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All 2–dimensional links in 4–space live inside
a universal 3–dimensional polyhedron

CHERRY KEARTON

VITALIY KURLIN

The hexabasic book is the cone of the 1–dimensional skeleton of the union of two
tetrahedra glued along a common face. The universal 3–dimensional polyhedron
UP is the product of a segment and the hexabasic book. We show that any closed
2–dimensional surface in 4–space is isotopic to a surface in UP. The proof is based
on a representation of surfaces in 4–space by marked graphs, links with double
intersections in 3–space. We construct a finitely presented semigroup whose central
elements uniquely encode all isotopy classes of 2–dimensional surfaces.

57Q45, 57Q35, 57Q37

1 Introduction

1.1 Brief summary

This is research on the interface between geometric topology, singularity theory and
semigroups. A 2–link is a closed 2–dimensional surface in 4–dimensional space
R4 . We study 2–links up to isotopy, that is, a smooth deformation of the ambient
4–dimensional space. We prove that any 2–link is isotopic to a surface embedded into
the universal 3–dimensional polyhedron UP. We also reduce the isotopy classification
of 2–links in 4–space to a word problem in a finitely presented semigroup.

1.2 The universal polyhedron containing 2–dimensional links

First we define the universal 3–dimensional polyhedron UP.

Definition 1.1 The theta graph TG consists of 3 edges connecting 2 vertices. The
circled theta graph CT is TG [S1 , where the circle S1 meets each edge of TG in one
point; see Figure 1. Then CT is the 1–dimensional skeleton of two tetrahedra glued
along a common face. The hexabasic book HB is the cone of CT. Being embedded in
3–space, the book HB divides a neighbourhood of the central vertex into 6 parts. The
universal 3–dimensional polyhedron is UPD HB� Œ�1; 1�.
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TG CT

HB

Figure 1: The theta graph TG, circled theta graph CT, book HB

We will work in the smooth category, ie all diffeomorphisms are C1–smooth. We will
make necessary comments on similar constructions in the PL case.

Definition 1.2 An embedding is a diffeomorphism onto its image. A 2–link is a
closed (possibly disconnected or nonorientable) smooth surface S embedded into
R4 . An isotopy between 2–links S and S 0 is a smooth family of diffeomorphisms
FuW R4!R4 , u 2 Œ0; 1�, such that F0 D idR4 , F1.S/D S 0 .

Fix the 4-th coordinate t in 4–space R3�R. Then a 2–link in R3�R can be studied
in terms of its cross-sections St DS\ .R3�ftg/; see Fox and Milnor [6]. Any 2–link
can be isotopically deformed to a surface S � R3 � Œ�1; 1� such that the projection
prW S ! Œ�1; 1� has distinct nondegenerate critical values. A general cross-section St

is a classical link in R3�ftg, while a cross-section containing a saddle is a link with a
double point. When t passes through a saddle, the cross-section St D S \ .R3 � ftg/

changes by the Morse modification in the left picture of Figure 2.

t < 0 t D 0 t > 0 t < 0 t D 0 t > 0

Figure 2: Resolving a singular point and a band in R3

A PL analogue of the smooth approach is to decompose a 2–link S �R3� Œ�1; 1� into
handles located in different sections R3�ftj g. The 1–handles of S will be represented
by bands that have a distinguished core and are attached to a classical link in 3–space.
Any attached band can be retracted to a singular point marked by a bridge encoding
the core of the band. The cross-sections of S below and above every 1–handle locally
look like the right picture of Figure 2.
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1.3 Main results

The hexabasic book HB is closely related to the 3–page book TB, the cone of the
theta graph TG consisting of 3 edges connecting 2 vertices; see Figure 7. The binding
segment of TB is the cone of the 2 vertices of TG. From another point of view, the
3–page book TB can be considered as R�T , where T is the triod consisting of 3
edges connecting the central vertex O to other 3 vertices; here the binding axis ˛ is
R�O . The hexabasic book HB is obtained from TB by adding 3 half-disks whose 6
boundary radii are attached to the 3 edges of f0g �T ; see Figure 1.

Theorem 1.3 Any 2–dimensional link S �R4 is isotopic to a surface embedded into
the universal 3–dimensional polyhedron UPD HB� Œ�1; 1�.

The key idea of Theorem 1.3 is to put a given surface S in general position and
consider its cross-sections St through saddles of prW S! Œ�1; 1�; see Claim 2.3. Such
a cross-section St is a link with exactly one singular point, so St can be embedded into
the 3–page book TB using the technique of 3–page embeddings developed by Kurlin
and Vershinin [9; 11]; see Proposition 3.2. Both resolutions of the singular point of St

can be realised in TB, ie the embedding extends to a regular neighbourhood of St in
S . It remains to embed the complement of the regular neighbourhoods of all saddles
into HB� Œ�1; 1� realising any isotopy of classical links in HB; see Lemma 3.4.

We will develop a 1–dimensional calculus for 2–links as follows. Any 2–link S in
general position in R3� Œ�1; 1� can be represented by a banded link BL whose bands
are associated to the saddles of prW S ! Œ�1; 1�; see Proposition 2.6(i). Retracting
each band to a point, we get a marked graph whose singular points are marked by
bridges encoding the cores of bands. There is a complete set of moves on marked
graphs generating any isotopy of 2–links in 4–space; see Proposition 4.2. Any marked
graph can be embedded into the 3–page book TB and can be encoded by a word in
the alphabet of 15 letters. The moves on marked graphs are translated into relations on
words, which leads to the universal semigroup SL of 2–links in 4–space.

Consider the universal semigroup SL generated by the letters ai ; bi ; ci ; di ;xi subject
to relations (1–1)–(1–8), where i 2 Z3 D f0; 1; 2g, eg 0� 1D 2 .mod 3/.

d0d1d2 D 1; bidi D 1D dibi(1–1)

ai D aiC1di�1; bi D ai�1ciC1; ci D bi�1ciC1; di D aiC1ci�1(1–2)

uv D vu;
u 2 faibi ; dici ; bi�1didi�1bi ; dixibig;

v 2 faiC1; biC1; ciC1; bidiC1di ;xiC1g
(1–3)

xi�1 D biC1xidiC1; bixibi D ai.bixibi/ci ; dixidi D ai.dixidi/ci(1–4)
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.dixibi/d
2
i d2

iC1d2
i�1 D d2

i d2
iC1d2

i�1.dixibi/(1–5)

aixi D ai ; aibixidici D 1(1–6)

dixibicixi D bixidicixi(1–7)

widiC1d2
i di�1aiC1biC1xibidiC1b2

i biC1d2
i

D wibi�1biaibiC1aiC1d2
i ci�1bixibi ;

where wi D aibixibici(1–8)

One of the 6 relations bidi D 1D dibi is superfluous and can be deduced from the
remaining relations in (1–1). Moreover, the commutativity of dici with aiC1; biC1

follows from the other relations in (1–3); see more details in Kurlin [9]. So the
semigroup SL is generated by not more than 15 letters and 96 relations.

Theorem 1.4 Any 2–link S �R4 is encoded by an element wS 2 SL in such a way
that 2–links S and S 0 are isotopic if and only if their encoding elements wS and wS 0

are equal in SL. An element w 2 SL encodes a 2–link if and only if w is central in SL.

Outline In Section 2, we represent 2–links in 4–space by banded links and marked
graphs in 3–space. Theorem 1.3 and Theorem 1.4 are proved in Section 3 and Section 4,
respectively. Banded links are more convenient for deriving a complete set of moves
generating any isotopy of 2–links. Marked graphs will be used to prove our main
results on embedding and encoding 2–links up to isotopy.

Acknowledgements The authors thank S Carter, F Tari and the anonymous referee
for useful suggestions.

2 Representing 2–links by banded links and marked graphs

2.1 Critical level embeddings of 2–links in 4–space

Here we describe the PL approach where a 2–link is isotopically deformed to a nice
embedding with handles at different levels. The smooth version of crucial Claim 2.3(ii)
is a standard statement on general position proved in Section 5.

Definition 2.1 A handle of dimension n and index k is Dk �Dn�k . A handle
decomposition of a manifold M n is a sequence of submanifolds M0�M1�� � ��MlD

M , where M0 is a disjoint union of n–dimensional disks, each MiC1 is obtained from
Mi by adding a handle of some index ki . One can write MiC1DMi['i

.Dki�Dn�ki /,
where 'i W @D

ki �Dn�ki ! @Mi is an embedding. If before and after each handle
addition one inserts a collar, the product of the attaching area and a segment, then one
gets a collared handle decomposition; see Kearton and Lickorish [8, p 416].
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2–handle: t D 1

a collar of 1 cylinder

1–handle: t D 1=2

a collar of 2 cylinders

1–handle: t D�1=2

a collar of 1 cylinder

0–handle: t D�1

BLC

BL

BL�

Figure 3: A critical level embedded torus and its banded link BL�R3

A 2–link with a collared handle decomposition can be nicely embedded in R4 . The
left picture of Figure 3 shows a similar embedding, where the standard 2–torus in R3

has the collared handle decomposition consisting of 4 handles and 3 collars:

(1) the lowest handle is a 0–handle (a disk) at the level t D�1;

(2) the 2 intermediate handles are 1–handles (bands) at the levels t D˙1=2;

(3) the highest handle is a 2–handle (a disk) at the level t DC1.

Definition 2.2 A critical level PL embedding is a PL embedding of a 2–link S �

R3 � Œ�1; 1� with a collared handle decomposition satisfying (i), (ii); see Kearton and
Lickorish [8, p 417]:

(i) the handles are in different sections R3 � ftj g, where �1< t1 < � � �< tn < 1;

(ii) each collar between adjacent handles of S is embedded as the direct product
A�Œtj ; tjC1��R3�Œtj ; tjC1�, where A�R3 is the attaching area of the handles.

A smooth embedding S �R3 � Œ�1; 1� is called a smooth critical level embedding if
the projection prW S ! Œ�1; 1� has all its critical points in different sections R3 � ftj g.
This is a general position assumption.

Claim 2.3 (i) (Kearton and Lickorish [8, Theorem 1, p 420]) Any 2–dimensional
PL link in 4–space is isotopic to the image of a critical level PL embedding S �

R3 � Œ�1; 1�.

(ii) Any smooth 2–link is smoothly isotopic to a surface S �R3 � Œ�1; 1� such that
all critical points of prW S ! Œ�1; 1� are nondegenerate and have distinct values.
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We will use the smooth version of Claim 2.3(ii), which will be deduced from the
transversality theorem of Thom in Section 5. Claim 2.3(i) is worth keeping in mind
when one associates a banded link to a 2–link in Proposition 2.6(i).

2.2 Representing 2–links in 4–space by banded links in 3–space

We define banded links, links with bands, which will represent 2–links in 4–space.

Definition 2.4 A banded link is a collection of circles and bands in R3 such that

(i) the circles and bands are nonoriented and non-self-intersecting;

(ii) the circles and bands are disjoint except for each band having a pair of opposite
sides attached to disjoint arcs in the circles, the other sides are called free.

In every band we mark its core, an arc connecting its attached opposite sides; see
Figure 3. Banded links are considered up to isotopy of R3 . The bands of a banded link
will represent 1–handles of a 2–link. In every band B of a banded link BL consider
the opposite free sides not connected by the core of B . Replace B by its free sides,
the resulting usual nonoriented link in R3 is called the positive resolution BLC of
the banded link BL; see the right picture of Figure 3. Similarly define the negative
resolution BL� replacing every band B by the opposite attached sides connected by
the core of B . A banded link BL is admissible, if both resolutions BL˙ are trivial
links.

If a PL 2–link S �R3� Œ�1; 1� has all its 1–handles in the zero section R3�ft D 0g,
then the cross-section S0 D S \ .R3 � ft D 0g/ is a banded link. We will use much
weaker assumptions and construct a banded link for any critical level embedding.
Proposition 2.6 leads to a calculus for 2–links in Proposition 4.2 and provides a
function from the set of 2–links to the set of admissible banded links.

Definition 2.5 Given a 2–dimensional surface S , consider the space of all smooth
functions f W S !R4 with the Whitney topology; see Definition 5.2. The space CS
of all 2–links S �R4 has the induced topology. Points in CS will be classified using
the projection prW S !R to the 4-th coordinate t . A 2–link S 2 CS is called

� generic if all critical points of pr are nondegenerate and have distinct values;

� an AC
1

AC
1

–singularity if S fails to be generic because of 2 nondegenerate
extrema of prW S !R that have the same value;

� an AC
1

A�
1

–singularity if S fails to be generic because of a nondegenerate saddle
and extremum of prW S !R that have the same value;
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� an A�
1

A�
1

–singularity if S fails to be generic because of 2 nondegenerate saddles
of prW S !R that have the same value;

� an A2 –singularity if S fails to be generic because of a singularity of prW S!R
having the form pr.x;y/D x2�y3 in local coordinates x;y .

The sign in the notation above is the sign of the determinant prxxpryy � pr2
xy of the

Jacobi matrix of 2nd order derivatives at a critical point. Denote by †CC; †C�; †��
and †2 the subspaces of the corresponding singularities in the space CS. Introduce
the singular subspace †D†CC[†C�[†��[†2 . An isotopy of 2–links can be
considered as a path in CS. In Proposition 2.6 we consider paths nicely meeting the
singular subspace †.

Proposition 2.6 (i) To any a critical level embedding S �R3 � Œ�1; 1� we associate
a banded link BL well-defined up to the slide/swim moves in Figure 4.

cup cap

slide

swim

Figure 4: Cup/cap moves and slide/swim moves of banded links

(ii) If 2–links S;S 0 are isotopic through generic 2–links, then the associated banded
links BL;BL0 are related by the slide/swim moves in Figure 4.
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(iii) If 2–links S;S 0 are isotopic through generic 2–links and one of AC
1

AC
1

–,
AC

1
A�

1
–, A�

1
A�

1
–singularities, then BL;BL0 are related by the slide/swim moves

in Figure 4.

(iv) If 2–links S;S 0 are isotopic through generic 2–links and exactly one A2 –
singularity, then BL;BL0 are related by the cap/cup and slide/swim moves in Figure 4.

Proof (i) The lowest critical point of a generic 2–link S with respect to prW S !
Œ�1; 1� at t D t1 is a minimum, so the cross-section St1C" is a trivial knot for some
" > 0. The section St1C" is a prototype of a future banded link BL, which will be
located in a fixed copy of R3 . The key idea in constructing BL is to watch the current
cross-section St D S \ .R3 � ftg/ simultaneously adding bands and trivial knots
corresponding to new saddles and minima, respectively. The left column of Figure 5
contains cross-sections St for different values of t . The right column shows successive
stages of constructing BL whose final form is the top right.

While t is increasing, we isotopically deform the current banded link BL � R3

following St D S \ .R3 � ftg/; see Figure 5. The existing bands of BL can be
deformed to avoid intersections with the rest of BL. For each new minimum of S in
R� ftj g, add a trivial knot from StjC" to the current banded link BL�R3 .

For each new saddle of S , attach a small band B to BL. The band B has 2 opposite
sides attached to branches of the previous link BL. While t passes the critical value,
the attached sides of B are retracted to a point and are replaced by the free sides of B .
The band B can not meet the attached sides of other bands of BL since these sides
are not included into the current cross-section of S . So there are only 2 cases when
the new link with bands does not satisfy Definition 2.4.

(a) One (or two) of the attached sides of B may meet a free side of another band B0

of BL; see the upper picture of Figure 6. Then slide B along the free side of B0 in
any of the two directions so that in the end the attached side of B does not meet B0 .

(b) The band B intersects the interior of another band B0 of BL, see the lower picture
of Figure 6. Then B swims through any of the attached sides of B0 , so B;B0 fall apart.
The band B can not swim through the free sides of B0 as they belong to the current
cross-section of S . For each new 2–handle (a maximum), we keep the corresponding
trivial knot of BL, although it disappears from St D S \ .R3 � ftg/.

After we have passed all critical values of prW S ! R, the associated banded link
BL�R3 has been constructed.

(ii) The construction above is not affected by an isotopy of S keeping the order of
critical points of prW S! Œ�1; 1�. Indeed all cross-sections St are replaced by isotopic
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St

St

St

St

St

St

BL

BL

BL

BL

BL

t D�1

t D "� 1

t D�:5C "

t D�:5

t D :5

t D :5C "

t D 1� "

t D 1

Figure 5: Cross-sections and a banded link of the spun 2–knot of the trefoil
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B0

B

B0
B

Figure 6: A band slides or swims to remove an intersection

links, so the resulting banded link is isotopic to the original one provided that we
remove intersections of bands in Figure 6 in the same way.

(iii) The given isotopy of S is a smooth path passing through one of AC
1

AC
1

–,
AC

1
A�

1
–, A�

1
A�

1
–singularities in the space CS of 2–links. For AC

1
AC

1
or AC

1
A�

1
, an

extremum and another singularity swap their heights, so we add a new trivial knot
(passing a minimum) or keep an existing trivial knot (passing a maximum) that does
not affect the other singularity. For an A�

1
A�

1
–singularity, two saddles of S swap their

heights, so we add 2 bands to BL in the reverse order. Consider the critical moment
when both saddles are in the same section R3 � ftj g. If the associated bands do not
intersect each other, then the new banded link is isotopic to the original one. In (i) we
listed the only cases (a), (b) when one band may intersect another, which led to the
moves in Figure 6 so the banded links are equivalent through the slide/swim moves.

(iv) If an isotopy of S passes through an A2 –singularity, then around this moment
a nondegenerate saddle and extremum appear in a 2–link, see Claim 4.3(iv). In the
case of a minimum, one adds a trivial knot to the current banded link BL and a band
attached to the trivial knot and to an existing branch of BL as shown in the cup move
of Figure 4. In the case of a maximum, one adds a band attached by both sides to a
branch of the current banded link BL as shown in the cap move of Figure 4. Recall
that we keep the trivial knot when t passes a maximum. The leftmost and rightmost
columns of Figure 4 show projections of 2–links to R3 around singular moments. The
4–th axis of R3 �R projects to the vertical axis of R3 .
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Conversely, any admissible banded link will give rise to a 2–link in 4–space; see
Lemma 2.8. One can describe all moves of banded links generating any isotopy of
2–links in 4–space. Banded links were called knots with bands in Swenton [10].

2.3 Representing 2–links in 4–space by marked graphs in 3–space

Theorem 1.4 is easier to prove representing 2–links by marked graphs, which are
singular links with bridges at singular points.

Definition 2.7 After deformation retracting each band of a banded link BL to a point,
we get a singular link (see Kurlin and Vershinin [11]), a collection of closed curves
with finitely many double transversal intersections; see Figure 2 and Figure 5. The
core of each retracted band defines a bridge at the singular point, a straight arc in a
small plane neighbourhood of each singular point. We consider the resulting marked
graph MG up to isotopy in R3 keeping a neighbourhood of each singular point in a
(moving) plane.

In the smooth approach, the zero section S \ .R3 � f0g/ containing all saddles of
prW S ! Œ�1; 1� is a marked graph whose bridges show how to resolve the singular
points for t > 0 (along bridges) and t < 0 (across bridges); see Figure 2 and Figure 3.
An abstract marked graph MG , ie a singular link with bridges, can be converted into
a banded link BL replacing each bridge by a small rectangle whose core coincides
with the bridge. So there is a 1-1 correspondence between banded links and marked
graphs. Lemma 2.8 provides a unique function from the set of admissible banded links
to the set of 2–links, which is the inverse of the function from Proposition 2.6.

Lemma 2.8 Any admissible banded link BL � R3 gives rise to a 2–link S � R4

that can be represented by BL as in Proposition 2.6(i).

Proof Take the marked graph MG �R3 associated to the given banded link. Isotopi-
cally deform MG in such a way that neighbourhoods of all singular points of MG

are contained in a single hyperplane of R3 � f0g.

Resolving the singular points along the bridges for t > 0 and across the bridges for
t < 0, extend the embedding MG �R3�f0g to a surface S 0 �R3� Œ�"; "� for some
" > 0, such that the boundary @S 0 consists of trivial links in R3 � f˙"g.

Since both sections S 0
˙" D S 0\ .R3 �ft D˙"g/ are unlinks, one can find isotopies

'˙t W R
3!R3 , t 2 Œ"; 1�"�, such that each '˙

1�"
.S 0
˙"/ is a collection of small disjoint

circles in a plane. The isotopies '˙t define the embedding of a 2–link S without small
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disks into R3 � Œ"� 1; 1� "�, one disk for each component of @S . Attaching a disc to
each boundary circle gives a closed surface S �R3 � Œ�1; 1�.

The zero section S \ .R3 � f0g/ is the original marked graph MG . A small isotopy
deformation makes S generic. The construction of Proposition 2.6(i) gives a banded
link equivalent to MG as all bands may be chosen small and nonintersecting.

3 Three-page embeddings of marked graphs

3.1 Any marked graph can be embedded into the 3–page book

Recall that the 3–page book is TBDR�T , where T is the triod consisting of 3 edges
E0;E1;E2 joining the vertex O to the other 3 vertices. The line ˛ DR�O is said
to be the binding axis, Pi DR�Ei are called the pages, i D 0; 1; 2.

a0

a1

a2

b0

b1

b2

c0

c1

c2

d0

d1

d2

x0

x1

x2

Figure 7: The encoding letters for 3–page embeddings of marked graphs

Definition 3.1 An embedding of a marked graph G into the 3–page book TB is called
a 3–page embedding, if conditions (i)–(v) hold:

(i) the intersection G \˛ of G and the binding axis ˛ is a finite set of points;

(ii) the arcs at every point of G \˛ lie in 2 pages Pi ;Pj , i ¤ j (see Figure 7);

(iii) all singular points of G lie in ˛ , a neighbourhood of each singular point lies in
a broken plane consisting of two pages and looks locally like a cross �;

(iv) the bridge at each singular point lies in the binding axis ˛ ;

(v) every connected component of G \Pi is projected monotonically to ˛ .
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The arcs in the page P2 are dashed in Figure 7 and Figure 8. All classical and singular
links can be embedded into TB in the sense of Definition 3.1; see Figure 8.

The pictures in each vertical column of Figure 7 are obtained from each other by
rotation around ˛ . The rotation corresponds to the shift i 7! i C 1 of indices,
i 2 Z3 D f0; 1; 2g. A 3–page embedding can be encoded by a word in the alpha-
bet of 15 letters describing the local behaviour of G near the intersection points
G \ ˛ ; see Figure 7. The 3–page embedding in Figure 8 is encoded by wG D

a0a1.b2b0b1/
2d0a1.x1b1/

2c1d1b0.d1d0d2/
2c1c0 . So a 3–page embedding of the

marked graph GS of a 2–link S is a 1–dimensional representation of S �R4 .

P0

P1

P2

TB
˛

Figure 8: A 3–page embedding of the marked graph from Figure 9

We give a proof of the embedding result from Kurlin and Vershinin [11], because this
construction plays an important role in further considerations.

Proposition 3.2 (Kurlin and Vershinin [11]) Any marked graph G �R3 is isotopic
to a 3–page embedding G � TB in the sense of Definition 3.1.

Proof Consider a plane diagram D of G � R3 in general position with finitely
many double crossings. At each crossing in the diagram D mark a small overcrossing
arc. Recall that, at each singular point of G , there is a marked bridge transversally
intersecting both branches of G passing through the singular point.

In the plane containing the diagram D , draw a continuous path ˛ such that

(1) the path ˛ passes through each marked arc and bridge exactly once;

(2) ˛ transversally intersects the rest of D , the endpoints of ˛ are away from D .
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˛

Figure 9: How to construct a 3–page embedding of a marked graph

Isotopically deform the plane containing D in such a way that ˛ becomes a straight
line containing all marked arcs and bridges of D . Denote the upper half-plane and
lower half-plane of R2�˛ by P0 and P2 , respectively. Notice that a neighbourhood
of each singular point looks like a cross � with a centre in the axis ˛ ; see Figure 9.

Attach the third half-plane P1 to ˛ and push all marked arcs into P1 ; see Figure 8.
If both (say) upper arcs at some singular point v 2G go to points on one side of the
point v 2 ˛ , then make an additional couple of crossings in the intersection ˛ \D

like in Reidemeister move II; see Figure 13. For instance, in the embedding a2b2x2

both upper arcs go to the right, see the lower right picture of Figure 15, more details
are in Kurlin and Vershinin [11]. Then the intersection G \Pi is a finite collection of
disjoint arcs, which can be made monotonic with respect to the projection TB! ˛ ,
i D 0; 1; 2.

3.2 Any isotopy of links can be realised in the hexabasic book

The following lemma is a keystone of the 3–page approach to knot theory and was
originally proved by I Dynnikov [2; 3].

Lemma 3.3 (Kurlin [9]) Any isotopy of 3–page embeddings of classical links is
decomposed into finitely moves in Figure 10 and theirs images under i 7! iC1, i 2Z3 .

The algebraic form of the moves in Figure 10 is below, i 2Z3Df0; 1; 2g; see Kurlin [9]:

d0d1d2 D 1; bidi D 1D dibi(3–1)

ai D aiC1di�1; bi D ai�1ciC1; ci D bi�1ciC1; di D aiC1ci�1(3–2)

uv D vu; where
u 2 faibi ; dici ; bi�1didi�1big;

v 2 faiC1; biC1; ciC1; bidiC1dig
(3–3)

Lemma 3.4 is the crucial step in Theorem 1.3.
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d0d1d2 1 b2d2

(i) Relations between invertible generators

a0d1
a2 a2c1 b0

b2c1 c0 a2c0 d1

(ii) Relations between generators at intersection points

d2c2 a2b2 b1d2d1b2

(iii) These elements commute with a0, b0, c0, b2d0d2.

Figure 10: Finitely many moves generating any isotopy of classical links

Lemma 3.4 The moves in Figure 10 are realised in the hexabasic book HB.

Proof All the moves in Figure 10, apart from the commutativity of ai , bi , ci ,
bi�1didi�1 with biC1di�1diC1bi�1 , can be realised in the 3–page book TB. For
instance, the relation b2d2 D 1 is realised by compressing the slice between the 2
intersection points and removing the resulting point from ˛ . The other relations
are realised in HB; see a geometric realisation of .b1d2d1b2/a0 D a0.b1d2d1b2/ in
Figure 11.

3.3 Any 2–link is isotopic to a surface in the universal polyhedron

Here we finish the proof of Theorem 1.3.
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b1d2d1b2 a0 a0 b1d2d1b2

Figure 11: Realising a commutative relation in the hexabasic book HB

Proof of Theorem 1.3 By Claim 2.3 any 2–link in 4–space is isotopic to a surface
S �R3� Œ�1; 1� having all maxima, minima and saddles in different sections R3�ftj g

for some �1< t1 < � � �< tn < 1. In Step 1 we embed each cross-section Stj into the
3–page book. In Step 2 we extend this embedding to a regular neighbourhood of Stj .
In Step 3 we embed the complement of the neighbourhoods into HB� Œ�1; 1�.

Step 1 Choose " > 0 such that the closed "–neighbourhoods N".Stj / of Stj in S

are disjoint and each of them contains exactly one critical point of prW S ! Œ�1; 1�,
j D 1; : : : ; n. Then the boundaries @N".Stj / are classical links. By Proposition 3.2
there is an isotopy f u

j W R
3 � ftj g !R3 � ftj g, u 2 Œ0; 1�, moving Stj into TB, ie

f 0
j D idR3 , f 1

j .Stj /� TB� ftj g is a 3–page embedding. Take smooth functions
gj W Œtj � "; tj C "�! Œ0; 1� such that gj .tj /D 1 and gj .tj ˙ "/D 0. Extend f j

u to

Fu
j W R

3
� Œtj � "; tj C "�!R3

� Œtj � "; tj C "�; u 2 Œ0; 1�;

Fu
j .x; t/D .f

ugj .t/

j .x/; t/; where x 2R3; t 2 Œtj � "; tj C "�:

Then Fu
j D f

u
j for t D tj and Fu

j D id for t D tj ˙ ". Hence @N".Stj / are pointwise
fixed and we may combine Fu

j together to form a smooth isotopy FuW R3� Œ�1; 1�!

R3 � Œ�1; 1� moving each Stj into TB� ftj g. Denote the resulting surface by S 0 .

Step 2 If a singular cross-section S 0tj has a double intersection, then both positive
and negative resolutions of S 0tj can be embedded into TB. Indeed the positive and
negative resolutions of the singular point xi are encoded by 1 and ciai , respectively;
see Figure 12. Given an encoding word wj of S 0tj � TB, the positive resolution of S 0tj
is encoded by wj after removing the letter xi representing the double point of S 0tj .

The argument below with the sign ˙ covers 2 cases when either C or � is taken in all
formulae. If S 0tj contains a maximum or minimum, S 0tj˙"=2 can be embedded into TB.
So there are isotopies hu

˙j W R
3 � ftj ˙ "=2g !R3 � ftj ˙ "=2g, u 2 Œ0; 1�, moving

each S 0tj˙"=2 into TB�ftj ˙ "=2g. Take smooth functions zgj W Œtj � "; tj C "�! Œ0; 1�

such that zgj .tj /D 0D zgj .tj ˙ "/ and zgj .tj ˙ "=2/D 1. Extend hu
˙j to

H u
j W R

3
� Œtj � "; tj C "�!R3

� Œtj � "; tj C "�; u 2 Œ0; 1�;

Algebraic & Geometric Topology, Volume 8 (2008)



2–links live in a universal 3–polyhedron 1239

˛ ˛ ˛

c2a2 W t < 0 x2 W t D 0 1 W t > 0

Figure 12: Resolving a singular point in the 3–page book TB

H u
j .x; t/D .h

uzgj .t/

˙j .x/; t/ for x 2R3; t between tj and tj ˙ ":

Then H u
j D hu

˙j for t D tj ˙ "=2 and H u
j D id for t D tj , t D tj ˙ ". Hence

S 0tj and @N".S 0tj / are pointwise fixed and we may combine H u
j together to form

a smooth isotopy H uW R3 � Œ�1; 1� ! R3 � Œ�1; 1� moving each N"=2.S
0
tj
/ into

TB� Œtj � "=2; tj C "=2�. Denote the resulting surface by S 00 .

Step 3 The cross-sections S 00tjC"=2 and S 00tj C1�"=2
are isotopic classical links, j D

1; : : : ; n� 1. By Lemma 3.3 and Lemma 3.4 any isotopy of classical links can be
realised in HB. Then the layers S 00\ .R3� Œtj C "=2; tjC1� "=2�/ can be replaced by
an isotopy of links in HB� Œtj C "=2; tjC1� "=2�. It remains to extend the embedding
to the neighbourhoods of the lowest minimum and highest maximum of S 00 shrinking
their boundaries in HB. So the final surface is embedded into HB� Œ�1; 1�.

4 The universal semigroup of 2–dimensional links

4.1 Local moves of marked graphs generate any isotopy of 2–links

Here we derive a complete set of moves of banded links and marked graphs, that
generate any isotopy of 2–links in 4–space. Marked graphs can be represented by
plane diagrams with small straight arcs denoting bridges over singular points; see
Figure 2 and Figure 9. In particular, the cyclic order of edges at each singular point is
invariant.

Lemma 4.1 [7] Marked graphs are isotopic in R3 if and only if their plane diagrams
can be obtained from each other by finitely many Reidemeister moves in Figure 13,
where all symmetric images of the moves should be considered.

The moves in Figure 13 are local in the sense, that a small disk in the left part of each
move is replaced by another small disk in the right part of the move, while the rest of
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I II III

IV V

Figure 13: Reidemeister moves for rigid isotopy of marked graphs

the diagram remains unchanged. The singular points in moves IV and V of Figure 13
can be equipped with arbitrary corresponding bridges. The proof is a direct application
of the transversality theorem of Thom similarly to a proof of the Reidemeister theorem
for plane diagrams of classical links; see Fiedler and Kurlin [5, Section 2; 4, Section 2].

Proposition 4.2 Marked graphs represent isotopic 2–links in 4–space if and only if
they can be obtained from each other by finitely many moves in Figure 14.

VI VII VIII

Figure 14: Moves of marked graphs generating isotopy of 2–links

Symmetric images of the moves in Figure 14 are skipped as they can be reduced
to the standard moves using an isotopy in R3 . Proposition 4.2 was conjectured by
K Yoshikawa in [12]. F Swenton [10] claimed a proof of Proposition 4.2 using banded
links and the equivalent moves in Figure 4. M Saito wrote in his review for the
MathSciNet: “It is claimed that this set of moves is equivalent to Yoshikawa’s moves.
It might be beneficial of some more detailed accounts, for example, those for the above
claim, are discussed further and presented elsewhere in the literature.” The authors
were asked by S Carter to fill in these details, so we give a more detailed proof of
Proposition 4.2 for banded links. Recall that the singular subspace † of the space
CS of 2–links was introduced in Definition 2.5. The following result will be formally
deduced in Section 5 using the transversality theorem of Thom.
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Claim 4.3 (i) The closure of the subspace † has codimension 1 in the space CS.

(ii) The complement of the closure S† in CS consists of generic 2–links.

(iii) Any isotopy of 2–links can be deformed in such a way that all intermediate
2–links are generic apart from finitely many singularities of Definition 2.5.

(iv) If an isotopy passes through an A2 –singularity, then a nondegenerate saddle and
extremum collide and disappear as shown in the top picture of Figure 18.

Claim 4.3(i)–(ii) say that any point of CS can be removed from † by a small perturba-
tion, ie a 2–link can be made generic, which implies Claim 2.3(ii). Claim 4.3(iii) says
that the singularities of Definition 2.5 are the only singularities occuring in any isotopy
of 2–links in general position.

Proof of Proposition 4.2 By Claim 4.3(iii) any isotopy of 2–links can be deformed
into a smooth path transversal to the subspace †� CS. When the path passes through
one of the singularities, the associated banded link changes according to Proposition
2.6(iii),(iv), which led to the moves in Figure 4 as required.

4.2 A 1–dimensional encoding 2–links up to isotopy in 4–space

Here we reduce the isotopy classification of 2–links in 4–space to a word problem in
the finitely presented semigroup SL, the universal semigroup of 2–links. Recall that
moves (1–1)–(1–8) on 3–page embeddings were defined in Section 1.3. Theorem 1.4
follows from the following generalisation of Lemma 3.3 to singular links.

Proposition 4.4 (Kurlin and Vershinin [11]) Consider the semigroup SK generated
by ai ; bi ; ci ; di ;xi , i 2Z3 , subject to relations (1–1)–(1–5) from Section 1.3. Then any
singular link G �R3 is encoded by an element wG 2 SK in such a way that singular
links G;G0 are isotopic if and only if the elements wG and wG0 are equal in SK. An
element w 2 SK encodes a singular link if and only if w is central in SK.

Proof of Theorem 1.4 Any 2–link can be represented by its marked graph G whose
3–page embedding is encoded by a word in the letters ai ; bi ; ci ; di ;xi , i 2 Z3 , as
described before Proposition 3.2. All encoding elements form the centre of SL as
the same result holds for the universal semigroup SK of singular links, ie relations
(1–1)–(1–5) imply that any encoding element commutes with the generators.

The remaining part of Theorem 1.4 states that two 3–page embeddings of marked graphs
represent isotopic 2–links in 4–space if and only if they can be related by algebraic
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moves (1–1)–(1–8) in Section 1.3. By Lemma 3.3, Lemma 3.4 and Proposition 4.2 it
suffices to realise moves VI, VII, VIII in Figure 14 by 3–page embeddings.

In moves VI, VII, VIII a small disk in the left part is replaced by another small disk in
the right part. Similarly to the construction of a 3–page embedding, choose a path ˛
passing through overcrossing arcs and bridges at singular points; see Figure 15, Figure
16 and Figure 17. Deform the diagrams in such a way that ˛ becomes a straight line
and push all overcrossing arcs into the half-plane P1 , all bridges remain in ˛ .

˛ ˛
˛ ˛

˛

˛
˛ ˛

VI

VI

Figure 15: Realising moves VI of Figure 14 in terms of 3–page embeddings

In Figure 15 moves VI are encoded by a1x1 D a1 and a1b1x1d1c1 D 1 equivalent to
(1–6) for i D 1. We made additional intersections of ˛ with the diagram to decompose
the resulting embedding into local 3–page embeddings from Figure 7.

VII
1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

˛
˛

˛ ˛

Figure 16: Realising move VII of Figure 14 in terms of 3–page embeddings

Algebraic & Geometric Topology, Volume 8 (2008)



2–links live in a universal 3–polyhedron 1243

In Figure 16 move VII is encoded by d1x1b1c1x1 D b1x1d1c1x1 , which is (1–7) for
i D 1. Numbers 1, 2, 3, 4, 5, 6 denote arcs going out of the small disk replaced by
move VII, eg the path ˛ starts between arcs 1, 4 and ends between arcs 3, 6.

VIII

1

1

1

12

2

2

2

3

3

3

3

4

4

4

4

5

5

5

56

6

6

6

7 7

7

7

8 8

8

8

˛ ˛

˛

˛

Figure 17: Realising move VIII of Figure 14 in terms of 3–page embeddings

In Figure 17 move VIII is encoded by

.a1b1x1b1c1/d2d1.b2d2/d1d0a2b2x1b1d2b1.b2d2/b1b2d2
1

D .a1b1x1b1c1/b0b1.b2d2/a1b2a2d1.b2d2/d1c0b1x1b1;

which is equivalent to (1–8) for i D 1 after removing b2d2 D 1 by relation (1–1). The
relations for other i 2 Z3 were added to make the presentation symmetric.
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5 Appendix: the multi-jet transversality theorem of Thom

Here we follow Arnold, Varchenko and Gusein-Zade [1, Sections I.2, I.8].

Let �; �W M ! N be smooth maps between finite dimensional manifolds with Rie-
mannian metrics �M ; �N , respectively.

Definition 5.1 The maps � and � have the tangency of order k at a point z 2M if k

is the maximal integer such that �N .�.w/; �.w//=.�M .z; w//k ! 0 as w 2M tends
to z , eg the curve �.w/D wkC1 has the tangency of order k with �.w/D 0.

The l –tuple k –jet of the map � at .z1; : : : ; zl/ 2 M l is the equivalence class of
smooth maps �W M !N up to tangency of order k at the points z1; : : : ; zl 2M , eg
the 1–tuple 1–jet j 1

Œ1�
�.z/ of a map �W R!R is determined by z; �.z/; P�.z/.

Denote by J k
Œl�
.M;N / the space of all l –tuple k –jets of smooth maps �W M ! N

for all .z1; : : : ; zl/ 2M l . Let .x1; : : : ;xm/ and .y1; : : : ;yn/ be local coordinates in
M and N , respectively. If � is defined locally by yj D �j .x1; : : : ;xm/, j D 1; : : : ; n,
then the l –tuple k –jet of � at .z1; : : : ; zl/ is determined by l arrays of the data below:

fx1; : : : ;xmgI fy1; : : : ;yngI

�
@�j

@xi

�
I : : :

(
@k�j

@xi1
: : :xis

)
; i1C � � �C is D k:

The quantities above define local coordinates in J k
Œl�
.M;N /. The l –tuple k –jet j k

Œl�
�

of a smooth map �W M !N can be considered as the map j k
Œl�
�W M l ! J k

Œl�
.M;N /,

namely .z1; : : : ; zl/ goes to the l –tuple k –jet of � at .z1; : : : ; zl/.

The manifold J k
Œl�
.M;N / is finite dimensional, eg J 0

Œl�
.M;N /D .M �N /l ,

dim J 1
Œl�.M;N /D .mCnCmn/l; dim J 2

Œl�.M;N /D .mCnCmnC
m.mC 1/

2
n/l:

Definition 5.2 Take an open set W � J k
Œl�
.M;N /. The set of smooth maps f W M !

N with l –tuple k –jets from W is open. These sets for all open W � J k
Œl�
.M;N /

over all k; l form a basis of the Whitney topology in C1.M;N /. The space CS of
all 2–links S �R4 inherits the Whitney topology from C1.S;R4/.

So maps are close in the Whitney topology if they are close with all derivatives.

Definition 5.3 Let M be a finite dimensional smooth manifold. A subspace ƒ�M

is called a stratified space if ƒ is the union of disjoint smooth submanifolds ƒi (strata)
such that the boundary of each stratum is a finite union of strata of less dimensions.
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Let N be a finite dimensional manifold. A smooth map �W M !N is transversal to
a smooth submanifold U �N if the spaces ��.TzM / and T�.z/U generate T�.z/N

for each z 2M . A smooth map is �W M ! V transversal to a stratified space ƒ� V

if the the map � is transversal to each stratum of ƒ.

Briefly Theorem 5.4 says that any map can be approximated by “a nice map”.

Theorem 5.4 (Multi-jet transversality theorem of Thom, see Arnold, Varchenko
and Gusein-Zade [1, Section I.2]) Let M;N be compact smooth manifolds, ƒ �
J k
Œl�
.M;N / be a stratified space. Given a smooth map �W M !N , there is a smooth

map �W M !N such that

� the map � is arbitrarily close to � with respect to the Whitney topology;

� the l –tuple k –jet j k
Œl�
�W M l ! J k

Œl�
.M;N / is transversal to ƒ� J k

Œl�
.M;N /.

Proof of Claim 4.3 (i) For any critical point of prW S ! R, fix local coordinates
.x;y/ 2 S such that the derivatives prx D pry D 0. The closures of the subspaces
†CC[†C�[†�� and S†2 from Definition 2.5 can be mapped onto the subspaces
of the finite-dimensional spaces J 1

Œ2�
.S;R/ and J 2

Œ1�
.S;R/ given by the equations

pr.x1;y1/Dpr.x2;y2/ and prxxpryy�pr2
xyD0, respectively. The resulting subspaces

of jets have codimension 1 as preimages of 0 under smooth functions, eg the image of
S†2 in J 2

Œ1�
.S;R/ is .prxxpryy�pr2

xy/
�1.0/. Hence the closures †CC[†C�[†��

and S†2 have codimension 1 in the space CS of 2–links.

(ii) If a 2–link is not generic, then either some critical points of the projection
prW S ! R are degenerate or have the same value. The singularities of Definition
2.5 are all multi local codimension 1 singularities of smooth functions R2!R; see
Arnold, Varchenko and Gusein-Zade [1].

(iii) By Theorem 5.4 any smooth isotopy of 2–links is a path in CS and can be made
transversal to the singular subspace S†, which has codimension 1 by (i), hence the new
path will contain only finitely many isolated singularities of Definition 2.5.

(iv) The normal form of an A2 –singularity of a function R2 ! R is pr.x;y/ D
x2�y3 , ie the projection prW S !R has the form above in suitable local coordinates
.x;y/ 2 S . A 2–link S , its cross-sections around the singularity and the graph
of y3 look like the middle pictures of Figure 18. The versal deformation of an
A2 –singularity is pr.x;yI "/ D x2 � y3 C "y (see Arnold, Varchenko and Gusein-
Zade [1]) ie any smooth deformation of pr.x;y/ can be expressed as f1.x;yI "/ �

pr.f2.x;yI "/; f3.x;yI "/If4."//, where f1; f2; f3; f4 are smooth, f1.0; 0I 0/ ¤ 0,
f2.x;yI 0/� x , f3.x;yI 0/� y and f4.0/D 0.
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" < 0 "D 0 " > 0

x

y

x2 D y3� "y

x

y

x2 D y3

x

y

x2 D y3� "y

y

y3� "y

y

y3

y

y3� "y

Figure 18: Transformation of a 2–link near an A2 –singularity

For "< 0, a 2–link S , its cross-sections around the singularity and the graph of y3�"y

look like the left pictures of Figure 18. For " > 0, a 2–link S , its cross-sections around
the singularity and the graph of y3� "y look like the right pictures of Figure 18. For
instance, 2–links for " > 0 have a nondegenerate saddle at x D 0, y D

p
"=3 and a

local extremum at x D 0, y D�
p
"=3.
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