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We consider a Bose-Einstein condensate driven by periodic δ-kicks. In contrast to first-order descriptions,
which predict rapid, unbounded growth of the noncondensate in resonant parameter regimes, the consistent treat-
ment of condensate depletion in our fully-time-dependent, second-order description acts to damp this growth,
leading to oscillations in the (non)condensate population and the coherence of the system.
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Central to the concept of a weakly interacting atomic Bose-
Einstein condensate (BEC) is that each of the N component
atoms can be considered to be in approximately the same mo-
tional state; this is manifest through the mean-field descrip-
tion of zero-temperature (T = 0) BEC dynamics with the
Gross-Pitaevskii equation (GPE), which takes the form of a
single-particle Schrödinger wave equation with an additional
cubic nonlinear term [1]. At finite temperature there is ther-
mal depletion of the condensate, which can be theoretically
accounted for in a variety of ways [2]. Even at T = 0 in a
system of finite size there is always a finite noncondensate
fraction [1, 3], and one expects dynamics within the BEC
to cause significant particle transfer from the condensate to
the noncondensate fraction under quite general circumstances
[4–7]. When rapid, such dynamical depletion has commonly
been supposed to presage destruction of the BEC as a coher-
ent entity, however previous studies have been hampered by
the absence of a self-consistent treatment [6, 7]. Applying
the number-conserving approach of Gardiner and Morgan [8],
fully dynamically to second order, we have carried out the first
such self-consistent treatment of a specific example system.

Our chosen test-system is based on the quantum δ-kicked
rotor [9–12], a paradigm quantum-chaotic system in which
periodic driving leads to complex behavior, including dynam-
ical localization [9, 12] and quantum resonances (associated
with ballistic increase in the kinetic energy [9–11]). Atom-
optical realizations of such systems [11–13] comprise an ex-
citing area of research into quantum-chaotic phenomena; ex-
tension into the regime of BECs has also become an active
area of research, in which several new phenomena have been
predicted [6, 7, 14–16]. In the mean-field approximation,
the GPE nonlinearity can strongly influence δ-kicked-rotor-
BEC dynamics [14]; in particular, the structure of quantum
resonances was recently elucidated [16], revealing previously
unobserved resonance profiles with a sharp asymmetric cut-
off. The noncondensate fraction can be accounted for using
a number-conserving approach [3, 4, 8, 17]: such approaches
contain a fixed atom number (appropriate to atomic BEC ex-
periments [8]), and nonlocal terms [ f̃ and Q in Eqs. (2) and
(5)] which, within the second-order, linear-response treatment
used by Morgan et al. [18], have proved vital in explaining
the temperature dependence of collective excitation spectra

FIG. 1. (Color online) (a) δ-kicked-rotor-BEC: (i) toroidally-trapped
BEC; (ii) δ-kicking potential. (b) Evolution of condensate and non-
condensate fractions nc = Nc/N and nt = Nt/N in (i) first- and
(ii) second-order number-conserving descriptions (N = 104, gT =

2.5 × 10−4, Tp = 9.255, κ = 0.5). In (iii) we show the coherence
measure C [Eq. (7)] in the second-order description, and the fidelity,
F [Eq. (8)], of the condensate mode between descriptions.

observed at JILA and MIT [19]. The first-order, number-
conserving description of Castin and Dum [4] [consisting of
modified Bogoliubov-de Gennes equations (MBdGE) coupled
to the GPE] has been the approach of choice in δ-kicked BEC
systems [6, 7]. This has revealed a general tendency towards
rapid growth in the number of noncondensate atoms Nt. Such
behavior is directly linked to linear dynamical instabilities
(i.e., sensitivity to initial conditions in the linearized regime)
in the GPE, enabled by its nonlinearity [5]; the presence of
such instabilities is a generic feature of most nonlinear sys-
tems. Conversely, growth in Nt should match depletion in the
condensate number Nc, and as atoms transfer from Nc to Nt,
qualitatively one expects mean-field interactions and hence
further transfer to “switch off” at some stage. Whether this
occurs before the destruction of the condensate has remained
an open question, as a linearized, first-order description treats
the condensate as an effectively undepletable “particle bath,”
feeling no effect from the noncondensate.

In this Letter we answer this question in the affirmative,
using the first fully time-dependent application of the second-
order, number-conserving description of Gardiner and Mor-
gan [8], for a δ-kicked-rotor-BEC in a quasi-one-dimensional
ring trap [Fig. 1(a)], an ideal test system to explore generic is-
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sues of dynamically induced condensate depletion. This self-
consistent description consists of a generalized GPE (GGPE)
coupled to the MBdGE; it explicitly preserves N = Nc + Nt

and the orthogonality of the condensate and noncondensate,
includes mutual interactions, and allows free transfer of popu-
lation between the two. We solve these equations numerically
and explore resonant parameter regimes which, to first order,
lead to rapid, unbounded growth of the noncondensate. Our
principal finding is the damping of this growth in the second-
order description [Fig. 1(b)(i,ii)]. We also compute the coher-
ence of the system and the departure of the second-order de-
scription from the GPE [Fig. 1(b)(iii)] for varying N. We show
that, despite considerable differences in dynamics between the
descriptions around resonant parameter regimes, the GPE ac-
curately predicts the location of these parameter regimes; the
cut-off identified in [16] is qualitatively preserved, however
the accompanying exponential oscillations are strongly modi-
fied for experimentally realistic atom numbers.

We consider N bosonic atoms of mass M, held in a toroidal
potential VT (ρ, z) = Mω2[(ρ − R)2 + z2]/2 [Fig. 1(a)(i)],
interacting with s-wave contact interactions, and subject to
a temporally and spatially periodic driving potential V(θ, t)
[Fig. 1(a)(ii)]; toroidal potentials similar to VT can be created
and precisely controlled using all-optical methods [20]. As-
suming sufficiently strong radial and axial confinement, and
harmonic length r ≡

√
~/Mω � R [21], we reduce the sys-

tem Hamiltonian to a dimensionless (length unit R, time unit
MR2/~), one-dimensional form [16]:

Ĥ =

∫
dθΨ̂†(θ)

[
−

1
2
∂2

∂θ2 + V(θ, t) +
gT

2
Ψ̂†(θ)Ψ̂(θ)

]
Ψ̂(θ) ,

(1)
where the field operators obey bosonic commutation rela-
tions [Ψ̂(θ), Ψ̂†(θ′)] = δ(θ − θ′). The interaction strength
gT = 2asR/r2, where as is the s-wave scattering length. As
in [7, 16], we model the driving potential as a train of δ-kicks,
V(θ, t) = κ cos(θ)

∑∞
n=0 δ(t − nTp), with (dimensionless) kick-

ing period Tp. This may be approximated in experiment using
short pulses of off-resonant laser light [10–12, 22].

We define the condensate mode ψ(θ) (with creation oper-
ator â†c) as the eigenfunction of the single-body density ma-
trix 〈Ψ̂†(θ′)Ψ̂(θ)〉 with the largest eigenvalue Nc (the num-
ber of condensate atoms), to which it is normalized, i.e.,∫

dθ|ψ(θ)|2 = Nc ≡ 〈â
†
c âc〉. Hence, we expand the field

operator as Ψ̂(θ) = âcψ(θ)/
√

Nc + δΨ̂(θ), where δΨ̂(θ) ≡∫
dθQ(θ, θ′)Ψ̂(θ′) describes the field component orthogonal

to the condensate, and the projector Q(θ, θ′) = δ(θ − θ′) −
ψ(θ)ψ∗(θ′)/Nc. We propagate ψ(θ) with the GGPE:

i
∂ψ(θ)
∂t

=

{
HGP(θ) − λ2 + gT

[
2ñ(θ, θ) −

|ψ(θ)|2

Nc

]}
ψ(θ)

+ gT m̃(θ, θ)ψ∗(θ) − gT f̃ (θ),
(2)

where λ2 is a real-valued scalar constant with a role similar to
the chemical potential in grand-canonical treatments [23], and

HGP(θ) ≡ −
1
2
∂2

∂θ2 + V(θ, t) + gT |ψ(θ)|2. (3)

Introducing the number-conserving fluctuation operator
Λ̃(θ) ≡ â†cδΨ̂(θ)/

√
Nc [8], we define ñ(θ, θ′) ≡ 〈Λ̃†(θ′)Λ̃(θ)〉

and m̃(θ, θ′) ≡ 〈Λ̃(θ′)Λ̃(θ)〉 (the noncondensate normal and
anomalous averages), and

f̃ (θ) ≡
1

Nc

∫
dθ′|ψ(θ′)|2

[
ñ(θ, θ′)ψ(θ′) + ψ∗(θ′)m̃(θ′, θ)

]
, (4)

which ensures orthogonality of the condensate from the non-
condensate component. The dynamics of ψ(θ) are therefore
coupled to those of Λ̃(θ), Λ̃†(θ). We decompose Λ̃(θ) =∑∞

k=1[b̃kuk(θ)+b̃−ku−k(θ)+b̃†kv∗k(θ)+b̃†
−kv∗
−k(θ)], where b̃k, b̃

†

k are
bosonic quasiparticle operators, and the quasiparticle modes
are normalized to

∫
dθ[|uk(θ)|2 − |vk(θ)|2] = 1, and choose

all time-dependence to be within the quasiparticle mode func-
tions. These are then propagated by the MBdGE:

i
∂

∂t

(
uk(θ)
vk(θ)

)
=

∫
dθ′

(
L(θ, θ′) M(θ, θ′)
−M∗(θ, θ′) −L∗(θ, θ′)

) (
uk(θ′)
vk(θ′)

)
,

(5)
where L(θ, θ′) = δ(θ − θ′)[HGP(θ′) − λ0] +

gT
∫

dθ′′Q(θ, θ′′)|ψ(θ′′)|2Q(θ′′, θ′), M(θ, θ′) =

gT
∫

dθ′′Q(θ, θ′′)ψ(θ′′)2Q∗(θ′′, θ′), and λ0 [the system
ground state value of (1/Nc)

∫
dθψ∗(θ)HGP(θ)ψ(θ)] is a

lower-order approximant to λ2. At T = 0, we can thus at
all times express ñ(θ, θ′) =

∑∞
k=1[vk(θ)v∗k(θ′) + v−k(θ)v∗

−k(θ′)],
m̃(θ, θ′) =

∑∞
k=1[uk(θ)v∗k(θ′) + u−k(θ)v∗

−k(θ′)]. The k index
quantifies the momentum associated with the equilibrium
quasiparticle eigenmodes, prior to application of V(θ, t).
The coupling of Eq. (2) and Eq. (5) constitutes the second-
order, number-conserving description of Gardiner and
Morgan [8], and represents the equation of motion for
Ψ̂(θ) expanded to second order in the fluctuation operator
Λ̃(θ) [24]. To first-order [4, 17] one obtains the GPE
i∂ψ(θ)/∂t = [HGP(θ) − λ0]ψ(θ), coupled to the MBdGE
[Eq. (5)], as used in previous time-dependent studies of
noncondensate dynamics of δ-kicked BECs [6, 7]. The GPE
alone constitutes a zeroth-order description, although it may
be possible to infer higher-order processes from a pure GPE
treatment [16]; unlike GPE plus MBdGE, this is at least an
internally consistent theoretical description [2, 8].

We take the T = 0 equilibrium state (without driving) as our
initial condition. The initial condensate mode is therefore spa-
tially homogeneous: ψ =

√
Nc/2π. This sets λ0 = gT Nc/2π,

and the initial stationary quasiparticle modes(
uk(θ)
vk(θ)

)
=

1
2

(
Ak + A−1

k
Ak − A−1

k

)
eikθ

√
2π
, (6)

where Ak = A−k = (1 + 4λ0/k2)−1/4. Hence, Nt ≡ N −
Nc =

∫
dθñ(θ, θ) = (1/2)

∑∞
k=1(Ak − A−1

k )2, and we set λ2 =

(gT /2π)[N − 1 +
∑∞

k=1(A2
k − 1)]. To numerically determine a

self-consistent T = 0 solution to Eqs. (2) and (5), for given
values of N and gT , we set Nc = N, and then; (a) calculate Ak

up to a cut-off momentum |k| = m; (b) determine Nt from the
Ak; (c) make the replacement Nc = N − Nt. We repeat steps
(a)–(c) until convergence. To determine the driven dynamics,
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FIG. 2. (Color online) BEC response in the second-order description
(N = 104, κ = 0.5): (a) relative population of k , 0 momentum
modes among all atoms, 〈1 − n0〉, and noncondensate fraction, 〈nt〉;
(b) coherence measure 〈C〉 [Eq. (7)]; and (c) 〈1− n0〉 as predicted by
the GPE, minus its value in the second-order description. Averages
are taken over the first 100 kicks.

we use a Fourier pseudospectral split-step method [25]; all
simulations are converged in timestep, grid size, and quasi-
particle cut-off momentum m.

In Fig. 1(b) we plot the condensate and noncondensate frac-
tions (nc = Nc/N and nt = Nt/N) for parameters which, in the
first-order description, lead to rapid growth of the nonconden-
sate (becoming unphysical after ∼ 20 kicks) [Fig. 1(b)(i)]. In
the second-order description [Fig. 1(b)(ii)] the “back-action”
of the noncondensate rapidly damps out this growth, leading
instead to complementary oscillations in nt and nc. We also
track the overall coherence of the system through

C =

"
dθdθ′g1(θ, θ′)g1(θ′, θ), (7)

where g1(θ, θ′) = 〈Ψ̂†(θ′)Ψ̂(θ)〉/N is the first-order correlation
function, and compare the evolution of ψ in the GGPE with
the GPE prediction (ψGPE) through the fidelity

F =

∣∣∣∫ dθψ∗GPE(θ)ψ(θ)
∣∣∣2

NNc
. (8)

The quantity C equals unity only in the limit of a pure conden-
sate, where the noncondensate fraction is exactly zero (i.e.,
the single-body density matrix is exactly factorizable). The
GGPE then reduces to the GPE, and F = 1. Otherwise both
C and F take values between zero and unity. In Fig. 1(b)(iii)
we observe that C follows the oscillations of nt closely, while
F shows larger amplitude oscillations with revivals. Simi-
lar behavior persists across the Tp–gT parameter space: in
Fig. 2(a) we show the time averaged response to weak driv-
ing (κ = 0.5), by plotting 1 − n0 averaged over the first 100
kicks; here nk = 〈â†k âk〉/N, where â†k creates an atom with
momentum k. The structure of this response over the range
of Fig. 2(a), modeled with the GPE alone, was recently elu-
cidated [16]: the response is dominated by linear resonances

FIG. 3. (Color online) Comparison of first- and second-order de-
scriptions close to a nonlinear resonance explored in [16] [gT N =

2.5, Tp = 6.12, κ = 0.5: circle in Fig. 2(a)]. Condensate and noncon-
densate fractions nc and nt, coherence measure C [Eq. (7)], and the
fidelity of the condensate mode between descriptions, F [Eq. (8)],
are shown. Columns correspond (left to right) to N = 104, 108, and
1012; agreement of the initial growth in nt between the second-order
(dependent on gT and N) and first-order (dependent on gT N) descrip-
tions over such a range is a useful test of the second-order numerics.

corresponding to the first two primary quantum resonances of
the δ-kicked rotor as gT → 0 [10]. Higher-order linear res-
onances generally decay with increasing gT , while nonlinear
resonances appear, with no analog in the linear regime [16].
To first-order (GPE plus MBdGE) all these resonant areas of
parameter space are associated with rapid growth of the non-
condensate fraction nt due to linear instabilities in the GPE
dynamics [7]. In contrast, we find that in the second-order
description (GGPE plus MBdGE) this growth is damped out:
throughout Fig. 2(a) the 100-kick average of nt remains be-
low 0.6. However, 〈nt〉 is still strongly enhanced in parameter
regimes with significant resonant response [large 〈1 − n0〉, as
shown in Fig. 2(a)]. The predictions of the second-order de-
scription then differ considerably from the standalone GPE
description, as shown by the behavior of 〈C〉 [Fig. 2(b)], and
the difference in response (as measured by 〈1 − n0〉) between
descriptions [Fig. 2(c)]. Nonetheless, we find that the reso-
nances are located in the same regions of parameter space in
both descriptions, and that the asymmetric profiles and sharp
cut-offs seen in [16] remain. Away from these resonances the
GPE agrees well with the second-order description, up to the
100 kicks we consider.

In Figs. 3 and 4 we compare the first- and second-order de-
scriptions, for varying N but fixed gT N, close to a nonlinear
resonance studied in [16] [circle in Fig. 2(a)]. Figure 3 shows
that the dynamics in the second-order description match the
GPE for times which increase with N. This increase is slow,
however; for realistic N (� 108) the loss of coherence, unac-
counted for in the GPE and measured by decay in C, quickly
becomes significant. Furthermore, in Fig. 4 we see that, on
the same timescales associated with significant decay in C,
the dynamics of the relative populations nk, as studied in [16]
using the GPE, noticeably differ in our second-order descrip-
tion. Compared to the first-order description, rapid growth
of the noncondensate begins at the same time in our second-
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FIG. 4. (Color online) Relative populations, nk, of low momen-
tum modes in the first- and second-order descriptions (parameters
as in Fig. 3). In the second-order description nk is shown among
all atoms and among the noncondensate atoms; in the first-order de-
scription nk is shown among condensate atoms (as a bar chart) and
among the noncondensate atoms (with a three-period moving aver-
age). Columns correspond (left to right) to N = 104, 108, and 1012.

order description. However, transfer of population to the non-
condensate is driven by, and sensitive to, atom-atom interac-
tions. Hence, decreasing population of the condensate, consis-
tently accounted for in the second-order description, reduces
the mean-field interactions, and hence the rate of population
transfer. We observe population oscillations between con-
densate and noncondensate fractions, accompanied by oscil-
lations in the coherence C and fidelity F [Fig. 3]. In Fig. 4 we
also observe the exponential oscillations in n2 + n−2 reported
in [16]; however, for realistic atom numbers the frequency of
these oscillations is quickly increased by the presence of a
significant noncondensate fraction.

We have applied a fully dynamical, second-order, number-
conserving approach [8] to the δ-kicked-rotor-BEC. In con-
trast to a first-order approach, we observe that rapid growth of
the noncondensate in resonant parameter regimes is damped
by our consistent treatment of the condensate population and
condensate-noncondensate interactions. Although our de-
scription leads to different dynamics around resonant parame-
ter regimes, these regimes occur where the GPE predicts them.
Furthermore, our description retains the cut-offs, but will typi-
cally strongly modify the exponential oscillations predicted by
the GPE. Extension of our second-order description to other
BEC systems offers exciting possibilities for future research.
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