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Abstract: It is well-known that in scenarios with direct gauge mediation of supersymmetry breaking

the messenger fields significantly affect the running of Standard Model couplings and introduce Landau

poles which are difficult to avoid. Among other things, this appears to remove any possibility of a

meaningful unification prediction and is often viewed as a strong argument against direct mediation.

We propose two ways that Seiberg duality can circumvent this problem. In the first, which we call

“deflected-unification”, the SUSY-breaking hidden sector is a magnetic theory which undergoes a

Seiberg duality to an electric phase. Importantly, the electric version has fewer fundamental degrees

of freedom coupled to the MSSM compared to the magnetic formulation. This changes the β-functions

of the MSSM gauge couplings so as to push their Landau poles above the unification scale. We show

that this scenario is realised for recently suggested models of gauge mediation based on a metastable

SCQD-type hidden sector directly coupled to MSSM. The second possibility for avoiding Landau

poles, which we call “dual-unification”, begins with the observation that, if the mediating fields fall

into complete SU(5) multiplets, then the MSSM+messengers exhibits a fake unification at unphysical

values of the gauge couplings. We show that, in known examples of electric/magnetic duals, such a

fake unification in the magnetic theory reflects a real unification in the electric theory. We therefore

propose that the Standard Model could itself be a magnetic dual of some unknown electric theory

in which the true unification takes place. This scenario maintains the unification prediction (and

unification scale) even in the presence of Landau poles in the magnetic theory below the GUT scale.

We further note that this dual realization of grand unification can explain why Nature appears to

unify, but the proton does not decay.

http://arxiv.org/abs/0809.5262v1


1. Introduction

One of the key questions of supersymmetric BSM particle physics is the nature of supersymmetry

breaking in the hidden sector and its mediation to the visible Standard Model sector. A particularly

concise and appealing proposal is the direct gauge mediation approach [1] in which the supersymmetry-

breaking sector couples directly to the MSSM with no need for an additional messenger sector.

The central issue we wish to address in this paper applies particularly to models of direct gauge

mediation and is this. In direct gauge mediation, supersymmetry (SUSY) is broken in a hidden sector

that contains a large global flavour group which is gauged and identified with the gauge group of the

Supersymmetric Standard Model (SSM) or a subgroup thereof. Supersymmetry breaking is mediated

by messengers that are charged under both groups [1,2]. Being charged under the hidden sector gauge

symmetry, these direct messengers are in effect a large number of additional matter fields for the

visible sector1 . Consequently they give a large positive contribution to the β-functions above the

messenger scale, Mmess, and the visible sector gauge couplings then encounter Landau poles below

MGUT at which point the perturbative description breaks down. Thus to use direct gauge mediation

one has apparently to abandon perhaps the most successful prediction of the MSSM, namely gauge

unification. This is often cited as evidence against it.

Here we wish to propose that theories with Landau poles can still have meaningful and predictive

unification taking place “across a Seiberg duality” in a microscopic electric dual description.2 The

Seiberg duality can be applied either to just the hidden sector or may also include the visible sector.

In the former case the universal change of slopes provided by messengers in complete SU(5) multiplets

persists, but the slopes can change a number of times as the hidden sector goes through one or more

dualities. This is a form of “deflected-unification” (to borrow a term from anomaly mediation) as

shown schematically in figure 1. Similar deflection of course happens in purely perturbative theories

whenever a threshold is crossed, but this always results in an increase in the effective number of

flavours which only accelerates the running to Landau poles. The important feature that the Seiberg

duality [7] brings is a reduction in the number of elementary direct messenger fields when one switches

from the IR magnetic to the UV electric formulation of the hidden sector theory. This reduction affects

the β-function slopes in the SSM and moves the Landau poles to the UV or conceivably even removes

them entirely. Note that the slope in the visible sector changes in this way only because the mediation

is direct; from the point of view of the visible sector the electric theory simply has a different number

of messenger flavours contributing in the one-loop β-functions.

What solves the problem of Landau poles in this class of direct mediation scenarios is the assump-

tion that the SUSY-breaking sector has an electric dual in the UV. Remarkably, this is precisely what

happens in the Intriligator, Seiberg and Shih (ISS) model [8]. In the ISS case Seiberg duality was

1In general we will refer to the supersymmetric Standard Model including direct messengers as the SSM. We will

reserve ”MSSM” to refer to the minimal model on its own (without messengers).
2Other mechanisms of avoiding Landau poles have also been considered in the literature, including [3–5] and most

recently in [6].
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instrumental in achieving dynamical SUSY-breaking (DSB) in a metastable vacuum. Now, when the

ISS-type model is used as the hidden sector for direct mediation of SUSY-breaking to the SSM [9–13],

it not only provides us with a simple satisfactory description of DSB, it also resolves the Landau pole

problem of direct mediation. In Section 2 we will show how this works in the context of the direct

mediation models introduced in [11,12].

W mess

Electric hidden sectorMagnetic hidden

1/α

GUT

Figure 1: Schematic set-up for deflected-unification. The SSM couplings (U(1)Y ≡ red/dashed; SU(2) ≡
blue/dotted; SU(3) ≡ black/solid) experience accelerated running above a messenger scale, but their running is

deflected again where the magnetic hidden sector theory is matched to the electric one.

The complementary possibility is that the duality takes place in the visible sector as well. One

hint that unification may be preserved under such a duality has been noted by several authors in this

context including most recently in ref. [13], and is the following: in a model of direct gauge mediation

with messengers in complete SU(5) multiplets the extra contributions to β-functions are degenerate;

they run to strong coupling well below MGUT , however the relative running is unchanged, so the

three gauge couplings of the SSM still appear to unify at the scale MGUT , but at unphysical, negative

values of αi=1,2,3 = αGUT . Could this fake unification be a remnant of a real unification in the electric

theory?

In this paper (Sections 3-4) we will see that indeed it can be: unification in the electric descrip-

tion leads to a “fake” unification in the magnetic one at the same energy scale but at unphysical

(i.e. negative) values of α−1
i . This occurs where the entire unified electric theory is dualized (i.e. if

we are thinking of the SSM, then every subgroup of the SSM gets dualized). The generic picture,

which we call “dual-unification”, is as sketched in figure 2. We show that a large class of known elec-

tric/magnetic duals exhibit dual-unification, and that under very general assumptions it is guaranteed

by the matching relations between the electric and magnetic theories.

Finally, in Section 5 we argue that the dual-unification scenario has significant implications for

the question of proton decay. While it is well-known that in the usual simple MSSM-GUT picture

the lifetime of the proton turns out to be shorter than experimental bounds, we will show that in

the dual-unification set-up proton decay processes can be enormously suppressed. This is due to

the fact that the dangerous baryon number violating operators are induced in the electric theory
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Magnetic

W GUTmess

Electric

1/α

Figure 2: Schematic set-up for dual-unification. The SSM couplings (U(1)Y ≡ red/dashed; SU(2) ≡
blue/dotted; SU(3) ≡ black/solid) experience accelerated running above a messenger scale, but still appear

to unify at unphysical values. The unification takes place at physical values in the electric dual theory. Note

that the U(1)Y is rescaled in the dual magnetic theory rather than dualized, and thus its slope does not change

unless the number of quark flavours changes.

where the unification takes place. At this energy scale the magnetic theory is strongly coupled and

one must instead use the weakly coupled electric theory description, and then map to the low energy

magnetic theory with well know baryonmag ↔ baryonelec identifications. This introduces many powers

of Λ/MGUT ≪ 1 making proton decay completely negligible.

2. Deflected-unification

One of the most interesting and appealing properties of supersymmetric theories is the holomorphy

and nonrenormalizability of their superpotentials; from these two properties many powerful state-

ments follow about the nonperturbative effects of strong coupling. In particular in a large number of

celebrated examples beginning with N = 1 SQCD models [7], one can find two (or more) dual theories

that describe the same IR physics (for a review see refs. [14, 15]). For certain choices of parameters,

a theory can enjoy two perturbative regimes, an asymptotically free electric one that accurately de-

scribes the UV physics and a free magnetic phase that describes the IR physics. This is the situation

that will be of interest for this paper.

Let us see how such electric/magnetic duality can effect unification in simple direct mediation.

We will consider a theory in which a hidden sector couples directly to the visible sector through

bifundamental fields, charged under both the visible and hidden gauge groups. As described in the

Introduction, if the hidden sector gauge group undergoes a duality at some energy scale, then the

number of flavours seen by the visible sector also changes at that scale. If the multiplets coupling

hidden to visible sector are in complete SU(5)’s as is often assumed in gauge mediation, then the nett

effect will be a universal change of slope which can allow unification where in the magnetic theory it

appears to be impossible.
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Table 1: Matter fields of the magnetic theory in (2.1) and their decomposition under the gauge SU(2)mag, the

flavour SU(2)f × SU(5)f symmetry, and their charges under the R-symmetry.

A simple example is provided by the model of refs. [11, 12]. This is a model of direct gauge

mediation with a supersymmetry breaking ISS sector [8] with Nf = 7, and Nc = 5. This sector

becomes strongly coupled at a scale ΛISS, and can be described by an IR free magnetic SU(2)mg

theory below that scale. The relevant quiver diagrams are shown in figure 3.

The fields and charges of the magnetic formulation are shown in Table 1, and the superpotential

is given by

W = Φijϕi.ϕ̃j − µ2
ijΦji + mεabεrsϕ

a
rϕ

b
s (2.1)

SU(5)SM

SU(5)elSU(2)mg

SU(5)SMSU(2)f SU(2)f

Figure 3: Quiver diagrams for the direct gauge mediation model of ref. [11], showing the ISS hidden sector

in the magnetic (left) and electric (right) regimes. The coloured nodes represent the gauge group of the hidden

ISS sector, and the SSM parent gauge group. The blank nodes are left over ungauged flavour groups. The

links between SU(5)SM and global SU(2)f are the composite mesons of the magnetic theory corresponding to

independent directions in the electric theory moduli space. The two regimes are matched at the scale ∼ ΛISS.

The contribution of the messengers to the β-functions of the SSM is ∆bSM = −5− 2− 2 = −9 in the magnetic

regime but only ∆bSM = −5 in the electric regime.
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where i, j = 1...7 are flavour indices, r, s = 1, 2 run over the first two flavours only, and a, b are SU(2)mg

indices (we set the Yukawa coupling to unity for simplicity). By a gauge and flavour rotation, the

matrix µ2
ij can be brought to a diagonal form

µ2
ij =

(

µ2
2I2 0

0 µ2
5I5

)

. (2.2)

We will assume that µ2
2 > µ2

5. As explained in [8], the “rank-condition” leads to metastable SUSY

breaking such that FX = µ2
2. The parameters µ2

2, µ2
5 and m have an interpretation in terms of the

electric theory: µ2
2 ∼ ΛISSmQ2 and µ2

5 ∼ ΛISSmQ5 come from the electric quark masses mQ2, mQ5,

where ΛISS is the dynamical scale of the ISS sector. The last term in (2.1) is the baryon deformation of

the ISS model. As explained in [11,12] it is needed to trigger spontaneous breaking of the R-symmetry

– by generating 〈X〉 6= 0 as well as 〈Y 〉, 〈ϕ〉, 〈ϕ̃〉 – required for non-zero gaugino masses in SSM. This

baryon operator can be identified with a corresponding operator in the electric theory.

In this model there is no separate mediating sector, but the SU(7)f flavour symmetry is explicitly

broken to SU(2)f ×SU(5)f . The SU(5)f subgroup is gauged and associated with the parent SU(5) of

the Standard Model. The matter fields charged under this SU(5) play the role of direct messengers;

these are the magnetic quarks ρ, ρ̃ together with the meson components X, Z and Z̃.

Now, as frequently occurs in direct mediation there is a Landau pole in the SSM as well as the ISS

sector, because of the large number of additional flavours. Indeed an estimate was made in ref. [11]

of where this occurs. In the magnetic theory the SU(2)mg magnetic quarks ρ, ρ̃ contribute −2 to

the β-function, and the 7 × 7 magnetic mesons Φ contribute −2 − 5 = −7 (the −2 coming from the

off-diagonal entries, Z, Z̃ and the −5 from the adjoint, X). Thus one can estimate

bA = b
(MSSM)
A − 9 (2.3)

and hence

α−1
A = (α−1

A )(MSSM) − 9 log(Q/µ2) (2.4)

where µ2 is the effective messenger scale, and where here and throughout we will be using for conve-

nience the convention that

α−1 ≡ 8π2

g2

rather than the more usual 4π/g2. To avoid an SSM Landau pole before unification one requires

(α−1
GUT )(MSSM) & 9 log(MGUT /µ2) (2.5)

or µ2 & 109GeV, which is orders of magnitude above what one wants for normal gauge mediation.

(Indeed such a high value is close to the gravity mediation scale.)

However this estimate takes no account of the change of slope in the electric ISS formulation,

which is the appropriate description of the Hidden sector above the scale ΛISS . Indeed the lower limit

on the latter is only of order 106GeV [12], and above the scale ΛISS the contribution to the SSM
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β-functions comes from the Nc = 5 “flavours” of electric quarks and antiquarks, and is just −5. (The

mesons are composite objects in the electric dual and do not contribute to the SSM β-functions as

independent degrees of freedom.) Taking this change of slope into account, the gauge couplings are

therefore

α−1
A = (α−1

A )(MSSM) − 9 log(ΛISS/µ2) − 5 log(Q/ΛISS) . (2.6)

A Landau pole appears if

(α−1
GUT )(MSSM) . 9 log(ΛISS/µ2) + 5 log(MGUT /ΛISS)

= 4 log(ΛISS/µ2) + 5 log(MGUT /µ2). (2.7)

Clearly minimizing ΛISS/µ2 ameliorates the Landau pole, so assuming that ΛISS ∼ 101−3µ2 we require
5
2π log(MGUT /µ2) . 20 to avoid Landau poles or

µ2 ≥ 4 × 105 GeV.

This requirement is easily met by the phenomenological models of ref. [12].

Thus slopes can change upon Seiberg dualizing, and in particular there can be a reduction of the

effective number of messengers in a model of direct gauge mediation, that delays the onset of Landau

poles to beyond the GUT scale. This is a very simple example of how duality and unification can be

interrelated. The main point of interest is that rather than the familiar case whereby some degrees

of freedom are “integrated in” at higher energy scales, there is instead a reduction in the effective

degrees of freedom.

One can generalize the discussion to arbitrary numbers of flavours and colours. The general

condition for avoiding a Landau pole in this scenario is

(α−1
GUT )(MSSM) & (b − b̄) log (ΛISS/µ2) + (b(MSSM) − b) log (MGUT /µ2) (2.8)

where b̄(b) are the β-functions of the magnetic(electric) theories. For example, generalizing the model

above so that the SSM is embedded in SU(Nc) and there are Nf flavours in the supersymmetry

breaking ISS sector gives the condition

(α−1
GUT )(MSSM) & 2(Nf − Nc) log (ΛISS/µ2) + Nc log (MGUT /µ2) . (2.9)

Note that the matching of the electric and magnetic theories in the running of the one loop gauge

coupling is well understood. Indeed the electric and magnetic hidden sector gauge theories have

dynamical scales related by a matching relation such as

Λ̄b̄Λb = (−1)Nf−NcµNf , (2.10)

where µ is an undetermined scale (not to be confused with µij in (2.1)) relating the composite mesons

of the electric theory Mij = Qi.Q̃j to the elementary meson in the magnetic theory Mij = µΦij. Since

µ is unknown, we may choose it so that Λ < Λ̄ and there is a perturbative overlap of the two theories.
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SU(Nf ) SU(Nf ) U(1)B U(1)R

Q Nf 1 1 1 − 2
k+1

Nc

Nf

Q̃ 1 N̄f -1 1 − 2
k+1

Nc

Nf

X 1 1 0 2
k+1

Table 2: Matter fields of the microscopic KSS theory and their global charges.

3. An example of visible sector dual-unification

We now turn to the complementary class of scenarios where the dynamics of the Hidden sector plays

little or no role in the Landau pole problem of the Visible sector. Consider the possibility that the

SSM is itself a magnetic dual theory which becomes strongly coupled and develops Landau poles

above the messenger scale. As we have said, this is natural in many scenarios of gauge mediation,

and if the mediating fields appear in complete SU(5) multiplets the SSM unification still occurs but

at unphysical values of the gauge couplings. If this is the case, is it possible that this ”fake” gauge

unification is simply a manifestation of a real unification taking place in an electric dual theory? In

fact there are examples in the literature of electric/magnetic dual GUT theories, which we can examine

to answer this question (in the positive of course). As our prototypical example we will look at the

model of Kutasov, Schwimmer and Seiberg (KSS) [16, 17] (see refs. [18–21] for related work). In the

following two subsections we briefly review its details, and then discuss dual-unification in subsection

3.3 and present explicit examples with magnetic SU(5) in 3.4.

3.1 The electric theory

The microscopic theory is an SU(Nc) gauge theory with Nf flavours of quarks Q and anti-quarks Q̃,

and an adjoint field of the SU(Nc), X. The superpotential defining the model is

W =

k
∑

i=0

si

k + 1 − i
TrXk+1−i + λTrX (3.1)

where s0, . . . , sk are constants and k is a fixed integer. The constant λ is the Lagrange multiplier

which ensures tracelessness of X. The leading term in W (i.e. the term with the highest power of X)

is s0
k+1TrXk+1, and the subleading terms with i > 0 are often thought of as deformations. The parent

global symmetry of the theory when only the leading s0 term is present is

SU(Nf ) × SU(Nf ) × U(1)B × U(1)R

with the charges shown in Table 2. When there are non-zero si>0 the R-symmetry is completely

broken. These deformations are responsible for generating the VEV for X and spontaneously breaking

the SU(Nc) gauge symmetry as we shall see. KSS also use an equivalent form of this superpotential,

W =

k
∑

i=0

ti
k + 1 − i

TrXk+1−i + λ′TrX (3.2)
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where X is shifted by s1
s0k1 and the constants ti and λ′ are chosen in terms of si and λ so that the

coefficient of the first subleading term TrXk is zero (with s0 = t0). This form is useful for ensuring

that traceless adjoints in the magnetic theory are consistent with the vacuum structure.

The FX-term equation for non-zero si’s can easily be solved by diagonalizing the X using SU(Nc)

rotations and dictates the vacuum structure; the equation for a single entry x on the diagonal is

W ′ = 0 ≡
k−1
∑

i=0

six
k−i + λ. (3.3)

This is a kth order polynomial so there are k roots; hence

〈X〉 =











x1Ir1

x2Ir2

...

xkIrk











(3.4)

where
k
∑

i=1

ri = Nc . (3.5)

The original microscopic gauge group is broken (Higgsed) down to

SU(Nc) → SU(r1) × SU(r2) . . . SU(rk) × U(1)k−1. (3.6)

with the values of the roots xi being fixed in terms of the si’s (these are not flat directions). Around

each such vacuum the adjoint field X is massive and can be integrated out. The resulting theory

at energy scales below 〈X〉 (or more precisely, below the scales set by the differences xi − xj) is the

product of k ordinary SQCD theories times Abelian SQED-like factors U(1)k−1 (which are essentially

gauged baryon numbers).

The microscopic electric SU(Nc) will here play the role of the Grand Unified Theory; the unifica-

tion above the MGUT ∼ xi − xj scale(s) is by default, since we started from the single SU(Nc) gauge

group. For simplicity we will always assume that the original SU(Nc) theory is well-defined in the

UV, i.e. is asymptotically free. Its one-loop β-function coefficient

b0 = 3Nc − Nf − Nc = 2Nc − Nf > 0 (3.7)

must therefore be positive. (Here −Nc comes from the adjoint field X.) The dynamical transmutation

scale of this theory we will take to be Λ.

3.2 The magnetic theory

Now let us go to the macroscopic theory, starting with the dual of the unbroken SU(Nc) microscopic

theory. To this end we can (almost) switch off the VEVs, i.e. we assume that the ‘GUT’-scale set by
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SU(Nf ) SU(Nf ) U(1)B U(1)R

q Nf 1 Nc

N̄c
1 − 2

k+1
N̄c

Nf

q̃ 1 N̄f −Nc

N̄c
1 − 2

k+1
N̄c

Nf

Y 1 1 0 2
k+1

Mj Nf N̄f 0 2 − 4
k+1

Nc

Nf
+ 2

k+1(j − 1)

Table 3: Matter fields of the magnetic KSS theory and their global charges.

〈X〉, is very small (and in particular, is much below Λ). This can always be achieved by appropriately

dialing down the constants si>0 in the superpotential. The magnetic dual theory has the gauge group

SU(N̄c) with Nf flavours of magnetic quarks and antiquarks q and q̃, a set of k mesons Mj , and an

adjoint field Y (as described in refs. [16,17]), where

N̄c = kNf − Nc . (3.8)

The k mesons in the electric theory are composites of the electric quarks and the adjoint field X,

Mj = Q̃Xj−1Q ; j = 1 . . . k. (3.9)

In the magnetic theory these mesons are included as fundamental (non-composite) degrees of freedom.

The j = 1 object is the usual meson, and in fact the k = 1 model is just the usual Seiberg’s magnetic

SQCD.

The one-loop β-function of the magnetic theory is

b̄0 = 2N̄c − Nf , (3.10)

and the corresponding dynamical scale Λ̄ is related to Λ of the electric theory via the matching

relation [17]

Λ̄b̄0Λb0 =

(

µ

s0

)2Nf

. (3.11)

Here µ is the scale required for relating the operators of the theory in the UV to the IR – recall

that scaling dimensions of various operators are not the same in the UV and the IR. This scale is

undetermined (beyond the equation (3.11)) by arguments based on duality and holomorphicity, its

value depending on the nonholomorphic Kähler potential over which we have little control. However,

as soon as µ is known, Λ̄ is determined through eq.(3.11). This equation is uniquely fixed by the

transformation properties under the global symmetries of the undeformed (si>0 = 0) theory which are

shown in Table 3.

The full superpotential in the deformed magnetic theory is of the form

Wmag =
k−1
∑

i=0

−ti
k + 1 − i

T r(Y k+1−i) +
1

µ2

k−1
∑

l=0

tl

k−l
∑

j=1

Mj q̃Y
k−j−lq + const (3.12)
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where the Lagrange multiplier term has already been determined. As soon as the deformation is

turned on, and the electric SU(Nc) theory is Higgsed in accordance with (3.6), the magnetic SU(N̄c)

theory is broken as well by the magnetic adjoints acquiring VEVs of the form [16,17]

〈Y 〉 =











y1Ir̄1

y2Ir̄2

...

ykIr̄k











(3.13)

with

yi − yj = xi − xj . (3.14)

Thus for the purposes of this paper, we have two approximate scales defining the theory: the scale of

symmetry breaking MGUT ∼ xi−xj , with ti ∼ M i+2−k
GUT , and the scale µ. The corresponding symmetry

breaking is

SU(N̄c) → SU(r̄1) × . . . × SU(r̄k) × U(1)k−1 (3.15)

where

r̄i = Nf − ri ,

k
∑

i=1

r̄i = N̄c. (3.16)

This magnetic theory breakdown is very similar to the electric theory breaking, and is ensured by

the form of the magnetic superpotential (3.12). In particular the coefficients of eq.(3.12) are (up to a

common factor) determined by checking that the vacuum structure matches in the manner described

by eq.(3.14) and that, for example, critical points coincide in both theories simultaneously. (The

matching is greatly simplified by the choice of ti coordinates rather than the original si coordinates.)

For the most part, the SU(ri) ↔ SU(r̄i) duality in the broken theory is exactly the normal Seiberg

duality of SQCD. Thus in this particular class of models the Higgsing has broken the whole theory

into a decoupled product of SQCD Seiberg duals. However, one remarkable exception is the unbroken

electric theory mapping onto a broken magnetic theory. If we choose k = 2 and r1 = Nc, then the

electric theory is clearly unbroken but the magnetic theory is broken as

SU(N̄c) → SU(Nf − Nc) × SU(Nf ) × U(1). (3.17)

The final ingredient we will need from the models of Ref. [16, 17], is the matching conditions for

the dynamical scales of the constituent SU(ri) and the SU(r̄i) factors of the electric and the magnetic

theories; these are given by [17]

Λ̄b̄i

i Λbi

i = (−1)Nf−riµb̄i+bi

i , (3.18)

where the scale µi is determined to be

µi =
µ2

t0

1
∏

i6=j(xi − xj)
(3.19)
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and the β-function coefficients of the electric and magnetic SQCD factors are3

bi = 3ri − Nf , b̄i = 3r̄i − Nf . (3.20)

It will be convenient to write (3.18) as

bitΛi
+ b̄itΛ̄i

= (bi + b̄i)tµi
(3.21)

where tE ≡ log E. Here we have ignored a possible phase factor which only affects the θY M parameter.

It follows from (3.21) and the one-loop definition of the dynamical transmutation scale,

α−1(t) = b(t − tΛ) , (3.22)

that the physical meaning of µi is that it is the scale where the one-loop electric and magnetic couplings

are equal and opposite, α−1
i (µi) = −ᾱ−1

i (µi). A negative coupling in this context implies that the

corresponding theory is strongly coupled and that the perturbative description of the theory is invalid.

The matching conditions (3.18) and (3.19) can be derived in two ways, as follows. Either one

can consult the superpotential (3.12), integrate out the massive adjoints fields and use the well known

SQCD matching condition for each SU(ri) factor. The scale µi is then determined in the usual way

as the coupling to the meson in the magnetic superpotential term

W (i)
mag =

QQ̃

µi
qq̃. (3.23)

On integrating out the adjoints, eqs.(3.18) and (3.19) follow straightforwardly from eq.(3.12). Alter-

natively, one can match the dynamical transmutation scales of the broken and unbroken theories on

the magnetic and electric sides, and relate them via eq.(3.11). For example on the electric side at a

scale Ei at which some degrees of freedom are integrated out, using the usual Wilsonian expression

for the scale dependence of the gauge couplings (or equivalently eq.(3.22)), one has

e
− 8π2

g2(Ei) =

(

Λi

Ei

)bi

=

(

Λ′
i

Ei

)b′i

, (3.24)

where Λ′
i is the new dynamical scale in the theory without those particular degrees of freedom. In this

way we can work our way back to the unbroken theory and relate its Λ to that of the theory with all

the heavy degrees of freedom integrated out in both the electric and magnetic theories:

Λbi

i = Λb0tri

0

∏

j 6=i

(xi − xj)
ri−2rj

Λ̄b̄i

i = Λ̄b̄0tr̄i

0

∏

j 6=i

(yi − yj)
r̄i−2r̄j . (3.25)

Multiplying these two and using eqs.(3.11) and (3.14) one arrives at eq.(3.18) [17]. The fact that the

two answers agree is a nontrivial check of the superpotential.

3Note that here the adjoint fields have already been integrated out.
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We should add a clarifying remark about the veracity of this procedure in the present context.

We will be interested in magnetic theories that are IR free, matching onto electric theories that are

asymptotically free. But the states we are integrating out have masses xi − xj ∼ MGUT , and so the

two equations (3.25) are derived for different regimes of MGUT (either MGUT > Λ for the electric

theory, or MGUT < Λ̄ for the magnetic theory). What makes it valid to multiply them to get eq.(3.18)

is analyticity. The dynamical transmutation scale determines (the real part of) the gauge kinetic

function, and the parameter µ appears in the superpotential. Therefore, since the VEVs of the fields

are functions of the coordinates, ti, the derivation of eq.(3.18) is a form of analytic continuation in

the ti.

3.3 Dual-unification

Now, let us see that dual-unification actually happens for the KSS model [16,17]. First the unification

in the electric theory means via eq.(3.22) that

α−1
i (t) = α−1

GUT + bi(t − tGUT ) (3.26)

where the i-suffix indicates the particular group factor4. Our aim in this subsection is to show that

by matching the electric to the magnetic theories in the correct way, the magnetic theory couplings

can be written as

ᾱ−1
i (t) = ᾱ−1

GUT + b̄i(t − tGUT ), (3.27)

where ᾱGUT is a new effective unification value that will be negative. Thus the magnetic theory looks

as if it is unifying at negative values of ᾱi.

The magnetic couplings are

ᾱ−1
i (t) = b̄i(t − tΛ̄i

)

= b̄i(tGUT − tΛ̄i
) + b̄i(t − tGUT ) (3.28)

so we must determine the first piece and ensure that it is independent of i (i.e. that unification occurs

in the magnetic theory). It is easy to see that the matching condition (3.18) ensures this; writing it as

bitΛi
+ b̄itΛ̄i

= (bi + b̄i)tµi
, (3.29)

and using (3.22) we can recast the first piece of eq.(3.28) as follows:

b̄i(tGUT − tΛ̄i
) = b̄itGUT − (bi + b̄i)tµi

+ bitΛi

= b̄itGUT − (bi + b̄i)tµi
− α−1

GUT + bitGUT

= (bi + b̄i)(tGUT − tµi
) − α−1

GUT . (3.30)

Finally since

(bi + b̄i) = Nf (3.31)

4This can be taken as the definition of simple unification (at one-loop), meaning that all electric couplings αi(tGUT )

are the same (with no threshold effects).
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we can write

ᾱ−1
i (t) = ᾱ−1

GUT + b̄i(t − tGUT ), (3.32)

as required, where

ᾱ−1
GUT = Nf (tGUT − tµ̂) − α−1

GUT , (3.33)

and where we have defined a new scale which should be common to all the SU(ri) subgroups:

µ̂ ∼ µi =
µ2

t0

1
∏

j 6=i(xi − xj)
, ∀ i . (3.34)

Note that (3.33) is simply the statement that µ̂ is the scale where

ᾱ(µ̂)−1 = −α(µ̂)−1 . (3.35)

Thus the dual-unification is only realized if the µi are all of the same order; but this is also required

for simple unification in the electric theory since the µi are derived from the masses of the heavy states

that we integrate out to find the matching condition. If these states are not degenerate then simple

unification does not happen in either the electric or magnetic theories (although of course one can still

have unification with a number of thresholds).

The point is that as long as all the xi and hence µi are of the same order of magnitude, the variation

in ᾱGUT is a threshold effect. For the SU(r̄i) factors, the fact that there is unification doesn’t depend

on the scale at which the adjoint fields are integrated out (this is given by t0), although of course ᾱGUT

does. This is because the states are still integrated out in complete SU(Nc) multiplets for any value

of t0. In order to have a complete unification, it seems natural to suppose that all the parameters

of the deformed superpotential in the electric theory are determined by a single scale, MGUT . Under

this assumption we can estimate

µ̂ ≈ µ2

MGUT
(3.36)

and hence

ᾱ−1
GUT = 2Nf (tGUT − tµ) − α−1

GUT . (3.37)

So far we have established that (3.27) holds for the non-abelian factors of the magnetic theory,

with the universal value of ᾱGUT being given by (3.37). In a moment we shall show that the U(1)

factors of the magnetic theory unify with the non-abelian factors at the same scale. Before we do this

however, let us check that eq. (3.37) is consistent with the relation between the dynamical scales of

the two unbroken theories. Indeed in deriving it we assumed only that µi < Λi, Λ̄i, and did not require

any information about the relative magnitude of MGUT . Therefore one can go to the limit where the

GUT symmetry breaking is turned off. Indeed eq.(3.11) relating the dynamical scales of the unbroken

theories gives

(2Nc − Nf )tΛ + (2(kNf − Nc) − Nf )tΛ̄ = 2Nf (tµ − ts0)

≈ 2Nf (tµ − (2 − k)tGUT ), (3.38)
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where we have used s0 ∼ M2−k
GUT . Using α−1

GUT = α−1(tGUT ) = (2Nc − Nf )(tGUT − tΛ), this can be

written

(2Nc − Nf )tGUT − α−1
GUT +

(2(kNf − Nc) − Nf )tGUT − ᾱ−1
GUT = 2Nf (tµ − ts0) (3.39)

≈ 2Nf (tµ − (2 − k)tGUT ).

=⇒ α−1
GUT + ᾱ−1

GUT = 2Nf (tGUT − tµ) , (3.40)

which reproduces (3.37) in the unbroken theory as well. In this sense the GUT symmetry breaking

and the electric/magnetic duality are permutable; the scale of the former may be continuously dialed

down until the physical phenomenon is best described by fundamental excitations of the magnetic

theory with unification occuring there instead; however unification is manifest in both descriptions.

Finally let us turn to the abelian factors and show that they also unify (in the GUT normalization)

at the same scales as the SU(ri) factors. We see this as follows: the β-functions of the U(1)’s in both

the electric and magnetic theories are simply bU(1) = b̄U(1) = −Nf , so upon integrating out the heavy

(MGUT ) degrees of freedom, the dynamical scales of the U(1) factors are related by eq.(3.24) to those

of the parent SU(Nc) (or SU(kNf − Nc)) theory as

−Nf tΛU(1)
= (2Nc − Nf )tΛ − 2NctGUT

−Nf tΛ̄U(1)
= (2(kNf − Nc) − Nf )tΛ̄ − 2(kNf − Nc)tGUT . (3.41)

Again using α−1
U(1)(tGUT ) = −Nf (tGUT − tΛU(1)

), and its equivalent for the magnetic theory, we have

− 2Nf tGUT − (α−1
U(1)(tGUT ) + ᾱ−1

U(1)(tGUT )) = (2Nc − Nf )tΛ +

(2(kNf − Nc) − Nf )tΛ̄ − 2kNf tGUT

= 2Nf (tµ − 2tGUT ) (3.42)

and hence

α−1
U(1)(tGUT ) + ᾱ−1

U(1)(tGUT ) = 2Nf (tGUT − tµ) (3.43)

as required for consistent unification. For the U(1)’s to unify with the SU(ri)’s, a more careful analysis

shows that we require s0 ≈ M2−k
GUT , because the electric and magnetic U(1)’s are not related by the

duality in the same way as the SU(ri) factors. This will be made explicit for a simple example in the

next subsection.

Note that, although they have the same slopes, the U(1)’s are in a sense dualized as well; they

are inherited from the underlying GUT SU(Nc) and SU(N̄c) theories which were dual to each other.

This is an important point. One approach to finding dual-unification in the SSM would be to run

the magnetic theory (which is what we have access to experimentally) until the first SU(r̄i) factor

becomes strongly coupled, perform a Seiberg duality on it and continue until all the SU(r̄i) factors

are dualized. However complete unification involves the U(1) factors as well. Here we showed that full

knowledge of the GUT SU(Nc) and SU(N̄c) theories is required to see that all abelian and non-abelian

factors unify correctly.
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A brief remark about the validity of Eq.(3.41). This equation is based on matching the broken

and unbroken theories at the scale MGUT at which the degrees of freedom are integrated out, using

eq.(3.24). However we have already used this relation for the dynamical scales of the SU(ri) subfactors.

Is it valid to also use the same equation for the U(1) factors as well? The answer is yes, because we

are matching different couplings of a broken unified group. That is, we match the theories at the scale

MGUT , where the integrating out of adjoint and vector degrees of freedom effectively splits the U(1)

and the SU(ri) running; however these factors can be individually matched with the corresponding

subgroups of the unified theory via eq.(3.24).

3.4 Simple examples with a magnetic SU(5)

Now let us consider some specific examples, in order to make explicit these general features. We shall

concentrate on k = 2 since these are the first nontrivial cases, and also these are the most Standard-

Model-like of this particular class of theories. We shall choose the couplings in the superpotential to

be s0 = 1, s1 = m (note that s0 can always be adjusted by renormalizing the adjoint fields, since we

do not in general have canonical normalization) so that

W = Tr(
X3

3
+ m

X2

2
+ λX) . (3.44)

The VEVs are

〈X〉 =

(

x+Ir+

x−Ir−

)

, r+ + r− = Nc . (3.45)

The eigenvalues are

x± =
−m ±

√
m2 − 4λ

2
(3.46)

and the condition Tr(X) = 0 fixes

λ = −m2

4

r+r−
(r+ − r−)2

x± = ±m
r∓

r+ − r−
. (3.47)

The masses of e.g. the fermions (note that supersymmetry is not being broken here) are

WXX = 2X + m =

{

m ; X ≡ Xi6=j

±m Nc

r+−r−
; X ≡ Xii

(3.48)

Hence at scales below m we can indeed just integrate out the adjoint fields and are left with a product

of k usual SQCD-models. Of course this discussion is valid for both electric and magnetic theories

with the obvious replacements.

For the example where SU(5) splits into SU(3) × SU(2) × U(1) we have r+ = 2, r− = 3 and we

get

λ = −6m2 , x+ = 2m , x− = −3m (3.49)
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so that 〈X〉 = diag(2m, 2m, 2m,−3m,−3m), as expected. Since now there are only two roots x+

and x−, it follows that there is only one matching scale for the case k = 2 which makes it somewhat

special. Indeed, µi in (3.19) are now µ+ and µ− such that (recalling that t0 = s0 and that s0 = 1 in

this k = 2 example)

µ+ = −µ− =
µ2

(x+ − x−)
=

µ2

m

(r+ − r−)

Nc
, (3.50)

and the actual physical matching scale is the absolute value |µ+|.

It is easy to see that this unique scale makes the unification of the non-Abelian factors with

the U(1) factors exact in this case. In the electric theory this is true by construction, since SU(Nc)

was Higgsed down to SU(r+) × SU(r−) × U(1) by the 〈X〉 VEV. In the magnetic theory, the fake

unification (or dual-unification) follows from the matching conditions, which for the non-Abelian

factors were given by (3.18). As we saw, the U(1) factors are matched by integrating out degrees of

freedom as in eq.(3.41). A slightly more careful rendering of it (reinstating t0) gives

Λ
−Nf

U(1) = Λb0tNc

0 |x+ − x−|−2Nc , Λ̄
−Nf

U(1) = Λ̄b̄0tN̄c

0 |x+ − x−|−2N̄c , (3.51)

where −Nf is the β-function of both U(1) factors (in GUT normalisation) and we have ignored the

irrelevant (for our purposes) phase factor. This in turn gives

−Nf (tΛU(1)
+ tΛ̄U(1)

) = 2Nf (tµ − 2t|x+−x−|) , bU(1) = −Nf = b̄U(1), (3.52)

with the powers of t0 cancelling. Comparison with eqs.(3.41) and (3.42) shows that when t0 = 1 the

U(1) coupling unifies with the other two couplings precisely at MGUT = |x+ − x−|, provided that

the gauge couplings unify in the electric theory at that same scale. However when t0 6= 1 the precise

unification in the magnetic theory is spoiled by logarithmically small threshold effects, because of the

explicit appearance of t0 in the matching condition for the SU(ri) factors in eq.(3.38). This is to be

expected since t0 different from unity gives a split mass spectrum. Simple unification is already lost

in the electric theory.

Now, recall that the β-functions of the unbroken theories are

b0 = 2Nc − Nf

b̄0 = (2k − 1)Nf − 2Nc. (3.53)

Thus when the electric theory is asymptotically free (i.e. 2Nc > Nf ) the magnetic theory need not be

IR free (for example if Nf . 2Nc then b̄0 ≈ 2(k − 1)Nf ). The same is true of the SQCD factors of the

broken theory. Although all of them are dualized some of them may be asymptotically free rather than

IR free. As an example, consider a theory with k = 2, Nf = 5 and SU(5) → SU(3) × SU(2) × U(1)

with bSU(2) = 1, and bSU(3) = 4. This theory satisfies the condition for stable vacua, ri ≤ Nf , but the

magnetic theory is

SU(5) → SU(2) × SU(3) × U(1), (3.54)

so it has the same gauge groups, number of flavours, and hence slopes. In this case, all the SQCD

factors of the broken theory are asymptotically free in both the electric and magnetic theories. Recall
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that µ is the scale at which α−1
U(1)(tµ) = −ᾱ−1

U(1)(tµ). Since the slopes of both electric and magnetic

U(1)’s are the same, in order consistently to define the scale µ (i.e. with µ < MGUT ) we require

ᾱGUT < 0, which would mean that the couplings of the magnetic theory are always unphysical.

Equivalently, the unification takes place in the magnetic phase. Such theories are irrelevant to us.

We will therefore focus on theories that have all SQCD factors in the free magnetic range, in this

case 3
2ri > Nf ≥ ri + 1 ∀i. We also require that the magnetic GUT theory is not asymptotically free

while the electric GUT theory is. A necessary condition is that Nf falls within the window given by

Nc

k
< Nf <

Nc

k − 1
2

, (3.55)

where the lower bound comes from the requirement that N̄c > 0 and the upper bound is the condition

that b̄0 < 0. This gives us a strong constraint, since we must have Nc ≥ k(2k − 1). If for example

k = 2, then the minimal case is

Nf = 6
elec: SU(10) → SU(5) × SU(5) × U(1),

mag: SU(2) → U(1)2.

The first case with at least three different group factors in the magnetic theory (i.e. the first non-trivial

unification) is

Nf = 10
elec: SU(15) → SU(8) × SU(7) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1),

however in this case the matching of the U(1)’s is less clear because the unbroken magnetic theory

has vanishing β-function (2N̄c = Nf ). The first unambiguous case is

Nf = 11
elec: SU(17) → SU(9) × SU(8) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1).

Now let us consider the different scales. We take the GUT scale MGUT > Λ to ensure that

the electric theory unifies in the perturbative (weak coupling) regime. There are then two possible

orderings of the dynamical scales of SU(Nc) and SU(N̄c) consistent with the matching condition:

either Λ̄ < Λ < µ or Λ̄ > Λ > µ. These arise as follows: we have b0 > 0 and b̄0 < 0 and also

|b̄0| < |b0|, and therefore the matching condition (3.18) leads to the two situations shown in figure 4.

(Similar plots hold for the SU(ri) and SU(r̄i) constituent factors, with the replacements Λ → Λi and

µ → µi ∼ µ̂.)

For the first case,

Λ̄ < Λ < µ, (3.56)

the magnetic theory experiences a fake unification below the horizontal axis, but the overall magnetic

SU(5) theory is never realised as a perturbative theory. An example is depicted in figure 5 for the

case

Nf = 13
elec: SU(21) → SU(11) × SU(10) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1),
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Figure 4: Running inverse couplings of the unbroken electric SU(Nc) and magnetic SU(N̄c) theories shown

as dashed and dot-dashed respectively. The two figures correspond to the two possible orderings Λ̄ < Λ < µ and

Λ̄ > Λ > µ.

where we have (rather fancifully) taken MGUT = 2 × 1016GeV. We also show there the scales µ

where α−1(µ) = −ᾱ−1(µ) in the unbroken theories, and the scale µ̂ = µ2/MGUT where α−1
i (µ̂) =

−ᾱ−1
i (µ̂). Note that the unbroken theory has a gap where no perturbative description exists and the

two theories have no overlap. The weak coupling magnetic description does exist however for the

SU(3) × SU(2) × U(1) subgroups.

With the complimentary ordering of scales,

µ < Λ < Λ̄, (3.57)

there are two possibilities: Λ < MGUT < Λ̄, or Λ̄ < MGUT . In the first case, the magnetic theory also

undergoes normal perturbative unification (i.e. at positive values of the magnetic coupling constants).

However, in the second case, the magnetic theory exhibits a fake unification at negative ᾱ. Examples

are shown in figures 6 and 7.

The figures highlight a few important features. First, even when µ ∼ Λ ∼ Λ̄ in the unbroken

theory, µ̂ is very different from the Λi and Λ̄i. Thus in the broken theory the dynamical scales are

spread by the GUT breaking, and the broken theory enjoys a much larger overlap between the electric

and magnetic descriptions than the unbroken theory. Second the couplings of the broken theory are

always above the unbroken ones in both the magnetic and electric theories (since in both cases we have

lost some adjoints). Hence the condition Λ̄ > Λ which ensures perturbative overlap in the unbroken

theory, is sufficient to ensure Λ̄i > Λi for all the SQCD factors in the broken theory as well.
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Figure 5: Running inverse couplings in KSS models with broken GUTs with MGUT , µ > Λ > Λ̄ and k = 2 and

assuming t0 = 1. The couplings are U(1) ≡ red/dashed; SU(11) → SU(2) ≡ blue/dotted; SU(10) → SU(3) ≡
dark-blue/solid. We also show the running (in green) of the unbroken theory, the scale µ̂ = µ2/MGUT in solid

grey, and the scale µ in dashed grey. The couplings of the unbroken theories obey ᾱ(µ)−1 = −α(µ)−1, while

those of the SU(ri) subgroups in the broken theories obey ᾱ(µ̂)−1 = −α(µ̂)−1. For this choice of parameters the

unbroken theories have no overlap, but the broken theories do.
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Figure 6: As in figure 5, for Λ̄ > MGUT > Λ > µ.

4. More general models (with coupled sectors)

The KSS models discussed so far were characterized in the IR by a magnetic theory broken into

completely decoupled SQCD factors. The unification in both the electric and magnetic descriptions
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Figure 7: As in figure 5, for MGUT > Λ̄ > Λ > µ. For this choice of parameters the broken and unbroken

theories all have perturbative overlap and the magnetic theory unifies at unphysical values.

was ensured by the matching relation between the dynamical scales of the two dual theories. But does

dual-unification apply in more complicated theories, in particular those with coupled SQCD factors?

We now show that it does; the arguments of the previous section can be made completely general,

and are in fact independent of the theory in question relying on only a few key assumptions about

how the dynamical scales in the electric and magnetic theories are related.

In order to do this, it is useful to have a working example. We will use the first of the more general

set of models to be found in refs. [22,23]. This is an extension of the KSS models whose electric theory

has Nf flavours and two adjoint fields X1 and X2 and electric gauge group SU(Nc). We will repeat

the argument for these models, step by step. The magnetic theory is an SU(N̄c) model, where

N̄c = 3kNf − Nc . (4.1)

We do not need to go into the details of these models, but can make do with presenting the undeformed

electric and magnetic superpotentials:

Wel = s0
Xk+1

1

k + 1
+ s′0X1X

2
2

Wmag = s̄0
Y k+1

1

k + 1
+ s̄′0Y1Y

2
2 +

s̄0s̄
′
0

µ4

k
∑

i=1

3
∑

j=1

Mij q̃Y
k−i
1 Y 3−j

2 q (4.2)

where again the tracelessness of X1,2 and Y1,2 can be enforced by Lagrange multiplier terms, and Mij

are magnetic mesons,

Mij = Q̃Xi−1
1 Xj−1

2 Q. (4.3)

Note that s0 has mass dimension 2− k and Mij has dimension i + j, hence the need for the µ4 in

the denominator of the last term of eq.(4.2). We can perform an overall rescaling of the adjoint fields.
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The parameter µ is then fixed but since it depends on the nonholomorphic part of the theory we have

no control over it.

Now we can again consider adding a deformation which gives VEVs of order MGUT to the adjoint

fields. Here we can choose the normalization of the adjoints to be canonical in the electric theory,

but in the magnetic theory we can choose it such that the the couplings t̄i in the shifted basis of

fields match those of the electric theory. By contrast the quarks can be chosen to have canonical

normalization in both theories. In the above convention, the deformation induces a VEV structure in

the magnetic theory that matches that of the electric theory, in the same manner as in the simpler

models of ref. [17].

For concreteness we will follow the simple explicit breaking pattern discussed in sections 4.2 and

4.3 of ref. [22] and 5.2 of ref. [23]. Calling Nc = 2n + km, in that example the GUT symmetry for

generic k and m can be broken as

elec: SU(2n + km) → SU(n) × SU(n) × SU(m)k × U(1)k+1

mag: SU(3kNf − 2n − km) → SU(kNf − n) × SU(kNf − n) × SU(Nf − m)k × U(1)k+1.
(4.4)

The fields X1,2 decompose into adjoints of SU(n)’s and SU(m)’s plus fields F = (n, n̄) in the bifun-

damental representation of SU(n) × SU(n) and their conjugates F̃ . The SU(m) adjoints get masses

of order MGUT but the SU(n) adjoints and bifundamental fields remain light.

Let us now match the running in the two theories, keeping the notation as general as possible.

First we need the scale matching of the unbroken theories. This was determined in ref. [22] to be

ΛNc−Nf Λ̄N̄c−N̄f = Cs
−3Nf

0 (s′0)
−3kNf µ4Nf . (4.5)

We can normalize this relation to the scale MGUT , by writing

b0tΛ + b̄0tΛ̄ = (b0 + b̄0)tµ̂, (4.6)

where µ̂ is a scale which can be determined in terms of µ. On general grounds the matching relation will

aways be of this form with different functions µ̂ [17]. In this particular example we have b0+ b̄0 = 3kNf

and (setting for convenience C = 1)

µ̂

MGUT
= s′ −1

0

(

µ

MGUT

)
4
3k

(

s0

M2−k
GUT

)−1/k

, (4.7)

but its actual value isn’t important for us. Recall that the next step was to determine the dynamical

scales of the subfactors in terms of those of the GUT theory. This is done by integrating out the states

that are massive; as we have, said electric unification requires that these states all have mass terms of

order MGUT in the holomorphic superpotential so that we can write

e
− 8π2

g2(MGUT ) =

(

Λ

MGUT

)b0

=

(

Λi

MGUT

)bi

. (4.8)

In the model of ref. [22] this includes both the vector bosons and adjoint fields.
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Likewise the magnetic theory has

(

Λ̄

MGUT

)b̄0

=

(

Λ̄i

MGUT

)b̄i

. (4.9)

This is a Wilsonian relation in which the kinetic terms are not necessarily canonically normalized.

(This was also important in ref. [17] where the independent check of the couplings in the magnetic

superpotential rested on this procedure.) Thus one has to keep in mind that the matching relation

involves dynamical scales defined in a possibly unphysical renormalization scheme; we shall return to

this point momentarily. Multiplying the two we find

Λbi

i Λ̄b̄i

i = Λb0Λ̄b̄0M bi+b̄i−b0−b̄0
GUT . (4.10)

We may now convert this into a relation between couplings at the scale t ≡ log E. Namely, the above

gives

bitΛi
+ b̄itΛ̄i

= (b0 + b̄0)(tµ̂ − tGUT ) + (bi + b̄i)tGUT , (4.11)

and hence

ᾱ−1
i (t) = b̄i(t − tΛ̄i

)

= b̄i(t − tGUT ) + b̄i(tGUT − tΛ̄i
)

= b̄i(t − tGUT ) − bi(tGUT − tΛi
) − (b0 + b̄0)(tµ̂ − tGUT )

= b̄i(t − tGUT ) + ᾱ−1
GUT (4.12)

where

ᾱ−1
GUT = −α−1

GUT + (b0 + b̄0)(tGUT − tµ̂). (4.13)

Finally again we have the relation for the U(1) factors which is found by matching the broken to the

unbroken magnetic theories and then using eq.(4.5):

(

Λ̄U(1)

MGUT

)b̄U(1)

=

(

Λ̄

MGUT

)b̄0

.

=

(

Λ

MGUT

)−b0 ( µ̂

MGUT

)b0+b̄0

(4.14)

which gives precisely

ᾱ−1
GUT = −α−1

GUT + (b0 + b̄0)(tGUT − tµ̂). (4.15)

Note that the β-functions bi and b̄i, and the the precise form of µ̂ were not required; the discussion

would look the same for any pair of electric/magnetic dual GUTs, provided that the matching of the

unified theories is of the form (4.6).

Now let us return to the issue of the normalization. The unification we have derived here is in a

basis where the adjoints of the magnetic theory are not necessarily canonically normalized5. Effectively

5Recall that this applies only to the adjoint fields since we had to match their VEVs in the magnetic theory to those

in the electric one.

– 22 –



we are using an unphysical renormalization scheme, in which the masses in for example eq.(4.9) could

be different from the physical ones. Transferring to a canonically normalized basis would rescale the

Λ̄’s by the appropriate factors, corresponding to threshold corrections in the gauge couplings.

In order to maintain precise unification (i.e. with with the total absence of threshold corrections)

therefore one has to make the additional assumption either that the normalization of the light states

is arranged in complete GUT multiplets or that it is degenerate. For example, in the KSS model, the

unification in the magnetic theory is guaranteed because the quark normalization can be canonical

when the theories are matched and all of the adjoints are integrated out in complete SU(Nc) multiplets.

In the extended models of refs. [22,23] however, the light F and F̃ states are not in complete SU(N̄c)

multiplets and the complementary states which were integrated out weren’t either. Hence one gets

perfect one-loop unification only when one also assumes degenerate masses MGUT for the latter. Here

one can expect threshold corrections to the magnetic (fake) unification. (Note however that in the

Standard Model the matter multiplets do fall into complete SU(5) multiplets.)

5. Remarks on proton decay

One of the obvious areas where dual-unification may have significant impact is in proton decay. As

has been widely discussed, this arises in GUT theories due to the presence of GUT bosons and heavy

coloured triplets. If one assumes simple unification in the MSSM at the usual scale MGUT ≈ 2 ×
1016 GeV, the resulting lifetime of the proton is shorter than the present experimental bounds [24,25],

and simple unification seems to be ruled out. Because the MSSM seems to indicate simple unification,

this is something of a conundrum. In this section we argue on general grounds that it can be resolved

by dual-unification.

As we have seen, under reasonable assumptions, the apparent simple unification of the MSSM

could be indicative of it being a magnetic theory with a set of fields appearing in complete GUT

multiplets that drive it to a Landau pole at some intermediate scale. If this is the case, grand

unification takes place in an electric dual, and this has the potential drastically to alter proton decay

because the proton is a baryon of the magnetic theory, whereas the baryon number violating operators

are generated in the electric theory. A comprehensive discussion would require a full understanding of

the Seiberg duality of some appropriate supersymmetric version of the Standard Model which is alas

unavailable, but we can develop a general argument based on the model of refs. [22,23], by considering

an analogous decay.

In order to do this let us first recap the usual proton decay story [24]. In non-supersymmetric

SU(5) the proton is able to decay because A(X) and A(Y ) gauge bosons transform as a (3̄, 2) of the

SU(3)c ×SU(2)L. Collecting them into an SU(2)L doublet, A
(X)
ia where a are SU(2) indices and i are
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Figure 8: Proton decay in simple SU(5) SUSY GUTs generated by dimension 6 and dimension 5 operators

respectively.

SU(3)c indices, the offending terms in the Lagrangian are of the form

LA(X),A(Y ) =
ig√
2
(Aµ

IKX̄JIγµXKJ + Aµ
IKQ̄IγµQK)

⊃ ig√
2
A

(X)µ
ia (εijkū

c
kγµqja + q̄ibγµe+

ab + d̄iγµla) (5.1)

where e+
ab = e+εab is an antisymmetric singlet of SU(2)L which comes from the antisymmetric 10 of

SU(5). For the moment we are using the usual nomenclature of the MSSM - thus the right-handed

fields are denoted uc and dc, ec, and the left-handed doublets q and l. So integrating out A
(X)
µ generates

a term

Leff ⊃ g2

2M2
GUT

εijkεab(q̄ajγµuc
k)(q̄ibγµe+) . (5.2)

Note that the effective operator is a baryon of SU(3) (and also a baryon of SU(2)). Indeed the

new operators, since they must violate baryon number but also respect gauge invariance, can only be

baryons. The nett result is that the proton can decay via processes such as p → π0e+ as in figure 8a.

These are the dimension 6 operators which exists in SU(5) unification. In supersymmetric theories

one also has dimension 5 operators that contribute at one-loop due to the presence of Higgs triplets,

Q̃T ≡ 3̄ and QT ≡ 3, that couple via the Yukawa couplings of the MSSM:

W ⊃ hu

4
εIJKLMXIJXKLHM + hdXIJQIH̃J ⊃ huU c

i EcQT i + hdεijkU
c
i Dc

jQ̃T k , (5.3)

and similar for left handed fields. These give rise via figure 8b to the most dangerous operators; for

example those involving just the right handed fields are of the form

Leff ⊃ g2huhd

16π2MSUSY MGUT
εijk(u

c
ie

c)(uc
jd

c
k) . (5.4)

where hu and hd are the Yukawa couplings of the MSSM. Note that in this estimate, thanks to the non-

renormalization theorem, the one loop integral is dominated by the low momentum region k . MSUSY ,

and so MSUSY appears in the denominator. In the low energy limit the diagram is equivalent to first

evaluating the non-renormalizable terms in an effective theory,

Weff ⊃ huhd

MGUT
εijk(E

cU c
i U c

j Dc
k) , (5.5)
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Figure 9: Approximation to figure 8b in which the dimension 5 operator is evaluated in the electric theory.

and then computing the diagram in figure 9 with its corresponding 4-point vertex.

In a dual-unified theory however, although the magnetic theory appears to be unified, proton

decay has to go through the electric theory since that is where the vector fields and Higgs triplets gain

their mass. At this energy scale the magnetic theory is strongly coupled and one must instead use

the weakly coupled electric theory description. In principle this could always be done by using the

diagram in figure 9. One would first compute the relevant operator in the electric theory and then

map it to the corresponding operators in Weff of the magnetic theory via Seiberg duality.

If one can find the electric dual of the SSM and its GUT theory, one has a ready mapping between

the baryonic operators involved. Since we do not yet know of a such theory, we will present a general

argument for what happens, and then support it by examining an analogous process in a theory where

both the dual theories are known, namely that of the previous section [22,23].

First the general argument. Suppose that SU(3)c baryons of the SSM are mapped to baryons of

SU(Nc) in the electric dual. Our generic picture is that the SU(3)c group factor is strongly coupled

in the UV above the messenger scale and the SU(Nc) factor is asymptotically free. Hence Nc > 3,

and as we have seen it is typically much larger. Therefore the baryon in the electric theory into which

Weff maps will have dimension > 4; let us call this dimension d, so that schematically the baryon

mapping would be

εijkE
cU c

i U c
j Dc

k → Λ4−dχd , (5.6)

where χ represents generic fields of the electric theory. (For convenience we are setting the dynamical

scales Λ and Λ̄ to be equal.) Now we must look to the electric theory to generate the operator in an

honest perturbative tree-level diagram involving propagators with MGUT scale masses. On dimensional

grounds we will find

Wel ⊃
χd

Md−3
GUT

. (5.7)

Note that this is the largest such an operator could be. In principle the operator could be smaller

if non-renormalizable Planck suppressed operators are involved (in which case powers of M−1
P l would

have to be accommodated as well). The relevant baryon number violating operator induced in the
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effective magnetic theory would then be

Weff ⊃
(

Λ

MGUT

)d−4 1

MGUT
εijkE

cU c
i U c

j Dc
k . (5.8)

Hence the proton decay gets an extra
(

Λ
MGUT

)d−4
suppression compared with (5.5), which for even

modestly small Λ would make it ineffective.

It is perhaps clearer why this happens if one begins by building equivalents to figure 8b in the

electric theory. In order to generate gauge invariant operators, all such diagrams would have many

more quark legs since they have to correspond to baryons of the electric theory. At low external

momenta these quark legs confine into electric baryons, which can then be mapped into magnetic

baryons with the accompanying supression. (Of course the magnetic SU(3)c theory only becomes

confining again well below the messenger scale.)

Now let us show explicitly that this happens in an analogous process. Consider the two adjoint

models of eq.(4.4), with k = 4 and m = 0 in which the broken model is6

elec: SU(2n) → SU(n) × SU(n)′ × U(1)

mag: SU(6) → SU(3) × SU(3)′ × U(1)
(5.9)

where 6Nf −n = 3. We use a prime to distinguish the second SU(n) factor; i.e. in the broken theories

the field content is Nf flavours of quarks and antiquarks (labelled Q, Q̃ and Q′, Q̃′ in the electric theory

and q, q̃ and q′, q̃′ in the magnetic theory), a single massless adjoint for each SU factor (labelled X,

X ′ in the electric theory and Y , Y ′ in the magnetic theory) and a pair of massless bifundamentals

(labelled F , F̃ in the electric theory and f , f̃ in the magnetic theory).

Since the models do not contain asymmetric representations we have to improvise a little: we will

suppose that the operator of interest in the low energy theory is

Weff ⊃ κ

MGUT
εijk(Y q)iqjqk . (5.10)

Here the adjoint, which has zero baryon number, has replaced the right handed electron Ec, which

came from the antisymmetric in SU(5). We are interested in estimating the value of the constant

κ. We require the baryon mappings of the broken theory which may be obtained from ref. [22]; they

involve both the fundamental and the “dressed” quarks (i.e. quarks multiplied by some combination

6Note that refs. [22, 23] also considered the SU(n) × SU(n′) structure with n
′ 6= n and also N

′

f 6= Nf for which

electric/magnetic duality was established, but the unification in this case is more obscure.
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of adjoints and bifundemantals); in the magnetic theory these are labelled

q(l,1) = Y l−1q

q(l,2) = Y l−1f̃ q′

q(l,3) = Y l−1f̃fq

q′(l,1) = (Y ′)
l−1

q′

q′(l,2) = (Y ′)
l−1

f̃ q

q′(l,3) = (Y ′)
l−1

f̃fq′ ; l = 1, . . .
k

2
= 2 (5.11)

and similar for the electric theory with the obvious replacements. Thus, dropping the SU(3) indices,

our operator can be written

Weff ⊃ κ

MGUT
q(2,1)q(1,1)q(1,1) . (5.12)

The mapping of this baryon to one of the electric theory is [22]

q(2,1)q(1,1)q(1,1) ↔ Q
′Nf

(1,1)Q
′Nf

(1,2)Q
′ (Nf−1)

(1,3) Q
′Nf

(2,1)Q
′Nf

(2,2)Q
′ (Nf−2)

(2,3) . (5.13)

Note that there are 6Nf − 3 = n indices as required for the SU(n)′ contraction. This object has

dimension d = 15Nf − 11. Thus, if the baryon operator is perturbatively generated in the electric

theory with coefficients of order unity, the resulting Weff in (5.10) has a coupling given by

κ ∼
(

Λ

MGUT

)15(Nf−1)

. (5.14)

Since Nf > 3 in these models, this is miniscule for any reasonable Λ/MGUT .

6. Conclusions

We have proposed two ways in which Seiberg duality can save unification when there are Landau poles

below the GUT scale, in particular in models of direct gauge mediation. In “deflected-unification”,

the hidden sector experiences strong coupling and passes to an electric phase in the UV. This occurs

for example when one uses the the models of Intriligator, Seiberg and Shih [8] for the hidden sector.

As a result the effective number of messenger flavours to which the visible sector couples is reduced

in the UV, thereby postponing (or even removing) the Landau pole of the SSM to beyond the GUT

scale, and allowing perturbative unification to take place.

In ”dual-unification”, the visible sector is itself a magnetic dual. We showed that in known

examples where an asymptotically free GUT theory has an IR free magnetic dual, the magnetic

theory exhibits unification at unphysical values of the gauge coupling reflecting the real unification

in the electric theory. This arises automatically from the matching relations and we argue that it is

a general phenomenon. Such unphysical unification is characteristic of models of direct mediation in
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which the messengers are in complete GUT (e.g. SU(5)) multiplets, and we therefore propose that the

SSM could be a magnetic dual theory of this kind. The most pressing issue for the dual-unification

scenario is of course to find a candidate electric/magnetic dual pair for the SSM.

We also saw that dual-unification can explain why Nature seems to favour unification and yet

the proton does not decay; in dual-unified theories the unification is only apparent; proton decay has

to go through baryonic operators induced in the superpotential of the electric theory which is the

appropriate weakly couple description at the GUT scale; these operators must then be matched to

the corresponding baryons of the magnetic theory where the proton lives, and this procedure comes

with a large power suppression.

The novel feature that Seiberg duality brings to these phenomenological questions is a nonper-

turbative change in the number of degrees of freedom. In the case of deflected-unification the duality

reduces the effective number of messenger flavours to which the visible sector couples towards the

UV. This is a nonperturbative effect; in perturbative field theories new degrees of freedom are (almost

always) integrated in at higher energy scales. On the other hand the suppression of proton decay in

the dual-unification scenario is a result of a huge increase in the number of colours of the visible sector

in the UV.
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