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We discuss the construction of higher-dimensional surfaces based on the harmonic
maps of S2 into CPN−1 and other Grassmannians. We show that there are two ways
of implementing this procedure—both based on the use of the relevant projectors.
We study various properties of such projectors and show that the Gaussian curva-
ture of these surfaces, in general, is not constant. We look in detail at the surfaces
corresponding to the Veronese sequence of such maps and show that for all of them
this curvature is constant but its value depends on which mapping is used in the
construction of the surface. © 2010 American Institute of Physics.
�doi:10.1063/1.3486690�

I. INTRODUCTION

The idea of using Weierstrass construction to generate surfaces in various multidimensional
spaces was first presented by Konopelchenko et al.1,2 and then generalized in several papers.3–8

This approach is very interesting as it relates concepts from different fields of mathematics.
The original Weierstrass construction involved surfaces in R3 and hence the generalization to
surfaces in higher-dimensional spaces was not straightforward and the early generalizations may
appear to be somewhat ad hoc. However, when it was realized that the key link was the use of
harmonic maps,5 one could start thinking about this procedure in a more systematic way. The early
studies5 involved the use of CPN−1 harmonic maps to construct such surfaces. When this was
generalized to the supersymmetric case,6 it was realized that the key step in the procedure in-
volved a set of projectors constructed out of these maps. Once the projectors became involved, one
could go further and consider sums of projectors, which, in fact, correspond to the projectors of
Grassmanian harmonic maps. The idea of using projectors �for the CPN−1 harmonic maps� was
expanded further in Ref. 7. In this approach, the coordinates of the surface are given by line
integrals of various derivatives of the corresponding projectors. To make these quantities indepen-
dent of the contours of these integrals, one has to require that these projectors not only correspond
to harmonic maps �i.e., satisfy their equations� but also satisfy some further equations �see a
further discussion in Sec. III�.

However, one can bypass the construction of line integrals �i.e., relate the coordinates of the
surface directly to the components of the projectors� and so broaden somewhat the class of
surfaces that can be constructed. In either approach the properties of the surface depend on the
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structure of the projectors, and so in this paper we will study the relevant projectors in a more
systematic way. In either case the projectors are required to satisfy the equations of the harmonic
maps �so that the induced metric on the surfaces is conformal�.

Hence, after a short section �Sec. II� in which we describe the construction and various
properties of harmonic maps �see, e.g., Ref. 9�, we present in Sec. III a detailed discussion of our
derivation of the coordinates of these surfaces from the corresponding projectors. As these sur-
faces naturally live in RN2−1, we discuss in Sec. IV various constraints that these coordinates have
to satisfy. The fact that the surfaces live in RN2−1 is associated with the trace of the projectors
being an integer which allows us to eliminate one of the coordinates of the surface. However, this
elimination makes the formulas look somewhat clumsy. Thus in this paper we ignore this con-
straint bearing in mind that it is always there. In Sec. V we consider the special case of projectors
corresponding to the Veronese sequence. In this case some coordinates naturally vanish—leading
to the surfaces which live in lower dimensional spaces. We call such projectors “reduced” and we
discuss their form in some detail. Of course, even in these cases, there are further constraints
between the coordinates of the surface, as after all, all our surfaces are two dimensional.

In our discussion we consider projectors of any rank; hence when the rank is larger than 1, we
are really dealing with Grassmannian models. In Sec. VI, we look in detail at projectors which
arise from CPN−1 harmonic maps corresponding to N odd or even and find many interesting
connections between them. We then present a short subsection of the properties of the surfaces
corresponding to these solutions. In general, the surfaces have nonconstant Gaussian curvature,
but for the Veronese sequence their curvature is constant �i.e., they are all spheres of different
radii�.

We finish the paper with some conclusions.

II. CLASSICAL CPN−1 SIGMA MODEL AND ITS SOLUTIONS

In order to keep the paper self-contained, we briefly review the CPN−1 sigma model and recall
some of its basic properties, which will be used in the subsequent developments. For further
details on this subject, we refer the reader to Refs. 9 and 10 and references therein.

The CPN−1 sigma model equations in Euclidean space are defined to be the stationary points
of the energy functional,9

S =
1

4
�

�

�D�z�†�D�z�d�d�̄, z† · z = 1,

C � � = �1 + i�2 → z = �z0,z1, . . . ,zN−1�T � CN, �1�

where D� denote covariant derivatives acting on z :�→CPN−1, defined by

D�z = ��z − �z† · ��z�z, �� = ���, � = 1,2. �2�

Here, � is an open, connected subset of the complex plane C, � and �̄ are local coordinates in �,
and as usual the symbol † denotes Hermitian conjugation. Energy functional �1� is invariant under
global U�N� gauge transformations z→z�=Uz, where U�U�N�, and also under the local U�1�
gauge transformations z→z�=zei�, where � is a real-valued function depending on � and �̄.

The Euler–Lagrange equations thus take the form

D�D�z + z�D�z�†�D�z� = 0. �3�

In homogeneous coordinates

z =
f

�f �
, f � CN, �4�

they can be written in the form of the conservation law,
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�K − �̄K† = 0, �5�

where K is a N�N matrix of the form

K =
1

�f �2
��̄ f � f† − f � �̄ f†� +

f � f†

�f �4
��̄ f† · f − f† · �̄ f� . �6�

The symbols � and �̄ denote the standard derivatives with respect to � and �̄, respectively, i.e.,
�= 1

2 ���1 − i��2�.
All finite action solutions of the CPN−1 sigma model �for �=S2� have been constructed by Din

et al.11 and Sasaki.12 In that construction one gets three classes of solutions, namely, �i� holomor-
phic �i.e., �̄f =0�, �ii� antiholomorphic �i.e., �f =0�, and �iii� mixed.

The mixed and antiholomorphic solutions can be determined from the holomorphic noncon-
stant functions by the following procedure.9 We construct, first, the operator P+ which is defined
by its action on vector-valued functions on CN as

P+:f � CN → P+f = � f −
f† · � f

�f �2
f . �7�

Then starting from any nonconstant holomorphic function f �CN, the successive application, say
k times with k�N−1, of the operator P+ allows one to find N−2 mixed solutions P+

k f , for
k=1, . . . ,N−2, and P+

N−1f gives rise to an antiholomorphic solution. Let us recall that P+
Nf =0. We

generate this way an orthogonal basis of solutions in CN, i.e.,

f† · P+
j f = 0, �P+

i f�† · P+
j f = 0, i � j, i, j = 1, . . . ,N − 1. �8�

The gauge invariant projector formalism for the CPN−1 sigma model is also well-known.9 By
defining a rank 1 orthogonal projector, for any g�CN, as

P =
g � g†

�g�2
, P† = P, P2 = P , �9�

we see, in particular, that P+g= �I− P��g. Energy functional �1� can be expressed as

S = �
�

tr��P�̄P�d�d�̄ , �10�

and the Euler–Lagrange equations become

���̄P,P� = 0, �11�

which could also be written as a conservation law �analog of �5��,

���̄P,P� + �̄��P,P� = 0. �12�

Of course, if now g= f or g= P+
j f , for j=1, . . . ,N−1, where f is holomorphic, then Eqs. �11�

are automatically satisfied.
The projector formalism can be used, among other things, for the construction of surfaces in

RN2−1 obtained from the CPN−1 sigma model. The equivalence of the Euler–Lagrange equations �5�
and of the set of Dirac-type equations given in Refs. 1–3, whose solutions are used to construct
surfaces, was given in Ref. 4. Later on these ideas led to a general procedure for obtaining surfaces
from these harmonic maps5 and it has been shown6,13 that some of these surfaces are related to the
projector P0, constructed out of holomorphic solutions of the corresponding maps. Then, in Ref. 7,
it was suggested to obtain new surfaces by constructing new projectors. For this purpose a se-
quence of projectors of the form
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Pk ª P�Vk� =
Vk � Vk

†

Vk
† · Vk

, where Vk = P+
k f , k = 0,1, . . . ,N − 1, �13�

where f is holomorphic, were constructed.
These projectors satisfy,9 for k=1,2 , . . . ,N−2,

�P0 =
P+f � f†

�f �2
, � Pk =

P+
k+1f � �P+

k f�†

�P+
k f �2

−
P+

k f � �P+
k−1f�†

�P+
k−1f �2

, �14�

tr��P0�̄P0� =
�P+f �2

�f �2
, tr��Pk�̄Pk� =

�P+
k+1f �2

�P+
k f �2

+
�P+

k f �2

�P+
k−1f �2

, �15�

and, as in Ref. 14,

��P0,P0� = �P0, ��Pk,Pk� = ��Pk + 2	
j=0

k−1

Pj
 . �16�

Moreover, one can generate even more projectors by taking their sums15 and obtain new
surfaces by this procedure as suggested in Ref. 7. Thus, we could take the following linear
combinations as our projector:

P = 	
i=0

N−2

�iPi, �17�

where �i are either 0 or 1. We take only a maximum of N−1 of the Pi due to the completeness
relation,

	
i=0

N−1

Pi = I . �18�

III. SOME ASPECTS OF THE EXPRESSIONS FOR THE SURFACES OBTAINED FROM
THE PROJECTOR FORMALISM

A. Preliminaries

To generate surfaces in RN2−1 we can follow Refs. 5–7 and define X, the coordinates of the
surface, by line integrals

i�
	

�K†d�� + Kd��̄� = X��, �̄� . �19�

These expressions do not depend on the curve 	 but only on its end points �of which one is taken

at 
 and the other at �� , �̄�� if

dX = i�K†d� + Kd�̄� = i�K† + K�d�1 − �K† − K�d�2 �20�

is closed �d�dX�=0�. This can be guaranteed if K and K† are chosen conveniently. In particular, in
the previous work5 it was shown that given that the projectors which are the solutions of the
equations of the CPN−1 model satisfy �12�, we can construct K out of various entries of such
projectors.

However, the key role played by the projectors was fully understood when this procedure was
generalized to the supersymmetric case.9 This was expanded further in Ref. 7.

The construction of surfaces in RN2−1 based on line integrals �19� involving the CPN−1 sigma
model has already been discussed in several papers.6–8,13,14
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Here we first comment on this construction and then suggest an alternative approach. First if
we take P= P0, we observe that dX, constructed out of its entries, is closed and the expression for
X is independent of the contour of integration 	 in �19�. If we consider other projectors Pi for
i�0, we have to consider the sums given in �16�.

We are not restricted to solutions of the CPN−1 models. We can consider other Grassmannians
�described by sums of projectors�. Thus, we can take

P = 	
i=0

k

Pi, k = 1, . . . ,N − 2. �21�

Such projectors describe the self-dual solutions of the Grassmannian model identified as the coset
space G�N ,k+1�=U�N� / �U�N−k−1��U�k+1��, and so still satisfy

��P,P� = �P . �22�

However, all this is unnecessary, if we are only interested in surfaces and their properties. We
do not need to define X as line integrals of derivatives of projectors; we can take directly

X = Pi �23�

or

X = 	
i

�iPi, �24�

where �i are arbitrary constants and Pi do not even need to satisfy any particular equations �e.g.,
�11��.

However, if we want to guarantee that the induced metric on the surface is conformal, we
require that the projectors Pi solve �11�. Then the induced metric g will have only one nonvan-
ishing component g+− and the Gaussian curvature will be proportional to

K = −
4

g+−
� �̄ ln�g+−� . �25�

So in this paper we restrict our attention to such cases.

B. Some specific properties of projectors and of the corresponding surfaces

To start, let us recall some general properties of orthogonal projectors which will be useful for
the subsequent developments. A matrix P= �Pij��CN�N is called an orthogonal projector of order
N if we have P2= P and P†= P. This means that P is a Hermitian matrix with Pii�R and

P̄ij = Pji , i , j=1, . . . ,N with det P=0. Any such projector thus takes expression �17�, where the Pi

are orthogonal projectors of rank 1 which could be written as

Pi = ûi � ûi
†, ûi

† · ûi = 1, ui � CN. �26�

The rank r of a general orthogonal projector P, which can take the values 1 , . . . ,N−1 and coin-
cides with the trace, is thus equal to the number of Pi appearing in specific linear combination
�17�.

The constraint P2= P gives rise to a set of N�N+1�/2 nonlinear equations between the entries
of P,

	
j=1

N

�Pij�2 + Pii�Pii − 1� = 0, j � i, i = 1, . . . ,N , �27�
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m=1

N

PimP̄jm + Pij�Pii + Pjj − 1� = 0, i � j, i � j � m, i, j = 1, . . . ,N . �28�

Starting now from an orthogonal projector P constructed as �17� from solutions of the CPN−1

sigma model, we give a procedure to get the coordinates of the radius vector in RN2−1. We know
that a standard choice of a set of N�N−1� real components of the radius vector X is given by

�Xij�+ = Pij + P̄ij, �Xij�− = i�Pij − P̄ij�, i � j, i, j = 1, . . . ,N , �29�

which will satisfy

	
i,j=1

i�j

N

��Xij�+
2 + �Xij�−

2� = 4 	
i,j=1

i�j

N

�Pij�2. �30�

The remaining �N−1� components of the radius vector X are chosen as a linear combination of the
diagonal entries of P. They will be denoted as X1 , ¯XN−1. The relative freedom in the choice of
these last components has lead to different representations of the surface corresponding to the
same solution of the CPN−1 sigma model. Such a surface is characterized by a quadratic equation
on the components of the radius vector X.

Let us exhibit here a canonical expression for this surface by imposing the following quadratic
equation:

	
i=1

N−1

Xi
2 + 	

i,j=1

i�j

N

��Xij�+
2 + �Xij�−

2� = C�N,r� , �31�

where C�N ,r� is a constant depending on N and on the rank r of the projector P. The expression
of the constant C�N ,r� as well as the components X1 , ¯ ,XN−1 thus have to be determined.

Using �27� and �30� and tr P=r, �31� becomes

	
i=1

N−1

Xi
2 = 2�	

i=1

N

Pii
2 − r
 + C�N,r� . �32�

The trace property allows us to express PNN in terms of the other Pii and �32� becomes

	
i=1

N−1

Xi
2 = 4�	

i=1

N−1

Pii
2 + 	

i,j=1

i�j

N−1

PiiPjj − r	
i=1

N−1

Pii� + 2r�r − 1� + C�N,r� . �33�

We define a vector X constructed from the components X1 , ¯ ,XN−1 and we express it as a linear
combination of the independent diagonal entries of the matrix P. We thus get

X ª � X1

]

XN−1
� = AP + b = A� P11

]

P�N−1��N−1�
� + b , �34�

where A is a �N−1�� �N−1� matrix and b is a �N−1� vector still to be determined. Indeed, using
�33� with �34�, we get
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XTX = PT�
4 2 ¯ 2

2 4 ]

] � 2

2 ¯ 2 4
�P − 4rPT�1

]

1
� + 2r�r − 1� + C�N,r� , �35�

which implies that

ATA =�
4 2 ¯ 2

2 4 ]

] � 2

2 ¯ 2 4
�, b = − 2r�AT�−1�1

]

1
� ,

C�N,r� = bTb − 2r�r − 1� . �36�

To compute C�N ,r�, we need the inverse of ATA which is easily found to be given by

�ATA�−1 =
1

2N�
N − 1 − 1 ¯ − 1

− 1 N − 1 ]

] � − 1

− 1 ¯ − 1 N − 1
� , �37�

and hence we see that

C�N,r� =
2r

N
�N − r� . �38�

A canonical choice of the matrix A would involve taking it as a triangular matrix, such that
X1= P11− PNN. In this case, we find �i=2, . . . ,N−1�



A11 = 2,

A1j = 1, j = 2,3, . . . ,N − 1

Aij = 0, if i � j

Aii = �2�i + 1�
i


1/2

,

Aij = � 2

i�i + 1�

1/2

, j = 3, . . . ,N − 1, i � j .
� �39�

We also find that the components of the vector b are

bi = − r� 2

i�i + 1�

1/2

, i = 1, . . . ,N − 1. �40�

Finally, the canonical expression for the surface becomes

	
i=1

N−1

Xi
2 + 	

i,j=1

i�j

N

��Xij�+
2 + �Xij�−

2� =
2r

N
�N − r� . �41�

The components X1 , ¯ ,XN−1 of the vector X are given in the following form:
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Xi = � 2

i�i + 1�

1/2��i + 1�Pii + 	

j=i+1

N−1

Pjj − r
, i = 1, ¯ , N − 1, �42�

where we see that X1 could also be written as X1= P11− PNN. Conversely, we can easily see that we
have

P = A−1X +
r

N�1

]

1
� , �43�

so that the diagonal entries of P can be expressed as the following linear combination of the
X1 , ¯ ,XN−1:

Pii = � i

2�i + 1�

1/2

Xi −
1

2 	
j=i+1

N−1 � 2

j�j + 1�

1/2

Xj +
r

N
,

PNN = r − 	
j=1

N−1

Pjj, i = 1, ¯ , N − 1. �44�

The relative freedom in the choice of the components of the vector X is reflected in �35�.
Indeed, if we take X�=SX=A�P+b�, our canonical choice will be preserved if S is an orthogonal
matrix. The constant C�N ,r� thus remains invariant. If S is not orthogonal, we see that both the
equation of the surface and the constant C�N ,r� are different �noncanonical�.

IV. INDEPENDENT COORDINATES OF THE SURFACE IN THE CPN−1 MODEL

In Sec. III, we have shown how the coordinates of the vector X�RN2−1 could be obtained
from an arbitrary projector P constructed from solutions of the CPN−1 sigma model. We have also
given canonical quadratic equation �41� of a surface in RN2−1 satisfied by these coordinates.

Let us mention that �41� has been obtained by adding N equations �27�, so more constraints
are imposed on the coordinates of the vector X from the condition P2= P and the question which
arises now is how to find the independent coordinates and what they are. To our knowledge, the
answer is known only in the cases of rank 1 and rank �N−1�. Indeed, both cases give rise to
2�N−1� real independent quantities.

Indeed if we take P as an orthogonal projector of rank 1, it could be written as

P = û � û†, û† · û = 1, u � CN. �45�

It is thus characterized by 2�N−1� real independent quantities which could be chosen as the entries
P1i, where i=1, . . . ,N and

ûT =
1

�P11

�P11, P̄12, . . . , P̄1N� , �46�

with

	
j=1

N

�Pij�2 + P11�P11 − 1� = 0. �47�

The other entries of P are given by
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Pii =
�P1i�2

P11
,

Pij =
P̄1iP1j

P11
,

i = 2, . . . ,N ,

j = 3, . . . ,N ,
i � j . �48�

Using �29� and �42�, we can write the explicit constraints on the coordinates of the radius vector
X of RN2−1, which enable us to show that the �N−1� coordinates Xi and the �N−1��N−2� coordi-
nates ��Xij�+ , �Xij�− , i� j , i=2, . . . ,N , j=3, . . . ,N� are related to the coordinates
�P11, �X1j�+ , �X1j�− , j=2, . . . ,N�. Indeed, we get the following expressions:

X1 = �2P11 − 1� +
1

4P11
	
j=2

N−1

��X1j�+
2 + �X1j�−

2� ,

Xi =
1

4P11
� 2

i�i + 1�

1/2��i + 1���X1i�+

2 + �X1i�−
2� + 	

j=i+1

N−1

��X1j�+
2 + �X1j�−

2� − 4P11
 �49�

for i=2, . . . ,N−1 and

�Xkl�+ =
1

2P11
��X1k�+�X1l�+ + �X1k�−�X1l�−� ,

�Xkl�− =
1

2P11
��X1k�+�X1l�− − �X1k�−�X1l�+� �50�

for k� l ,k=2, . . . ,N , l=3, . . . ,N.
Let us mention that the case of a projector of rank �N−1�, say Q, is easily deduced from the

case of rank 1. Indeed, due to completeness relation �18�, we get Q= I− P, where P is an orthogo-
nal projector of rank 1. We thus find from �48�, similar expressions on the entries of Q,

Qii = 1 +
�Q1i�2

Q11 − 1
,

Qij =
Q̄1iQ1j

Q11 − 1
,

i = 2, . . . ,N ,

j = 3, . . . ,N ,
i � j . �51�

V. SPECIAL SOLUTIONS OF THE CPN−1 MODEL AND PROJECTORS

We will now consider special solutions of the CPN−1 model obtained from the holomorphic
vectors corresponding to the Veronese sequence. It is well-known that the Veronese vector f for
the CPN−1 sigma model can be written as

f = �w0
0,w1

0, . . . ,wN−1
0 �T = �1,��N − 1

1

�, . . . ,��N − 1

r

�r, . . . ,�N−1
T

. �52�

Following the procedure described in Sec. II, we construct the mixed solutions given by P+
k f .

Explicitly, we get N−2 mixed solutions that are given as

P+
k f = �w0

k,w1
k, . . . ,wN−1

k �T, k = 1, . . . ,N − 2, �53�

where
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wr
k =

1

�1 + ���2�k��N − 1

r

�r−k�r

k, �54�

and where, in turn,

�r
k =

1

�r + 1�
1

�r − N�	l=0

k

���2l�k

l

�

i=0

l

�r + i − N��
j=l

k

�r − k + j + 1� . �55�

We can thus easily get the following expressions, k=0, . . . ,N−2:

�P+
k f �2 =

�N − 1�!k!

�N − �k + 1��!
�1 + ���2�N−1−2k, �56�

�P+
k f�† · �P+

k f =
�N − 1�!k!

�N − �k + 1��!
�N − �2k + 1���̄�1 + ���2�N−1−�2k+1�. �57�

Due to our way of constructing mixed solutions, we can provide a formula �in the special case
of the Veronese sequence� which relates two such solutions, say, P+

�N−1−k�f and P+
k f . Indeed, we

have

P+
�N−1−k�f = �− 1�k	k

N����2�AP+
k f , k = 1, . . . ,N − 2, �58�

where 	k is the ratio of the normalization factors,

	k
N����2� =

�P+
N−1−kf �
�P+

k f �
=

�N − 1 − k�!
k!

�1 + ���2�−N+1+2k, �59�

and A is an N�N antidiagonal matrix whose nonzero elements are given by

A j�N−j+1� = �− 1�N+j, j = 1, . . . ,N . �60�

We could thus conclude that the following Veronese vectors are related �i.e., one of them is
equal to the dagger of the other with proper 
 signs�:

P+
N−2f � P+f ,

P+
N−3f � P+

2 f ,

]

�P+
�N−2�/2+1f � P+

�N−2�/2f , if N − 1 is odd

P+
�N−1�/2f � P+

�N−1�/2f , if N − 1 is even.
� �61�

In particular, for even values of N−1, we have

P+
�N−1�/2f = �− 1��N−1�/2AP+

�N−1�/2f , �62�

where N�N antidiagonal matrix A becomes

A j�N−j+1� = �− 1�1+j, j = 1, . . . ,N . �63�
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VI. REDUCED PROJECTORS

Hence, for even values of �N−1�, we have the so-called “reduced” projector P�N−1�/2 con-
structed out of Veronese vectors P+

�N−1�/2f , which is symmetric with respect to the antidiagonal
elements with proper 
 signs. Naturally this kind of a projector has more constraints between its
entries. Let us now concentrate on the off-diagonal elements. The number of the additional con-
straints can be given as

N − 2, coming from the first row,

N − 4, coming from the second row,

N − 6, coming from the third row,

]

N − �N − 1�, coming from the
N − 1

2
th row. �64�

Previously, by applying a standard procedure and considering only the off-diagonal elements,
we have obtained �N2−N� components for the radius vector �i.e., �Xij�
 as in �29��. In order to find
the number of the components of the radius vector corresponding to this reduced projector, we
subtract two times the sum of the additional constraints given in �64� from �N2−N�, giving �N2

−1� /2.
It is clear that the number of components of the radius vector obtained from the diagonal

elements of the reduced projector is �N−1� /2, since the reduced projector is symmetric with
respect to the antidiagonal elements. However, let us justify this for the canonical choice of the
components of the radius vector on examples. We will consider the CP4 and CP6 cases �CP2 case
is trivial, since for P1 we only have X2�.

1. CP4 case

For this case the reduced projector is P2 and the linear combination of Xi’s, obtained from this
projector �X1= P11− PNN=0�,

	
i=2

4

aiXi = 0, �65�

is satisfied for

a2 = − 2� 2

15
a4, a3 =

a4

�15
. �66�

Hence, X2 could be expressed in terms of X3 and X4,

X2 =
1

2�2
X3 +

�15

2�2
X4, �67�

which justifies our claim that we have only two independent diagonal components.

2. CP6 case

For this case the reduced projector is P3 and the linear combination of Xi’s, obtained from this
projector,
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i=2

6

aiXi = 0, �68�

is satisfied for

a2 = −
2a6

�7
, a3 = −

1

2
�5

2
a5 +

3a6

2�14
, a4 =

a5

2�6
+

1

2
� 5

42
a6. �69�

Hence, X2 and X3 could be expressed in terms of X4, X5, and X6,

X2 =
2

�15
X4 +

3

2�5
X5 +

�7

2
X6,

X3 =
1

�15
X4 +

2�2
�5

X5, �70�

which shows that we have three independent diagonal components.

A. CP2n−1 case

This is the case when N=2n is even. As a consequence of �58�, let us note that the vector f is
related to P+

2n−1f and, in general, P+
k f to P+

2n−k−1f . This has interesting implications for the projec-
tors Pk and, in particular, for some of their sums. Thus, in particular, the expressions are very
simple for sums of two projectors Pk+ P2n−k−1 for k=0, . . . ,n−1. In each case the resultant pro-
jector has the same structure. Assuming that it is given by a 2n�2n matrix C, all its diagonal
entries satisfy Ci+1,i+1=C2n−i,2n−i. As the projector is hermitian, its off-diagonal entries satisfy

Ci,j = C̄j,i. Furthermore, all elements Ci,2n−i+1 vanish. Moreover, there are various symmetries
among the entries along the lines parallel to the diagonal. Indeed, we have Ci,i+1=−C2n−i,2n−i+1,
Ci,i+2=C2n−i−1,2n−i+1, and, in general, Cj,j+k= �−1�kC2n−k−j+1,2n−j+1 , j=1, . . . ,2n. Thus, all entries
in matrix C are determined by the independent entries shown below,

�
A1,1 a1,2 a1,3 ¯ a1,n a1,n+1 ¯ a1,2n−2 a1,2n−1 0

A2,2 a2,3 ¯ a2,n a2,n+1 ¯ a2,2n−2 0

� ] ] �

an−1,n an−1,n−1

An,n 0
� , �71�

where Ai,i are real and ai,j are complex.
All the other entries are determined in terms of these. Hence the total number of independent

quantities is n�real�+n�n−1��complex�−1�due to the trace�= �n−1��2n+1�.
The same is true if we take sums of the pairs of projectors Pi+ P2n−i−1, like, for example

�P1+ P2n−2�+ �P3+ P2n−4�. We can also take 	i=1
2n−1Pi.

B. More on the CP2n−2 case

This is the case when N=2n−1 is odd. We can perform a similar discussion and each vector
P+

k f has �2n−1� components. The projector Pn−1, as mentioned at the beginning of this section, is
very special, as it by itself, describes the “reduced” case. The symmetries mentioned before show
that its diagonal terms satisfy Pi,i= P2n−1,2n−1 and, of course, the entry Pn,n has no “partner” and so
stands by itself. The off-diagonal terms satisfy relations similar to what we had in the case when
N−1 is odd, except that, in every two lines parallel to the diagonal, there is an unpaired entry.
Hence, like in the odd case all the entries of the matrix representing Pn−1 are determined in terms
of a matrix whose independent entries are given by
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�
A1,1 a1,2 a1,3 ¯ a1,n a1,n+1 ¯ a1,2n−2 a1,2n−1

A2,2 a2,3 ¯ a2,n a2,n+1 ¯ a2,2n−2

� ] ] �

An,n an,n+1

� , �72�

where, again, Ai,i are real and ai,j are complex.
As before, the same can be said about the structure of the pairs of projectors Pi and P2n−2−i.

Moreover, we can also take sums of such pairs of projectors and add to it the projector Pn−1. The
number of independent entries, in this case, is the same as in the odd case mentioned before.

C. Examples

Let us demonstrate these claims on a specific example when n=2. The projector P1 for the
CP2 model is proportional to

� 4���2 − 2�2�̄�1 − ���2� 4�̄2

− 2�2��1 − ���2� 2�1 − ���2�2 2�2�̄�1 − ���2�

− 4�2 2�2��1 − ���2� 4���2
� , �73�

while the sum of projectors P1+ P2 of the CP3 model �i.e., a solution of the G�4,2� model� is
proportional to

�
3���2�1 + ���2� − �3�̄�1 − ���4� − �3�̄2�1 + ���2� 0

− �3��1 − ���4� 1 + ���6 0 − �3�̄2�1 + ���2�

− �3�2�1 + ���2� 0 1 + ���6 �3�̄�1 − ���4�

0 − �3�2�1 + ���2� �3��1 − ���4� 3���2�1 + ���2�
� . �74�

Clearly, both expressions lead to surfaces in R5 as in each case we have two independent complex
entries �say, second and third entries of the first rows� and one from the diagonals �if we impose
the condition of the trace�. Similar expressions can be given for higher-dimensional cases.

Thus, we see that the reduced projectors of the CP2n−2 and CP2n−1 models have the same
number of independent entries, and so, lead to vectors X in the space of the same number of
dimensions.

D. Properties of these solutions

As we have found that, for maximally reduced cases, the number of independent variables of
surfaces based on some projectors in CPN−1 models �odd and even cases of N� are the same. The
question then arises as to whether these surfaces are really the same.

One way to study this involves the consideration of the curvatures of these surfaces. To do this
we need to calculate the metric on these surfaces,

g++ = tr��P � P�, g+− = tr��P�̄P�, g−− = g++, �75�

where P is the corresponding projector �or a sum of projectors� and then calculate the Gaussian
curvature K.

However, due to the orthogonality of P+
k f vectors, we have g++=g−−=0 and the only nonva-

nishing component of the metric is g+−.
The Gaussian curvature K is then given by �25�.
Taking now a general sum of projectors Pi as given in �13�, we get P=	i=0

k �iPi, where
�i�R. It is thus easy to check using �15� that g+− is given by
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g+− = �0
2 �P+f �2

�f �2
+ 	

i=1

k

�i
2� �P+

i+1f �2

�P+
i f �2

+
�P+

i f �2

�P+
i−1f �2


 − 2	
i=0

k−1

�i�i+1
�P+

i+1f �2

�P+
i f �2

. �76�

However, for the Veronese sequence, we can show from �56� that such ratios are given by

�P+
i f �2

�P+
i−1f �2

=
i�N − i�

�1 + ���2�2 , �77�

so the final expression for the metric is

g+− =
A�N,P�

�1 + ���2�2 , �78�

where the constant A�N , P� depends on N but also on P �in fact, on the �i�s�. It is explicitly given
by

A�N,P� = 	
i=0

k−1

�i + 1��N − �i + 1����i − �i+1�2 + �k + 1��N − �k + 1���k
2. �79�

Since, we have

��̄ ln� A�N,P�
�1 + ���2�2
 = − 2

1

�1 + ���2�2 , �80�

we see that the Gaussian curvature is proportional to

K =
8

A�N,P�
, �81�

i.e., is constant. Hence all our surfaces have a constant curvature. So are they the same?
To check this we have looked at the two simplest cases, namely, of the projector P1 of CP2

model and of the sum of the projectors P1+ P2 of CP3, i.e., the example discussed in Sec. VI C.
The first case give us A�3, P1�=4 while the second gave us A�4, P1+ P2�=6, and we conclude that
the curvatures are different. So these surfaces are really in the same dimensional spaces and both
have constant curvatures, but their curvatures are different.

VII. CONCLUSIONS AND FINAL COMMENTS

In this paper we have looked at various properties of projectors representing harmonic maps
of S2 into Grassmannians. Some of these properties are very well-known �see, e.g., Ref. 9 and
references therein� or are probably known to many people but we have assembled them here as we
can use these projectors for the generation of various surfaces in multidimensional spaces based on
these maps. In particular, we looked in detail on the projectors corresponding to the Veronese
sequence of such maps.

For the Veronese sequence of maps, some projectors have many symmetries and some have
vanishing entries. These symmetries lead to the generated surfaces lying in lower dimensional
spaces. The projectors corresponding to the lowest such spaces were called “reduced” in this
paper. We also showed that there are some simple relations between such projectors for CPN−1

harmonic maps corresponding to N being odd or even.
We have also discussed in detail the construction of surfaces. In particular, we have showed

that there are at least two ways in constructing such surfaces: one involving line integrals of
derivatives of projectors �this approach was used in previous studies� and on the direct use of the
projectors. This last �and new� approach generates more surfaces and agrees with the first one
when the harmonic maps are selfdual �see �21� and �22��.
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We have also showed that, in general, the surfaces have nonconstant Gaussian curvature of the
induced metric, but that for the Veronese sequence all metrics are proportional to each other and
the curvature is constant. However, the value of this constant still depends on the map itself.
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