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We consider principal curves and surfaces in the context of multivariate regression modelling. For
predictor spaces featuring complex dependency patterns between the involved variables, the intrinsic
dimensionality of the data tends to be very small due to the high redundancy induced by the dependencies.
In situations of this type, it is useful to approximate the high-dimensional predictor space through a low-
dimensional manifold (i.e., a curve or a surface), and use the projections onto the manifold as compressed
predictors in the regression problem. In the case that the intrinsic dimensionality of the predictor space
equals one, we use the local principal curve algorithm for the the compression step. We provide a
novel algorithm which extends this idea to local principal surfaces, thus covering cases of an intrinsic
dimensionality equal to two, which is in principle extendible to manifolds of arbitrary dimension. We
motivate and apply the novel techniques using astrophysical and oceanographic data examples.

1. Introduction

Nowadays, we are confronted with data of ever in-

creasing complexity. There are three main manifes-

tations of this complexity. Firstly, it is not unusual

to observe sample sizes of formerly unthinkable mag-

nitudes. Although this never posed a methodological

problem, such data sets could not be handled in the

past due to data storage and computational limita-

tions; however with advances in modern technology

the sample size in itself does not constitute a problem

any more.

The second manifestation of complexity is more

severe. Often, not only the number of observations

collected is large, but also the number of variables

involved. This problem, sometimes referred to as

“p ≫ n”, is challenging not only from a computa-

tional point of view, but also from a methodological

point of view. Consider the example of variable se-

lection: the number of possible subsets of a set of p

variables is 2p, which is even for a moderately large

number like p = 20 already more than a million.

The third manifestation of complexity has to do

with the intrinsic structure of the data themselves.
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Advances in science and modern technology have en-

abled us to look deeper than ever into formerly in-

accessible structures, yielding data with complex de-

pendency patterns. Whilst this might appear as a

curse at first sight, it can actually be a blessing: the

complexity of high-dimensional data is often due to

the high redundancy of the variables involved. Ex-

ploiting this redundancy allows avoiding many of the

pitfalls of high-dimensional data analysis.

In Astrophysics for example, an issue of current

research is to extract information on stellar param-

eters from photon counts collected at many differ-

ent wavelengths, paired with huge numbers (thou-

sands or millions) of observations.1,2 Figure 1 shows

a scatterplot matrix of photon counts recorded at a

subset of 16 different wavelengths. Most variables

are very strongly related. However, this relationship

is non-linear, so that the association between these

variables would not be captured using the correla-

tion coefficient. We will show that exploiting this

lower-dimensional latent structure of the data allows

for building better models for predicting the stellar

parameters.

Clearly, for situations of this type — but also

for much simpler problems — it is inefficient to op-

erate with a full interaction model of type Y =

m(X1, . . . , Xp) + noise. Here, Y is the response

variable, for instance the stellar temperature, and

(X1, . . . , Xp) are the predictors, corresponding here

to the photon counts at different wavelengths. Statis-

ticians have developed a huge range of tools in order

simplify the full interaction model so that it is more

tractable. Common simplifications are, in decreas-

ing order of complexity, project pursuit regression,

the additive model, the partially linear model, or,

most simply, the multivariate linear model.3 Due to

the exponentially increasing difficulty of the model

selection process mentioned above, a second string

of research has looked for alternative ways of sim-

plifying the model, and this family of methods is

known under the term dimension reduction. These

methods aim to compress the space of predictors

X = (X1, . . . , Xp) before the actual model is fitted,

i.e. we have a two-stage strategy:

1 Find a dimension-reducing mapping f : R
p −→

R
d, with d < p, giving compressed data T =

f(X) ∈ R
d

2 Base further inference on a regression model

for Y using T instead of the X as covariates.

The best-known example of a dimension-reducing

mapping is principal component analysis (PCA).

Other examples of such a technique include auto-

associative neural networks and self-organizing

maps.4 In this article we will explain how princi-

pal curves and surfaces can be used as a dimension-

reducing mapping.

We will start with reviewing principal compo-

nents, which, in combination with linear regression,

is often referred to as principal component regres-

sion (PCR). Here, the function f projects X ∈ R
p

onto the d-dimensional space spanned by the princi-

pal components corresponding to the largest d eigen-

values λ1, . . . , λd of Σ = Cov(X):

f : R
p −→ R

d, X 7→ (γ1, · · · , γd)
T (X − m),

i = 1, . . . , n, where m = E(X) and γ1, . . . , γd are the

corresponding eigenvectors.

Several alternative mappings have been pro-

posed, which have in common with PCA that they

can be written as an affine transformation of X , i.e.

there is some d × p matrix B and a d-dimensional

vector c such that f(X) = BX + c. Members of this

family of methods include sliced inverse regression5

and parametric inverse regression.6

In our context, the word “compressing” means

nothing else than “projecting”. That is, each data

point will be projected onto the nearest point on

the dimension-reduced subspace. In projecting data

onto this subspace, we have to be prepared to lose

some information compared to the original “raw”

data, which may impact on the accuracy of our fitted

model. However, there is also a huge potential gain

compared to the model based on the raw data: if we

have reduced the dimension in step 1, we may be able

to use a far more flexible and accurate model in step

2. For instance, instead of a linear model with many

variables, we may use a one or two-dimensional non-

parametric smoother. In other words, there is some

trade-off to be made between the loss of information

in the projection step and the gain in precision in the

estimation step. What the best trade-off will be, will

largely depend on how meaningful the projections in

step 1 are. If the predictor space features a strongly

non-linear shape, then the projections onto a linear

subspace (such as in PCA) may be of limited use. To

illustrate this point more clearly, assume we are given
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Fig. 1. Pairwise matrix scatterplot of photon counts (fluxes) obtained at 16 different wave-
lengths. The data were simulated through computer models within the Gaia project.2

a spiral-shaped bivariate predictor space as in figure

2 (left panel). The dashed line shows the first prin-

cipal component line through this data cloud, which

explains about 54% of the total variance. Clearly, the

projection indices (PIs) of the data projected orthog-

onally onto this line will be uninformative for the ac-

tual position of the data point within this cloud, just

as it would be the case for any other linear approxi-

mation of this data. In order to capture the intrinsic

structure of this data, one has to fit a curve through

it nonparametrically. The statistical term for such a

smooth curve “through the middle of a data cloud”

is a principal curve.7 The solid line in Figure 2 (left

panel) shows such a curve fitted using the technique

of local principal curves.8 Visually, the curve provides

a good one-dimensional summary of this data set. In

order to use this curve for dimension reduction pur-

poses, one has to be able to parametrize this curve,

or at least to project data points onto it. The pro-

jections onto the local principal curve are shown in

Figure 2 (right panel), and the resulting projection

indices are informative for the position of the data

points within the cloud. Whether these projection

indices are more informative for a (hypothetical) re-

sponse variable than the straight line projections, is,

of course, a question that we cannot answer in this

example, but we would hope that this will be the

case. We will see three examples in Section 3 where

this turns out to be the case.

An important concept that we will refer to is that

of intrinsic dimensionality. We consider this term

as being equivalent to the topological dimensionality,

which is the basis dimension of the local linear ap-

proximation of the hypersurface on which the data

resides, i.e. the tangent space.9

For instance, the data in figure 2 appear to have

a topological dimension of one as they could be lo-

cally approximated by a tangent to the curve in each



Data Compression and Regression through Local Principal Curves and Surfaces

local neighborhood along the curve. This paper will

focus on data which feature a topological dimension

of one or two, in which cases we will use local prin-

cipal curves and surfaces, respectively, in the com-

pression step. These terms should be separated from

the notion of structural dimensionality as advocated

for instance by Cook10, which is the dimension of

the central subspace, i.e. the smallest linear sub-

space which contains all relevant information about

the response.

We proceed in the following section with setting

up the local principal curve methodology that we

shall be using to handle situations with intrinsic di-

mensionality equal to 1. We provide several real data

examples and a comparison with other dimension

reduction techniques in Section 3, and extend our

methodology towards two-dimensional nonparamet-

ric data summaries (in form of principal surfaces) in

Section 4. We finish with a conclusion in Section 5.

2. Dimension reduction via principal curves

2.1. Local principal curves

Local principal curves (LPC)8 are based on the

idea that, at each point x ∈ R
p along a princi-

pal curve, the localized first principal component

line forms the best one-dimensional linear approxi-

mation to the curve. They can be seen as a sim-

ple and fast approximation to the mathematically

and computationally more demanding concept de-

veloped earlier by Delicado.11 Assume we are given

data x1, . . . , xn ∈ R
p of which we think as n inde-

pendent replicates drawn from the random vector

X = (X1, . . . , Xp)
T , i.e. xi = (xi1, . . . , xip)T .

Beginning at some starting point x = x0 ∈ R
p,

LPCs proceed through the data cloud, alternating

between the following two steps:

(i) Calculate a localized center of mass µx =
∑n

i=1 wx
i xi, where

wx
i = KH(xi − x)Xi/

∑n
j=1 KH(xj − x).

(ii) Compute the first local eigenvector γx of Σx =

(σx
jk)(1≤j,k≤p), where σx

jk =
∑n

i=1 wx
i (xij −

µx
j )(xik − µx

k) and µx
j denotes the j−th com-

ponent of µx. Using a predetermined step size

z, step from µx to x := µx + zγx.

The sequence of the local centers of mass µx makes

up the local principal curve. Here, KH(·) =

|H |−1/2K(H−1/2·), with a multivariate kernel K

and a positive definite bandwidth matrix H =

diag(h2
1, . . . , h

2
p). Just as for usual PCA, it is

recommendable to use input variables X1, . . . , Xp

which are operating on similar scales, which can be

achieved e.g. by dividing by their range or standard

deviation. In this case, it is common to use band-

widths h ≡ h1 = h2 = . . . = hp, and to choose z = h

as well. The LPC algorithm has been extended to

disconnected8 and branched12 curves, which can be

easily implemented using suitable multiple starting

points. Crossings can be handled conveniently us-

ing an angle penalization.8 As in each iteration only

points in the local neighborhood are considered, the

algorithm is quite flexible, and, at the same time,

robust to outliers.

2.2. Parametrization, projection, and feature

extraction

For a fitted LPC consisting of L local centers of

mass µxℓ ≡ µℓ = (µℓ
1, . . . , µ

ℓ
p)

T , ℓ = 1, . . . , L, we

seek a curve {g(t), t ∈ Ig} which interpolates the lo-

cal centers of mass. This curve can be parametrized

by a function

g : Ig −→ R
p, t 7→ (g1(t), . . . , gp(t))

T
,

where Ig ⊂ R denotes the domain of g. The param-

eter t corresponds to the projection index. Firstly,

one end point is chosen to be the origin correspond-

ing to t = 0. This is an arbitrary choice and we will

use the convention that t increases in the direction of

γx0 . Technically, the curve is parametrized in three

steps:

(i) Compute a discrete, preliminary parametriza-

tion (sℓ)(1≤ℓ≤L), with the same origin as t,

by adding up the Euclidean distances between

subsequent µℓ, ℓ = 1, . . . , L.

(ii) For each dimension of the covariate space j =

1, . . . , p, interpolate the points (sℓ, µ
ℓ
j)1≤ℓ≤L

by a cubic spline, yielding graphs (s, µj(s)).

Putting them together, one obtains a con-

tinuous and differentiable spline function

(µ1, . . . , µp)
T (s) ≡ µ(s).

(iii) For each value of s within the support of the

spline function, recalculate the parameter us-

ing the arc length,

t =

∫ s

0

√

(µ′
1(u))2 + . . . + (µ′

p(u))2 du,
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Fig. 2. Left: illustrating example comparing the principal component line (dashed) to a
principal curve (solid) as dimension-reducing mapping; right: orthogonal projections onto
the principal curve.

and set g(t) = µ(s).

It should be noted that no smoothing is involved in

(ii) — the µℓ are just interpolated.

Once this parametrization is established, each

data point xi, i = 1, . . . , n, can be projected onto

the curve by finding the point on the curve which is

nearest to it (in terms of Euclidean distances), yield-

ing the projection index ti. More formally, the di-

mension reducing mapping is given by

T ≡ f(X) = sup
t∈Ig

{||x−g(t)|| = inf
τ∈Ig

||x−g(τ)||}. (1)

This definition goes back to the original principal

curve paper7: Hastie and Stuetzle use the projec-

tion indices both in the definition of principal curves

and in the algorithm for fitting them. However

they did not make any further use of the projec-

tion indices. More recently, Ming-Ming et al.13 em-

phasized the significance of the function f(·) as a

feature extractor for X . The logical next step is

to base further inference about the response vari-

able of a regression model on the extracted features

ti ≡ f(xi), i = 1, . . . , n.

2.3. Regression and prediction

In order to link the extracted feature T to the

response Y , we proceed by fitting a univariate re-

gression model

yi = m(ti) + ǫi, i = 1, . . . , n.

The function m : R −→ R could in principle be

specified parametrically, for instance m(ti) = a+bti.

An example for this will be provided in Section 3.1.

However, in the vast majority of situations where

we have to cope with data structures which are suf-

ficiently complex to justify application of the tech-

niques mentioned above, we will also expect the re-

sponse to be non-trivially related to the extracted

feature, so that typically m(·) will need to be mod-

elled nonparametrically. Univariate nonparametric

smoothing is a standard procedure and well-studied

routines performing this job are readily available.

For instance, smoothing splines, local polynomials,

but also feed-forward neural networks could be used

here.

Assume finally that we have a new observation

xnew ∈ R
d available and wish to predict the yet un-

observed response ynew. This is now achieved in two

steps:

(i) Using (1), project xnew onto the LPC g. This

gives a projection index tnew.

(ii) Compute ŷnew = m̂(tnew) from the fitted non-

parametric smoother.
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We will give some examples illustrating these

techniques in the next section.

3. Data examples

3.1. New Zealand Horse mussels

We consider data consisting of measurements of

the shell height (H), shell length (L), shell width

(W ), shell mass (S), and the edible muscle mass of

the mussels in gram (M) of 172 horse mussels. We

will use the edible muscle mass (M) as the response

variable. These data were repeatedly analyzed in the

context of dimension reduction.10,6 The latter refer-

ence also performs a test based on the singular values

of the standardized matrix of inverse regression coef-

ficients to demonstrate that the structural dimension

of the predictor space can be taken to be equal to one.

There is no theoretical justification which would al-

low us to conclude that the topological and structural

dimension should necessarily be the same. Neverthe-

less, visual inspection of the four-dimensional mussel

characteristics (figure 3, top panel), seems to give

sufficient evidence to allow us to work with an in-

trinsic dimension of d = 1. A local principal curve

is fitted, with the result shown in figure 3 (bottom

panel): it matches closely the appearance of the raw

data.

We proceed with projecting the predictors onto

this curve, and plotting the response against the pro-

jection indices. The resulting scatterplot is shown

in figure 4 (left), which shows clearly a linear re-

lationship between muscle mass and the projection

index. The resulting linear regression line y =

1.037+0.113T has a residual standard error of 4.108

on 80df, and the coefficient of determination R2

takes the value 0.879. For comparison, Bura and

Cook6 derived another one-dimensional summary of

the predictor space via parametric inverse regression.

Specifically, they propose to define a new variable,

say C, as

C = 0.028H−0.029L−0.0593 log(S)+0.804 log(W ).

From the right plot in figure 4 it is evident that a

simple linear regression of M against C is not ade-

quate here. Therefore, we employ a quadratic model,

yielding the regression curve y = −2.230− 3.832C +

0.964C2 with a residual standard error of 6.051 on

79df and corresponding R2 = 0.7401. This curve is

shown in figure 3 (right). Clearly, the fit based on

the LPC performs superior in all aspects, and, in con-

trast to parametric inverse regression6, the method

does not require “visual inspection of the scatterplot

matrix” in order to “decide what functions of Y fit

the data best”.

One may have doubts on the stability of the LPC-

based result, as the fitted local principal curve de-

pends (slightly) on the position of the starting point

x0. To check this, we ran the LPC algorithm 100

times, each time selecting a starting point at random

from the cloud. The mean of the residual standard

errors of the 100 linear regression models was 4.1159

with a standard deviation of 0.0515, indicating that

the estimated line is very stable and that the differ-

ences in the fitted local principal curve only play a

marginal role. More care is, of course, needed if the

predictors are highly scattered in space. An example

for such a situation will be provided below.

3.2. Gaia data

Gaia is an astrophysics mission of the European

Space Agency (ESA) which will undertake a detailed

survey of over 109 stars in our Galaxy and extra-

galactic objects. A satellite is to be launched in 2012,

which will collect spectra (photon counts at certain

wavelengths) from objects all over the universe. The

aims of the mission, among others, are to classify ob-

jects (as star, galaxy, quasar,...), and to learn about

stellar properties in form of certain astrophysical pa-

rameters (“APs”: temperature, metallicity, gravity,

etc.).

Until the satellite will be launched, one has to

work with simulated data generated by a complex

computer model. In total, 68 different wavelengths

are considered in the scope of the Gaia project, but

for simplicity, we will consider in this paper only

a subset of 16 different wavelengths showing vari-

ance in the three astrophysical parameters temper-

ature, metallicity and gravity. Temperature is a

“strong” parameter: it accounts for most of the vari-

ance across the data set.14 Gravity and metallicity,

in contrast, are “weak” parameters. The parameters

have a correlated impact on the data, e.g. at high

temperatures, varying the metallicity has a much

smaller impact on spectra than it does at low temper-

atures. The data are simulated to the typical noise
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Fig. 3. Scatterplot matrix of horse mussel data (top panel); local principal curves (bottom
panel). It should be emphasized the fitted LPC is one curve through four-dimensional
space; what we are seeing here are the two-dimensional pairwise projections onto the
respective coordinate axes.
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Fig. 4. Left: plot of mussel muscle mass M vs. projection indices T with regression
line through the origin; right: plot of M versus the values of Bura and Cook’s6 linear
combination of predictors (C) obtained via parametric inverse regression.

properties for such data, in our case Gaussian white

noise.

In our setting, the photon counts form the predic-

tor space and the APs form the response space. Note

that this is opposite to the direction of simulation.

A consequence is that the regression problem may

be degenerate, i.e., one set of photon counts may be

associated with two different APs. We focus here on

the temperature, which features the least amount of

degeneracy.

Approaching the data naively, one could consider

fitting a multiple linear regression model, with the

photon fluxes at the 16 wavelengths as regressors.

However, this leads to a useless model due to the

multi-collinearity induced by the high redundancy

of the photon counts.15 Obviously there is the po-

tential for dimension reduction in this data set. To

get a deeper insight into the structure of the data,

we plotted the first three principal component scores

against each other, yielding the data cloud depicted

in figure 5 (a). Data points corresponding to higher

temperatures are shaded in red. One can see that the

position within the curved data cloud is informative

for the temperature. Next we will fit the local prin-

cipal curve, which is shown in figure 5 (b) as a solid

line, with the local centers of mass represented as sky

blue squares. The fitted spline function is depicted in

figure 5 (c). It is clear that it is almost indistinguish-

able from the original LPC (and precisely coincides

with it at the position of the local centers of mass).

Projections onto the curve are illustrated in figure

5 (d). A scatterplot of the temperature against the

projection indices is provided in figure 6, and the fit-

ted smoothing spline is shown as a green solid curve.

This spline curve provides the fitted output of the

originally 16-dimensional regression problem.

Next, we perform a small simulation study to

get an impression of the relative performance of the

proposed technique. We sample n′ = 1000 test

data from the remaining 8286 − 1000 observations

and observe the prediction errors, ε̂i = “true mi-

nus predicted temperature”. The average prediction

error of the test data as well as the training data

are summarized in Table 1. Considering firstly the
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Fig. 5. (a) 3D scatterplot of principal component scores. Red data points correspond to
high temperatures and blue data points to low temperatures. (b) The same plot with a
local principal curve (solid), and local centers of mass plotted as light blue squares. (c)
The cubic spline constructed via the algorithm in Section 2.3 is overlaid over the LPC. (d)
Projections (black) onto the cubic spline (green) through PC scores (grey).

parametric methods, we observe that, unsurprisingly,

PC/LM performs almost as well as LM. The additive

model PC/AM beats the parametric models signifi-

cantly, which is particularly evident for the medians

of squared residuals. Next, we turn to LPC-based

regression techniques. Note that PC/LPC stands

for extracting the principal components (PC), fitting

the LPC, and smoothing the response vs. the pro-

jection index, where the third step is notationally

omitted for convenience. As the starting point of

the LPC algorithm, we choose the point of highest

density. Comparing PC/AM and PC/LPC to each

other, we observe that the latter performs generally

better than the former, where the improvement is

larger for the medians than for the means. This can

be explained through the very hot points at the left

boundary of figure 6 which impact more severely on

the mean than on the medians. We will attempt

to improve these results even further in Section 4.

We also compare our results to nonparametric re-

gression based on a local principal curve fitted di-

rectly through the 16-dimensional space of spectra.

The corresponding test errors given in Table 1 in the
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Fig. 6. Scatterplot of stellar temperatures versus PIs.
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column ‘LPC’ indicate a very slightly improved re-

sult compared to the two-step compression PC/LPC.

However, it has recently been reported that direct

local principal curve regression for high-dimensional

predictor spaces (say, p > 4 or 5) should better

be avoided, or at least performed with care.15 The

reason for this is that the dependence of the LPC

on the starting point, and, at the same time, the

risk of missing remote data patterns, increases for

data of high dimension. To shed some light on this

statement, we repeated the two LPC-based regres-

sion approaches each a 100 times, but now choosing

each time a starting point at random from the data

cloud. The interquartile range of the 100 test errors

observed is provided in the squared brackets. It is

clearly seen that direct LPC regression behaves far

less reliably than the regression based on the com-

pressed scores.

3.3. Sea water temperature

The oceanographic data comes via the World

Ocean Database16, held by the American National

Oceanographic Datacenter, whose data is publicly

available online∗. The sample studied here consists of

observations over nine days in May 2000 taken by the

German vessel, Gauss, in the North Atlantic. The

shape of the temperature vs. depth plot is well doc-

umented in introductory oceanographic literature.17

It shows high temperature and high variability near

the surface, and a pronounced drop typically from

around 1000m to 2000m known as the pycnocline: a

transition stage between surface waters and bottom

waters. The oxygen levels near the ocean surface

also tend to be high, due to photosynthetically active

plant-life there. Further down sunlight is reduced so

oxygen is not produced but is still absorbed by respir-

ing organisms. An oxygen peak at 2000m coincides

with the upper surface of the previously mentioned

fresh cold deep water whose presence largely is due

to sea ice melt water from the poles.

One can see that the simple trends between the

variables tend to break down at the surface, because

of disturbances from the atmosphere, and also at the

pycnocline. The variability in the second region is

partially explained by considering contours of wa-

ter density given its temperature and salinity. At

this boundary we have a meeting of warmer saltier

water (from evaporation at the surface) and colder

fresher water. Whether the change in temperature,

or change in salinity, dominates in its effect on the

density gradient, and therefore whether the layers

mix, is dependent on the water properties at the

boundary.

As all variables operate on different scales, we

first standardize the data by dividing each variable

by their range. An LPC is fitted through the data

cloud using the bandwidth h = 0.11. The local prin-

cipal curve (as interpolated by splines) is depicted

along with projections in figure 8. The curve seems

to do a fairly good job, though variation around it

still appears to be quite high. The question relevant

for our developments is whether the projection index

is informative for the target variable, water temper-

ature. Therefore, we coloured the segments repre-

senting the projections by their associated (true, ob-

served) temperature values. If the projection indices

are meaningful for the temperature, then the colour

saturation of red and blue colours should vary con-

tinuously and smoothly with the projection index.

One observes that this is largely the case for the

blue (cold) branch of the cloud, but something less

clear occurs in the red (warm) part. Here “purple”

(moderately warm) segments from one side of the

curve project closely to red (warm) segments from

the other side of the curve. Obviously, there is rel-

evant information on the temperature which is not

captured through the projection indices. The con-

sequence of this can be observed in Figure 9: For

the warmer regions, the plot of water temperature

against the projection index features two almost par-

allel strings, with the upper and lower one corre-

sponding to data on each side of the LPC. The black

line is a fitted local-linear smoother, which describes

the right part of the curve very well, but does not de-

scribe the left part equally well. This suggests that

a (one-dimensional) curve cannot capture all the rel-

evant information, which appears to reside in a two-

dimensional surface.

One approach which allows for accessing the in-

formation orthogonal to a principal curve was pro-

posed very recently by Ming-Ming et al.13 They

define a “second-order feature extractor” through

the directed distance (i.e., distances on one side of

the curve are counted negatively, and on the other

∗http://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
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LM PC/LM PC/AM PC/LPC LPC PC/LPS
λ = 0.1 λ = 1 λ = 10

Training mean 3845 4227 1199 821 793 669 753 9573
error median 982 1073 100 46 45 22 36 1355
Test mean 4593 4967 1732 1359 [91] 1320 [211] 1064 1227 10666
error median 1049 1124 104 44 [3] 43 [23] 35 47 1339

Table 1. Squared prediction error/103 for temperature. (LM= Linear Model,
PC=Principal Components, AM=Additive Model, LPC=Local Principal Curve,
LPS=Local Principal Surface). The results under PC/LPS will be explained in Section
4. For all reported test errors, the starting point of the LPC or LPS was chosen to be
the highest density point. The IQR of the test errors obtained through LPCs using 100
random starting points are provided in squared brackets.

side of the curve positively), which gives together

with the first order features (the projection) a two-

dimensional feature space, onto which the response

can be regressed. We do not pursue this approach

further in this paper, firstly because the concept of

“different sides of a curve” is potentially ambiguous,

and secondly as we are aiming for a more general

handling of this problem by extending local principal

curve methodology directly to higher-dimensional

nonparametric data summaries which could be gen-

erally described as “local principal manifolds”. A

first but essential step to this is the extension to-

wards local principal surfaces, which is the topic of

the next section.

4. Local principal surfaces

Before we generalize local principal curves to sur-

faces, let us first of all go back to the local prin-

cipal curve algorithm presented above. It had two

important building blocks: the local first eigenvec-

tor, which is responsible for extrapolating the cur-

rent curve, and the local mean, which is responsible

for adjusting this extrapolated value. We will refer to

this second step as mean shift.18 It turns out, as we

will explain below, that this mean shift is the much

more important of the two steps.

The first local principal component at x is the

line through µx which minimizes the weighted dis-

tance between data and line, with weights wx
i as de-

fined in part (i) of the algorithm. In other words, γx

defines the locally optimal line, i.e. the most relevant

direction to which one can turn from µx. However,

this choice is, despite its optimality properties, by no

means the only possible option.8 In turns out that it

is only important that a movement is made “into the

direction of the data cloud”, and the mean shift will

subsequently do the job of adjusting the principal

curve again towards the “middle” of the (local) dis-

tribution of the data cloud. Most importantly, if we

were to replace the first local eigenvector γx by the

direction of the previous step µℓ−µℓ−1, we would ob-

tain an algorithm very similar to the local principal

curve algorithm. This modified algorithm has, just

like the original local principal curve algorithm, line

segments as geometric building blocks. Continuing

this geometric interpretation, the modified algorithm

can be viewed as extending the curve by attaching a

new line segment obtained by extending (or reflect-

ing over) the last line segment and adjusting its free

vertex by applying the mean shift.

We exploit this geometric view for the extension

of local principal curves to local principal surfaces

(LPS). The basic building block of the local princi-

pal surface algorithm is a triangle (or, if we want to

estimate a r-dimensional manifold, a simplex with

r + 1 vertices). Given a triangle ∆ on the boundary,

we extend the surface by attaching new triangles to

its “free” edges. The triangles are obtained by re-

flecting the current triangle ∆, or to be more precise

by reflecting it at the “free” edge. In more detail, we

determine the new triangle using the following steps.

Suppose that the current triangle has the vertices δ1,

δ2, and δ3, and suppose that the edge (δ2, δ3) is a free

edge beyond which we want to extend the surface:

(i) A preliminary vertex δ̃4 is obtained by attach-

ing an equilateral triangle to the edge (δ2, δ3)

such that δ1, δ2, δ3, and δ̃4 all lie on the same

plane. Figure 10 (a) illustrates this initial step,

the preliminary vertex δ̃4 is shown in red.

(ii) Compute δ4 from δ̃4 by carrying out a con-
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Fig. 7. Scatterplot matrix of the pre-standardized oceanographic data. Salinity is mea-
sured according to the PSS (practical salinity scale) as the ratio of the electrical conduc-
tivity against a standard solution; oxygen in millilitres per litre of water; temperature in
degrees Celsius; and depth in metres. Variables are suffixed with the letter g for conve-
nience of coding.

strained mean shift which enforces that the

triangle with vertices δ2, δ3, and δ4 is equilat-

eral. Figure 10 (b) shows the weights of the ob-

servations (darker grey corresponds to higher

weights) in the mean shift, with the circle in

Figure 10 (c) representing the constraint. The

newly obtained vertex δ4 is shown in purple.

The use of an angle penalty8 can be beneficial

in this step.

(iii) The newly-created triangle is dismissed if the

Delaunay condition is violated, which is the

case if an already existing vertex lies in the

circumsphere of the newly created triangle or

if the new vertex δ4 lies in the circumsphere of

an existing triangle. In the former case δ4 is

replaced by the already existing offending ver-

tex. Figure 10 (d) illustrates this check. The

newly-created triangle is also dismissed if the

new vertex falls into a region of small density.

Step (iii) is an important ingredient of the algo-

rithm, as these checks make sure that the branching

triangles “meet” again and form a single surface in-

stead of many parallel surfaces. Checking the den-

sity at the new vertex δ4 is the only stopping crite-

rion used by the algorithm and ensures that the algo-

rithm does not extend in directions in which there is

only little, or even no data. Enforcing the Delaunay

condition can occasionally yield to neighbouring tri-

angles not being connected. Thus a post-processing

step is used to connect neighbouring triangles with

free edges, which are not already connected. These
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(a) The preliminary vertex δ̃4 (red) is obtained by extending
the current triangle (blue).

(b) The observations are weighted based on their distance to
the preliminary vertex δ̃4.

(c) The vertex δ4 (purple) is obtained using a constrained mean-
shift.

(d) Checking of the Delaunay condition.

Fig. 10. Illustration of the local principal surface algorithm for a three-dimensional toy
problem.

triangles are then not necessarily equilateral.

The algorithm is initialized like the local princi-

pal curve algorithm. The first two local principal

components are computed based on a (manually or

randomly chosen) starting value x0. The initial tri-

angle is placed in the plane spanned by the first two

local principal components. We now apply this algo-

rithm to the oceanographic data. The fitted surface

is shown in figure 11: it nicely captures the shape of

the data cloud.

To demonstrate how powerful the information

contained in the surface is, we combine it with a very

simple local kernel regression with a discrete bivari-

ate kernel. More precisely, for each pair of triangles

we define the (discrete) “distance” d between them

as the smallest number of triangle borders that need

to be crossed to proceed from one triangle on the

surface to the other one. This distance is cheap to

compute and can for example be obtained by apply-

ing Dijkstra’s algorithm to the neighborhood graph.

In order to assign local weights, we define the dis-

crete distance-based kernel κ(d) = e−d/λ, where λ is

a smoothing parameter. Important special cases are

λ = 0, in which case κ(0) = 1 and κ(d) = 0 for d > 1,

i.e. no smoothing at all, and λ −→ ∞, in which case

κ(d) = 1 for all d ≥ 0, i.e. the estimated response

function is constant.

The smoothed response value ŷ∆ on triangle ∆ is

then given by

ŷ∆ =

∑

∆′ κ(d∆,∆′)ȳ∆′

∑

∆′ κ(d∆,∆′)
,

where ȳ∆′ is the mean of all observations for which

∆′ is the closest triangle, and d∆,∆′ is the discrete

distance between the triangles ∆ and ∆′.
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Fig. 11. LPS for the oceanographic data.
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Fig. 12. Top: LPC-based fitted values vs. true
temperature values; bottom: LPS-based fitted values
vs. true temperature values.

This model is admittedly rather crude, but has

the advantage that it does not require finding a

parametrization of the fitted local principal surface.

We will however see that, despite its simplicity, this

model allows us to improve our predictions obtained

using the LPC algorithm.

For the oceanographic data, we obtain the LPS

shown in figure 11, which features 177 triangles with

an average count of 3.63 data points per triangle. We

compute the fitted values as outlined above and plot

them versus the true temperatures in figure 12. It

is clearly seen that, when using the projections onto

the LPS, the inconvenient branched structure which

was observed for the LPCs disappears.

We also fitted the surface for the stellar tempera-

ture data with smoothing parameters λ = 0.1, λ = 1,

λ = 10. The result is provided in Table 1. The mes-

sage to be taken from this is that the prediction error

does improve (compared to the LPC-based method)

when accounting for the two-dimensional nature of

the shape of the data. However this new technique

is sensitive to the choice of the smoothing parameter

λ. For too small λ, overfitting is inevitably present.

This can be alleviated by increasing λ, which de-

creases effectively the degrees of freedom used for the

regression fit. Note that, for the data at hand, over-

fitting does not seem to constitute much of a prob-

lem since the average test errors are even for small

smoothing parameters almost of the same magnitude

as the average training errors.

5. Conclusion

In this article we have presented a novel approach

to regression based on exploiting the structure of the

covariate space by fitting a local principal curve or

surface to the covariate space. The data examples

studied showed that such a strategy can be very suc-

cessful. In all the examples the method based on

local principal curves and surfaces outperformed the

competing methods.

However this does not always need to be the case.

Firstly, the data might not exhibit a manifold struc-

ture at all. But even if the data lies to a large extent

on a low-dimensional structure, it might be that the

information relevant to the response variable of in-

terest is not represented in the manifold structure.
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From this point of view local principal curves and

surfaces are no different to principal components.

For instance, when replacing the “strong” response

variable temperature by the “weak” variable metal-

licity in the Gaia example, all methods considered in

this paper give relatively poor results, with values of

R2 around 0.2. This is simply a very hard estima-

tion problem and any form of dimension reduction

cannot do much about this. An entirely different ap-

proach to this problem based on forward modelling

was recently provided by Bailer-Jones.14

We conclude with pointing out a connection to

the elastic net algorithm of Gorban and Zinovyev.19

Both the local principal curve algorithm and the lo-

cal principal surface algorithm cannot update the lo-

cation of an already created line segment or trian-

gle. However one can view both the local principal

curve and the edges of the local principal surface as

some sort of elastic net and thus postprocess the esti-

mated curve or surface with the elastic net algorithm.

This could be beneficial in order to smooth out mi-

nor irregularities on the fitted surface as visible for

instance in the bottom of figure 11. Furthermore

this allows for estimating the local principal curve or

manifold in a low-dimensional “pilot” space and us-

ing the elastic net algorithm for embedding the curve

or surface in the original data space.
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