1	
2	
3	
4	
5	
6	
7	
8	Untangling differentiation in arc lavas: constraints from
9	unusual minor and trace element variations at Salak Volcano,
10	Indonesia
11	
12	
13	Heather K. Handley ^a *, Jon P. Davidson ^a , Colin G. Macpherson ^a , James A. Stimac ^b
14	^a Department of Earth Sciences, Durham University, South Road, Durham, DH1 3LE, UK.
15	^b Chevron Geothermal and Power, Sentral Senayan I, 11 th Floor, Jalan Asia Afrika No. 8,
16	Jakarta 10270, Indonesia.
17	
18	
19	
20	
21	
22	
23	
24	*Corresponding author. hhandley@els.mq.edu.au

1 Abstract

2 Volcanic rocks from Salak Volcano in West Java display intriguing minor and trace element geochemical variations with silica. TiO₂ and P₂O₅ contents, Y, HFSE and REE 3 4 concentrations are abnormally rich in the central vent group (CVG) lavas (e.g. Y = 32-695 ppm; Yb, 3-6.5 ppm) and display striking positive correlations with SiO₂. This contrasts with 6 rocks erupted at side vents (SVG) on the eastern and western flanks of Salak and with rock 7 suites of most other Javan volcanoes where these elements remain relatively constant with 8 increasing SiO₂. Modelling of major and trace element data indicate that low pressure 9 fractional crystallisation exerts strong control on the composition of CVG lavas. HFSE and 10 HREE data are inconsistent with magma mixing, and can be explained by incompatible 11 behaviour during fractionation of plagioclase, clinopyroxene and Fe-Ti oxide \pm orthopyroxene and olivine. The observed variations in K/Rb and Ba/Th ratios and correlation of ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ 12 13 with indices of differentiation necessitate assimilation of a low K/Rb, low Ba/Th, Sr-rich contaminant with 87 Sr/ 86 Sr of ~ 0.7048 during fractional crystallisation. For the eastern flank 14 15 SVG, deep fractionation of a phase in which HFSE and HREE are compatible (e.g. 16 amphibole) is implicated. By extension, this is also suggested to occur beneath the majority of 17 Javan volcanoes. Radiogenic isotope ratios (Sr-Hf-Nd) of Salak lavas are similar to other 18 Javan lavas. SVG rocks erupted from the eastern flank vent have significantly more primitive 19 Hf-Nd isotope ratios than other Salak volcanic rocks and may represent the least 20 contaminated (by arc crust or subduction input) Salak lavas. 21 22 Key words: crustal contamination; fractional crystallisation; geochemistry; HFSE; 23 petrogenesis; Sunda arc

1 1. Introduction

2 Understanding how geochemical signatures are imparted to arc rocks is problematic. 3 Element compositions in arc lavas are dependent not only on the composition of the primary 4 magma from which they originated, but also on the multitude of differentiation processes 5 primary magma may suffer en route to the Earth's surface. Therefore elucidating 6 composition-modifying processes in arc lavas is a prerequisite before the nature, composition 7 and components of the source can be determined. Among the variety of processes capable of 8 masking element concentrations of primary magmas, fractional crystallisation, crustal 9 contamination and magma mixing (e.g. Ewart, 1982; Davidson et al., 1987; Hildreth and 10 Moorbath, 1988; Tepley et al., 2000) are commonly identified in arc lavas. 11 Separate differentiation trends occur in lavas from within the single volcanic centre at 12 Salak Volcano in West Java, and so this volcano provides a great opportunity to study the 13 impact of shallow level processes on the composition of arc lavas. The steeply-sloped, 14 positive correlations of HFSE (high field strength elements) and HREE (heavy rare earth 15 elements) with indices of differentiation displayed by rocks erupted from the central vent at 16 Salak are highly unusual compared to most other Sunda arc volcanic rock suites. This paper 17 constrains the relative importance of various differentiation processes at Salak, in order to 18 explain the abnormal HFSE-HREE differentiation trends displayed by the central vent 19 eruptive products and their genetic relationship to flank vent volcanic rocks. This information 20 is essential before the characteristics of the source can be investigated and it will aid in 21 elucidating the nature of crust in West Java, of which relatively little is known. We suggest 22 that fractionation of an (unseen) HFSE-HREE bearing phase plays an important role in the 23 chemical evolution of most Javan island arc magmas.

24

25 **2. Tectonic setting**

1 Gunung Salak, 2211m, is a prominent stratovolcano located in the Quaternary volcanic 2 front of the Sunda arc in West Java. The Sunda arc stretches from the Andaman Islands north of Sumatra to Flores in the Banda Sea and has developed as a result of the 6-7cm⁻¹ northward 3 4 migration and consequent subduction of the Indo-Australian Plate beneath the Eurasian Plate 5 (Le Pichon, 1968; DeMets et al., 1990; Tregoning et al., 1994). The tectonic features of the 6 area have been described in detail by Hamilton (1979). Beneath Java (and Salak) the crust is 7 ~20 km thick and has a 'quasi-continental' seismic velocity structure, intermediate between 8 continental and oceanic (Ben-Avraham and Emery, 1973, Curray et al., 1977; Jarrard, 1986). 9 Further east, seismic data indicate that the crust is ~18 km thick near Bali and 5-10 km 10 beneath Flores (Curray et al., 1977). The south-eastern boundary of Sundaland (SE Asian 11 continental part of the Sunda block/Eurasian plate with pre-Tertiary basement) is suggested by Hamilton (1979) to be located in West Java. However, due to limited knowledge of the 12 13 precise structure and composition of the Javan crust, the exact location and nature of this 14 boundary remain unknown.

15

16 **3. Geology of Salak and sampling details**

17 Salak forms the north-eastern part of the Salak-Perbakti-Gagak volcanic massif (Fig. 1), which consists of Upper Pleistocene to Recent stratovolcanoes, parasitic vents and 18 19 phreatomagmatic craters. The Perbakti-Gagak range to the south-west is strongly eroded. 20 Both areas in the north-east and south-west are sites of extensive hydrothermal activity. 21 Intermittent volcanism occurred at Salak between ~0.2 to 1.2 my ago (Stimac, 2003). In 22 historic time, volcanic activity at Salak has been limited to a number of phreatic explosions 23 occurring at side vents on the flanks of the volcano. The summit area of Salak is characterised 24 by two large breached craters, one open to the northeast and another to the southwest (Fig. 1), 25 which are associated with volcanic sector collapse events. The westernmost crater was the

source of a large debris-avalanche deposit which extends over 10 km from the summit.
 Satellitic cones are mainly found on the south-west flank of Salak and on the northern
 foothills on the eastern side of the volcano. A late-stage dome built on the western crater rim
 is a result of the most recent activity.

5 The volcanic products of Salak can be divided into two main groups based on eruption 6 location: those erupted from the central vent (CVG) and those erupted from flank or side 7 vents (SVG). The CVG, consisting of multiple lava flows and pyroclastic units, dominates the 8 volcanic deposits at Salak and therefore the majority of samples in this study were collected 9 from this group (filled circles, Fig. 1). SVG samples S102 and S103 were taken from lava 10 flows erupted from a side vent on the eastern slope of Salak. S107A and S107B SVG samples 11 are from the western flank. Sampling of SVG products for geochemical analysis on the 12 western flank was of limited success due to extensive alteration of lava caused by 13 hydrothermal activity. Sample S112 is from a lava flow (SL3) thought to originate from the 14 main vent (CVG) (Zaennudin et al., 1993). However, this sample is geochemically similar to 15 the SVG samples in major and trace element composition. This unit extends down the western 16 flank of Salak, therefore it is possible that S112 may have been erupted from one of the 17 western side vents. As a result of uncertainty in the provenance of this sample it is 18 distinguished from the other samples in all diagrams. Two pumice samples collected on the 19 western slope of Salak (S100 and S101) are from extensive airfall deposits related to pre-20 Salak activity (Zaennudin, et al., 1993). These deposits are overlain by thinner airfall deposits 21 from Salak. Limited dating has been carried out on Salak-Perbakti-Gagak volcanic products 22 (Stimac, 2003). Reliance on geological maps and relative stratigraphy in this study limits a 23 detailed temporal evaluation of Salak lavas and therefore this is not carried out here.

24

25 **4. Analytical techniques**

Mineral analyses were performed on carbon-coated polished slides of selected Salak
volcanic rocks using a Cameca SX 100 at the University of Manchester NERC facility. The
accelerating voltage was 15kV and beam current was 2nA. Detection limits (wt%) for Al, Mg,
K, Ca, Ti are 0.01 or lower, Na, Si, Cr, Ni are around 0.03, while Fe is slightly higher around
0.08. Element precision is dependent on the mineral being analysed, but was typically less
than 1% for Ca, Ti, Si, Al and Mg, between 1-2% for Fe, 2.7% for Ni and around 4% for Na,
K, Mn and Cr.

8 Major element contents of Salak whole-rock samples were determined on fused glass discs 9 produced by the Fusion method (spectroflux 105) using the Automated Philips PW2404 X-ray 10 fluorescence spectrometer at the University of Edinburgh. In-house rock standards were used 11 to calibrate the machine and monitor accuracy and precision during analysis.

12 Trace element concentrations of Salak rock powders were determined on the PerkinElmer 13 ELAN 6000 quadrupole ICP-MS at Durham University following the analytical procedure 14 and instrument operating conditions described by Ottley et al. (2003). Multiple analyses of 15 procedural blanks (3 per batch), in-house standards and international reference materials: W2, 16 BHVO-1, AGV1, BE-N and BIR1 during each session e.g. at the start, mid-way, and at the 17 end of a run, allowed any drift in the instrument calibration to be detected. Reproducibility 18 (internal and external) of standard values on the ELAN were less than 5% relative standard 19 deviation.

Preparation of whole rock powders for Sr, Nd and Hf isotope analysis was undertaken in the Arthur Holmes Isotope Geology Laboratory (AHIGL) at Durham University. The sample dissolution procedure and chemical separation of Hf and Nd from rock samples is based on that presented by Dowall et al. (2003). The separation procedure for Sr follows that detailed by Charlier et al. (2006) except Sr was collect from the column in 300 μ L MQ (rather than 0.05M HNO₃) followed by addition of 15 μ L 10M HNO₃ to the collected Sr fraction. Sr, Nd

1 and Hf isotope ratios were determined on the AHIGL ThermoElectron Neptune Multi-2 collector Plasma Mass Spectrometer (MC-ICP-MS). Details of instrument operating 3 conditions are presented in Nowell et al. (2003) and Dowall et al. (2003). Instrumental mass bias was corrected for using a ⁸⁸Sr/⁸⁶Sr ratio of 8.375209 (the reciprocal of the ⁸⁶Sr/⁸⁸Sr ratio 4 of 0.1194), ¹⁴⁶Nd/¹⁴⁵Nd ratio of 2.079143 (equivalent to the more commonly used ¹⁴⁶Nd/¹⁴⁴Nd 5 ratio of 0.7219) and ¹⁷⁹Hf/¹⁷⁷Hf ratio of 0.7325 plus an exponential law. Data quality was 6 7 monitored over several analytical sessions by regular analysis of standard reference materials during each run. The reproducibility of the ⁸⁷Sr/⁸⁶Sr, ¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf ratios for the 8 9 respective standard solutions in each of the individual analytical sessions are better than 21 10 ppm in all cases. Sr-Nd-Hf isotope data presented are plotted relative to NBS 987, J&M and 11 JMC 475 standard values of 0.71024 (Thirlwall, 1991), 0.511110 (Royse et al., 1998) and 12 0.282160 (Nowell, et al., 1998) respectively. Blank samples processed (at least 2 per sample 13 batch) were analysed by ICP-MS on the PerkinElmer ELAN 6000 quadrupole at Durham 14 University. Total analytical blanks for Sr, Nd and Hf were below 1.2 ng for Sr (typically < 15 300 pg), 219 pg for Nd and 73 pg for Hf. These values are insignificant considering the quantity of Sr, Nd and Hf processed from the volcanic rocks (12-65 µg, 2-7 µg and 0.5-1.2 µg 16 17 respectively).

Oxygen isotope analyses of mineral separates (~10mg per sample) were determined by laser-fluorination at Royal Holloway, University of London; using an analytical procedure following that of Macpherson et al. (2000). In-house standard values of SC olivine 2 and GMG II during the period of study were within 0.01‰ of accepted values: $+5.24\% \pm 0.04$ (1 σ , n = 6) and $+5.69\% \pm 0.08$ (1 σ , n = 15), respectively. Oxygen yields were slightly low, but consistent over the individual sessions: 93% for plagioclase (n = 7) and between 92-94% (n = 20) for clinopyroxene. Replicate analyses of plagioclase and clinopyroxene throughout

1	the study were within 0.09‰ and 0.04‰ respectively. Oxygen results are reported as per
2	mille deviations relative to the standard mean ocean water (V-SMOW) standard.

4 5. Petrology and mineral chemistry

5 Modal analyses of Salak lavas and representative mineral compositions are given in Tables 6 1 and 2-5, respectively. Andesites are the most common rock type sampled at Salak. The 7 andesites of the SVG are generally more phenocryst rich than those of the CVG with total 8 phenocryst abundances ranging between ~50-60 % and 20-46 % (modal volume), respectively 9 (Table 1). Both andesite groups contain a typically observed island-arc mineral assemblage of 10 plagioclase, clinopyroxene, orthopyroxene and Fe-Ti oxide. Basaltic-andesites of the CVG 11 contain olivine phenocrysts, which commonly occur with both clinopyroxene and 12 orthopyroxene (indicating magmatic disequilibrium in the latter case). The olivine 13 phenocrysts (Fo₅₄₋₆₆, Table 2) are generally small and subhedral, some showing slight alteration to iddingsite at crystal edges. The SVG rhyolite and Pre-Salak pumice samples are 14 15 dominated by glassy groundmass and phenocrysts of plagioclase with minor pyroxene. Small 16 amounts of amphibole and quartz \pm biotite are also present (Table 1). 17 Orthopyroxene phenocrysts in the basaltic-andesites of the CVG are mostly subhedral-18 euhedral and infrequently contain smaller inclusions of early-formed olivine (S104). In some 19 basaltic-andesites (S104, S105 and S108) the orthopyroxene phenocrysts are surrounded by a 20 thin rim, or jacket of clinopyroxene. This disequilibrium feature appears to be relatively 21 common in arc lavas and has been observed in the volcanic products of several Javan 22 volcanoes: Ijen (Sitorus, 1990), Slamet (Vukadinovic and Sutawidjaja, 1995), Lamongan 23 (Carn and Pyle, 2001) and Gede (Handley, 2006). Mineralogically, clinopyroxene and 24 orthopyroxene in the basaltic andesites of the CVG lack evidence for compositional 25 disequilibrium, displaying normal zoning of phenocrysts from Mg-rich cores towards more

1 Fe-rich rims. Orthopyroxene and clinopyroxene compositions available for the andesites show 2 slightly more variation in the SVG than the CVG (Figs. 2a & b). The limited pyroxene 3 analyses available for the SL3 lava show restricted compositional variation (Fig. 2c). 4 Plagioclase is the most abundant phenocryst phase in all CVG and SVG rocks. Plagioclase 5 phenocrysts exhibit a wide range in composition in the basaltic-andesites of the CVG (Figs. 6 3a & b; Table 4), with plagioclase rims displaying the largest variation in anorthite content 7 (An₅₈₋₉₁). Phenocryst interiors are more restricted in composition and have fairly high An 8 contents (above 80). The An contents of several plagioclase rims are higher than those in 9 respective groundmass plagioclase (< An₅₅) indicating that not all phenocrysts were in 10 equilibrium with the host liquid. Disequilibrium textures of plagioclase phenocrysts 11 (oscillatory zoning, sieve textures and infrequent resorbed cores) are observed in all CVG 12 basaltic-andesite samples. CVG and SVG andesites display similar compositional ranges in 13 plagioclase (Table 4). In the CVG (Fig. 3c) plagioclase phenocryst and groundmass 14 compositions are extremely homogeneous (An_{48-59}) with the exception of one core analysis 15 (An₇₂). The SVG plagioclases display a slightly wider compositional range and often the core 16 sections possess lower anorthite contents than respective mid and rim sections (Fig. 3e). Sieve 17 textures and oscillatory zoning are common in plagioclase phenocrysts of both groups of 18 andesites. The SL3 andesite displays a fairly restricted range in plagioclase composition 19 (An₅₄₋₆₈) similar to the andesite analysed from the CVG (Fig. 3d). Some SL3 plagioclase 20 phenocrysts show reverse zoning from less An-rich cores to more An-rich rims. 21 Fe-Ti oxide (titanomagnetite) occurs as a phenocryst phase in all rocks and is often 22 associated with the other mafic phases, commonly occurring as inclusions within pyroxene, or 23 forming a glomerocrystic texture with pyroxene. Titanomagnetite is slightly more Ti-rich in 24 the CVG andesite compared to the SVG andesite (Table 5).

1 Cognate xenoliths are observed in SVG samples from the eastern flank unit, PD1 (S102 2 and S103), displaying sharp contacts with the surrounding lava. The xenoliths are composed 3 of heavily sieve-textured and oscillatory-zoned plagioclase phenocrysts, clinopyroxene, 4 orthopyroxene and Fe-Ti oxide phenocrysts (titanomagnetite and ilmenite; in close 5 association with ferromagnesian minerals) set in a medium-grained groundmass. The 6 groundmass is dominated by euhedral plagioclase laths, elongate acicular pyroxene, small 7 oxide crystals and minor devitrified glass. Clinopyroxene occasionally forms thick jackets 8 around orthopyroxene phenocrysts. Fig. 2b shows there is some overlap in clinopyroxene and 9 orthopyroxene compositions between the xenolith (black crosses) and the host rock (open 10 squares). However, orthopyroxene phenocrysts in the xenolith also contain significantly more 11 En-rich compositions. Plagioclase compositions in the xenolith (Fig. 3f) are scattered, but 12 generally more An-rich than those in the host lava (Fig. 3e).

13

14 **6. Geochemistry**

15 6.1. Major and trace element variations

16 Major and trace element data are reported in Table 6. Salak lavas are relatively evolved, 17 with MgO contents less than 4 wt %. Salak volcanic rocks display negative correlations on 18 diagrams of Al₂O₃, Fe₂O₃, MgO and CaO against SiO₂, and positive correlations between 19 SiO₂ and both K₂O and Na₂O (Fig. 4), although Na₂O contents in the SVG are relatively 20 constant with increasing SiO₂. TiO₂ and P₂O₅ variation is split into two markedly different 21 trends. Lavas erupted from the CVG generally show an increase in TiO₂ and P₂O₅ contents 22 with increasing SiO₂, whereas SVG lavas possess lower TiO₂ and P₂O₅ contents and plot 23 within the field of other Javan volcanic rocks (Figs. 4g and h). TiO₂ and P₂O₅ contents 24 measured in the more evolved CVG rocks (~60% SiO₂) are unusually high (up to 1.18 and 25 0.48 wt%, respectively) when compared to the majority of values reported for other Javan

lavas (Fig. 4g) and from volcanic rocks of other island arc systems at comparable silica
content e.g. Kermadec (Gamble et al., 1993; Ewart et al., 1994; Turner et al., 1997), Lesser
Antilles (Thirlwall et al., 1996; Zellmer et al., 2003) and Mariana (Woodhead, 1989; Elliot et
al., 1997). Increasing TiO₂ content with increasing silica (Fig. 4g) is not normally observed in
arc andesites, most probably due to the early fractionation of magnetite (Gill, 1981; Pearce,
1982).

7 The high field strength elements (HFSE) and the rare earth elements (REE), particularly 8 the heavy REE, also show abnormally high concentrations in the more evolved CVG samples 9 (Y = 32-69 ppm; Yb, 3-6.5 ppm) and display strikingly positively-sloped, linear trends on 10 SiO₂ variation diagrams (Figs. 5a and b). This contrasts again with the SVG rocks and the 11 majority of other volcanic rock suites of Java, where concentrations remain relatively constant 12 with increasing SiO₂ (Figs. 5a and b). High concentrations of TiO₂, P₂O₅, Y and systematic 13 increases of these elements with SiO₂ are so far only evident at one other volcano in Java, 14 namely Tengger Caldera in East Java (Figs. 4g and h and 5a). This unusual feature was not 15 noted in the study of Tengger Caldera by van Gerven and Pichler (1995). Extensive 16 comparisons of trace element variations between Tengger Caldera and Salak are however 17 restricted due to the limited geochemical data available for the former volcanic system. In 18 contrast to the separate HSFE and REE variation trends displayed by the CVG and SVG, 19 variations in large ion lithophile elements (LILE) are similar, displaying positive correlations 20 with SiO₂ (Figs. 5e and f). Sr generally decreases as SiO₂ increases within each group (Fig. 21 5g). The SVG rocks containing around 60 wt% SiO₂ are slightly displaced below the main 22 Salak trend in the majority of these diagrams with the exception of Sr, where they sit at 23 slightly elevated values.

Chondrite normalised REE patterns of selected Salak lavas are displayed in Fig. 6. Salak
volcanic rocks are enriched in the light REE compared to mid-ocean ridge basalts (Normal-

MORB and Indian Ocean-MORB). With the exception of the high silica rhyolite, the heavier REE show concentrations more similar to those in MORB than the light REE. The higher silica CVG andesite is located parallel to, but at higher REE concentrations than the less evolved CVG rock. The enrichment of the REE in the evolved CVG sample is made clear when compared to a SVG rock of comparable silica content (unfilled squares). Strong depletions are observed in the middle to heavy REE concentrations of the high SiO₂ (west flank) SVG rocks, compared to less evolved Salak rocks.

8

9 6.2. Radiogenic isotopes

Sr, Nd and Hf isotope data are presented in Table 6 and shown in Figs. 7 and 8. ⁸⁷Sr/⁸⁶Sr 10 and ¹⁴³Nd/¹⁴⁴Nd isotope ratios of Salak volcanic rocks define a negative array, lying within 11 the field of previously published Java data. Salak exhibits a relatively wide range in ⁸⁷Sr/⁸⁶Sr 12 13 ratios, 0.704262 to 0.705051, although the majority of the lavas are more tightly constrained 14 within the range 0.704569-0.705051. The two SVG samples, S102 and S103, erupted on the 15 eastern flank of Salak are displaced from the rest of the Salak lavas, possessing significantly lower ⁸⁷Sr/⁸⁶Sr and higher ¹⁴³Nd/¹⁴⁴Nd ratios (Fig. 7 inset). In Hf-Nd isotope space (Fig. 8), 16 Salak volcanic rocks also lie within the field defined by Java, possessing lower ¹⁴³Nd/¹⁴⁴Nd 17 and ¹⁷⁶Hf/¹⁷⁷Hf isotope ratios than MORB, and higher ratios than Indian Ocean sediments. 18 19 The eastern-flank SVG samples, S102 and S103, possess significantly more primitive ¹⁷⁶Hf/¹⁷⁷Hf isotope ratios compared to the other Salak lavas (Fig. 8 inset). 20

21

22 6.3. Stable isotope data

23 Oxygen isotope data from mineral separates are presented in Table 7. The restricted 24 clinopyroxene and plagioclase analyses of Salak lavas have low δ^{18} O values ranging from 25 +5.18 to +5.44‰ (n = 3) and +5.96 to +6.07‰ (n = 4), respectively. The former values are

1	similar to mantle clinopyroxene δ^{18} O values reported by Mattey et al. (1994) and Ionov et al.
2	(1994): +5.57 \pm 0.32‰ and similar to or slightly lower than those reported from other
3	volcanoes in Java (Galunggung, Harmon and Gerbe, 1992; Gede Volcanic Complex,
4	Handley, 2006; Ijen Volcanic Complex, Handley et al., 2007). Plagioclase δ^{18} O values of
5	Salak are generally higher than those of Galunggung (+5.6 to +6.0‰, Harmon and Gerbe,
6	1992), but lower than those analysed in Merapi volcanics (+6.5 to +7.00‰, Gertisser and
7	Keller, 2003a). Differences in δ^{18} O values between coexisting plagioclase and clinopyroxene
8	$(\Delta_{plag-cpx})$ are between 0.63 to 0.79‰ and suggest most of the mineral pairs record oxygen
9	isotopic equilibrium at typical magmatic temperatures for andesite liquids. The limited
10	number of analyses from Salak prohibits intra-group comparisons of $\delta^{18}O$ data, however, the
11	lowest δ^{18} O clinopyroxene value is measured in the sample with the most primitive radiogenic
12	isotope ratios (SVG, S103).

14 **7. Discussion**

Minor and trace element variations at Salak are intriguing, and raise two important questions: 1) Why do the CVG display atypical differentiation trends and unusually high concentrations in minor and trace elements, in particular for the HREE, Y, TiO₂ and P₂O₅ compared to other Javan volcanoes? 2) Why are there strikingly different differentiation trends in lavas from a single volcanic centre?

Assuming that variations in the silica content of volcanic rocks are generated as a result of differentiation of magma (Gill, 1981; Davidson et al., 2005), systematic increases of Y, Yb, TiO₂ and P₂O₅ with SiO₂ within the CVG (Figs. 5a & b and Figs. 4g & h, respectively) are compelling evidence for geochemical variation being imparted during differentiation in the crust e.g. through magma mixing, fractional crystallisation and/or combined assimilation and fractional crystallisation.

2 7.1. Differentiation in the Central Vent Group

3 7.1.1. Magma Mixing

4 Magma mixing is identified as an important composition-modifying process within the 5 evolution of many arc magmas (e.g. Conrad et al., 1983; Tepley et al., 2000) including some 6 Sunda arc magmas (Slamet, Reubi et al., 2002; Merapi, Gertisser and Keller, 2003b; Batur, 7 Reubi and Nicholls, 2004). Linear correlations displayed by the CVG rocks on bivariate 8 element-silica diagrams (Figs. 4 and 5) suggest that chemical variation within this group may 9 be explained by the interaction and mixing of chemically distinct magmas. Phenocryst 10 textures and mineral disequilibria in CVG lavas (section 5) indicate that open system 11 processes may have occurred at one or several points in the magmatic evolution of the CVG. 12 A purely geochemical approach to evaluate mixing processes utilises element ratios 13 (Langmuir et al., 1978; Vogel, 1982; Flood et al., 1989). Magma mixing should produce 14 hyperbolic arrays in plots of a trace element ratio versus a concentration. Figs. 9a and b show 15 that the CVG data largely define a curved array on some element-ratio diagrams. K/Rb and 16 Ba/Th ratios were chosen as these ratios correlate with SiO₂ and display a wide range in the 17 CVG. The former ratio is also a potentially useful monitor of crust-magma interaction 18 (Davidson, 1987, Hildreth & Moorbath, 1988), providing that the melt and crust have 19 distinctive values for the ratio. K/Rb and Ba/Th ratios are plotted against Rb (which 20 represents the degree of magmatic differentiation) and Yb (to check whether the model can 21 account for the highly unusual variations in concentrations observed for this element). The 22 results of bulk-mixing calculations between one of the least evolved CVG samples (S106B) 23 and several end members are shown in Figs. 9a and b. If element variation in the CVG is a 24 result of simple mixing, the other end member must be more evolved (higher SiO₂) in 25 composition. Granite xenoliths found within a deposit of cream tuff in the Perbakti-Gagak

1 area adjacent to Salak provide evidence for the presence of evolved, granitic material (Stimac, 2 2003) in West Java. No data are available from this granite for use in modelling, therefore the 3 more evolved end member magmas in mixing calculations are represented by a rhyolite from 4 Salak (S107A) and by arc-related granites from some of the southern-most plutonics in 5 Sumatra (i.e. close to West Java): monzodiorite (75413) and granodiorite (75415) (Gasparon, 6 1993). Mixing with a more basic end member (tholeiitic lava) from Guntur in West Java 7 (Edwards, 1990) is also shown for comparison. The end member compositions used in mixing 8 calculations are given in Table 8.

9 Fig. 9a shows that mixing in K/Rb-Rb space between S106B and a granitic sample with a 10 high K/Rb ratio (MM D) is unable to generate a mixing curve to fit the CVG data. Similar 11 unsatisfactory mixing trends would result from mixing with bulk upper-crustal material, 12 which also has relatively high K/Rb (~250; Taylor, 1977). Mixing between S106B and 13 granodiorite (MM B) or Javan tholeiite (MM C) also fail to fit the data, generating curves that 14 have a large decrease and increase (respectively) in K/Rb ratio, with only a small change in 15 Rb. The mixing curve produced using the Salak rhyolite (MM A) as the evolved end member, 16 produces the best fit to the CVG data. Fig. 9b, Ba/Th-Yb, shows mixing curves generated 17 between the same end members in Fig. 9a. Mixing in all cases is inadequate in explaining the 18 Salak CVG data due to the low Yb content of the end members chosen. Low Yb contents of 19 basic and evolved Javan lavas and evolved Sumatran plutonics, suggests that Yb contents of 20 the CVG cannot be explained by simple mixing.

21

22 7.1.2. Fractional crystallisation

Fractional crystallisation was modelled by least squares analysis of Salak major element
data using the XLFRAC programme (Stormer and Nicholls, 1978; Table 9). The results
suggest that the most evolved CVG lava can be produced by fractionation of the least evolved

CVG lava by 61% crystallisation ($\Sigma r^2 = 0.13$; model 1). Smaller values of Σr^2 are obtained in 1 2 models to less differentiated final lavas (models 2 & 3), regardless of whether orthopyroxene 3 or olivine is included in the mineral assemblage (compare models 3 & 4). This suggests that 4 major and minor element variation within the CVG can be explained by fractional 5 crystallisation of plagioclase, clinopyroxene, Fe-Ti oxide +/- olivine and orthopyroxene (e.g. 6 Figs. 4g and h). But, can fractional crystallisation explain the unusual trace element variation 7 trends not seen in the majority of Javan lavas using the same mineral assemblage? 8 Y and the REE often behave as incompatible elements in primitive arc tholeiites, however 9 they usually remain constant or decrease in concentration with increasing magmatic 10 fractionation in the calc-alkaline series, where they can be accommodated within amphibole, 11 apatite and zircon (Pearce, 1982). This is exemplified by the Java data in Figs. 4g and h, and 12 amphibole fractionation curves in Figs. 5a and b. To examine whether fractional crystallisation can produce the large increases in Y, Yb and Ti of the CVG (over a relatively 13 14 narrow range in silica) and test the conclusions of least squares analysis, simple calculations were made using the Rayleigh fractionation equation: $C_l = C_o F^{(D-1)}$ where C_l is the 15 concentration of an element in the liquid, C_o is the concentration of an element in the original 16 17 liquid, F is the fraction of liquid remaining and D is the bulk distribution coefficient. The degree of fractionation (F) and the phase proportions used are those suggested by major 18 19 element modelling (Table 9, model 1). The distribution coefficients used are given in Table 20 10. Calculated Ti, Y and Yb compositions expected in the daughter rocks (Table 10, Figs. 4g, 21 5a and b) show that incompatible behaviour of HFSE and HREE during fractional 22 crystallisation can account for the high concentrations of these elements in Salak rocks. In all 23 three models in Table 10 the concentrations predicted in the daughter rocks are higher than 24 those actually measured. This contrasts with the results of mixing (Fig. 9b) between a basic 25 CVG rock and the tholeiitic and more evolved volcanic and plutonic samples, which were

unsuccessful in accounting for high Yb concentrations. Fractional crystallisation curves (FC)
are shown on K/Rb-Rb and Ba/Th-Yb diagrams (Figs. 9a and b) for removal of the same
mineral assemblage used above. It should be noted that an identical FC curve is produced if
the modal mineral assemblage of S106B (Table 1) is used instead. The Salak CVG data
diverge from the calculated FC curve towards lower K/Rb and Ba/Th, thus suggesting that
pure closed-system fractional crystallisation cannot explain all of the geochemical variation
observed in the CVG lavas.

8

9 7.1.3. Assimilation and Fractional Crystallisation (AFC)

10 AFC processes are recognised in the evolution of magma in arc settings (Davidson et al., 11 1987; Hildreth and Moorbath, 1988; Davidson and Harmon, 1989) and have been suggested 12 for the Sunda arc (Gasparon et al., 1994). Little is known about the nature and composition of 13 the crust in West Java. Seismic velocities suggest that the crust in West Java is thicker than 14 that at the eastern end of Java (Ben-Avraham and Emery, 1973; Curray et al., 1977; 15 Kieckhefer et al., 1980) and in West Java the arc may be built on continental material, i.e. 16 Sundaland pre-Tertiary basement (Hamilton, 1979). Large granite blocks found in a tuff 17 deposit in the vicinity of Salak (Perbakti-Gagak area, Fig. 1) display partially melted margins 18 with adhering rhyolitic lava (Stimac, 2003). It is unknown when this granite was emplaced in 19 the crust, but it suggests that interaction and possible contamination of magma by evolved 20 plutonic rocks may occur at Salak. AFC curves are shown on Figs. 9a and b for contamination 21 of the most basic Salak magma, by evolved volcanic (AFC A) and plutonic (AFC B) rocks, 22 possessing low K/Rb and Ba/Th ratios. These curves fit the array of Salak data well, even 23 though the contaminants possess low Yb concentrations (cf. mixing) Assimilation of upper 24 and bulk crust (e.g. Taylor, 1977; Sumatran granitoid 75413) would generate concave-down 25 AFC curves, inconsistent with the CVG data. It was suggested by Hamilton (1979) that the

crust in West Java is not truly silicic in character and may consist of older volcanic-arc rocks
 and ophiolite slivers. However, AFC models involving basic arc rocks (e.g. Fig. 9 AFC C)
 and a range of basic and ophiolite compositions (see below) are also inconsistent with the
 CVG array.

In summary, major and trace element modelling suggests that the unusual increases in
HFSE and HREE with increasing SiO₂ are created due to incompatible behaviour of these
elements during fractional crystallisation. Systematic variations in some trace element ratios
(K/Rb and Ba/Th) and disequilibrium textures observed in the rocks indicate that assimilation
of a contaminant with low K/Rb and Ba/Th ratios occurs during fractional crystallisation in
the crust.

11

12 7.1.4. Isotopic constraints

Continental-type crustal rocks commonly have elevated ⁸⁷Sr/⁸⁶Sr isotope ratios compared 13 14 to Quaternary volcanic rocks and mantle-derived magmas. Assimilation of crust during 15 crystal fractionation (DePaolo, 1981) in arc magmas may therefore cause modification to the 16 isotope ratios in resultant lavas. Consequently, a plot of Sr isotope ratio against an index of 17 differentiation, e.g. SiO₂, can be used to detect AFC processes, in cases where the crust being 18 assimilated is isotopically distinct. Even though the number of samples with isotope data is 19 relatively limited and the variation in ⁸⁷Sr/⁸⁶Sr of the CVG is small, the more evolved CVG samples display generally higher ⁸⁷Sr/⁸⁶Sr ratios (Fig. 10), and the data patterns observed in 20 21 this plot are identical (though the inverse) to those of Ba/Th with SiO₂ (see inset to Fig. 10). This suggests that Ba/Th, for which there is more data compared to ⁸⁷Sr/⁸⁶Sr, might serve as a 22 23 proxy for isotopic composition. The roughly hyperbolic trend observed in Fig. 10 and variation in ⁸⁷Sr/⁸⁶Sr isotope ratio with SiO₂ in the CVG further support control by 24 25 differentiation, and more specifically by AFC processes.

The five CVG data points define a concave-down hyperbola on Ba/Th versus ⁸⁷Sr/⁸⁶Sr (Fig. 1 2 11). The AFC curves displayed here are for the same AFC end members used in trace element modelling (see Fig. 9 caption for details). Neither model on Fig. 11 using evolved volcanic 3 4 nor plutonic rocks produces hyperbolic curves to fit the CVG data. AFC curves for these 5 models largely follow the same vertical trend shown by fractionation crystallisation (FC) 6 alone (arrow, Fig. 11), and altering the rate ratio of mass assimilated to mass crystallised (r)7 has little effect on the shape of the curve. The basic contaminant (see captions to Figs. 9 and 8 10 for details) produces an AFC curve (C) with a much better fit to the CVG data, but 9 suggests a large amount of contamination is required compared to crystallisation (r = 0.8). 10 Such high AFC r-values are not unreasonable and have been proposed for differentiation of basalts at Jebel Marra volcano in Sudan (Davidson and Wilson, 1989) and by Bourdon et al. 11 12 (1998) for the Grande Comore volcanics.

13 A contaminant with a significantly higher Sr content than that of the parental rock would 14 be able to generate a hyperbola curving in the required direction from the parental 15 composition of S106B and not necessitate such a high r-value. Fig. 10 also indicates this as 16 assimilation of a contaminant with low Sr concentration would produce a concave-up curve 17 initially projecting in a horizontal direction away from the least evolved CVG sample, which is inconsistent with the concave-down data array in Fig. 10. The apparent plateau in ⁸⁷Sr/⁸⁶Sr 18 isotope ratio in SiO₂-rich CVG rocks suggests that the ⁸⁷Sr/⁸⁶Sr ratio of the contaminant is 19 asymptotic to the ⁸⁷Sr/⁸⁶Sr ratio of the more evolved CVG samples (i.e. ~0.7048). If the 20 21 distribution coefficient for Sr in plagioclase is greater than one, then a magma crystallising 22 this phase would become progressively more sensitive to Sr in the contaminant (which is 23 assumed to be fixed). The more AFC magma endures, the more isotopically sensitive to the 24 contaminant it would become, and therefore, for a given shift in silica the magma would obtain a larger shift in ⁸⁷Sr/⁸⁶Sr isotope ratio if the contaminant had a higher ⁸⁷Sr/⁸⁶Sr ratio. 25

1 Consequently, it is argued that if the data are consistent with AFC, the contaminant has a high 2 Sr concentration and Sr-isotope ratio ~0.7048 (curved arrow, Fig. 10) contamination by a high ⁸⁷Sr/⁸⁶Sr component would result in a data array with a steeper positive correlation on Fig. 10 3 4 (diagonal arrow). The moderate decrease in Sr concentration with increasing SiO₂ in the CVG 5 (despite the modelled involvement of large amounts of plagioclase fractionation) further 6 argues for a high-Sr assimilant. An AFC calculation using S106B as the parent magma and 7 the Sumatran granodiorite as the contaminant suggest that to produce a concave-down 8 hyperbola to fit the data in Fig. 11 an extremely unrealistic Sr concentration in the 9 contaminant of >7000 ppm is required. Evolved volcanic or plutonic contaminant end 10 members are unlikely to possess higher Sr concentrations than the basaltic andesite S106B 11 being contaminated as Sr content generally decreases with differentiation in arc-related 12 igneous rocks due to plagioclase fractionation. Incorporation of the assimilant as a partial melt 13 (0.1 - 10% melting), rather than bulk addition of this component, does not increase the Sr 14 concentration sufficiently enough to improve the fit of the models for Ba/Th versus Sr isotope 15 ratio and also leads to a more rapid decrease in Ba/Th ratio, creating an AFC trend further 16 away from the CVG array.

If Sr isotope variation in the CVG is controlled by AFC processes as suggested above, then the contaminant is characterised by high Sr concentration, ⁸⁷Sr/⁸⁶Sr isotope ratio of around 0.7048 and low K/Rb and Ba/Th ratios (< ~110 and < ~45, respectively). Table 11 shows trace element data and Sr-isotope ratios for a variety of rocks that may represent the West Javan crust and could therefore be potential contaminants. However, none of the samples listed possess all of the required criteria envisaged for the contaminant, therefore at present, a suitable contaminant is unidentified.

1 7.2. Relationship of the SVG to the CVG

2 If increases in HFSE and HREE with increasing silica in CVG rocks can be explained by 3 highly incompatible behaviour during differentiation, then relatively low and decreasing 4 HFSE and HREE concentrations in the SVG lavas may indicate relatively more compatible 5 behaviour of these elements during differentiation of SVG magmas. A distinct difference in 6 the type or abundance of phases crystallising from the magma may therefore be expected. 7 However, there is little difference between the mineralogies of the CVG and the eastern flank 8 SVG volcanic rocks. In contrast, the western flank SVG samples have small amounts of 9 amphibole (hornblende) in their modal mineralogies (Table 1). Strong depletions in HREE 10 and the steep decrease from La-Sm shown by the western flank SVG samples, relative to 11 those with lower silica content from the eastern flank (Fig. 6), suggests that very late-stage 12 fractionation of hornblende (± accessory phases) may account for the relatively low HREE 13 and HFSE concentrations in these highly evolved samples (cf. deep, early-stage 14 fractionation). The similarly shaped REE profiles and modal mineralogies of the CVG and 15 SVG lavas with <70 wt % SiO₂ precludes a similar explanation for the differences observed 16 in the geochemistry of these samples.

17 In addition to mineralogical differences, isotopic differences also occur between the 18 western and eastern flank SVG lavas (Figs. 7 and 8 insets). The western vent SVG rocks are 19 isotopically similar to the CVG group and may, therefore, be genetically related to each other, sharing a similar source and evolutionary history. The notably more primitive radiogenic 20 21 isotope ratios of the eastern flank SVG lavas suggest that they may have evolved from an 22 isotopically distinct source, or may represent the least contaminated (either by arc crust or a 23 subduction component) Salak lava. In the latter case, they reveal the best estimate of least 24 modified mantle wedge isotopic composition beneath Salak. The similar REE patterns of the 25 lower SiO₂ SVG and lower SiO₂ CVG lavas (Fig. 6), suggests the magmatic source region of

the two groups probably contained a comparable mineralogy and underwent similar degrees
 of melting.

Trace element ratios of HFSE and HREE (e.g. Zr/Nb, Y/Nb) are often used to investigate the source characteristics of magmas (McCulloch and Gamble, 1991; Woodhead et al., 1993; Reubi and Nichols, 2004). However, the limited number of samples from the SVG, combined with the relatively differentiated nature of all Salak lavas and the uncertainty of HFSE/HREE concentrations in less differentiated samples (due to unusual increases of these elements in the CVG) hampers this approach at Salak

9 A schematic diagram showing the proposed evolution of magma beneath Salak is displayed 10 in Fig. 12. Petrographic and radiogenic isotope data suggest that the high SiO₂ SVG rocks 11 from the western flank vent may be related to the CVG lavas, evolving to lower HFSE and 12 REE concentrations due to prolonged residence in the crust and the late-stage fractionation of 13 hornblende (\pm accessory phases) prior to eruption (A). However, the lower SiO₂ (and 14 isotopically more primitive) eastern SVG lavas are proposed to have taken a separate 15 evolutionary pathway to the surface. Low concentrations of HFSE and HREE in these 16 samples may be the result of fractionation of a HFSE-REE-compatible phase at depth (B), 17 such as amphibole, which effectively inhibits the relative increase of these elements during 18 fractional crystallisation at shallower levels. A number of factors control amphibole 19 fractionation from magma (see Davidson et al. 2007 for a recent discussion), which include 20 the water content of the magma and also the pressure of crystallisation. Therefore, an apparent 21 lack of deep-seated amphibole crystallisation in the CVG may imply that the water content 22 was not as great in the parental magma, or CVG magmas were not stored at deeper levels in 23 the arc crust. Other arc studies that support a proposal of multiple independent conduits and 24 reservoirs in the crust beneath active volcanoes include those of Reubi and Nicholls (2004) 25 and Grove et al. (2005).

1 Within andesitic volcanic rock suites REE concentrations commonly increase with silica 2 (Gill, 1981). Therefore, due to the relatively constant within suite REE concentrations (black 3 crosses, Figs. 5b and h) and general lack of hornblende phenocrysts in Javan volcanic rocks, 4 we speculate that amphibole, or other HFSE-HREE bearing phase, may fractionate at depth 5 below most Javan volcanoes. Although amphibole-bearing xenoliths have not been found in 6 Salak lavas, gabbroic xenoliths with variable amphibole contents are observed in lavas 7 erupted at Sangeang Api volcano in the East Sunda arc (Turner et al., 2003) and gabbroic 8 mafic inclusions composed of plagioclase and amphibole are present in lavas at Merapi 9 volcano in Central Java (Camus et al., 2000).

10

11 8. Conclusions

12 Unusual HFSE and HREE variation trends (compared to most other volcanic rocks from 13 Java) displayed by the CVG lavas of Salak are produced during differentiation in the crust. 14 Differentiation processes have been modelled to show that: 1) CVG element variation is not 15 consistent with simple mixing due to the low HFSE and HREE concentrations found in 16 continental and oceanic crustal end members. 2) Evolution to high HFSE and HREE 17 concentrations in the CVG can be explained by incompatible behaviour of these elements 18 during fractional crystallisation. 3) Variation in some trace element ratios (K/Rb and Ba/Th) 19 of the CVG suggest assimilation of crust also occurs during fractional crystallisation of the magma. AFC modelling and δ^{18} O data suggest that typical continental-type upper-crustal 20 21 contaminants are not likely to be involved in AFC processes at Salak (cf. the Andes and 22 Lesser Antilles, Davidson et al., 2005 and references therein). Geochemical constraints 23 suggest that the contaminant is largely similar in geochemical and isotopic composition to the 24 lavas themselves (e.g. volcanic and/or plutonic arc-related or ophiolitic rocks) and

characterised by ⁸⁷Sr/⁸⁶Sr ~ 0.7048, extremely high Sr concentration and relatively low K/Rb
 and Ba/Th ratios.

Evolution to high HFSE and HREE concentrations in the CVG lavas suggests that magma beneath the central part of the volcano has bypassed deep-level storage in the lower crust, which is envisaged beneath the eastern flank vent. Volcanic rocks of the western flank SVG display lower HFSE and HREE contents compared to the CVG, which may be explained by relatively shallow, late-stage hornblende (± accessory phase) fractionation from a CVG-type parent.

9 HFSE and HREE variations in Salak lavas have drawn attention to the fact that Javan lavas 10 do not show highly incompatible behaviour of these elements during differentiation. Y and 11 Yb concentrations in eruptives from the volcanic front on Java display near-horizontal trends 12 when plotted against silica. With little direct evidence of amphibole fractionation in these 13 lavas, it is speculated that fractionation of a HFSE-HREE-compatible phase may occur at 14 depth beneath the majority of volcanoes on Java. Tengger Caldera, in East Java also displays 15 abnormally steep, Y, P₂O₅ and TiO₂ differentiation trends (similar to the CVG at Salak), 16 suggesting deep-fractionation of a HFSE-HREE-compatible phase does not take place at this 17 volcano and further corroborates the idea that the cause is related to crustal-level processes, 18 rather than isolated source contributions at single volcanic centres in both East and West Java. 19 This interpretation would benefit greatly from further sampling and geochemical analysis of Salak SVG deposits, to better constrain differentiation trends within this group and refine the 20 21 geochemical models.

Finally, the presence of a wide HFSE and HREE variation within a single volcanic centre, such as that at Salak, emphasises the importance of detailed geochemical study of individual volcanoes. Arc lavas are generally characterised by high LREE/HFSE ratios, attributed to involvement of a subducted component. However, LREE/HFSE ratios in Salak lavas are

relatively low in the CVG, even though LREE concentrations are relatively high, due to high
 HSFE concentrations and positive correlations of both LREE and HFSE with SiO₂ in the
 CVG rocks.

4

5 Acknowledgements

6 We would like to thank Akhmad Zaennudin and collegues at the Volcanic Survey of 7 Indonesia in Bandung for invaluable logistical help and guidance in the field. For technical 8 support and analytical assistance our thanks go to: Geoff Nowell, Chris Ottley and Dave Sales 9 at Durham University; Dave Plant at the University of Manchester; Dave Lowry at Royal 10 Holloway University of London; Godfrey Fitton and Dodie James at the University of 11 Edinburgh. The manuscript was greatly improved by the detailed comments of Bernard 12 Bourdon and two anonymous reviewers. This project was funded by a NERC studentship 13 (NER/S/A/2001/06127) and supported by the SEARG at Royal Holloway, University of 14 London.

15

16 **References**

- Alves, S., Schiano, P., Allegre, C.J., 1999. Rhenium-osmium isotopic investigation of Java
 subduction zone lavas. Earth Planet. Sci. Lett. 168, 65-67.
- Ben-Avraham, Z., Emery, K.O., 1973. Structural framework of Sunda Shelf. Bull. Amer.
 Assoc. Pet. Geol. 57, 2323-2366.
- Ben Othman, D.B., White, W.M., Patchett, J., 1989. The geochemistry of marine sediments,
 island arc magma genesis, and crust-mantle recycling. Earth Planet. Sci. Lett. 94, 1-21.
- 23 Bottazzi, P., Tiepolo, M., Vanucci, R., Zanetti, A., Brumm, R., Foley, S.F., Oberti, R., 1999.
- 24 Distinct site preferences for heavy and light REE in amphibole and the prediction of
- 25 Amph/LDREE. Contrib. Mineral. Petrol. 137, 36-45.

1	Bourdon, B., Joron, J-L, Claude-Ivanaj, C., Allègre, C.J., 1998. U-Th-Pa-Ra systematics for
2	the Grande Comore volcanics: melting processes in an upwelling plume. Earth Planet.
3	Sci. Lett. 164, 119-133.
4	Camus, G., Gourgaud, A., Mossand-Berthommier, P.C., Vincent, P.M., 2000. Merapi (Central
5	Java, Indonesia): An outline of the structural and magmatological evolution, with a
6	special emphasis to the major pyroclastic events. J. Volcanol. Geotherm. Res. 100, 139-
7	163.
8	Carn, S.A., Pyle, D.M., 2001. Petrology and geochemistry of the Lamongan Volcanic Field,
9	East Java, Indonesia: Primitive Sunda Arc magmas in an extensional tectonic setting? J.
10	Petrol. 42, 1643-1683.
11	Charlier, B.L.A., Ginibre, C., Morgan, D., Nowell, G.M., Pearson, D.G., Davidson, J.P.,
12	Ottley, C.J., 2006. Methods for the microsampling and high-precision analysis of
13	strontium and rubidium isotopes at single crystal scale for petrological and
14	geochronological applications. Chem. Geol. 232, 114-133.
15	Chauvel, C., Blichert-Toft, J., 2001. A hafnium isotope and trace element perspective on
16	melting of the depleted mantle. Earth Planet. Sci. Lett. 190, 137-151.
17	Conrad, W.K., Kay, S.M., Kay, R.W., 1983. Magma mixing in the Aleutian Arc: evidence
18	from cognate inclusions and composite xenoliths. J. Volcanol. Geotherm. Res. 18, 279-
19	295.
20	Curray, J.R., Shor Jr, G.G., Raitt, R.W., Henry, M., 1977. Seismic refraction and reflection
21	studies of crustal structure of the eastern Sunda and western Banda arcs. J. Geophys.
22	Res. 82, 2479-2489.
23	Davidson, J.P., 1987. Crustal contamination versus subduction zone enrichment: examples
24	from the Lesser Antilles and implications for mantle source compositions of island arc
25	volcanic rocks. Geochim. Cosmochim. Acta 51, 2185-2198.

1	Davidson, J.P., Dungan, M.A., Ferguson, K.M., Colucci, M.T., 1987. Crust-magma	
2	interactions and the evolution of arc magmas: The San Pedro-Pellado volcanic complex,	
3	southern Chilean Andes. Geology 15, 443-446.	
4	Davidson, J.P., Harmon, R.S., 1989. Oxygen isotope constraints on the petrogenesis of	
5	volcanic arc magmas from Martinique, Lesser Antilles. Earth Planet. Sci. Lett. 95, 255-	
6	270.	
7	Davidson, J.P., Hora, J.M., Garrison, J.M., Dungan, M.A., 2005. Crustal forensics in arc	
8	magmas. J. Volcanol. Geotherm. Res. 140, 157-170.	
9	Davidson, J., Turner, S., Handley, H., Macpherson, C., Dosseto, A., 2007. Amphibole	
10	"sponge" in arc crust? Geology.35, 787-790.	
11	Davidson, J.P., Wilson, I.R., 1989. Evolution of an alkali basalt-trachyte suite from Jebel	
12	Marra volcano, Sudan, through assimilation and fractional crystallization. Earth Planet.	
13	Sci. Lett. 95, 141-160.	
14	de Hoog, J.C.M., Taylor, B.E., van Bergen, M.J., 2001. Sulfur isotope systematics of basaltic	
15	lavas from Indonesia: implications for the sulfur cycle in subduction zones. Earth	
16	Planet. Sci. Lett. 189, 237-252.	
17	de Hoog, J.C.M., Koetsier, G.W., Bronto, S., Sriwana, T., Van Bergen, M.J., 2001. Sulfur and	
18	chlorine degassing from primitive arc magmas: Temporal changes during the 1982-1983	
19	eruptions of Galunggung (West Java, Indonesia). J. Volcanol. Geotherm. Res. 108, 55-	
20	83.	
21	DeMets, C., Gordon, R.G., Argus, D.F., Stein, S., 1990. Current plate motions. Geophysical	
22	Journal International 101, 425-478.	
23	DePaolo, D.J., 1981. Trace element and isotopic effects of combined wallrock assimilation	
24	and fractional crystallization. Earth Planet. Sci. Lett. 53, 189-202.	

1	Dowall, D.P, Nowell, G.M., Pearson, D.G., 2003. Chemical pre-concentration procedures for
2	high-precision analysis of Hf-Nd-Sr isotopes in geological materials by plasma
3	ionisation multi-collector mass spectrometry (PIMMS) techniques. Plasma Source Mass
4	Spectrometry. Spec. Pub. Royal Society of Chemistry, 321-337.
5	Edwards, C.M.H., 1990. Petrogenesis of tholeiitic, calc-alkaline and alkaline volcanic rocks,
6	Sunda arc, Indonesia. Unpublished Ph.D. Thesis, Royal Holloway, University of
7	London, UK.
8	Elburg, M., Foden, J., van Bergen, M.J, Zulkarnain, I., 2005. Australia and Indonesia in
9	collision: geochemical sources of magmatism. J. Volcanol. Geotherm. Res. 140, 25-47.
10	Elliot, T.R., Plank T., Zindler A., White W., Bourdon B., 1997. Element transport from slab
11	to volcanic front at the Mariana Arc. J. Geophys. Res. B102 14991-15019
12	Ewart, A., 1982. The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks:
13	with special reference to the andesitic-basaltic compositional range. In Andesites:
14	Orogenic Andesites and Related Rocks, ed R.S. Thorpe, pp. 525-48. Wiley, Chichester.
15	Ewart, A., Bryan, W. B., Chappell, B. W., Rudnick, R. L., 1994. Regional geochemistry of
16	the Lau-Tonga arc and back-arc systems. Proc. Ocean Drilling Program, Scientific
17	Results 135, 385-425.
18	Flood, T.P., Schuraytz, B.C., Vogel, T.A., 1989. Magma mixing due to disruption of a layered
19	magma body. J. Volcanol. Geotherm. Res. 36, 241-255.
20	Gamble, J.A., Smith, I.E.M., McCulloch, M.T., Graham, I.J., Kokelaar, B.P., 1993. The
21	geochemistry and petrogenesis of basalts from the Taupo volcanic zone and Kermadec
22	island arc, S.W. Pacific. J. Volcanol. Geotherm. Res. 54, 265-290.
23	Gasparon, M., 1993. Origin and evolution of mafic volcanics of Sumatra (Indonesia): their
24	mantle sources, and roles of subducted oceanic sediments and crustal contamination.
25	Unpublished Ph.D. Thesis, Univ. Tasmania.

1	Gasparon, M., Hilton, D. R., Varne, R., 1994. Crustal contamination processes traced by
2	helium isotopes: Examples from the Sunda arc, Indonesia. Earth Planet. Sci. Lett. 126,
3	15-22.
4	Gasparon, M., Varne, R., 1998. Crustal assimilation versus subducted sediment input in west
5	Sunda arc volcanics: an evaluation. Mineralogy and Petrology 64, 89-117.
6	Gerbe, MC., Gouraud, A., Sigmarsson, O., Harmon, R.S., Joron, J-L., Provost, A., 1992.
7	Mineralogical and geochemical evolution of the 1982-1983 Galunggung eruption
8	(Indonesia). Bulletin of Volcanology 54, 284-298.
9	GERM: http://earthref.org/GERM/index.html
10	Gertisser, R., Keller, J., 2003a. Trace element and Sr, Nd, Pb and O isotope variations in
11	medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia:
12	evidence for the involvement of subducted sediments in Sunda Arc magma genesis. J.
13	Petrol. 44, 457-489.
14	Gertisser, R., Keller, J., 2003b. Temporal variations in magma composition at Merapi
15	Volcano (Central Java, Indonesia): magmatic cycles during the past 2000 years of
16	explosive activity. J. Volcanol. Geotherm. Res. 123, 1-23.
17	Gill, J.B., 1981. Orogenic Andesites and Plate Tectonics. Springer, Berlin.
18	Grove, T.L., Baker, M.B., Price, R.C., Parman, S.W., Elkins-Tanton, L.T., Chatterjee, N.,
19	Muntener, O., 2005. Magnesian andesite and dacite lavas from Mt. Shasta, northern
20	California: products of fractional crystallisation of H2O-rich mantle melts. Contrib.
21	Mineral. Petrol. 148, 542-565.
22	Hamilton, W.B., 1979. Tectonics of the Indonesian region. U.S. Geological Survey
23	Professional Paper reprinted with corrections, 1981 and 1985, 1078: 345.

1	Handley, H.K., 2006. Geochemical and Sr-Nd-Hf-O isotopic constraints on volcanic
2	petrogenesis at the Sunda arc, Indonesia. Unpublished Ph.D. Thesis, Durham
3	University, UK.
4	Handley, H.K., Macpherson, C.G., Davidson, J.P., Berlo, K., Lowry, D., 2007. Constraining
5	fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen
6	Volcanic Complex, Indonesia. J. Petrol. 48, 1155-1183.
7	Harmon, R.S., Gerbe, M.C., 1992. The 1982-83 eruption at Galunggung volcano, Java
8	(Indonesia): oxygen isotope geochemistry of a zoned magma chamber. J. Petrol. 33,
9	585-609.
10	Hildreth, W., Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of
11	Central Chile. Contrib. Mineral. Petrol. 98, 455-489.
12	Ionov, D.A., Harmon, R.S., France-Lanord, C., Greenwood, B., Ashchepkov, I.V., 1994.
13	Oxygen isotope composition of garnet and spinel peridotites in the continental mantle:
14	Evidence from the Vitim xenolith suite, southern Siberia. Geochim. Cosmochim. Acta,
15	58, 1463-1470.
16	Ito, E., White, W.M., Gopel, C., 1987. The O, Sr, Nd and Pb isotope geochemistry of MORB.
17	Chem. Geol. 62, 157-176.
18	Jarrard, R.D., 1986. Relations among subduction parameters. Rev. Geophys. 24, 217-284.
19	Kadarusman, A., Miyashita, S., Maruyama, S., Parkinson, C.D., Ishikawa, A., 2004.
20	Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi
21	Ophiolite, Indonesia. Tectonophysics 392, 55-83.
22	Kieckhefer, R.M., Shor Jr, G.G., Curray, J.R., 1980. Seismic refraction studies of the Sunda
23	trench and forearc basin. J. Geophys. Res. 85, 863-889.
24	Langmuir, C.H., Voche, R.D., Hanson, G.N., Hart, S.R., 1978. A general mixing equation
25	with applications to Icelandic basalts. Earth Planet. Sci. Lett. 37, 380-392.

1	Le Pichon, X., 1968. Sea-floor s	preading and continental	drfit. J. Geophys.	Res. 73, 3661-
2	3697.			

3	Macpherson, C.G., Hilton, D.R., Mattey, D.P., Sinton, J.M., 2000. Evidence for an ¹⁸ O-
4	depleted mantle plume from contrasting ¹⁸ O/ ¹⁶ O ratios of back-arc lavas from the Manus
5	Basin and Mariana Trough. Earth Planet. Sci. Lett. 176, 171-183.
6	Marcoux, E., Milesi, J-P., 1994. Epithermal gold deposits in West Java, Indonesia: geology,
7	age and crustal source. Journal of Geochemical Exploration 50, 393-408.
8	Mattey, D., Lowry, D., Macpherson, C., 1994. Oxygen isotope composition of mantle
9	peridotite. Earth Planet. Sci. Lett. 128, 231-241.
10	McCulloch, M.T., Gamble J.A., 1991. Geochemical and geodynamical constraints on
11	subduction zone magmatism. Earth Planet. Sci. Lett. 102, 358-374.
12	Nowell, G.M., Kempton, P.D., Noble, S.R., Fitton, J.G., Saunders, A.D., Mahoney, J.J.,
13	Taylor, R.N., 1998. High precision Hf isotope measurements of MORB and OIB by
14	thermal ionisation mass spectrometry: insights into the depleted mantle. Chem. Geol.
15	149, 211-233.
16	Nowell, G.M, Pearson, D.G, Ottley, C.J., Schweiters, J., 2003. Long-term performance
17	characteristics of a plasma ionisation multi-collector mass spectrometer (PIMMS): the
18	ThermoFinnigan Neptune. Plasma Source Mass Spectrometry. Spec. Pub. Royal Society
19	of Chemistry, 307-320.
20	Ottley, C.J, Pearson, D.G., Irvine, G.J., 2003. A routine method for the dissolution of
21	geological samples for the analysis of REE and trace elements via ICP-MS. Plasma
22	Source Mass Spectrometry. Spec. Pub. Royal Society of Chemistry, 221-230.
23	Patchett, P.J., 1983. Hafnium isotope results from mid-ocean ridges and Kerguelen. Lithos 16,
24	47-51.

1	Patchett, P.J., Tatsumoto, M., 1980. Hafnium isotope variations in oceanic basalts. Geophys.
2	Res. Lett. 7, 1077-1080.
3	Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries.
4	Andesites: Orogenic Andesites and Related Rocks. John Wiley & Sons, Chichester, UK,
5	525-548.
6	Pearce, J.A., Kempton, P.D., Nowell, G.M., Noble, S.R., 1999. Hf-Nd Element and Isotope
7	Perspective on the Nature and Provenance of Mantle and Sunduction Components in
8	Western Pacific Arc-Basin Systems. J. Petrol. 40, 1579-1611.
9	Price, R.C., Kennedy, A.K., Riggs-Sneeringer, M., Frey, F.A., 1986. Geochemistry of basalts
10	from the Indian Ocean triple junction: implications for the generation and evolution of
11	Indian Ocean ridge basalts. Earth Planet. Sci. Lett. 78, 379-396.
12	Rapp, R.P., Watson, E.B., 1995. Dehydration melting of a metabasalt at 8-32 kbar:
13	Implications for continental growth and crustal recycling. J. Petrol. 36, 891-931.
14	Rehkämper, M., Hofmann, A.W., 1997. Recycled ocean crust and sediment in Indian Ocean
15	MORB. Earth Planet. Sci. Lett. 147, 93-106.
16	Reubi, O., Nicholls, I.A., 2004. Magmatic evolution at Batur volcanic field, Bali, Indonesia:
17	petrological evidence for polybaric fractional crystallisation and implications for
18	caldera-forming eruptions. J. Volcanol. Geotherm. Res. 138, 345-369.
19	Reubi, O., Nicholls, I.A., Kamenetsky, V.S., 2002. Early mixing and mingling in the
20	evolution of basaltic magmas: evidence from phenocryst assemblages, Slamet Volcano,
21	Java, Indonesia. J. Volcanol. Geotherm. Res. 119, 255-274.
22	Royse, K., Kempton, P.D., Darbyshire, D.P.F., 1998. NERC Isotope Geosciences Laboratory
23	Report Series, 121.
24	Salters, V.J.M., 1996. The generation of mid-ocean ridge basalts from the Hf and Nd isotope

25 perspective. Earth Planet. Sci. Lett. 141, 109-123.

1	Salters, V.J.M., Hart, S.R., 1991. The mantle sources of ocean islands and arc basalts: the Hf
2	isotope connection. Earth Planet. Sci. Lett. 104, 364-380.
3	Salters, V.J.M., White, W.M., 1998. Hf isotope constraints on mantle evolution. Chem. Geol.
4	145, 447-460.
5	Sitorus, K., 1990. Volcanic stratigraphy and geochemistry of the Idjen Caldera Complex, East
6	Java, Indonesia, MSc thesis, University of Wellington, New Zealand.
7	Staudigel, H., Plank, T., White, B., Schimincke, H-U., 1996. Geochemical fluxes during
8	seafloor alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418,
9	Subduction: Top to Bottom. Geophysical Monograph 96, pp. 19-36.
10	Stille, P., Unruh, D.M., Tatsumoto, M., 1986. Pb, Sr, Nd, and Hf isotopic constraints on the
11	origin of Hawaiian basalts and evidence for a unique mantle source. Geochim.
12	Cosmochim. Acta 50, 2303-2319.
13	Stimac, J., 2003. Surface geology of the Awibengkok geothermal development area, Java,
14	Indonesia. Unocal report, Philippines.
15	Stormer, J. C., Jr., Nicholls, J., 1978. XLFRAC; a program for the interactive testing of
16	magmatic differentiation models. Computers & Geosciences 4, 143-159.
17	Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:
18	implications for mantle composition and processes. In: A.D. Saunders, Norry, M.J.
19	(Editor), Magmatism in the Ocean Basins. Geological Society Special Publication, 313-
20	345.
21	Taylor, S.R., 1977. Island arc models and the composition of the continental crust, in
22	Talwani, M., Pitman, W., eds., Island arcs, deep sea trenches and back arc basins:
23	American Geophysical Union, Maurice Ewing Series 1, 325-335.

1	Tepley, F.J., III, Davidson, J.P., Tilling, R.I., Arth, J.G., 2000. Magma mixing, recharge and
2	eruption histories recorded in plagioclase phenocrysts from El Chichon, Mexico. J.
3	Petrol. 41, 1397-1411.
4	Thirlwall, M.F., 1991. Long-term reproducibility of multicollector Sr and Nd isotope ratio
5	analysis. Chem. Geol.; Isotope Geoscience Section 94, 85-104.
6	Thirlwall, M.F., Graham A.M., Arculus R.J., Harmon R.S., Macpherson C.G., 1996.
7	Resolution of the effect of crustal assimilation, sediment subduction and fluid transport
8	in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles.
9	Geochim. Cosmochim. Acta 60, 4785-4810.
10	Tregoning, P., Brunner, F.K., Bock, Y., Puntodewo, S.S.O., McCaffrey, R., Genrich, J.F.,
11	Calais, E., Rais, J., Subarya, C., 1994. First geodetic measurement of convergence
12	across the Java Trench. Geophys. Res. Lett. 21, 2135-2138.
13	Turner, S., Foden. J, George, R., Evans, P., Varne, R., Elburg, M., Jenner, G., 2003. Rates and
14	processes of potassic magma evolution beneath Sangeang Api volcano, East Sunda Arc,
15	Indonesia. J. Petrol. 44, 491-515.
16	Turner, S., Hawkesworth, C., Rogers, N., Bartlett, J., Worthington, T., Hergt, J., Pearce, J.,
17	Smith, I., 1997. ²³⁸ U- ²³⁰ Th disequilibria, magma petrogenesis and flux rates beneath the
18	depleted Tonga-Kermadec island arc. Geochim. Cosmochim. Acta 61, 4855-4884.
19	van Gerven, M., Pichler, H., 1995. Some aspects of the volcanology and geochemistry of the
20	Tengger Caldera, Java, Indonesia: eruption of a K-rich tholeiitic series. Journal of
21	Southeast Asian Earth Sciences 11, 125-133.
22	Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., Albarede, F., 1999. Relationships between Lu-
23	Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet. Sci.
24	Lett. 168, 79-99.

1	Vogel, T.A., 1982. Magma mixing in the acidic-basic complex of Ardnamurchan;
2	implications on the evolution of shallow magma chambers. Contrib. Mineral. Petrol. 79,
3	411-423.
4	Vukadinovic, D., Sutawidjaja, I., 1995. Geology, mineralogy and magma evolution of
5	Gunung Slamet Volcano, Java, Indonesia. Journal of Southeast Asian Earth Sciences,
6	11, 135-164.
7	White, W.M., Patchett, J., 1984. Hf-Nd-Sr isotopes and incompatible element abundances in
8	island arcs: implications for magma origins and crustal-mantle evolution. Earth Planet.
9	Sci. Lett. 67, 167-185.
10	White, W.M., Patchett, J., Ben Othman, D., 1986. Hf isotope ratios of marine sediments and
11	Mn nodules; evidence for a mantle source of Hf in seawater. Earth Planet. Sci. Lett. 79,
12	46-54.
13	Whitford, D.J., White, W.M., Jezek, P.A., 1981. Neodymium isotopic composition of
14	Quaternary island arc lavas from Indonesia. Geochim. Cosmochim. Acta 45, 989-995.
15	Woodhead, J.D., 1989. Geochemistry of the Mariana Arc (Western Pacific): Source
16	composition and processes, Chem. Geol. 76, 1-24.
17	Woodhead, J.D., Eggins, S.M., Gamble, J., 1993. High field strength and transition element
18	systematics in island arc and back-arc basin basalts: evidence for multi-phase melt
19	extraction and depleted mantle wedge. Earth Planet. Sci. Lett. 114, 491-504.
20	Woodhead, J.D., Hergt, J.M., Davidson, J.P., Eggins, S.M., 2001. Hafnium isotope evidence
21	for 'conservative' element mobitiy during subduction processes. Earth Planet. Sci. Lett.
22	192, 331-346.
23	Zaennudin, A., Sutawidjaja, I.S., Aswin, D., 1993. Geological map of Salak Volcano, West
24	Java. Volcanic Survey of Indonesia, Indonesia.

1	Zellmer G.F., Hawkesworth, C.J., Sparks, R.S.J., Thomas, L.E., Harford, C.L., Brewer, T.S.,
2	Loughlin, S.C., 2003. Geochemical evolution of the Soufriere Hills Volcano,
3	Montserrat, Lesser Antilles Volcanic Arc. J. Petrol. 44, 1349-1374.
4	
5	Figure Captions
6	Fig. 1. Topographic sketch map of the Salak-Perbakti-Gagak Complex, showing the
7	distribution of samples used in this study and corresponding data symbols used on subsequent
8	figures. CVG = Central Vent Group; SVG = Side Vent Group; SL3 = Salak lava 3 (Zaennudin
9	et al., 1993). Selected rivers are shown in black dash; solid lines with ticks represent
10	escarpments. Inset diagram shows the location of Salak (large black triangle) in West Java, in
11	relation to major centres of population (grey fill) and Quaternary volcanoes (small black
12	triangles).
13	
14	Fig. 2. Analyses of pyroxene phenocrysts in Salak lavas. Dashed lines represent 10%
15	increments.
16	
17	Fig. 3. Compositional variation of plagioclase phenocrysts in Salak volcanic rocks. Grey lines
18	represent 10% increments.
19	
20	Fig. 4. Major element variation diagrams for Salak volcanic rocks. Tengger Caldera (open
21	circles) distinguished from the other Java volcanic data (small crosses) to highlight the
22	unusual geochemical properties of the rocks (data from van Gerven & Pichler, 1995). Java
23	data: B, Bayah Dome (Marcoux and Milesi, 1994; Alves et al., 1999); C, Cereme (Edwards,
24	1990); G, Gede Volcanic Complex (Handley, 2006); Ga, Galunggung (Gerbe et al., 1992; de
25	Hoog et al., 2001); Gu, Guntur (Edwards, 1990; de Hoog et al., 2001); I, Ijen Volcanic

Complex (Handley et al., 2007); M, Merapi (Gertisser and Keller, 2003a); S, Slamet
 (Vukadinovic and Sutawidjaja, 1995; Reubi and Nicholls, 2002). Model fractionation curves
 are shown for removal of the mineral assemblage suggested by least squares modelling from
 S106B (model 1) in Table 9: 0.7 Plag, 0.1 Cpx, 0.13 Opx, 0.07 Fe-Ti oxide. Mineral data used
 in modelling is given in Tables 3-5. Fractionation curves are labelled with the percentage of
 melt remaining.

7

8 Fig. 5. Selected trace element variations with SiO₂ for Salak volcanic rocks. Java data sources 9 as in Fig. 4. SVG samples erupted from eastern flank (E. Flank) and western flank (W. Flank) 10 vents are indicated in b). Model fractionation curves (FC) are shown for 100% amphibole 11 fractionation (crosses) from Javan basalt (Ijen Volcanic Complex KI69, Handley et al., 2007) 12 using mineral partition coefficients from Bottazzi et al. (1999) and mineral composition from 13 Rapp and Watson at 8kbar, 1000°C (1995), and for fractionation of the mineral assemblage 14 suggested by least squares modelling (horizontal ticks) see Fig. 4 for details. Curves are 15 labelled with the percentage of melt remaining.

16

Fig. 6. Chondrite normalised rare earth element diagram of Salak rocks. Normalising factors
and Normal (N)-MORB values from Sun and McDonough (1989). Indian (I)-MORB
(Chauvel and Blichert-Toft, 2001).

20

Fig. 7. Variation of ¹⁴³Nd/¹⁴⁴Nd with ⁸⁷Sr/⁸⁶Sr for Salak volcanic rocks. Data sources: IMORB: Rehkämper and Hofmann, 1997; Ito et al., 1987; Price et al., 1986; Chauvel and
Blichert-Toft, 2001; N-MORB: Ito et al., 1987; Chauvel and Blichert-Toft, 2001; Java: White
and Patchett, 1984; Whitford et al, 1981; Edwards, 1990; Gertisser and Keller, 2003a; Gerbe
et al, 1992; Handley et al., 2007; Handley, 2006; Indian ocean sediments: Ben Othman et al.,

1989; Gasparon and Varne, 1998. Inset: Nd and Sr isotope ratio diagram separated by group.
 2σ external errors shown for each analysis. E. Flank = eastern flank vent samples S102 and
 S103.

4

Fig. 8. ¹⁷⁶Hf/¹⁷⁷Hf - ¹⁴³Nd/¹⁴⁴Nd variation in Salak volcanic rocks. Data sources: I-MORB: 5 6 Salters, 1996; Nowell et al., 1998; Chauvel and Blichert-Toft, 2001; N-MORB: I-MORB refs. and Salters and Hart, 1991; OIB: Salters and Hart, 1991; Salters and White, 1998; Nowell et 7 8 al., 1998; Patchett and Tatsumoto, 1980; Patchett, 1983; Stille et al., 1986; Java: White and 9 Patchett, 1983; Woodhead et al., 2001; Handley et al., 2007; Handley, 2006; Banda: White 10 and Patchett, 1984; Indian ocean sediments: Ben Othman et al., 1989; White et al., 1986; 11 Vervoort et al., 1999. Dividing line for Indian and Pacific MORB provenance from Pearce et 12 al., 1999. Inset: Hf-Nd isotope diagram of Salak volcanic rocks separated by group. 2σ 13 external errors shown for each analysis on the inset diagram. E. Flank = eastern flank vent 14 samples S102 and S103.

15

16 Fig. 9. a) K/Rb-Rb and b) Ba/Th-Y, showing fractional crystallisation (FC), combined 17 assimilation and fractional crystallisation (AFC A, B and C), and bulk mixing (MM A, B, C 18 and D) curves for models involving Salak basaltic andesite S106B and A: rhyolite (this 19 study), B & D: Seputih granite plutonics 75415 and 75413 respectively (southern Sumatra, 20 Gasparon, 1993) and C: Javan arc tholeiite from Guntur, GU1/T (Edwards, 1990). See Table 21 8 for end member compositions. Tick marks on FC and AFC curves indicate the percentage of 22 liquid remaining. Tick marks on mixing curves represent the percentage of A, B, C or D mixed with the magma. FC and AFC calculations use the mineral proportions suggested by 23 24 least squares major element modelling of CVG rocks S106B to S110B (Table 9, model 1): 25 Plag = 0.7; Cpx = 0.1; Opx = 0.13; Oxide = 0.07. AFC curves calculated using DePaolo

(1981). The rate ratio (r) of mass assimilated to mass crystallised in AFC model: A = 0.5, B =
0.05, C = 0.8.

3

Fig. 10. Variation of ⁸⁷Sr/⁸⁶Sr isotope ratio versus SiO₂ for Salak volcanic rocks. Arrows 4 5 labelled SH, AFC and FC indicate the hypothesised data trends related to: heterogeneity in the 6 mantle source (SH), combined assimilation and fractional crystallisation (AFC) and fractional 7 crystallisation (FC). Inset shows Th/Ba versus SiO₂ for Salak rocks, highlighting the similar differentiation patterns between Th/Ba and ⁸⁷Sr/⁸⁶Sr and suggesting the former, for which 8 9 there is more data, might serve as a proxy for isotopic composition. 10 Fig. 11. Ba/Th against ⁸⁷Sr/⁸⁶Sr for Salak volcanic rocks. FC and AFC curves are shown for 11 the same models (AFC A, B and C) in Fig. 9 (see caption for details). ⁸⁷Sr/⁸⁶Sr ratios used in 12 13 model AFC C is that of GU2/C (Edwards, 1990). Arrow labelled FC indicates differentiation 14 trend expected from fractional crystallisation alone. Tick marks on FC and AFC curves 15 indicate the percentage of liquid remaining. 16 17 Fig. 12. Schematic representation of magmatic evolution, showing the multiple magma 18 storage areas and pathways envisaged in petrogenesis at Salak. (A) and (B) relate to 19 discussion in the text: (A) indicates continued magmatic evolution from a CVG-type parent at 20 shallow depth, involving late-stage fractionation of hornblende in petrogenesis of the western 21 flank SVG rocks, (B) indicates hypothesised fractionation of a HFSE-HREE compatible 22 phase at depth in the evolution of SVG magma below the eastern flank vent.

	CVG								
	S104	S105	S106A	S106B	S108	S109	S110A	S110B	S111
Ol	2.1	4.2	3.3	3.2	-	1.9	-	_	9.1
Opx	1	0.8	7.2	5.9	2.3	3.2	4.2	3.2	-
Cpx	0.3	0.4	2.1	3.8	1.4	7.1	4.3	2.1	-
Plag	26.4	32.8	31.2	32.3	15.5	28.6	14.3	12.7	31.5
Ox	1.1	1.8	2	2	1.9	2	2.1	1.5	2.1
Hbl	-	-	-	-	-	-	-	-	-
Bio	-	-	-	-	-	-	-	-	-
Qtz	-	-	-	-	-	-	-	-	-
GM	69.1	60	54.2	52.8	78.9	57.2	75.1	80.5	57.3
	SVG					SL3		Pre-Salak	
	S102	S103	S107B	S102XEN		S112	_	S101	
Ol	-	-	-	-		-		-	
Opx	6.2	10.8	-	2.7		7.4		1.5	
Cpx	5.1	9	0.1	4.6		10.2	0.25		
Plag	34.3	35.4	4.3	10.3		41.1	8.2		
Ox	2.9	3.9	0.5	1.7		4		-	
Hbl	-	-	0.25	-		-		0.25	
Bio	-	-	0.25	-		-		-	
Otz	-	-	1.5	-		-		0.5	
~~ <u>~</u>									

Table 1 Modal proportions of mineral phases in selected Salak volcanic rocks

Modal phase volume (%) established from point-counting between 200-300 points per sample. Ol, olivine; Opx, orthopyroxene; Cpx, clinopyroxene; Plag, plagioclase; Ox, Fe-Ti oxide; Hbl, hornblende; Bio, biotite; Qtz, quartz; GM, groundmass; XEN, xenolith. Table 2

Representative	chemic	al analys	es of onv	ines
Group	CVG			
Sample	S106B	S106B	S111	S111
Grain-Position	INC	P2-M	P2	P3
SiO_2	36.27	35.09	35.14	36.42
TiO ₂	0.01	0.02	0.05	0.04
Cr_2O_3	0.00	0.00	0.00	0.01
MgO	32.79	27.32	25.64	29.66
CaO	0.17	0.19	0.22	0.18
MnO	0.58	0.82	0.82	0.71
FeO	29.60	36.65	38.66	33.94
NiO	0.01	0.01	0.04	0.03
Na ₂ O	0.01	0.01	0.00	0.00
Total	99.44	100.10	100.56	100.99
Si	0.99	0.99	0.99	1.00
Fe(ii)	0.67	0.86	0.91	0.78
Mn	0.01	0.02	0.02	0.02
Mg	1.33	1.14	1.08	1.21
Ca	0.00	0.01	0.01	0.01
Total	3.02	3.02	3.01	3.01
Fo	66.39	57.06	54.18	60.91
Fa	33.61	42.94	45.82	39.09

Representative chemical analyses of olivines

Grain: P#, phenocryst; INC, inclusion. Position: M, mid point. Fo, forsterite content; Fa, fayalite content.

Structural formula based on 4 oxygens.

Clinopyroxene Orthopyroxene SVG SVG CVG SL3 Group SL3 CVG S106B S110B S102 S102(XEN) S112 S106B S110B S102(XEN) S102(XEN) S112 Sample S102 Grain-Position P1-R P1*R P2 P1-R P1 P3 P2-C P1 P1-M P1-C P1 52.25 49.92 52.78 50.99 SiO₂ 50.64 51.24 52.71 51.93 51.68 51.88 53.37 TiO₂ 0.68 0.70 0.37 0.32 0.21 0.19 0.22 0.23 0.49 0.26 0.40 Al_2O_3 3.42 2.21 1.47 1.83 1.07 2.09 1.20 1.00 1.23 0.65 0.88 Cr_2O_3 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.02 0.01 Fe₂O₃ 4.23 3.65 3.70 0.79 3.97 1.73 1.81 2.67 2.18 1.37 2.26 FeO 6.79 9.05 7.36 9.63 7.85 16.50 20.13 21.43 20.81 17.88 20.91 MnO 0.35 0.47 0.50 0.51 0.48 0.68 1.02 0.92 0.63 0.70 0.48 MgO 15.10 14.33 15.54 15.15 13.70 24.80 21.97 21.00 21.54 24.24 21.76 CaO 19.28 1.49 1.69 19.26 19.48 19.64 21.13 1.63 1.83 1.46 1.67 0.23 0.29 0.03 0.03 Na₂O 0.33 0.31 0.27 0.01 0.03 0.04 0.03 K_2O 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 NiO 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 Total 100.11 99.91 101.07 99.78 100.27 99.99 100.52 100.30 100.09 100.70 100.61 Si 1.95 1.97 1.88 1.91 1.93 1.95 1.94 1.93 1.95 1.95 1.95 Al 0.15 0.10 0.07 0.08 0.05 0.09 0.05 0.04 0.05 0.03 0.04 0.28 0.30 0.25 0.50 0.63 0.67 0.65 0.65 Fe(ii) 0.21 0.23 0.55 Fe(iii) 0.12 0.10 0.10 0.02 0.11 0.05 0.05 0.08 0.06 0.04 0.06 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 Mn 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.03 0.03 0.02 0.02 0.78 1.23 1.33 1.21 0.85 0.80 0.87 0.83 1.35 1.18 1.21 Mg Ca 0.78 0.78 0.79 0.78 0.86 0.06 0.07 0.06 0.06 0.07 0.07 Na 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 4.01 Total 4.04 4.03 4.03 4.03 4.01 4.01 4.02 4.02 4.01 4.02 Wo 39.54 39.15 39.94 42.75 2.92 2.99 3.31 39.21 3.22 3.68 3.33 En 43.10 40.59 43.45 42.89 38.58 68.25 61.33 58.48 60.10 66.41 60.18 17.36 20.20 17.40 17.17 18.67 28.53 35.00 38.60 30.26 36.51 Fs 36.91

 Table 3

 Representative mineral chemical analyses of pyroxenes

Grain: P#, phenocryst; *mantling orthopyroxene. XEN = xenolith. Position: C, core; M, mid point; R, rim.

Wo, wollastonite content; En, enstatite content; Fs, ferrosilite content. Structral formula based on 6 oxygens.

Fe(iii) = 2X(1-T/S), where X = number of oxygens, T and S = correct and observed cation totals, respectively.

Representativ			ai anaiys	es or prag	Silverase						
Group	CVG					SVG				SL3	
Sample	S106B	S106B	S110B	S111	S111	S102	S102	S102(XEN)	S102(XEN)	S112	S112
Grain-Position	P3-M	P4-R	Р3-С	GM	P4-R	Р2-С	P2-R	Р2-С	P2-M	Р3-С	P3-R
SiO_2	45.33	51.16	53.97	55.44	45.66	54.69	53.72	53.87	48.00	54.10	52.46
TiO ₂	0.01	0.04	0.05	0.07	0.01	0.04	0.02	0.02	0.03	0.02	0.03
Al_2O_3	33.88	29.59	28.19	27.05	34.05	27.57	27.77	28.05	31.69	27.71	28.94
MgO	0.05	0.08	0.07	0.06	0.02	0.05	0.05	0.04	0.07	0.05	0.05
CaO	18.56	13.85	11.90	11.04	18.60	11.09	11.45	11.83	16.37	11.45	13.03
MnO	0.02	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.02
FeO	0.60	0.66	0.59	1.22	0.62	0.41	0.57	0.48	0.51	0.45	0.54
Na ₂ O	1.16	3.80	4.97	5.50	1.08	5.42	5.26	4.94	2.41	5.27	4.42
K_2O	0.03	0.11	0.21	0.31	0.02	0.14	0.13	0.11	0.02	0.22	0.17
Total	99.63	99.29	99.96	100.69	100.05	99.41	98.95	99.34	99.09	99.27	99.64
Si	8.43	9.41	9.81	10.01	8.44	9.96	9.85	9.83	8.91	9.88	9.59
Al	7.42	6.42	6.04	5.76	7.42	5.92	6.00	6.03	6.93	5.97	6.24
Fe	0.09	0.10	0.09	0.18	0.10	0.06	0.09	0.07	0.08	0.07	0.08
Ca	3.70	2.73	2.32	2.14	3.68	2.16	2.25	2.31	3.25	2.24	2.55
Na	0.42	1.36	1.75	1.93	0.39	1.91	1.87	1.75	0.87	1.87	1.57
K	0.01	0.03	0.05	0.07	0.00	0.03	0.03	0.03	0.00	0.05	0.04
Mg	0.01	0.02	0.02	0.02	0.00	0.01	0.01	0.01	0.02	0.01	0.01
Total	20.07	20.06	20.07	20.10	20.04	20.05	20.10	20.04	20.06	20.09	20.09
An	89.72	66.38	56.30	51.69	90.45	52.64	54.20	56.59	78.92	53.87	61.39
Ab	10.13	32.98	42.51	46.61	9.46	46.60	45.06	42.77	20.98	44.89	37.68
Or	0.15	0.63	1.19	1.71	0.09	0.76	0.74	0.64	0.10	1.24	0.93

Table 4Representative mineral chemical analyses of plagioclase

Grain: P#, phenocryst; GM, groundmass. Position: C, core; M, mid point; R, rim. Structural formula based on 32 oxygens. XEN, xenolith within rock. An, anorthite content; Ab, albite content; Or, orthoclase content.

Table 5 Representative mineral chemical analyses of Fe-Ti oxides

Group	CVG									SVG				SL3				
Sample	S106B	S106B	S106B	S110B	S110B	S110B	S111	S111	S111	S102	S102	S102(XEN)	S102(XEN)	S112	S112	S112	S112	S112
Grain-Position	P1-C	Р2-С	P3	INC	P1	P2	P1	P2	P3	P1	P2	P1	P2	P1	P2	P3	P4-C	P4-C
SiO_2	0.08	0.07	0.07	0.08	0.07	0.08	0.07	0.10	0.05	0.10	0.06	0.05	0.11	0.05	0.05	0.03	0.06	0.04
TiO ₂	11.05	11.32	15.56	15.95	18.18	15.03	10.29	12.77	11.18	11.64	12.85	9.68	46.52	13.32	13.78	13.52	13.45	13.46
Al_2O_3	4.24	3.66	1.85	3.11	2.46	2.69	4.37	2.74	3.66	2.41	2.09	2.84	0.05	2.53	2.34	2.39	2.44	2.48
Cr_2O_3	0.03	0.05	0.07	0.01	0.04	0.03	0.16	0.24	0.14	0.02	0.01	0.06	0.00	0.03	0.02	0.04	0.02	0.03
Fe ₂ O ₃	43.72	43.25	37.35	34.37	31.46	37.93	44.32	41.08	43.62	43.53	41.30	47.13	0.00	41.14	41.01	40.57	40.16	40.84
FeO	37.57	38.13	42.54	41.35	45.19	42.08	37.46	39.94	38.31	39.58	40.24	37.59	46.67	41.53	41.56	40.31	40.31	40.79
MnO	0.43	0.44	0.47	0.51	0.58	0.59	0.40	0.42	0.42	0.52	0.62	0.48	1.26	0.51	0.58	0.52	0.49	0.49
MgO	2.67	2.25	1.82	2.61	1.68	1.96	2.19	1.89	2.11	1.33	1.37	1.50	1.63	1.31	1.60	1.94	1.86	1.77
CaO	0.00	0.00	0.03	0.02	0.00	0.03	0.00	0.01	0.00	0.00	0.02	0.00	0.19	0.01	0.00	0.05	0.00	0.00
Total	99.79	99.15	99.75	98.00	99.66	100.42	99.26	99.19	99.48	99.12	98.55	99.32	96.42	100.42	100.93	99.37	98.79	99.90
Si	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.01	0.03	0.02	0.01	0.04	0.02	0.01	0.01	0.02	0.01
Ti	2.43	2.52	3.47	3.58	4.05	3.32	2.28	2.86	2.49	2.63	2.92	2.18	10.78	2.96	3.05	3.03	3.03	3.00
Al	1.46	1.28	0.65	1.09	0.86	0.93	1.52	0.96	1.27	0.85	0.74	1.00	0.02	0.88	0.81	0.84	0.86	0.87
Cr	0.01	0.01	0.02	0.00	0.01	0.01	0.04	0.06	0.03	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.01
Fe(iii)	9.62	9.63	8.35	7.71	7.00	8.38	9.84	9.20	9.70	9.83	9.38	10.61	0.00	9.16	9.07	9.08	9.04	9.10
Fe(ii)	9.19	9.44	10.56	10.31	11.18	10.33	9.24	9.94	9.46	9.93	10.16	9.40	12.03	10.27	10.21	10.03	10.09	10.11
Mn	0.11	0.11	0.12	0.13	0.14	0.15	0.10	0.11	0.10	0.13	0.16	0.12	0.33	0.13	0.14	0.13	0.12	0.12
Mg	1.16	0.99	0.81	1.16	0.74	0.86	0.96	0.84	0.93	0.59	0.62	0.67	0.75	0.58	0.70	0.86	0.83	0.78
Ca	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.06	0.00	0.00	0.01	0.00	0.00
Total	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00
TiO ₂	11.97	12.21	16.30	17.40	19.17	15.82	11.17	13.61	12.01	12.29	13.62	10.25	49.92	13.88	14.30	14.32	14.32	14.15
Fe ₂ O ₃	47.35	46.66	39.14	37.50	33.17	39.90	48.14	43.80	46.85	45.94	43.75	49.93	0.00	42.86	42.56	42.98	42.76	42.95
FeO	40.69	41.13	44.57	45.11	47.65	44.28	40.69	42.58	41.14	41.77	42.63	39.82	50.08	43.26	43.14	42.70	42.92	42.90

Grain: P, phenocryst; GM, groundmass; GLOM, glomerocryst; INC, inclusion (mineral included within is stated in parentheses) XEN = xenolith.

Spot: C, core; M, mid point (number indicates relative position along transect from core to rim); R, rim. Structural formula based on 32 oxygens.

Table 6Click here to download Table: Table_6.xls

|--|

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53.66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.18
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.28
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100.36
Sc 23 20 23 23 24 27 24 23 20 Ti 6851 6683 6671 6605 7618 7876 7750 7726 5568 V 160 143 178 177 99 161 75 74 164 Cr 2.2 1.1 2.4 4.3 0.4 0.5 0.3 0.9 7.7 Mn 1262 1239 1727 1743 1928 1835 1750 1193 1495 Co 19 18 22 22 14 17 13 10 21 Ni 4.7 1.5 4.3 4.2 0.8 1.1 1.1 0.9 8.1 Cu 52 26 38 36 38 35 54 41 18 Zn 72 58 70 74 87 73 81 76 70 Ga 20 19 19 19 19 19 19 19 19 Rb 33.8 27.8 23.7 23.8 52.3 44.4 68.8 74.1 22.4 Sr 374 451 422 422 354 358 292 291 395 Y 41 35 32 37 55 52 67 69 33 Zr 188 140 125 125 226 189 3111 310 133 Nb 8.15	•
11 68831 6683 6671 6605 7618 7876 7750 7726 5568 V 160 143 178 177 99 161 75 74 164 Cr 2.2 1.1 2.4 4.3 0.4 0.5 0.3 0.9 7.7 Mn 1262 1239 1727 1743 1928 1835 1750 1193 1495 Co 19 18 22 22 14 17 13 10 21 Ni 4.7 1.5 4.3 4.2 0.8 1.1 1.1 0.9 8.1 Cu 52 26 38 36 38 35 54 41 18 Zn 72 58 70 74 87 73 81 76 70 Ga 20 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19<	20
V160143178177991617374164Cr2.21.12.44.30.40.50.30.97.7Mn126212391727174319281835175011931495Co191822221417131021Ni4.71.54.34.20.81.11.10.98.1Cu522638363835544118Zn725870748773817670Ga201919191919191919Rb33.827.823.723.852.344.468.874.122.4Sr374451422422354358292291395Y413532375552676933Zr188140125125226189311310133Nb8.156.045.255.219.997.8713.6713.765.65Cs2.270.990.750.952.802.313.834.130.78Ba214194173176304253368366188	2208
Mn 1262 1239 1727 1743 1928 1835 1750 1193 1495 Co 19 18 22 22 14 17 13 10 21 Ni 4.7 1.5 4.3 4.2 0.8 1.1 1.1 0.9 8.1 Cu 52 26 38 36 38 35 54 41 18 Zn 72 58 70 74 87 73 81 76 70 Ga 20 19<	77
Nin 1252 1253 1125 1126 1126 1125 1125 1126 1125 1125 1126 1125 1125 1126 1126 1125 1125 1126 1126 1125 1125 1126 1126 1125 1125 1126 1136	1495
Ni 4.7 1.5 4.3 4.2 0.8 1.1 1.1 0.9 8.1 Cu 52 26 38 36 38 35 54 41 18 Zn 72 58 70 74 87 73 81 76 70 Ga 20 19 19 19 19 19 19 19 19 Rb 33.8 27.8 23.7 23.8 52.3 44.4 68.8 74.1 22.4 Sr 374 451 422 422 354 358 292 291 395 Y 41 35 32 37 55 52 67 69 33 Zr 188 140 125 125 226 189 311 310 133 Nb 8.15 6.04 5.25 5.21 9.99 7.87 13.67 13.76 5.65 Cs 2.27 0.99 0.75 0.95 2.80 2.31 3.83 4.13 0.78 Ba 214 194 173 176 304 253 368 366 188	21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18
Ga20191919191919191919Rb33.827.823.723.852.344.468.874.122.4Sr374451422422354358292291395Y413532375552676933Zr188140125125226189311310133Nb8.156.045.255.219.997.8713.6713.765.65Cs2.270.990.750.952.802.313.834.130.78Ba214194173176304253368366188	70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19
Sr374451422422354358292291395Y413532375552676933Zr188140125125226189311310133Nb8.156.045.255.219.997.8713.6713.765.65Cs2.270.990.750.952.802.313.834.130.78Ba214194173176304253368366188	22.4
Y413532375552676933Zr188140125125226189311310133Nb8.156.045.255.219.997.8713.6713.765.65Cs2.270.990.750.952.802.313.834.130.78Ba214194173176304253368366188	395
Zr188140125125226189311310133Nb8.156.045.255.219.997.8713.6713.765.65Cs2.270.990.750.952.802.313.834.130.78Ba214194173176304253368366188	33
Nb 8.15 6.04 5.25 5.21 9.99 7.87 13.67 13.76 5.65 Cs 2.27 0.99 0.75 0.95 2.80 2.31 3.83 4.13 0.78 Ba 214 194 173 176 304 253 368 366 188	133
Cs 2.27 0.99 0.75 0.95 2.80 2.31 3.83 4.13 0.78 Ba 214 194 173 176 304 253 368 366 188	5.65
Ba 214 194 175 170 304 235 308 300 188	0.78
	100
La 18.1 13.7 12.9 16.2 22.5 19.2 29.3 30.1 14.0	14.0
Ce 41.6 31.9 29.2 29.8 52.1 41.7 68.2 65.9 32.4	32.4
Pr 6.07 4.68 4.32 5.20 7.56 6.29 9.76 10.09 4.79	4.79
Nd 27.6 21.6 20.0 24.2 34.5 28.7 44.2 45.3 22.2	22.2
Sm 6.48 5.20 4.84 5.67 8.33 6.95 10.43 10.65 5.28	5.28
Eu 1.86 1.54 1.44 1.68 2.06 1.82 2.33 2.35 1.58	1.58
Gd 6.79 5.70 5.25 6.19 8.95 7.30 11.05 11.24 5.08 Th 1.08 0.01 0.82 0.08 1.45 1.24 1.77 1.82 0.00	5.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.90 5.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 13
Er 3.77 3.24 2.90 3.36 5.06 4.56 6.27 6.42 3.09	3.09
Tm 0.60 0.51 0.46 0.51 0.79 0.71 0.97 1.02 0.48	0.48
Yb 3.84 3.28 2.94 3.29 5.08 4.57 6.31 6.54 3.07	3.07
Lu 0.64 0.54 0.49 0.55 0.85 0.77 1.07 1.08 0.52	0.52
Hf 458 358 323 319 582 487 794 793 341	3.41
Ta 0.47 0.34 0.30 0.31 0.60 0.47 0.81 0.87 0.33	0.33
Pb (total) 7.0 6.3 4.7 6.8 13.8 9.2 16.1 22.6 5.3	5.3
Th 3.49 2.87 2.44 2.43 5.94 4.66 7.88 7.90 2.51	2.51
U 0.81 0.64 0.56 0.56 1.32 1.02 1.72 1.74 0.58	0.58
$\frac{1000}{10000000000000000000000000000000$	04596±10
${}^{143}\text{Nd}/{}^{144}\text{Nd}_{m} \qquad 0.512735 \pm 7 0.512738 \pm 6 \qquad 0.512741 \pm 6 0.512723 \pm 8 \qquad 0.512746 = 0.512746 = 0.512723 \pm 8 \qquad 0.512746 = 0.512746 = 0.512746 = 0.512746 = 0.512732 \pm 8 \qquad 0.512746 = 0.51276 = 0.51276 = 0.51276 = 0.51276 = 0.51276 = 0.51276 = 0.51276 = 0.51276 = 0.51276 = 0.51276 = 0.51276 = 0.51276 = 0.5176 = 0.51276 = 0.5176 = 0.51276 = 0.5176 = 0.5176 = 0.5176 = 0.51276 = 0.5176 = $	512746±9
${}^{176}\mathrm{Hf}/{}^{177}\mathrm{Hf}_{\mathrm{m}} \qquad 0.283055 \pm 9 0.283040 \pm 6 \qquad 0.283050 \pm 6 0.283041 \pm 6 \qquad 0.283046 \pm 0.283044 \pm 0.28404 \pm 0.28404 \pm 0.28404 \pm 0.283044 \pm 0.2840444444 \pm 0.284$	83046±28

Major element contents in wt%; trace elements concentrations in ppm; $_{m}$ = measured; isotope ratios ± 2SE (2*standard internal error).

Table 7

Oxygen isotope data (δ^{18} O) of mineral separates from Salak volcanic rocks

	clinopyroxene	plagioclase
S100		6.03
S103	5.18	5.97
S106A	5.37	
S111		5.96
S112	5.44	6.07

			Elemer	nt Con	centra	tions (J	opm)
	Sample	Туре	Κ	Rb	Ba	Th	Yb
	S106B	Salak basaltic andesite	3470	24	176	2.4	3.29
А	107A	Salak rhyolite	16545	158	582	20.1	2.24
В	75415	Sumatran granitoid	14652	237	12	34.9	1.35
С	GU1/T	Javan tholeiite	1374	3.4	97	0.8	2.94
D	75413	Sumatran granitoid	17101	68	937	5.9	1.86

Table 8 End member compositions used in modelling calculations

Sumatran granitoid data from Gasparon (1993); Javan tholeiite from Guntur (Edwards, 1990); Salak samples from this study

Summary of least squares major element modelling calculations for CVG rocks									
Mode	1	1	1 2 3						
Paren	t	S106B	S106B	S106B	S106B				
Daught	er	S110B	S108	S104	S104				
SiO ₂ range	e (%)	53.8-60.6	53.8-57.5	53.8-54.9	53.8-54.9				
Σr^2		0.13	0.13	0.01	0.01				
% of phase	Plag	43.4	32.9	10.6	8.2				
removed	Срх	6.0	5.7	4.3	4.5				
relative	relative Ol		-	-	2.7				
to initial	to initial Opx		6.1	3.5	-				
magma	magma Ox		3.0	1.6	0.8				
%C		61	48	20	16				

Table 9Summary of least squares major element modelling calculations for CVG rocks

%C = percentage of crystallisation (sum of phases removed)

The mineral phases considered in modelling are limited to those observed as phenocrysts in either the parent or daughter rocks.

Element	Yb	Ti	Y
normalised phase proportions			
Plag	70.97	70.97	70.97
Opx	12.84	12.84	12.84
Срх	9.80	9.80	9.80
Fe-Ti Ox	6.40	6.40	6.40
Parent concentration (Co)	3.3	6605	37
Degree of fractionation (F)	0.39	0.39	0.39
D_{Plag}	0.052	0.052	0.076
D _{Opx}	0.283	0.423	0.028
D _{Cpx}	0.661	0.350	0.860
D _{Fe-Ti Ox}	0.218	9.500	0.322
D (bulk)	0.170	0.733	0.203
Calculated daughter comp. (Cl)	7.2	8500	79
Measured daughter comp. (Cl)	6.5	7726	69

Table 10Results of trace element Rayleigh Fractionation modelling

Daughter (S110B) composition calculated by forward modelling of parent S106B using $Cl = Co.F^{(D-1)}$. Phase proportions and degree of fractionation values used are those suggested by least squares modelling (Table 9, Model 1). Distribution coefficients (D) are average values for basaltic-dacitic systems from the GERM database (http://earthref.org/GERM/index.html).

	Sample no.	Rock Type	Sr (ppm)	⁸⁷ Sr/ ⁸⁶ Sr	K/Rb	Ba/Th
1	VM33-75	terrigbio. sediment	196	0.70925	106	16
2	VM33-79	terrigenous mud	160	0.70802	124	18
3	CS	calcareous-organogenic sediment	1258	~ 0.709	106	60
4	76100	S-Type granite	32	0.74036	185	0.2
5	ME99AL16	intrusive (51 wt % SiO ₂)	609	0.706155	118	77
6	ME00AL42	intrusive (62 wt % SiO ₂)	375	0.706600	126	53
7	H110x	intrusive (51 wt % SiO ₂)	152	0.708561	139	292
8	J82x	intrusive (hbl spessarite)	173	0.705291	346	58
9	GU1/T	Javan tholeiitic lava	232	0.70393	404	127
10	TAF43/6	Tongan tholeiitic lava	118	0.70388	519	344
11	417D-418A	altered oceanic crust	118	0.704584	235	364
12	M22	basalt (ophiolitic)	143	-	416 ^a	10
13	P-15	dolerite (ophiolitic)	171	-	4150	27
14	S-134	clinopyroxene gabbro (ophiolitic)	129	-	1245	70

 Table 11

 Trace element and ⁸⁷Sr/⁸⁶Sr isotope compositions of potential crustal contaminants

Data sources: 1-4: Gasparon 1993; Gasparon et al., 1998; 5-8: Elburg et al., 2005; 9: (Guntur tholeiite) Edwards, 1990; 10: Turner et al., 1997; 11: (average 417D-418A n = 7) Staudigel et al., 1996; 12-14 (Sulawesi ophiolite) Kadarusman et al., 2004.

^a Rb concentration below detection limit therefore Rb abundance used is of sample P-33 (0.5 ppm) from the same area.