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Abstract 

It is now well-established that the visual brain is divided into two visual streams, 

the ventral and the dorsal stream. Milner and Goodale have suggested that the 

ventral stream is dedicated for processing vision for perception and the dorsal 

stream vision for action (Milner and Goodale, The visual brain in action, 1995). 

However, it is possible that on-going processes in the visuomotor stream will 

nevertheless have an effect on perceptual processes. This possibility was 

examined in the present study. We have examined the visual form-discrimination 

performance of the form-agnosic patient D.F. with and without a concurrent 

visuomotor task, and found that her performance was significantly improved in 

the former condition. This suggests that the visuomotor behaviour provides cues 

which enhance her ability to recognize the form of the target object. In control 

experiments we have ruled out proprioceptive and efferent cues, and therefore 

propose that D.F. can to a significant degree access the object‟s visuomotor 

representation in the dorsal stream. Moreover, we show that the grasping-

induced perceptual improvement disappears if the target objects only differ with 

respect to their shape but not their width. This suggests that shape information 

per se is not used for this grasping task. 
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Introduction 

It is now well-established that the visual areas of the cerebral cortex are divided 

into two visual streams: the ventral and the dorsal stream (Ungerleider and 

Mishkin, 1982; Van Essen, 2005). According to Milner and Goodale (1995) the 

ventral stream processes visual information for perceptual purposes. The dorsal 

stream in contrast uses visual information to guide action (visuomotor stream). 

This distinction is based largely on studies with the form-agnosic patient D.F. 

(Goodale and Milner, 2004). She suffered extensive lesions to her ventral stream 

(Milner et al., 1991; James et al., 2003), which left her almost unable to 

discriminate visual forms (Milner et al., 1991). However, in grasping studies she 

showed an implicit ability to adjust her grasp aperture to the different forms of 

visually presented objects (Goodale et al., 1991). These and similar observations 

provided support for the two-visual stream framework (Goodale and Milner, 1992; 

Jeannerod and Rossetti, 1993; Goodale and Milner, 2004).  

 

One aspect of D.F.‟s behaviour, which is puzzling in this context, is her apparent 

inability to use the visual information available to her visuomotor stream directly 

to improve her performance in perceptual tasks. It is obvious that her 

performance in perceptual tasks is worse than her performance in visuomotor 

tasks (Goodale et al., 1991; Milner et al., 1991). But the reason for this is not 

clear. One explanation would be that the two streams are not connected. 

However, there is evidence that such anatomical connections do exist (Felleman 
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and Van Essen, 1991). A second explanation might be to assume that D.F.‟s 

lesion also destroyed these connections.  

 

A third possible explanation could be that the relevant information in the dorsal 

stream is only available in the context of a concurrent visuomotor task. If that 

were true, we would predict that D.F.‟s shape-discrimination performance should 

improve in the context of a relevant visuomotor task. This prediction was tested 

in a study by Murphy et al. (1996). They found that D.F.‟s shape discrimination 

did improve during a grasping task, but the possibility that proprioceptive or 

efferent cues rather than visual cues helped D.F. in this condition could not be 

excluded, and indeed were proposed as the explanation. We revisited this 

question but included conditions which allowed us to compare the contributions 

of proprioceptive, efferent and visual cues to D.F.‟s shape-discrimination 

performance in the context of visuomotor tasks. We also examined whether D.F. 

relied on form or size information by including a condition where only form but no 

size cues were available.  

 

Our rationale for performing these experiments was that by studying D.F., we 

might be able to uncover interactions between the two visual streams that would 

not be measurable in healthy subjects, whose shape recognition is at ceiling. In 

D.F., the higher levels of the ventral stream have been deprived of their normal 

input from earlier shape areas, due to the severe damage sustained by area LO.  
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Our hypothesis was that D.F. might be able to gain access to the products of 

object processing in the dorsal stream.  

 

Materials and Methods 

Subjects. Patient D.F. suffered a carbon monoxide intoxication in 1988 which led 

to extensive bilateral brain damage (Milner et al., 1991). During a recent MRI 

examination it was found that her brain lesions are mostly confined to the ventral 

lateral occipital cortex, comprising in both hemispheres parts of Brodmann areas 

18 and 19, but largely excluding V1 and the fusiform gyrus (James et al., 2003). 

The site of her lesions match very well the site of area LO (the lateral occipital 

area) (Malach et al., 1995; Kanwisher et al., 1996; Kourtzi and Kanwisher, 2000; 

Grill-Spector et al., 2001). Area LO has been identified by fMRI studies as 

important for visual object recognition (James et al., 2000; Kourtzi et al., 2003; 

Stanley and Rubin, 2003; Ferber et al., 2005). D.F. suffers from visual form 

agnosia, i.e. she has trouble discriminating between different visual shapes, 

forms, orientations and distances. Apart from that her perceptual abilities are 

largely intact, e.g. she has normal visual acuity, and relatively good luminance, 

colour, and texture perception (Milner et al., 1991). At the time of testing she was 

50 years old. Five healthy, age-matched women (mean age: 51.2, SD: 7.7) 

served as control subjects. All subjects were right-handed by self-report. All 

experiments were undertaken with the understanding and written consent of 

each subject. The study conforms with the Code of Ethics of the World Medical 
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Association (Declaration of Helsinki), as printed in the British Medical Journal (18 

July 1964).  

 

Experimental Procedures. Five experiments were carried out. Common to all 

experiments was a shape discrimination task, i.e. subjects had to report verbally 

whether the target object was a square or a rectangle. An overview of the five 

different experiments is presented in Table 1. The setup for the experiments is 

illustrated in Fig. 1.  

 

The first experiment served as the baseline task for the other experiments. It 

was a simple shape discrimination task. No concurrent motor task was used. 

Subjects were wearing LC shutter glasses (Plato Inc., Toronto, Canada), which 

were closed before the beginning of each trial, and opened at the start of the trial. 

The LC shutter glasses remained open for 2 s, and remained closed until the 

start of the next trial. The target objects were presented standing upright at a 

distance of 50 cm. The square object had a width of 6.50 cm, and the rectangular 

object had a width of 7.27 and height of 5.81 cm, corresponding to an aspect 

ratio of 80%. Depth of all objects was 1.5 cm. Surface area of both objects was 

identical. These objects were chosen because previous experiments with D.F. 

had shown that she was unable to discriminate between them. The purpose of 

Experiment 1 was to confirm these earlier findings. The square was used for one 

half of the trials; different trials were intermingled in a random sequence; a total 

of 130 trials were presented.  
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Experiment 2 combined the shape-discrimination task with a grasping 

movement. Subjects had to grasp the target object with their right hand and call 

out the shape of the object during the movement. Subjects were asked to use a 

precision grip, i.e. to pick up the object with thumb and index finger. The 

sequence of events was similar to that in Experiment 1. The LC shutter glasses 

opened at the start of the trial, and closed at the onset of the hand movement, 

i.e. the release of the start button. In some of the trials the target object was 

moved out of reach before the subject could contact the object. This was done 

using a system developed for catching studies (Schenk et al., 2000). This system 

uses two motor-driven linear axes moving a sledge which carries a magnet. The 

sledge can move along any trajectory along the horizontal plane. The axes and 

the sledge are covered by a steel plate. The target object sits on a magnetic 

carrier on top of the steel plate, and thus follows the movements of the magnet 

below the steel plate. This system is connected to a pair of photosensors. In our 

experiments, the photosensors were triggered when the subject‟s hand came 

within 20 cm of the target object, the signal from the photosensors then triggering 

the onset of object motion, thus putting the target object beyond the subject‟s 

reach. For this purpose the object was accelerated at 7 m/s2 for 25 cm, reaching 

a halt at a distance of 1 m. These trials were called “non-contact” trials and were 

introduced to ensure that subjects could not use haptic information to guide their 

decision on the shape of the target object. Only results from the non-contact trials 

were used in our analysis. These trials were intermingled with contact trials, 
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where the object did not move, and subjects were thus able to contact and pick 

up the object. Half of the trials were non-contact trials. In the case of both contact 

and non-contact trials, half of the trials used the square objects. A total of 260 

trials were presented to the subjects in this experiment. The hand movement was 

measured using a 3D movement registration system (Fa. Zebris, Tuebingen, 

Germany). Two markers were attached to the nails of the index finger and thumb 

of the right hand. Data were recorded with a sampling frequency of 50 Hz.  

 

In Experiment 3 we tested the possibility that proprioceptive or efferent 

information from the grasping movement might be used to facilitate the shape-

discrimination performance. In particular we were interested in the contribution of 

proprioceptive or efferent information from the peak hand aperture, because this 

is the parameter of the grasping movement most closely linked to the shape of 

the target object (Paulignan et al., 1991; Rosenbaum, 1991; Hoff and Arbib, 

1993; Jeannerod, 1996; Smeets and Brenner, 1999). Proprioceptive information 

was excluded by asking subjects to call out the shape just before the start of their 

movement. This was achieved by a series of tones which were identical in 

duration and frequency. The first tone, which occurred 1 s after the start of the 

trial, prompted the subject to name the shape of the object, and the second tone, 

which occurred after another 1 s, prompted the subject to start the hand 

movement. Trials where the subject either named the object after the second 

tone, or started the movement before the second tone, were discarded and 

repeated in random order at the end of the experiment. Because the shape 
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discrimination response in this experiment was concluded before the start of the 

hand movement, any haptic information about the shape that the subject might 

have obtained would have come too late to influence the discrimination 

response. For this reason there was no need for non-contact trials in this 

experiment. The role of efferent cues was addressed by comparing the accuracy 

of D.F.‟s verbal report and her grip adjustment. We assumed that if efference 

information guided her verbal report then there should be a close link between 

the accuracy of her report and the accuracy of her motor response (i.e. the peak 

grip aperture). To manipulate the accuracy of the motor response we asked D.F. 

and the other subjects to use different hands for different trials. Subjects were 

informed before the start of the trial that they should either use the right, left or 

both hands. In a third of the trials the right hand was to be used, in another third 

the left, and in the remaining trials, subjects were asked to use the index fingers 

of the two hands together to pick up the object. To measure the movements of 

both hands four markers were attached to the index finger and thumb of both 

hands. A total of 390 trials were performed by the subjects in this experiment. 

 

Experiment 4 was designed to explore the relationship between the motor task 

and the improvement in perceptual performance. In particular this experiment 

addressed the question of whether a non-specific activity-related attentional 

enhancement might be sufficient to explain the improved perceptual 

improvement observed in Experiments 2 and 3. If this explanation were correct, 

we would expect that any concurrent motor activity would lead to improved shape 
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discrimination. A pointing task was chosen because although very similar to the 

grasping task, it is different in that size and shape of the object are not strictly 

relevant for performance of the task. In all other respects this experiment was 

identical to Experiment 2.  

 

Experiment 5 is a variation of Experiment 2 (i.e. a combination of a shape-

discrimination and a grasping task). In this experiment we examined which 

specific aspect of the target object is used as a cue for the shape discrimination 

task. In Experiment 2 and 3 shape and size information were confounded. In 

Experiment 5 these two aspects were disentangled by using target objects of 

identical width, but different shape. In this case size or width could not be used to 

discriminate between the shapes. Two pairs of objects were used. The first pair 

of objects had a width of 7.27 cm; the second pair of objects had a width of 8.16 

cm. Each pair comprised a rectangle with a width:height ratio of 5:4 (using 

heights of 5.81 cm and 6.52 in the first and second pair respectively), and a 

square (i.e. height and width identical). To obtain equal numbers of trials for each 

specific object, we used 32 trials per object and trial type (i.e. non-contact versus 

contact trials) leading to 128 non-contact trials, and thus 256 trials in total. 

 

Each subject took part in three sessions. Each session lasted for approximately 

90 minutes with a break of 10 minutes after the first 45 minutes. The five 

experiments were repeated in each session in a different sequence.  
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Analysis and statistics. Since control subjects performed the shape 

discrimination task in all five experiments without error, only D.F.‟s results were 

subjected to a formal analysis. As is the case in the analysis of most single-case 

studies, trials were treated as cases. Thus the sample of cases which could be 

used for each experiment ranged between 128 and 130 trials, which means that 

a normal distribution could be assumed for the statistical analysis. In general, we 

adopted a significance threshold of 5%; however, in the case of multiple 

comparisons, we used a Bonferroni correction (when available) or a stricter 

threshold of 1%. 

For the analysis of DF’s verbal responses, binomial tests were used to check 

whether the number of correct verbal responses differed significantly from 

chance. To compare proportions of correct responses across tasks we used χ2 

tests.  

For the analysis of DF’s grasping response in Experiment 2 and 3, we first 

smoothed the kinematic traces using a non-parametric Kernel filter (Marquardt 

and Mai, 1994) and then determined the peak grip aperture for each trial in each 

hand condition. Grip aperture refers to the three-dimensional distance between 

the two digits that were used in the grasp (namely index and thumb in the case of 

unimanual grasps, or index fingers of the two hands, in the case of bimanual 

grasps). We used a two-factor between-subject ANOVA to examine the effects of 

object shape (i.e. square versus rectangle) and hand (i.e. right, left, both) on 

maximum grip aperture. Independent-sample t-tests were used for specific 

comparisons.  
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To compare the verbal and the grasping response in Experiment 2 and 3, 

we first transformed the values of the two response types into a common format. 

For this purpose, d‟ values were computed for both response types. The 

parameter d‟ corresponds to the distance between the z-transformed distribution 

of the responses for two different categories (i.e. in our case square versus 

rectangle). It is thus a measure of the accuracy with which it is possible to 

discriminate between the two categories on the basis of the obtained responses 

(Gescheider, 1997: see pp. 116-124). To obtain d' values for both response types 

we used the formulae (5.3-5.6) provided by Gescheider (1997: pp. 118-119). In 

the case of the discriminative (verbal) response, d' was computed on the basis of 

the proportion of correct and incorrect responses, while in the case of the motor 

response, the means of the peak grip aperture for squares and rectangles, and 

their standard deviations, were used to calculate d'.  

 

Although d‟ is the conventional parameter used to measure and compare 

discrimination performance, it has the disadvantage that only one value per 

condition is computed, and thus no statistical comparison is possible. Therefore, 

as an alternative approach to comparing verbal and motor responses, we also 

computed expected proportions of correct responses on the basis of the motor 

response. This allowed us to employ χ2 tests to test whether the actually obtained 

proportion of correct responses differed significantly from those proportions 

which were expected if D.F. had based her response on the maximum grip 
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aperture used during the grasping response. For the calculation of the expected 

proportion, we assumed that D.F. would need to adopt a criterion value for the 

peak grip aperture and then compare the maximum grip aperture in each trial to 

decide whether this response was targeted at the square (maximum grip 

aperture below the criterion value) or the rectangle (maximum grip aperture 

above the criterion value). In order to make the comparison between verbal and 

motor responses as conservative as possible, we assumed that D.F. would have 

used the optimal criterion (i.e. the criterion that would have yielded the highest 

number of correct responses): Both the d' calculations and the computation of 

expected proportions were conducted for all three hand conditions.  

 

Table 1 and Figure 1 about here 

 

 

Results 

It should be noted that all control subjects performed the shape-discrimination 

task without error in all five experiments. Accordingly we will restrict our 

presentation of the results to those obtained in patient D.F. 

 

Experiment 1:  D.F.‟s ability to discriminate between a square and a rectangle 

was at chance in this purely perceptual task (49.2%, see Fig. 2).  

Experiment 2: Verbal performance: In this experiment, she was asked to name 

the shape while she was reaching forward to pick up the object. In this condition 
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her ability to recognize the shape improved significantly above chance (75%: p 

<0.0001, see Fig. 2).  

Relation between motor and verbal performance: To compare D.F.‟s motor 

and verbal performance we used two approaches. First, we transformed both the 

grip aperture and the results from the verbal report into d' measures. We found 

that d' (d'=1.34) based on her verbal report was substantially higher than that 

based on her grip apertures (d'=0.58). Secondly, we also computed the 

proportion of correct responses that would be expected if D.F. had used the 

width of her maximal grip aperture to determine the shape of the object. Again, 

we found that the number of correct responses which was actually obtained in 

her verbal report (75%) was significantly higher (χ2(1)=4.56; p =0.033) than the 

proportion of correct responses which was expected on the basis of the 

distribution of her grip apertures (62%). In summary, this suggests that 

proprioceptive or efferent information about the grip aperture cannot explain the 

high accuracy of D.F.‟s verbal discrimination performance in this condition.  

 

Figure 2 about here 

 

Experiment 3: The purpose of this experiment was to test whether 

proprioceptive or efferent information about the peak grip aperture used for a 

specific object could explain why D.F.‟s shape discrimination performance was 

better during the grasping task. To explore the role of proprioceptive information, 

D.F.‟s shape discrimination performance in Experiment 3 (no proprioceptive 
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information available) was compared to her discriminative performance in 

Experiment 2 (proprioceptive information available). To explore the role of 

efferent information, we examined the relationship between the accuracy of 

D.F.‟s verbal report on the shape and the accuracy with which she adjusted her 

grip aperture to the differently shaped objects in the three different hand 

conditions (right, left, both hands). We will first describe her performance on the 

verbal shape-discrimination task, and then present the findings on grip aperture. 

Finally we will examine how the differences in motor performance obtained for 

the three different hand conditions relate to D.F.‟s verbal performance in those 

conditions.  

 

Verbal performance:  DF‟s shape-discrimination ability was significantly above 

chance irrespective of the hand with which she tried to grasp the object (p < 

0.0001 for right, left and both hands). Of particular importance is her performance 

in the right-hand condition. This performance can be compared directly to her 

performance in Experiment 2, where it was also the right hand that was used. 

However, in contrast to Experiment 2, where proprioceptive information was 

generally available, this information was unavailable in Experiment 3, because 

the verbal response was given before the start of the movement. Nevertheless 

D.F.‟s shape-discrimination performance was not significantly different in the two 

experiments (X2(1)=0.52; p>0.40, see Fig. 2). This suggests that D.F. did not use 

proprioceptive information. The finding of above-chance shape discrimination in 

this condition also seems to suggest that the planning of a grasping movement is 
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sufficient to trigger an improved perceptual performance. With respect to the 

question of whether D.F. might have used efferent information, it is interesting to 

note that her discrimination performance is worst in the bimanual condition (see 

Fig. 5). However, this is the very condition in which her grip is most differentiated 

for different object shapes (cf. Fig. 3 and Fig. 4). This suggests that there is a 

poor correlation between D.F.‟s verbal and motor performance, and thus little 

support for the idea that she used efferent information for the shape 

discrimination task. This will be explored further by means of a formal 

comparison of D.F.‟s motor and verbal performance (see below).  

 

Peak grip aperture: To examine the effect of hand and shape on peak grip 

aperture, an ANOVA with hand (right, left, both hands) and shape (square versus 

rectangle) as between-subject factors was carried out. Both factors, shape 

[F(1/384)=19.98; p<0.0001] and hand [F(2/348)=715.14; p <0.0001] produced 

significant main effects. The effect of shape reflects a slightly bigger grip aperture 

for the rectangle (139 mm) than for the square (134 mm). The effect of hand is 

produced by a significant bigger grip aperture for the bimanual condition (162 

mm) than for both the right hand (124 mm) and the left hand condition (123 mm). 

Interestingly, we also obtained a significant interaction between shape and hand. 

This interaction effect can be explained by the fact that a significant difference 

between the square and rectangle condition is only obtained in the bimanual 

condition [t(128)=4.375; p < 0.001]. In the right-hand condition the difference 

approached significance, but did not satisfy the more stringent significance 
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criteria of 1% adopted for post-hoc comparisons. In the left-hand condition, the 

peak grip aperture for the square and rectangle were not significantly different 

form each other (t(128)=0.032; p >0.50). These results are illustrated in Figures 3 

and 4.  

 

Figures 3 and 4 about here 

 

Relation between motor and verbal performance: Again we computed d' and 

the expected proportion of correct responses on the basis of the obtained 

distribution of grip apertures to compare D.F.‟s motor and verbal performance in 

this experiment. As can be seen in Fig. 5a, d' based on the verbal report is 

consistently higher than that based on grip aperture. This indicates that the 

shape discrimination performance obtained in verbal report is higher than what 

could be expected purely on the basis of the grip aperture information. Secondly, 

we also computed the proportion of correct responses that would be expected if 

D.F. had used the width of her maximal grip aperture to determine the shape of 

the object. Again, we found that the number of correct responses which would be 

expected on this basis was, at least in two out of three conditions, significantly 

smaller than the proportion of correct responses which were actually obtained 

(right hand: expected proportion: 60%; actual proportion: 78%; χ2(1)=9.53; p 

=0.0021; left hand: expected proportion: 58%; actual proportion: 71%; 

χ2(1)=4.83; p =0.028; see Fig. 5b). In fact in the case of left-hand trials, we would 

predict that on the basis of D.F.‟s grip aperture values, her shape-discrimination 
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ability would not be significantly different from chance, when in fact her 

performance was clearly above chance (p < 0.0001). Taken together our findings 

suggest that D.F.‟s superior shape discrimination in association with grasping 

cannot be explained by her use of proprioceptive or efferent cues from her 

grasping responses.  

Figure 5 about here 

 

Experiment 4: To test whether D.F.‟s improvement of shape discrimination 

found during the grasping task was specific to grasping, we repeated Experiment 

2 in a modified version, asking her to point to, rather than grasp, the target 

object. In this case her discrimination performance was not significantly above 

chance (p =0.188). The essential difference between the grasping and the 

pointing task is that while aspects of the object‟s shape, namely its width, have to 

be processed for grasping, they are not needed for pointing. Experiment 5: 

Given that during grasping it is actually the object‟s width and not its shape per 

se that is used to guide the grasping response, we examined whether D.F.‟s 

ability to discriminate shapes would also improve in a condition where the 

grasping movement is directed towards objects of different shape but identical 

width. It turned out that in this condition DF‟s ability to discriminate between the 

two shapes was at chance (p =0.331).  
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Discussion 

Our results indicate that the dorsal representation of visual object information in 

patient D.F. can influence her ability to distinguish shapes. This is implied by the 

finding that D.F.‟s ability to discriminate different shapes is significantly improved 

in the context of a grasping task. This finding suggests that during the grasping 

task information about the shape which was previously inaccessible to D.F. 

becomes now available. However, before we come to the conclusion that it is 

visuomotor information from the dorsal stream which supports this improvement, 

we need to rule out other possible sources of information which also become 

available during the grasping movement and might have helped in identifying the 

shape of the target objects. These additional sources of information are 

proprioceptive and efferent cues.  

 

The results from Experiment 3 indicate that neither proprioceptive nor efferent 

cues can explain D.F.‟s superior shape discrimination performance during the 

grasping task. The relevance of proprioceptive cues can be ruled out on the 

basis of the finding that D.F.‟s ability to discriminate between shapes is not 

diminished in a condition where she has to name the shape first and move 

afterwards. In this condition, proprioceptive information is not available during the 

shape discrimination task. Nevertheless D.F. might have already planned the 

grasping movement at that stage, and this means that in principle efferent 

information from the grasp might have been available. However, since the 

efferent information is just a copy of the motor commands that actually determine 
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the grasping movement, one might expect that the information contained within 

the efferent copy is closely related to the characteristics of the actual formation of 

the grip. Accordingly, it would be expected that in this case the accuracy of D.F.‟s 

verbal report would be closely related to the accuracy of her grip formation. 

However, D.F.‟s verbal accuracy in recognizing the shape of the object was 

consistently and significantly higher than the accuracy of her grip formation. This 

dissociation was most striking in the case of left-hand grasping. Here her grip 

apertures when reaching for the square and the rectangle were practically 

identical, but her verbal report nevertheless showed that she could quite reliably 

discriminate between the two objects. In conclusion, these findings suggest that 

D.F.‟s improved shape discrimination performance during the grasping task was 

based neither on proprioceptive nor on efferent information. This conclusion is 

quite different from that of previous studies, which examined the effect of 

movement cues on the perceptual performance of patients with visual form 

agnosia. In those earlier studies proprioceptive and efferent cues could not be 

ruled out, and therefore the observed perceptual improvements were always 

attributable to the patient‟s use of non-visual motor cues (Dijkerman and Milner, 

1997; Goldstein and Gelb, 1918; Landis et al., 1982; Murphy et al., 1996).  

 

There is one further alternative explanation, which is worth considering, namely 

that the improvements observed during the grasping task are induced by 

attentional changes. It is well-established that motor activity or even action-

related visual stimuli can improve performance of patients with attentional 
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deficits, most notably in patients with spatial neglect (Robertson et al., 1995; 

Humphreys and Riddoch, 2001; Humphreys, 2004). It should be noted that this 

account would need to assume that the attentional effects are fairly specific, 

otherwise it could not explain why other motor tasks (i.e. pointing [cf. Exp. 4] or 

the grasping of objects of different shapes but identical width [cf. Exp. 5]) did not 

also yield improvements in perceptual performance. Nevertheless specific 

attention-enhancing effects of motor activity could explain D.F.‟s improved 

performance in the grasping task. However, as has been said many times before, 

attention and representation are not independent from each other. Attention must 

act on a given representation, and thus the question arises as to which 

representation is enhanced by the concurrent motor activity. If we assume that it 

is the visuomotor processing in the dorsal pathway which is enhanced, we end 

up with an explanation which is very similar to our own, namely that D.F.‟s 

improved performance is based on access to dorsal-stream processing. The 

alternative, namely that motor-induced attention could have enhanced the 

representation in the ventral pathway is highly unlikely given that recent MRI and 

fMRI evidence has shown that the relevant form areas of the ventral pathway are 

destroyed in patient D.F. (James et al., 2003). 

 

The findings of this study not only show that the perceptual system can 

successfully access information from the dorsal stream, they also suggest that 

the intact grasping behaviour of D.F. cannot be taken as evidence for implicit 

processing shape per se in the dorsal stream. In the first studies on D.F.‟s 
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grasping behaviour (Goodale et al., 1991; 1994b) her ability to adjust her grip to 

the shape of the target object might seem to suggest that she still had implicit 

access to shape information. In reality, however, Goodale et al. (1991) only 

reported that D.F. could use width information to guide her grasping movements. 

In traditional grasping studies the effects of shape information and width 

information are hard to disentangle because changes in shape are only likely to 

have an effect on grasp aperture when those changes are linked to changes in 

object width (Jeannerod, 1996; Smeets and Brenner, 1999; Rosenbaum et al., 

2001). However, using the paradigm from Experiment 5, it was possible to 

disentangle the effects of shape and width. Combining the shape discrimination 

task with the grasping task allowed us to assess the visual information that was 

present in the dorsal stream independently of its effect on the formation of the 

grasp aperture. We could therefore examine whether target objects of identical 

width but different shape would also improve shape discrimination performance. 

We expected that if shape information is used during a grasping movement and 

thus represented in the dorsal stream, then improved shape discrimination 

performance should be observed even for objects of different shape but identical 

width. However, we found that D.F.‟s performance in this condition is not better 

than chance, suggesting that she is only processing width information in this 

grasping task, and not shape.  This means that D.F.‟s preserved grasping ability 

cannot be taken as evidence for the processing of shape information in the 

dorsal pathway. This conclusion is consistent with an earlier study showing that 

D.F.‟s ability to choose optimal grip points is impaired in a condition where “true” 
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shape processing is required because no single dimension is sufficient to inform 

the best choice of grip points (Carey et al., 1996; Goodale et al., 1994a). 

However, it is worth noting that in non-human primates evidence for shape 

processing in the dorsal stream has been obtained (Sereno & Maunsell, 1998). 

 

Although it seems likely that DF‟s improved perceptual performance is based on 

information from the dorsal stream, it remains unclear as to exactly how this 

improvement could come about. If we assume that only the ventral stream 

provides visual information to our cognitive system then we also have to assume 

that it is via the modulation of activity in preserved parts of D.F.‟s ventral stream 

that the dorsal representation exerts its effect on the perceptual judgement. 

Candidates for such preserved parts of DF‟s ventral stream have been identified 

in a recent fMRI study (James et al., 2003). In that study it was shown that if 

grey-scale or colour images of objects are used, both DF‟s primary visual cortex 

and areas of the lingual and fusiform gyri become active, whereas these areas 

remain inactive when line-drawings are used. These regions of the ventral 

stream might be able to support the width discrimination required in our 

perceptual tasks if additional information from the dorsal stream is provided. 

Alternatively, it is quite possible that the cognitive system can gain direct access 

to the visual representation in the dorsal stream. In fact functional imaging 

studies have shown that some of the more posterior areas in the dorsal stream 

(notably area cIPS) are activated during object recognition tasks (Faillenot et al., 

1997, 1999; James et al., 2000, 2002). Unfortunately, on the basis of our findings 
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it is not possible to decide whether it is through dorsal/ventral interaction or 

through direct access to this dorsal activity that the improvement of perceptual 

performance with concurrent visuomotor activity is achieved.  

 

One notable aspect of our results is that D.F.‟s discriminative performance was 

able to improve by virtue of visuomotor processing prior to the execution of her 

grasping response. This seems to suggest that the relevant representation of 

object attributes in the dorsal stream becomes available during the programming 

of the visuomotor act. This would be at odds with a characterization of the dorsal 

stream as a fast visual processing stream involved only in the online guidance of 

movements (Rossetti et al., 2003). However, there is evidence from patients 

(Perenin & Vighetto, 1988; Milner et al., 2003, Schindler et al., 2004) and healthy 

subjects (Culham et al., 2003; Frey et al., 2005; Medendorp et al., 2005; Prado et 

al., 2005; Sigman et al., 2005) that the dorsal stream involvement in visuomotor 

control is by no means restricted to tasks which require online visual guidance. 

Indeed it is also apparent in tasks where all the relevant visual information is 

available prior to movement execution. In this case the dorsal stream is 

presumably involved in extracting the visuomotor parameters used for the motor 

program. A good example is provided by the visuomotor deficits of patients with 

lesions in the dorsal stream, namely patients with optic ataxia. These patients do 

have problems with the on-line visual guidance of movements (Pisella et al., 

2000), but they also have problems at the movement programming stage in both 

their pointing behaviour (Milner et al., 2003) and in taking obstacles into account 
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when reaching (Schindler et al., 2004). Thus our assumption that the dorsal 

representation is already available during the stage of planning a movement is 

quite consistent with our current knowledge of the role of the dorsal stream in the 

control of movements.  

 

Our finding that D.F.‟s discriminative performance was already improved prior to 

the execution of the grasping response may also seem surprising in light of the 

results of the earlier study of D.F. by Murphy et al. (1996). They compared D.F.‟s 

performance not only in a conventional shape-discrimination task but also in a 

visuomotor version where she had to indicate her choice by reaching for the 

correct target object. It was found that her shape-discrimination performance was 

superior in this visuomotor task. Murphy and colleagues argued, however, that 

D.F. had to rely on in-flight corrections to her reaching responses in order to 

achieve this superior discrimination performance. This reliance on in-flight 

corrections might seem to be inconsistent with our claim that the relevant 

information for the width discrimination becomes available prior to the execution 

of the reaching movement. We do not believe, however, that Murphy et al.‟s 

findings contradict our claim of the availability of width information during the 

planning stage. Rather, we think that the specific nature of the task used by 

Murphy and colleagues might explain why their results differed from ours. 

Murphy et al. used a task where two objects were presented on any given trial, 

and thus D.F. first had to decide which of the two objects corresponded to the 

target shape (e.g. a square), and then move towards the selected target object. 
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Thus, in this task D.F.‟s initial movement program would have been determined 

by her initial perceptual judgement, and therefore quite possibly dominated by 

degraded information from the ventral stream (such information was sufficient to 

result in a greater than chance discrimination in their task, as the authors used 

an easier pair of shapes than ours). Veridical dorsal-stream information about the 

target object may have become available later on and triggered the reported mid-

flight corrections. This is in contrast to our study where no target selection was 

required. Thus in our study D.F. could prepare the reach-to-grasp movement at 

the beginning of the trial, and the information processed during the motor 

preparation phase was then available to influence her verbal report. In our view 

these differences between the tasks used in the two studies could explain why in 

contrast to Murphy et al. we found evidence of visuomotor facilitation already at 

the motor programming stage.  

 

In conclusion, our findings suggest that the perceptual system may be able to 

gain access to an object‟s visuomotor processing in the dorsal stream, when 

more direct routes are unavailable due to brain damage. (It must be admitted, of 

course, that better „discrimination‟ does not necessarily imply better „perception‟, 

and instead D.F. could have been employing some indefinable “implicit” cues of 

the kind that enable blindsight patients to perform above chance in discrimination 

tasks.) Our results also suggest that the adjustment of D.F.‟s grip aperture to 

different types of rectangular objects is based on width rather than on shape 

information. On this interpretation, the finding of intact grip adjustment in D.F. 
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would only reflect implicit size processing, rather than shape processing per se, 

in the human dorsal stream. 
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Captions 

 
Figure 1. Illustration of the setup used for the five experiments. At the beginning 

of the trial the subject‟s hand rested on the start switch. The release of the start 

switch indicated the start of the subject‟s movement. In some trials (non-contact 

trials) an escape movement of the target object was triggered as soon as the 

subject‟s hand crossed the line between the two photosensors.  

 

Figure 2. Shape discrimination performance (by verbal report) in Experiments 1-

5. The bars depict the proportion of trials where D.F. recognized the shape of the 

target object correctly. The solid line indicates the values expected in the case of 

chance performance. D.F.‟s shape discrimination was only better than chance in 

Experiments 2 and 3. The results from Experiment 3 are restricted to trials where 

the right hand was used. Control subjects performed without error in all five 

experiments. 

 

Figure 3. Averaged time-course of D.F.‟s grip apertures in Experiment 3. 

Trajectories for each hand (left hand, both hands, right hand) are presented in 

separate graphs. The mean trajectory for trials with the square and the rectangle 

are represented by separate curves. The grasp trajectories for the two different 

shapes only differ in the case of bimanual grasping.  

 

Figure 4. Mean of D.F.‟s maximum grip aperture in Experiment 3. The different 

hands are presented in different groups. Empty bars represent the mean (and 
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standard deviation) of trials with the square; filled bars represent trials with the 

rectangle. A significant difference between the grip aperture for the square and 

the rectangle is only found in the case of bimanual grasping.  

 

Figure 5. A comparison of D.F.‟s discriminative and motor responses in 

Experiment 3 using two different measures of accuracy. A. d‟ measures the 

accuracy with which the two shapes are discriminated. Empty bars depict d‟ 

based on the motor response (i.e. maximum grip aperture); filled bars show d‟ 

based on the verbal response (i.e. proportion of correct responses). As 

measured by d‟, discrimination accuracy is consistently (and in the case of the 

unimanual conditions substantially) higher than the d‟ for the motor response. B. 

Empty bars depict the proportion of correct shape discrimination responses 

which would be expected if D.F. had based her verbal response on the maximum 

grip aperture attained in any given trial. Filled bars depict the actual proportion of 

correct responses which were obtained in verbal report. In the case of the 

unimanual conditions, the actual proportion of correct responses is significantly 

higher than the proportion that would be expected on the basis of the motor 

response.  
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Table 1: Summary of procedures and properties of Experiments 1-5.  
 

Exp.  Sequence Verbal Response Motor response Objects 

1 
1. Start of Trial  -> Shutterglasses open 

occurs at any time 
after start of trial 

None 
Shapes have 
different width 

2. After delay of 2 s  -> Shutterglasses close 

2 

1. Start of Trial  -> Shutterglasses open 

occurs at any time 
after start of 
movement 

Grasping with right 
hand 

Shapes have 
different width 

2. Onset of motor 
response  

-> Shutterglasses close 

3. Photosensor blocked  
-> Object moves out of reach (only in case of 
non-contact trials) 

3 

1. Start of trial  -> Shutterglasses open 

occurs after 1
st
 beep 

Grasping with right, 
left or both hands 

Shapes have 
different width 

2. After delay of 1 s  -> “beep”: prompts verbal response 

3. Further delay of 1 s -> “beep”: prompts motor response 

4. Onset of motor 
response 

-> Shutterglasses close 

4 As in Exp. 2  
occurs at any time 
after start of 
movement 

Pointing with right 
hand 

Shapes have 
different width 

5 As in Exp. 2  
occurs at any time 
after start of 
movement 

Grasping with right 
hand 

Shapes have 
identical width 
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