yet been evaluated. This uncertainty is

characterised by the emulator, f(x), obtained from the synthesis of appropriate prior judgement

and available model evaluations.

When an approximate version of the simulator is available, we refer to it as the coarse simulator,

F c(·), and the original as the accurate simulator, F a(·), to reflect these differences in precision. In

such a setting, we can obtain many evaluations of the coarse simulator and use these to construct

an informed emulator, f c(·), for F c(·). This provides a basis for constructing an informed prior

specification for the accurate emulator, fa(·). We then select and evaluate a small number of

accurate model runs to update our emulator for F a(·). This transfer of beliefs from coarse to

accurate emulator is the basis of multiscale emulation.

2.2 Output Dimension Reduction

Suppose that we have a large batch of runs, F c, of the coarse simulator over an appropriate space-

filling design, Xc, such as a Latin hypercube (McKay, Beckman, and Conover, 1979; Santner et al.,

2003). Emulation and design are highly computationally intensive, so it is often infeasible to study

every output generated by the computer simulator if the output dimension, q, is large (q ≥ 20 say).

Thus, we first consider reducing the size of this output collection, where possible.
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In this paper, we reduce the dimension by identifying a subset of outputs. We assume that we

have already identified a set of appropriate outputs of interest from the computer model; we then

seek to reduce the size of this collection. Alternatively, we could consider linear combinations or

non-linear transformations however the design methods of Section 3 benefit from having emulators

which are driven by only a relatively small set of inputs, which may not be the case due to the

increased complexity of the relationships between the inputs and the modified outputs. If no

suitable reduction via subset selection can be found, then appropriate linear transformations of the

outputs based, for example, on canonical correlation or principal components may be used in the

following analyses.

To identify the reduced subset of outputs to emulate, we adopt the principal variable selection

method of Cumming and Wooff (2007), which operates by scoring each output, yi, by the value

hi =
∑n(y)

j=1 Corr (yi, yj)
2, and selecting the output which maximises this statistic, where n(y) is the

number of outputs under consideration at this stage of selection. Subsequent outputs are identified

using the partial correlation of the remaining variables, given those already chosen, to eliminate

the effects of the selected outputs from subsequent analysis. We calculate this partial correlation

by first partitioning the correlation matrix R = Corr [y] into the block form

R =







R11 R12

R21 R22






,

where R11 is the matrix of correlations of the identified principal variables, R22 is the sub-matrix

of correlations of the remaining variables, and R12 and R21 contain the correlations between the

two groups. Given a non-trivial set of PVs, the matrix over which we calculate the hi is then given

by

R22·1 = R22 − R21R
−1
11 R12. (1)

The process then iterates until sufficient variables are chosen that the standardised partial variance

of each remaining output is small. In general, we obtain large values of hi when output yi has,

on average, high loadings on important principal components of the correlation matrix and thus

corresponds to a structurally important variable. Designs which are informative for all the selected

principal variables will be informative for the remaining outputs, through the joint correlation

structure.
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2.3 Emulating the Coarse Simulator

For problems of moderate size and complexity, a fully Bayesian approach based on full probability

specifications for the emulator, often using a Gaussian form (Kennedy and O’Hagan, 2001; Sant-

ner et al., 2003), can be appropriate and effective. However, when considering problems of high

dimension it becomes increasingly complex to specify meaningful prior distributions over high-

dimensional spaces and the computations required to learn from data become technically difficult

and extremely computationally intensive, particularly in the case of identifying informative designs.

For these reasons, we adopt a Bayes linear approach in which we specify and construct Bayes linear

emulators. In the Bayes linear formulation (Goldstein and Wooff, 2007), we take expectation as the

primitive quantification of uncertainty and require only the specification of the means, variances

and covariances for the emulators.

To represent our uncertainty about the high-dimensional coarse computer model F c(x), we

build an emulator f c
i (x) for each component i of F c(x). We express this emulator in the following

form

f c
i (x) = sc

i(x) + wc
i (x), (2)

where sc
i(x) is a global trend function which describes the large-scale model effects due to the

inputs, and wc
i (x) is a weakly stationary process which expresses the local residual variation.

The global variation sc
i(x) is often driven by a relatively small subset of the inputs, known as

the active inputs (Craig et al., 2001; Goldstein and Rougier, 2008). Different outputs may have

different active inputs; we denote the set of active inputs for F c
i (x) as XA

[i], and we write x[i] to

denote the corresponding ‘active’ sub-vector of x, so that (2) becomes

f c
i (x) = sc

i (x[i]) + uc
i (x[i]) + vc

i (x), (3)

where the global trend is now a function of the active inputs only, uc
i (x[i]) is a weakly stationary

residual process in x[i], and vc
i (x) is an additional uncorrelated “nugget” process to account for

any remaining variation. When the number of active inputs is relatively small and the variation of

vc
i (x) is low, this representation substantially reduces the dimension of the design computations,

whilst having only a small effect on the accuracy of the final results. Regardless of the form of

sc
i(x[i]), the active inputs give structure to our emulator by identifying the important model inputs,

simplifying the search for informative designs.

Often the emulator trend is highly-structured and can be represented, for example, in the form
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of a regression (Craig, Goldstein, Seheult, and Smith, 1996, 1997). In this case, we write (3) as

f c
i (x) =

pi
∑

j=1

βc
ijgij(x[i]) + uc

i (x[i]) + vc
i (x), (4)

where βc
i = (βc

i1, . . . , β
c
ipi

) are unknown scalars, and gi(x[i]) = (gi1(x[i]), . . . , gipi
(x[i])) are known

deterministic functions of the inputs. It is reasonable to assume that any quantitative global effects

of the input parameters present on the coarse simulator may persist on the accurate simulator,

albeit in a modified form. Writing the emulator trend as a regression form is a natural mechanism

for exploiting this relationship. Additionally, the number of available runs will be heavily restricted

for the emulation of the accurate simulator, and so the coverage of the input space will be poor.

This results in the information contained in the accurate emulator being principally determined by

the global model effects, as any local stochastic process components will be only weakly informa-

tive away from the few chosen model evaluations. Further, regression forms such as (4) produce

enormous computational savings for many of the tasks for which the emulator will be used in

practice.

Given the emulator form (4), and following the Bayes linear approach, our prior uncertainty

about F c
i (x) can be characterised by the prior mean and variance as follows

E [f c
i (x)] = gi(x)T E [βc

i ] + E
[

uc
i(x[i])

]

+ E [vc
i (x)] ,

Var [f c
i (x)] = gi(x)T Var [βc

i ] gi(x) + Var
[

uc
i (x[i])

]

+ Var [vc
i (x)] ,

where we consider {βc
i , u

c
i (x[i]), v

c
i (x)} as independent a priori, and we construct emulators sepa-

rately for each component of F c(x).

The first stage in emulator construction is to determine the form of the global trend function

sc
i(x[i]), for each F c

i (x). This requires the identification of the active inputs x[i], the determination

of appropriate basis functions gi(·), and the quantification of E [βc
i ] and Var [βc

i ] for each emulator

f c
i (x). If appropriate expert information is available on the simulator, then we can specify the

global trend directly, and the prior trend function can be updated by evaluations of F c(x). In

the absence of expert information, alternative methods for determining the global trend include,

for example, using information from earlier versions of the computer simulator, basing the global

trend on leading terms from series expansions of simplified versions of the underlying mathematical

equations, constructing the trend function by regression modelling, or by using main effects plots

based on many coarse model evaluations averaged over sub-collections of inputs (see Craig et al.,

1998).

7



The second component, uc
i (x[i]), is a weakly stationary residual process in x[i] which describes

the portion of residual variation of the emulator which is dependent on x[i]. We specify a prior

covariance structure over uc
i (x[i]). The prior form used for our example analysis is the Gaussian

covariance function

Cov
[

uc
i (x[i]), u

c
i (x

′
[i])
]

= σ2
ui

exp



−
∑

j

(

x[i]j − x′
[i]j

θij

)2


 ,

where σ2
ui

is the point variance, and θij is the correlation length. There is an extensive literature on

appropriate choices for the correlation function (Santner et al., 2003, Chapter 2), and the emulation

and design approaches we describe apply equally to all choices of correlation form.

The process vc
i (x), also known as the nugget, expresses all remaining variation in F c

i (x) that

cannot be explained by x[i] alone. The information contained in vc
i is typically weak and unstruc-

tured compared to sc
i or uc

i , and so we model vc
i (x) as uncorrelated noise with Var [vc

i ] = σ2
vi

. This

is reasonable at the design stage as there is typically no discernible structure within the remaining

inputs that is informative for subsequent design calculations. We consider the variances of the two

residual processes to be proportional to the overall residual variance σ2
i of the simulator about the

emulator trend. Thus, given σ2
i , we write σ2

ui
= (1 − δi)σ

2
i and σ2

vi
= δiσ

2
i , for some typically small

value of δi.

Finally, we assess the hyper-parameters Θi = {σ2
i , θij , δi} of our covariance specifications for uc

i

and vc
i . Again, there are many methods for making such assessments (see for example Craig et al.,

1998).

2.4 Linking the Coarse and Accurate Emulators

We consider that F c(x) is sufficiently informative for F a(x) that it provides a basis for building an

informative prior specification for fa(x). We define the emulator residuals as wc
i (x) = uc

i(x[i]) +

vc
i (x), and similarly for wa

i (x). Our emulator for component i of F a(x) as

fa
i (x) =

pi
∑

j=1

βa
ijgij(x[i]) + βa

wi
wc

i (x) + wa
i (x), (5)

where the trend has identical structure to that of f c
i (x) but with different coefficients, and we

introduce a multiple of the coarse residuals βa
wi
wc

i (x), and a new residual term wa
i (x) unique to the

accurate emulator which absorbs any additional structure in the active inputs or any additional

effects attributable to inputs not previously deemed active. We consider wa
i (x) to be independent

of {βa
ij , β

a
wi
, wc

i (x)} a priori.
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Under this construction, we consider that the global model effects persist across the two sim-

ulators. However, the relative magnitudes of these effects may change differentially as we change

simulators. Therefore we consider the magnitude of each coefficient in fa
i (x) to be an unknown

multiple of the corresponding coarse coefficient, so that βa
ij = ρijβ

c
ij and βa

wi
= ρwi

. This induces

the following form for the accurate emulator

fa
i (x) =

pi
∑

j=1

ρijβ
c
ijgij(x[i]) + ρwi

wc
i (x) + wa

i (x), (6)

and we write ρi = (ρi0, . . . , ρipi
, ρwi

) to denote the vector of scaling parameters. Thus we synthesise

information from the coarse emulator with judgements about the parameters ρi to construct a prior

emulator for F a(x). An analogous approach when we are able to construct an appropriate sequence

of physical experiments is described in Reese, Wilson, Hamada, Martz, and Ryan (2004).

Kennedy and O’Hagan (2000) propose an alternative formulation where the accurate emulator

is linked directly to the coarse simulator

fa
i (x) = ρiF

c
i (x) + wa

i (x), (7)

where ρi is a single unknown scaling factor. This construction is a special case of (6) obtained

by specifying the same prior mean ρ for each element of ρi and a correlation of one between each

pair of elements. However, the emulator form (6) allows for more prior flexibility by not forcing a

single multiplier across the components of the accurate emulator. This single multiplier approach

is generalised in Qian, Seepersad, Joseph, Allen, and Wu (2006), and Qian and Wu (2008) by

introducing a dependence of ρ on x such that

fa
i (x) = ρi(x)F c

i (x) + wa
i (x),

where the form of ρi(x) is a linear relationship or a Gaussian process, thus allowing the scaling

factor to change throughout the input space. This form is difficult to design for directly. However,

the design method we propose in Section 3 explores the main axes of variation for each F c
i (x) and

so will be informative for any such modified form.

In general, our uncertainty judgements about ρi and wa
i (x) will be problem-specific. Our design

methodology is applicable to any valid specifications. For illustration, we now describe the simplest

form that these judgements might take. First, we consider wa
i (x) to be second-order stationary

with

E [wa
i (x)] = 0,

Var [wa
i (x)] = σ2

wa

i

. (8)
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The simplest general parametrisation of prior beliefs derives from considering there to be no sys-

tematic biases between the models, a priori, which implies

E [ρij] = 1. (9)

We specify the covariance matrix of ρi via two constants, σρi
and ri such that

Var [ρij ] = σ2
ρi
, (10)

Corr (ρij, ρik) = ri, j 6= k, (11)

where σρi
≥ 0 and ri ∈ [−1, 1]. While this is a simple form for Var [ρi], by increasing the value of

σ2
ρi

we can relax the relationship between the two simulators, and by changing the value of ri we

can move from prior beliefs that the differences between the two emulators are independent across

components of the global trend, to a model of perfect correlation having only a single effective

multiplier corresponding to equation (7). More complex belief specifications can be used when we

have prior information relevant to these judgements

Given the emulator form (5), our prior beliefs about fa
i (x) are expressed as

E [fa
i (x)] = gi(x)T E [βa

i ] + E
[

βa
wi
wc

i (x)
]

+ E [wa
i (x)]

=

pi
∑

j=1

(

E
[

ρijβ
c
ij

]

gij(x[i])
)

+ E [ρwi
wc

i (x)] + E [wa
i (x)] , (12)

Var [fa
i (x)] = gi(x)T Var [βa

i ]gi(x) + Var
[

βa
wi
wc

i (x)
]

+Var [wa
i (x)] + 2gi(x)T Cov

[

βa
i , β

a
wi
wc

i (x)
]

=

pi
∑

j=1

pi
∑

k=1

(

gij(x[i])gik(x[i])Cov
[

ρijβ
c
ij , ρikβ

c
ik

])

+Var [ρwi
wc

i (x)] + Var [wa
i (x)]

+2

pi
∑

j=1

(

gij(x[i])Cov
[

ρijβ
c
ij , ρwi

wc
i (x)

])

. (13)

We can also calculate the differences between simulators di(x) = F a
i (x)−F c

i (x), for each point

x in a design which is evaluated on both the coarse and accurate simulators. Beliefs about di(x)

are then

E [di(x)] = 0,

Var [di(x)] = gi(x)T Var [βa
i − βc

i ]gi(x) + Var
[

(βa
wi

− 1)wc
i (x)

]

+Var [wa
i (x)] + 2gi(x)T Cov

[

βa
i − βc

i , (β
a
wi

− 1)wc
i (x)

]

. (14)
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The form of the emulator (6) can be simplified assuming that the βc
i are known and then absorbing

their values into the basis functions themselves. Due to the cheapness of F c(x), this assumption

is a reasonable action since our choice of design Xc will be approximately orthogonal, Xc will be

sufficiently large that our estimates for βc
i can be obtained to a good degree of precision, and values

of βc
i will be largely unaffected by alternative choices of Xc. Furthermore, given ample model runs

over Xc we eliminate much of the uncertainty about βc
i and, pragmatically, any remaining variation

in βc
i is negligible in comparison to the other unresolved uncertainties associated with F a(x).

Under this assumption, the values of wc
i (x) are also known at input points taken from Xc since

F c
i (x) has been evaluated at these locations. Therefore, we can reduce expressions (12) and (13)

to a form where only ρi and wa
i (x) are uncertain quantities, giving

E [fa
i (x)] = bi(x)T E

[

ρ+
i

]

+ E [wa
i (x)] , (15)

Var [fa
i (x)] = bi(x)T Var

[

ρ+
i

]

bi(x) + Var [wa
i (x)]

+2bi(x)T Cov
[

ρ+
i , w

a
i (x)

]

(16)

where ρ+
i = (ρi, ρwi

) and we define bi(x) as

bi(x) = (βc
i0gi0(x), . . . , βc

ipi
gipi

(x), wc
i (x)). (17)

These simplifications substantially reduce the complexity of the emulation and design calculations

while, usually, having little effect on the choice of optimal design. Alternatively, if we do not wish

to make such assumptions we can perform the subsequent design calculations in generality using

equations (12) and (13).

2.5 Tuning the Emulator for the Accurate Simulator

The purpose of tuning the prior accurate emulator is to obtain some preliminary information about

the change in behaviour which occurs when we move from the coarse simulator to the accurate.

Specifically, we wish to learn about the degree of association between F c(x) and F a(x) via the

multilevel parameters τ i = (σρi
, ri, σwa

i
) as defined in (10), (11), and (8). To do so, we construct a

small design via the methods described in Section 3, and evaluate it on both the coarse and accurate

simulators. Using these pairs of simulator evaluations, we construct the simulator differences di(xj)

for each point xj in the tuning design. By treating βc as known and constructing the tuning design

only from points within the original coarse design as discussed in Section 2.4, we eliminate the
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variation in βc
i and wc

i (x), which allows (14) to be re-expressed as

Var [di(x)] = E
[

di(x)2
]

= bi(x)T Var [ρi] bi(x) + σ2
wa

i

,

= σ2
ρi
φi(x) + σ2

ρi
riψi(x) + σ2

wa

i

, (18)

where we define bi(x) as in (17), and where φi(x) =
∑

j bij(x)2, and ψi(x) =
∑

j 6=k bij(x)bik(x).

Thus the expected squared simulator difference can be characterised entirely by the multilevel

parameters τ i = {σρi
, ri, σwa

i
}. To tune our beliefs about these quantities, we use the values of

di(x)2 observed from the tuning runs to learn about τ i. Two possible approaches to learning about

τ i are weighted least squares fitting or Bayes linear variance adjustment.

For the weighted least squares approach, give the observed values of di(xj)
2 and their corre-

sponding input values the tuning of beliefs about τ i reduces to the linear regression problem of (18)

in the unknown coefficients τ i. We can then estimate τ i via weighted least squares, weighting each

observation by 1/Var
[

di(xj)
2
]

giving the estimates τ̂ i for the tuning parameters. The Bayes linear

approach is appropriate when we are able to make informed second-order prior specifications for

τ i and di(x)2. We then use the observed di(xj)
2 to perform a Bayes linear adjustment of the prior

values for each of the variance terms (Goldstein and Wooff, 2007, Chapter 8). Both approaches

provide a means of obtaining order-of-magnitude assessments for the values of τ i. The results of

the tuning process can also serve as a validation of the structure of the specification for τ i; for

example, if we determine that ri is close to one, then the simpler single multiplier model of (7) may

be appropriate.

In addition to tuning our beliefs about τ i, the model differences also provide qualitative in-

formation about the simulator changes as we move from coarse to accurate. For instance, we

can identify outputs whose variance change substantially. These outputs may not lend themselves

to a simple multilevel emulation treatment since their behaviour changes substantially across the

two simulators, making it difficult to use F c(x) to construct informative emulators and designs

for F a(x). Any such outputs will be screened out of the subsequent analysis, and emulators for

these outputs will be built individually from the accurate simulator alone. Alternatively, this may

motivate the search for alternative coarsenings of the accurate simulator.

2.6 Updating the Emulator for the Accurate Simulator

Finally, we obtain a design over the simulator inputs appropriate for learning about the accurate

emulator itself. We evaluate the accurate simulator at these design points and combine them
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with the accurate simulator evaluations made during the tuning process, to obtain the collection of

accurate simulator runs F a. We update the tuned prior accurate emulator, fa(x), by this collection

of simulator runs to obtain the adjusted accurate emulator fa
F

a(x).

Since our beliefs about F a(x) are expressed via mean and variance specifications for fa(x), we

update these beliefs by Bayes linear adjustment (see Goldstein and Wooff, 2007). Using only mean,

variance and covariance specifications, the adjusted expectation and variance for the random vector

y, given random vector z, are as follows

Ez [y] = E [y] + Cov [y,z] Var [z]−1 (z − E [z]), (19)

Varz [y] = Var [y] − Cov [y,z] Var [z]−1 Cov [z,y] . (20)

Applying the Bayes linear adjustment formulae, we obtain the following general expressions for the

adjusted expectation and variance of fa
i (x) given the accurate simulator runs F a,

EF
a [fa

i (x)] = gi(x)T EF
a [βa

i ] + EF
a

[

βa
wi
wc

i (x)
]

+ EF
a [wa

i (x)] ,

VarF
a [fa

i (x)] = gi(x)T VarF
a [βa

i ]gi(x) + VarF
a

[

βa
wi
wc

i (x)
]

+ VarF
a [wa

i (x)]

+2gi(x)T CovF
a

[

βa
i , β

a
wi
wc

i (x)
]

+ 2gi(x)T CovF
a [βa

i , w
a
i (x)]

+2CovF
a

[

βa
wi
wc

i (x), wa
i (x)

]

(21)

Thus the adjusted accurate emulator can be expressed in terms of the adjusted accurate coefficients

and residual processes, all of which can be obtained from application of (19) and (20) to the prior

belief statements and the specifications described in Sections 2.4.

If we choose to adopt the simplifying assumptions and use the simplified forms (16) and (15),

then the adjusted expectation and variance of the accurate emulator is written as

EF
a [fa

i (x)] = bi(x)T EF
a

[

ρ+
i

]

+ EF
a [wa

i (x)] ,

VarF
a [fa

i (x)] = bi(x)T VarF
a

[

ρ+
i

]

bi(x) + VarF
a [wa

i (x)]

+2bi(x)T CovF
a

[

ρ+
i , w

a
i (x)

]

. (22)

3. BORDER-BLOCK DESIGNS FOR MULTISCALE EMULATORS

3.1 Border-block structure in the design problem

Our aim is to design a set of n runs of the accurate simulator by selecting input choices x1, . . . ,

xn at which to evaluate F a(x) where n will be small since F a(x) is expensive to evaluate. To

identify an effective design, we use structural information from the coarse emulators to decompose
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the design problem into several smaller and simpler problems. For example, suppose that the

simulator has only two outputs, y1 and y2 say, with coarse emulators f c
1(x) and f c

2(x) which are

expressed as f c
1(x) = sc

1(x1, x2, x3, x4) +wc
1(x) and f c

2(x) = sc
2(x1, x2, x5, x6) +wc

2(x) where sc
i(·) is

a polynomial trend function. Thus {x1, x2, x3, x4} and {x1, x2, x5, x6} are the active input sets for

f c
1 and f c

2 respectively.

The structure exposed by the sets of active inputs shows that the design decomposes into the

smaller active subspaces. Reducing the dimensionality of the design space is beneficial as we can

obtain better coverage of lower-dimensional spaces given a fixed design size, and we can more easily

search over lower-dimensional spaces to identify efficient designs. By further examination of the

active sets {x1, x2, x3, x4} and {x1, x2, x5, x6}, we see that the inputs {x1, x2} are active in both

emulators, whilst {x3, x4} and {x5, x6} are unique to f c
1 and f c

2 respectively. Using the terminology

of Bates, Buck, Riccomagno, and Wynn (1996), XA
B = {x1, x2} is known as the set of border

inputs, which can potentially interact freely with any other active inputs, whereas XA
1 = {x3, x4}

and XA
2 = {x5, x6} are sets of block inputs which can potentially interact only with inputs within

the same block and with the inputs in the border. Thus XA
B and the XA

i , for i = 1, . . . , b, are

disjoint and exhaustive and thus partition the set of active inputs XA. Introducing XU as the

set of inactive inputs across all outputs, allows us to partition the entire set of inputs, X , to the

computer simulator. Furthermore, for any suggested set of design choices for XA
B = {x1, x2}, we

can consider the efficient selection of design choices for XA
1 = {x3, x4} as a separate problem to

that of the efficient selection for XA
2 = {x5, x6}. This decomposition can be depicted in a graph

such as that in Figure 1(a), where inputs are connected if they appear in the same active set.

[Figure 1 about here.]

Of course, with such a small example it is trivial to identify which inputs form the border

and which the blocks. With larger problems, involving tens or hundreds of inputs, making such an

identification by eye becomes substantially more complex. However, methods such as the algorithm

of Zec̆evic̆ and S̆iljak (1994) can determine the necessary partitions automatically. The algorithm

operates on the adjacency matrix of the graph associated with the active inputs and permutes

the columns and rows of the matrix until it obtains a bordered block diagonal structure – see

Figure 1(b) – the input partitions can then be read directly from the permuted matrix. For large

sets of inputs, blocks may contain tens or hundreds of inputs and we may wish to repeat the

decomposition algorithm on each block to further break it into a sub-border and sub-blocks.
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3.2 Design generation

Given the partition of the inputs into active and inactive inputs, we generate the design over X

by combining an informed design over the active inputs, XA, column-wise with an appropriate

space-filling design over the inactive inputs, XU . We compare alternative choices of design for

XA with respect to a design criterion C(·). The choice of C(·) depends upon the purpose of the

design and the future goals of the analysis. Each criterion is the sum of the expected gain in

information, appropriately defined, for each selected output on the accurate simulator. Design

criteria are discussed in Section 3.3.

We propose a method for the construction of a design over XA that exploits the border-block

structure. By partitioning the active input space, we construct the design for XA by combining

smaller sub-designs for each of the border and the blocks. In the example, we decomposed the input

space into three subspaces {x1, x2}, {x3, x4} and {x5, x6}. Therefore, we construct an appropriate

design for each of these 2-dimensional spaces and combine them column-wise to form our final

design. In order to apply this methodology, we need to be able to construct larger designs by

augmenting an existing design with additional columns. For this purpose, Latin hypercubes are

useful since they can be augmented in such a way and yet still preserve their properties.

To begin the process, we construct an initial design for the border inputs. In our example,

this is the set XA
B = {x1, x2}. For our initial design, we generate many possible Latin hypercube

designs over XA
B and then choose the design which maximises the minimum inter-point distance

(Morris and Mitchell, 1995). Given the design for XA
B , we now consider designs for each XA

i . Since

we can design over each XA
i independently once the design for XA

B is fixed, the order in which we

consider the XA
i is unimportant. With a design for XA

B , any design over XA
i will provide sufficient

information to determine the expected information for selected simulator outputs with active inputs

in XA
i ∪XA

B according to criterion C(·). In the example, having fixed a design over XA
B = {x1, x2},

then, for any choice of design over XA
1 = {x3, x4}, we can determine the gain in information for

fa
1 (x), and so the block designs can be evaluated with respect to criterion C(·). For each block

XA
i , we generate a number of Latin hypercube candidate designs over XA

i each of which is then

augmented column-wise by our chosen design for XA
B and is evaluated with respect to C(·). The

design which maximises this criterion value is then selected and the process is repeated for each of

the remaining blocks.

With an initial design over XA, we iteratively refine the design to improve its overall perfor-
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mance. For each of the sub-designs over XA
B and the XA

i , we generate many new potential candidate

sub-designs by the above methods. We then consider the effect of replacing the existing sub-design

with any of the candidates. If the replacement results in an improvement in performance with

respect to C(·), then we accept the change. We move through all of the design subspaces, each

time seeking preferable sub-designs, with each iteration attempting to swap out the sub-designs in

pursuit of a better overall design. To prevent confounding of the inputs by accidental selection of

similar designs for different blocks we check the orthogonality of the resulting design before accept-

ing a change in sub-design, and reject a potential change if it would introduce pairwise correlations

above a threshold level of 0.85. The iterative refinement stops when our search procedures result in

little or no further improvement in C(·). If each block has been further reduced into a sub-border

and sub-blocks, then optimisation for each block is also structured according to this procedure.

3.3 Design criteria

3.3.1. Designing to tune fa(x). Tuning is described in Section 2.5 and is the process by which

we learn about the values of the multilevel parameters τ i = (σρi
, ri, σwa

i
) from a small number of

observed simulator differences. Designing for this goal is focussed on selecting the input points that

result in simulator differences which are effective at reducing the uncertainty associated with τ i.

We proposed two possible methods for tuning the prior accurate emulator – weighted least squares,

and a Bayes linear variance update. We now describe appropriate design criteria for each method.

Weighted Least Squares tuning. Given the observed values of the squared simulator differ-

ences, kij = di(xj)
2, over the design points xj for j = 1, . . . , n, the tuning problem reduces to the

linear regression of (18) with coefficients τ i which are then estimated via weighted least squares

giving the estimates τ̂ i. A good tuning design is therefore one which substantially reduces the

variance in τ̂ i, suggesting a criterion of the form

CWLS = tr{Var [τ̂ i]} = tr{AiW iA
T
i }, (23)

averaged over all outputs. We define τ̂ i as the estimates of τ i, W i as the diagonal matrix of weights,

Ai = (V iW iV
T
i )−1V iW i, and V i as the model matrix with jth row equal to (1, φi(xj), ψi(xj)).

Bayes Linear tuning. The Bayes linear approach to tuning requires a second order prior spec-

ification for τ i and kij , and a specification of their covariance. Given this information, we use the

observations kij to perform a Bayes linear variance adjustment of the prior values for each of the
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multilevel parameters. An appropriate criterion related to the effectiveness of the update is the

resolution of the Bayes linear adjustment of τ i by kij (Goldstein and Wooff, 2007). The resolution

is a scale-free measure which quantifies the magnitude of the effect of an adjustment in reducing

our uncertainties. The resolution value lies in the interval [0, 1], where larger values indicate a

greater proportion of the uncertainties have been resolved. The resolution of the adjustment of the

random vector X by the random vector D is defined as

RD(X) =
1

rX

tr{Var [X]−1 Cov [X,D] Var [D]−1 Cov [D,X ]},

where rX is the rank of the matrix Var [X]. Thus, our design criterion is

CBL = Rki
(τ i),

averaged over all chosen outputs where ki is the vector of the kij .

3.3.2. Designing to learn about F a(x). At the final stage in the emulation process, we seek a

design which has the greatest effect in reducing uncertainty about F a(x) as assessed by the adjusted

variance of the accurate emulator given the simulator evaluations. This variance does not depend

on the values of the model evaluations and follows from (21).

For small-sample designs, it will not be possible to reduce much of the uncertainty associated

with the residuals from the accurate model over most of the input space, and most small-sample

designs will not differ greatly in their performance at this task. Therefore, we focus our attention

on variance reduction for (βa
i , β

a
wi
wc

i (x)), and design using a criterion based on

VarF
a

i
[fa

i (x)] ≃ gi(x)T VarF
a [βa

i ] gi(x) + VarF
a

[

βa
wi
wc

i (x)
]

+2gi(x)T CovF
a

[

βa
i , β

a
wi
wc

i (x)
]

. (24)

As we are concerned with reducing uncertainty in F a(x) across the whole input space, we choose a

collection of input points, X, which covers the space and evaluate equation (24) over X. Thus we

get an adjusted variance matrix which we collapse into a scalar using the trace for use as a design

criterion

CL = tr{GT
i VarF

a [βa
i ]Gi} + tr{VarF

a

[

βa
wi
wc

i (X)
]

}

+2 tr{GT
i CovF

a

[

βa
i , β

a
wi
wc

i (x)
]

}, (25)

where X is the grid of evaluation points, Gi is the matrix with jth row gi(xj) corresponding to

the jth design point xj.
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The criterion (25) can be simplified when we have eliminated all variation in βc
i , evaluating the

criterion over the coarse design at Xc and consequently further eliminating variation in wc(x) as

discussed in Section 2.4. Under these assumptions, we can use the simplified form (22) to write the

design criterion CL as

CL2 = tr{VarF
a

[

ρ+
i

]

B∗
i }, (26)

where ρ+
i = (ρi, ρwi

), and B∗
i = BiB

T
i where Bi is the matrix with jth row bi(xj) as defined in

(17) for design point xj. We favour designs which give the greatest reduction in these criteria.

The criteria (25) and (26) are defined univariately for each selected output. To obtain an

aggregate score, we sum or average the design criterion values over the individual outputs. As an

extension, we could allow for different outputs to have different contributions to the overall combined

criterion value. Possible weightings could include the principal variable loadings hi to reflect the

intrinsic importance of the outputs and their representativeness of outputs not included in the

design calculation. Other choices could include measures of the quality of available observational

data if we intend to calibrate the emulator, or utility scores to measure the value of accurate

predictions for each output variable if prediction is our ultimate goal.

4. EXAMPLE: HYDROCARBON RESERVOIR MODEL

4.1 Model description

We illustrate our approach with a simulation of a hydrocarbon reservoir provided by Energy SciTech

Ltd. The model is based on a 48× 26× 25 grid. Each cell represents a region of subterranean rock

with particular geological properties and containing varying proportions of oil, water and gas. The

reservoir contains four producing wells which pump fluids out of the reservoir under fixed operating

conditions, and a single injection well which injects gas into the reservoir to maintain pressure and

production levels at the extraction wells.

The outputs of the model are time series of aspects of well behaviour such as pressures, produc-

tion rates of oil, water and gas, cumulative production of oil, water, and gas, and ratio quantities

including water cut and gas-oil ratio. For the purposes of this example, we focus on a single time

point approximately eighteen months into the operation of the simulation. At this point there are

a total of 65 outputs for consideration. The inputs to the model are a collection of twenty scalars

which affect various geological properties. These inputs control quantities including permeability,

porosity, transmissibility of the geological faults, critical oil saturation properties, and properties

of the reservoir’s aquifer.
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4.2 Results

4.2.1. Coarse evaluations. To obtain a fast approximation we coarsened the vertical gridding

of the model to just two layers and we used the 25-layer grid for the full simulator. The evaluation

time for the coarse simulator was approximately 30 seconds compared with 35 minutes for the

accurate simulator. The coarse model was then evaluated over a 1500 point Latin hypercube in all

20 inputs to provide us with our initial batch of coarse model runs.

4.2.2. Screen the outputs. Application of principal variable methods to the coarse simulator

evaluations identified those outputs which accounted for the majority of the variation in the model

runs. As there is substantial correlation among the outputs, the principal variable screening proved

to be effective and the output collection could be well-represented by a relatively small subset.

Overall, we consider that we can obtain a good representation of all 65 outputs using a subset of

15, as the proportion of variation explained by our chosen principal variables is at least 0.947 for each

remaining output. The names of the chosen 15 variables are given in the first column of Table 1.

The prefixes ‘W1’, ‘W2’, ‘W3’, ‘W4’ indicate that the variable corresponds to correspondingly

numbered production well, whereas ‘G1’ corresponds to the single gas injector. The quantities

measured at each of those wells are given by the variable suffix: ‘pre’ and ‘bhp’ correspond to two

measures of pressure; ‘wct’ is the water cut; ‘gor’ is the gas-oil ratio; variables such as ‘wat.tot’ and

‘oil.rt’ correspond to the total water production, and the rate of oil production respectively; and

finally ‘gasinj.tot’ is the total amount of gas injected.

4.2.3. Coarse emulation. Prior to emulation, the design was scaled so all inputs took the range

[−1, 1] , and the outputs were scaled to have mean 0 and sample variance 1 over the design. The

first stage in constructing an emulator of the form (4) is to identify the collection of active inputs

XA
[i] for each F c

i (x). The active inputs for each emulator were determined from the simulator runs,

F c, by a stepwise model search using simple linear regression. At each stage, all terms involving

a given input were removed from the model then the new model was fitted and the proportion of

variation explained was evaluated and compared to that of the original model via the adjusted R2

coefficient. The input which explained the least amount of output variation was then removed,

and the process iterates until we have identified the best model using three to six inputs, which

we consider to be XA
[i]. We chose this method for model selection as our aim here is to drive down

the residual variance; there are a number of alternative choices for selection methods and criteria
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(see for example Hocking, 1976), and our design and emulation methodologies are not tied to any

particular approach.

The next stage in emulation is to choose the basis functions gi(·) for each F c
i . Our design

methodology is not tied to any specific form of gi(·), and so possible bases could include simple

monomials, orthogonal polynomials, or more general basis function such as those found via generic

screening methods (Welch, Buck, Sacks, Wynn, Mitchell, and Morris, 1992). For this example,

we consider the maximal set of basis functions to be the monomial terms comprising an intercept,

linear, quadratic, cubic and pairwise interaction terms in the active inputs. To select an appropriate

representation of F c
i (x) using this basis, the saturated linear regression model over these terms is

fitted to the coarse simulator runs, and we perform a stepwise selection removing a single term at

each stage whose impact on the proportion of variation explained by the model was less than 1%.

Adding any more active inputs to the emulators did not provide any substantial improvement in

the quality of the OLS fit.

To quantify E [βc
i ] and Var [βc

i ], we fit the linear regression model in the basis functions gi(x[i])

by OLS. We then assign E [βc
i ] to be the least squares regression estimate of the coefficients, and

we consider Var [βc
i ] to be the least squares variance of the corresponding estimates. Given a large

number of evaluations of F c(x) over an approximately orthogonal design, the associated estimation

errors will be negligible and these assessments will be reasonable order of magnitude posterior

specifications.

Finally, we extract the emulator trend residuals and then apply the robust variogram methods

of Cressie (1991) to determine appropriate values for Θi. We then use these values as plug-in

estimates and adjust the residual processes in light of the observed residuals.

[Table 1 about here.]

A summary of the emulation is given in Table 1. The adequacy of the fit variesbetween the

outputs, but most appear to have a moderate to good level of adjusted R2. Well 1 oil production rate

(W1.oil.rt) fared relatively poorly, and further investigation showed that we are unable to obtain a

better fit using any number or combination of available inputs as the output behaviour could not

be well-described by a simple functional form. The emulation revealed that of the 20 inputs only 8

were identified as being active for the outputs under consideration. Those inputs deemed inactive

included all multipliers pertaining to the aquifer, four multipliers for fault transmissibilities and all

multipliers for oil saturation properties.
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4.2.4. Linking coarse and accurate emulator. In order to design for the tuning runs, we wish to

construct prior accurate emulators of the form given in (6). Therefore, we need to make specifica-

tions for the prior expectations of the multilevel parameters τ i = (σρi
, ri, σwa

i
) as defined in (10),

(11) and (8). At this stage we have no knowledge about how the two simulators may differ, so we

make simple pragmatic choices. For σρi
, we assign the prior expectation to be E [σρi

] = 0.5, which

when combined with (9) corresponds to a prior belief that the model coefficients are unlikely to

change sign between simulators. We assign a small correlation between the ρi by setting E [ri] = 0.5,

and finally in the absence of any other information, we consider that Var [wa
i (x)] = Var [wc

i (x)] re-

sulting in E
[

σwa

i

]

= σi, the residual variance of the emulator trend.

[Table 2 about here.]

Since this is an illustrative example rather than an actual case study investigated in real time,

a batch of 200 accurate model runs were available to allow us to check the validity of the prior

emulator form (6). Fitting the model terms in the coarse emulators to these accurate simulator

runs, we observe that the coefficients in the model trends do indeed change differentially rather

than scaling uniformly (see for example Table 2) indicating that the extra prior flexibility provided

by (6) is valuable. It should be noted that the problem of model choice, i.e. determining XA

and the gi(·), requires a substantially larger number of simulator runs than for estimation of the

coefficients, when the form of model is given. Therefore, we require a large batch of available

simulator evaluations to determine the form of the emulators, but far fewer are required to learn

about the βa. This is a crucial benefit of the multilevel approach as the coarse simulator provides

us with ample information to determine the emulator form, while the estimation of βa can be

performed from fewer carefully-chosen, accurate simulator runs.

[Figure 2 about here.]

4.2.5. Design for tuning. Partitioning the inputs into the border and blocks by application

of the algorithm discussed in Section 3.1 gives the decomposition in Figure 2(a). The structure

of the emulators is such that there is a three-dimensional border {kx, ky, P}, corresponding to

permeability in the x and y directions, and porosity, and the remaining inputs fall into either a

larger block containing three inputs, or two blocks containing a single input each. Since the sizes

of these subsets are small relative to the number of overall active inputs, there are clear advantages

to decomposing the design problem in this way.
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We have three multilevel parameters requiring estimation to tune the emulators, and so we

require at least 3 tuning runs. Evaluations of the accurate computer model are expensive and we

do not wish to expend a substantial amount of resources at this stage in order to allow for ample

evaluations for learning about the accurate emulator. We therefore choose to construct a tuning

design of size 6 to allow an additional degree of freedom for each parameter. Following the general

design procedure discussed in Section 3.2, we generated a design with a criterion value of 0.893

using CWLS from (23). We used the WLS method for tuning rather than the Bayes linear approach

as we did not want to confound the question of our ability to make informed prior judgements about

the physical issues involved in coarsening reservoir simulators with the general question about the

effectiveness of our methodology. The chosen design is presented in Table 3. We are free to make

any choices in the remaining inputs, for example using a Latin hypercube. This design was then

evaluated on both the coarse and accurate computer simulators.

[Table 3 about here.]

4.2.6. Tuning. Using the two sets of model runs, we construct the simulator differences and

tune the multilevel parameters τ i using the WLS method of Section 2.5, weighting each of the

model differences by its prior variance. We now examine our tuned values for τ i, and perform

a simple data analysis of the model differences to investigate the behaviour of the two functions.

This was particularly insightful as it revealed that the outputs could be divided into three groups.

The first group (labelled (∗) in Table 1) had coarse-accurate differences that were well-behaved

and conformed reasonably well to the multilevel model. The second group (labelled (+)) consisted

of variables which displayed substantially greater variation on the accurate simulator than on

the coarse simulator – interestingly this group contains outputs which are all concerned with the

production of water from the reservoir. The final group (labelled (−)) behaved in an opposite

manner, having far less or even no variation on the accurate simulator compared to the coarse

model.

The behaviour of the (+) and (−) variables is likely an artefact of the reservoir coarsening

disrupting meaningful relationships between the two simulators for these variables. In these cases,

it is likely that the coarsening of F c(x) was too severe, and that using a model at an intermediate

level of accuracy would remedy this problem. Further investigation after the analysis suggested

that coarsening to five layers appeared to eliminate this problem. To simplify our account, we

suppose that we choose to stay with our original coarsening.
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Therefore, for design purposes, we chose to screen out the (+) and (−) variables and to focus on

the remainder. Since the coarse simulator is uninformative about the accurate simulator for these

quantities, they convey little or no useful information relevant to the construction of informative

designs for F a(x). These inputs are not discarded from the analysis, but will be further investigated

using standard emulation techniques once runs of the accurate simulator have been performed. For

the remaining quantities, the new choices for values of τ i were not substantially different from our

prior specifications, therefore we shall treat our original choices as acceptable prior values at the

next stage. The number of outputs is now further reduced from 15 to 7. However, the remaining 7

outputs explain at least 50% of the variation of the remainder, at least 75% of the variation of 52,

and at least 95% of the variation of 38 of the remaining 58 outputs.

4.2.7. Design for learning. The change in the collection of outputs impacts the composition of

the collection of active inputs. The border-block partition now has the structure shown in Figure

2(b) which includes only five active inputs. For the seven outputs that we have retained, we now

develop a design to learn about the accurate emulators. For each output we seek to maximise the

reduction in the variance via minimising CCF from (26). We construct this design as a combination

of the tuning design as given in Table 3 (since this has not yet been used to perform an update of the

emulator), with an additional design generated by the border-block methods of Section 3, evaluating

the design criterion over the combination of the two designs. For this stage, we constructed new

designs adding from 2 to 26 additional points. To simplify the search process, we proceed by adding

two new observations at each stage. This makes it easier to compare different designs and speeds

up the iterative search algorithm. As the size of the problem increases, such simplifications become

important.

[Table 4 about here.]

[Table 5 about here.]

The value of the design criterion for the new designs is given in Table 4, and the first six points

of this additional design are given in Table 5. The criterion value for the tuning design alone is

92.130. Adding extra points to the design and optimising for the appropriate criterion produces a

noticeable improvement in design performance, with the performance increasing as the design size

increases albeit with generally diminishing returns. We observe a similar relationship in Figure 3

which displays the performance of the accurate emulator in terms of the average proportion of
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variation in the accurate simulator outputs explained by the accurate emulator as we progressively

increase the size of the final design from the initial 6-point tuning design. Again, we observe steep

learning for the first six design points (corresponding to the points in the tuning design) followed by

progressively diminishing returns. As the size of the improvement in design quality and simulator

variation explained tends to level off as the design size increases, if the design budget is very tight for

this stage then we might settle for only 6 additional runs. However, if more runs were possible then

we might perform a further one or two batches of 6 runs, supporting the formal design calculations

with careful data analysis given the results of each batch.

[Figure 3 about here.]

Finally, we compared the design obtained from combining the tuning design with a design

generated by border-bock methods using (25), with that obtained from combining the tuning

design with designs constructed from maximin Latin hypercubes. The Latin hypercube designs

were generated in a similar fashion, adding 2 points each iteration in a manner which preserves

the Latin hypercube property of the design and preferring designs which maximised the minimum

inter-point distance. 100 such comparison designs were generated and their performance according

to criterion (25) was calculated. The results are presented in Figure 4. We can see from the plot

that, even with this relatively low-dimensional space, the border-block method clearly outperforms

the Latin hypercubes and provides consistently good performance, whereas the Latin hypercube

designs suffer from substantial internal variability.

[Figure 4 about here.]

5. DISCUSSION

Learning about complex high dimensional functions with many outputs from limited numbers of

evaluations is a very challenging problem. We have presented a method to tackle this problem

which exploits fast approximations to the simulator and uses valuable structural information about

the model parameters. We have decomposed the problem into a number of stages each of which

can be performed in different ways depending on the requirements of the problem. Each stage

may be carried out in a more or less thorough way depending on how carefully we make our belief

specifications, how focused we are on particular subsequent practical uses for the analysis, and how

much time and computing power we are prepared to expend on seeking efficient designs. These

are highly problem specific issues. The modular structure of our approach, and the computational
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simplifications within the Bayes linear formulation, give plenty of scope for upgrading any individual

step which is particularly important in a specific problem. We view the framework that we have

suggested as giving a sensible set of guidelines for organising the tasks that we should carry out

when planning to use a coarse simulator as the basis for small sample designs, and our suggestions

for implementing each stage supply a tractable starting baseline for carrying out each task.

We have restricted our attention to the role of the coarse simulator in creating informative

designs. We therefore finish our account at the point at which we have sufficiently exploited infor-

mation from the coarse simulator that we are ready to move on to the second design stage, namely

capturing the information in the full simulator which cannot be approximated by information in the

coarse version. We have emphasised the requirement for small sample designs for the first design

stage, in our approach, as this releases the maximum budget for the second stage of the design

process. This process starts with a diagnostic analysis as to the ways in which our representation

breaks down, for example by “leave one out” diagnostics, more detailed comparisons of the covari-

ance structure of predicted against observed outcomes or more open-ended investigations of the

information contained in all of the simulator evaluations to that point. Predictive discrepancies,

in combination with expert judgement, should form the basis of new exploratory designs which

can be used to uncover systematic features that were represented in the first stage of the analysis

simply as unstructured variation. The additional structure uncovered on the full simulator may be

then investigated, where relevant, on the coarse approximation, leading to an iterative version of

the design cycle that we have described.
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Output Active Emulator No. Model Classification
inputs trend adj. R2 Terms

W4.pre kx, P, FR2 0.90 11 (∗)
W1.oil.rt kx, ky , P 0.63 12 (∗)
W3.bhp kx, ky, P, FK 0.75 16 (−)

W2.wat.tot kx, ky, P, FR2 0.76 17 (+)
W3.wct kx, ky, kz , P, FK , FR2 0.71 25 (−)
W2.gor kx, ky , P 0.86 11 (−)
W4.wct kx, P, FW 0.85 12 (+)

G1.gasinj.tot kx, ky, kz, P 0.93 12 (∗)
W2.liqrt kx, ky , P 0.70 11 (∗)
W3.gor kx, ky , P 0.77 11 (∗)

W2.wat.rt ky, P, FR2 0.71 12 (+)
W4.wat.tot kx, ky, P, FY 0.87 15 (+)

W4.gor kx, ky, P, FW 0.89 16 (−)
W1.oil.tot kx, ky , P 0.81 8 (∗)
W4.oil.rt kx, ky , P 0.74 10 (∗)

Table 1: Emulation summary for each model output
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Well 2 Liquid Rate Well 1 Oil Total
Coefficient Coarse Accurate Coarse Accurate

(Intercept) 499.8 -3424.5 566.4 -654.0
kx -1614.1 -1353.4 22.9 56.9
ky 216.9 467.1 50.3 230.4
P 2824.7 9681.3 1418.4 5044.6
k2

x 1594.9 2643.6
P 2 -3504.9 -6448.4 -1936.9 -5406.9
k3

x -536.9 -1050.0
P 3 1325.7 1472.2 787.5 1879.9

kx : ky -66.0 84.85 -42.9 -45.33
kx : P 57.7 -819.2
ky : P -182.6 -457.7 -42.5 -223.1

R2 0.70 0.86 0.81 0.72

Table 2: Coefficients for the emulator trend of Well 2 Liquid Rate and Well 1 Oil Total fitted to
the coarse model runs, and to 200 accurate model runs
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kx ky kz P FY FW FK FR2

-0.85 -0.85 -0.95 -0.96 -0.93 -0.99 -0.84 -0.82
0.78 0.64 -0.33 0.51 0.14 0.20 -0.63 -0.14
-0.53 -0.29 0.91 -0.22 0.76 0.64 0.39 0.40
0.66 -0.36 0.55 -0.35 0.61 -0.65 -0.11 0.26
-0.10 0.74 0.26 0.05 -0.23 0.70 0.15 -0.61
0.23 0.19 -0.54 0.86 -0.52 -0.03 0.88 0.73

Table 3: The tuning design generated for XA
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Additional Criterion Additional Criterion
Design Size Value Design Size Value

0 92.130 14 31.958
2 56.500 16 31.072
4 46.760 18 30.594
6 42.142 20 30.040
8 37.289 22 29.524
10 34.792 24 29.237
12 32.861 26 29.167

Table 4: Values of design criterion (25) for the second stage design
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kx ky kz P FR2

0.26 0.34 0.02 -0.57 0.78
-0.28 -0.74 -0.09 0.46 0.24

-0.63 0.44 0.63 0.76 -0.59
0.80 -0.41 -0.80 -0.69 0.94

-0.83 0.16 -0.35 0.19 0.07
0.92 0.89 0.47 -0.06 -0.84

Table 5: The design for the final stage of the analysis
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