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Group theoretical arguments combined with normal mode analysis techniques are applied to a coarse-
grained approximation of icosahedral viral capsids which incorporates areas of variable flexibility. This high-
lights a remarkable structure of the low-frequency spectrum in this approximation, namely, the existence of a
plateau of 24 near zero modes with universal group theory content.
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I. INTRODUCTION AND SUMMARY

Proteins in a thermal bath exhibit a wide spectrum of
dynamical behaviors which can be probed, for instance, by
inelastic neutron diffusion �see Ref. �1� for a review�. In
particular, they undergo slow, large-amplitude motions which
are now widely believed to be instrumental to their function.
These ideas were first tested in Refs. �2–7�, where normal
mode analysis �NMA� was used to argue that only a few
low-frequency normal modes of vibration are sufficient to
describe, with great accuracy, the conformational changes in
a variety of proteins. The method has limitations, as it as-
sumes the existence of a single potential well whose mini-
mum is a given stable conformation of the protein under
study, and therefore overlooks the possibility of neighboring
multiminima of energy reported to exist in Refs. �8–10�. Yet,
this technique yields dynamical data which are consistent
with experimental results on proteins, as observed on case-
by-case studies in Refs. �11–14�, and is also confirmed by a
recent statistical analysis �15�. Although biologically signifi-
cant low-frequency motions are typically not vibrational due
to the damping influence of the protein environment, NMA
captures the tendency of the biomolecule to change in a few
particular directions corresponding to low-frequency normal
modes, and thus remains a useful tool when time-dependent
methods such as molecular dynamics are prohibitive.

The success of NMA in studying protein dynamics has
prompted its use in the context of large macrobiomolecular
assemblies. The main motivation so far has been to pin down
whether several experimentally observed conformations of
viral particles could be inferred from one another by arguing
that conformational changes occur in directions which maxi-
mally overlap with those of a few low-frequency putative
normal modes of vibration of the capsid �16–19�. The big-
gest challenge remains the choice, within the NMA frame-
work, of a potential which optimally captures the physics of
capsid vibrations while taking into account a reduced num-
ber of degrees of freedom to enable practical calculations.
Many NMA applied to viruses implement variations of the
simple elastic network model proposed a decade ago �20�, in
which the atoms are taken as point masses connected by
springs modeling interatomic forces, provided the distance
between them is smaller than a given cutoff parameter. Sim-
plified versions include the restriction to C� atoms only, the

approximation in which each residue is considered as a point
mass, or where even larger domains within the constituent
coat proteins are treated as rigid blocks �17�. In an effort to
optimize the NMA techniques when applied to particles with
high symmetry, group theoretical considerations have also
been exploited �16,18�. When combined with an elastic net-
work approach, it allows for more extensive normal modes
calculations of viral capsids �18� and compares well with
results obtained using an elastic network-RTB setup �17�.

The elastic potential in all analyses above has two major
drawbacks: It does not discriminate between strong and
weak bonds as it depends on a single spring constant and it
uses the rather crude technique of increasing the distance
cutoff to resolve capsid instabilities. Consequently, the fre-
quency spectra have much less structure than one would ex-
pect in reality, and in particular fail to reproduce areas of
rigidity and flexibility of the capsid satisfactorily. This prob-
lem has been addressed in �21� where a bond-cutoff method
is implemented, together with different spring constants for
the various types of chemical interactions. The proposed
model reproduces conformational changes better than the
conventional distance-cutoff simulations.

In this paper, we propose a reductionist approach to the
study of icosahedral viral capsid vibrations within the har-
monic approximation. We consider Caspar-Klug viral
capsids, which are classified according to a triangulation
number T �22�. A T=n capsid �28� exhibits 60n coat proteins,
organized in clusters of twelve pentamers located at the ver-
tices of an icosahedron, and 10�n−1� hexamers at global
threefold and/or local sixfold symmetry axes of the icosahe-
dral capsid. In our coarse-graining, these coat proteins are
approximated by point masses located at their centers of
mass, calculated using the Protein Database �PDB�. We set
up an elastic network whose representatives are these point
masses, with all masses normalized to 1. The network topol-
ogy is determined by data from the VIPER website �23�: two
point masses are connected by a spring whenever VIPER
provides a value for the association energy of the two corre-
sponding proteins. The spring constants of our model are of
the form �mn=�mn�, with �mn the ratio of the association
energy of protein pair �m ,n� to the largest association energy
listed in VIPER, and � is a free parameter which reflects the
lack of confidence in the absolute values of association en-
ergies published in VIPER. The potential reads
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V = �
m�n

m,n=1

N
1

2
�mn��r�m − r�n� − �r�m

0 − r�n
0��2, �1�

where the vector r�m
0 refers to the equilibrium position of pro-

tein m and the vector r�m to its position after elastic displace-
ment, all vectors originating from the center of the capsid.
The resulting force �stiffness� matrix thus depends on the
parameter �, and possesses more than the six zero eigenval-
ues expected from the rotations and translations of the whole
capsid whenever the number of constraints imposed by the
association energies is smaller than 180n−6, where 180n is
the total number of degrees of freedom for a T=n capsid.

Our main result, which will be substantiated by group
theory arguments below, is the existence, in the low-
frequency spectrum of all our coarse-grained stable Caspar-
Klug capsids, of 24 near-zero normal modes of vibration
which always fall in the same set of nonsinglet irreducible
representations of the icosahedral group �see Eq. �4��. The
first singlet representation, which is associated with a fully
symmetric mode, always appears higher up in the spectrum,
in accordance with the expectation that such a motion re-
quires more energy to develop. The presence of 24 near-zero
modes in the spectrum of viral capsids is deeply rooted in the
fact that the latter exhibit icosahedral symmetry. Although
our model is too crude to account for a realistic flexibility of
the viral capsid, and therefore too primitive to get quantita-
tive information on the virus function, it can serve as a first
step in an analysis which should bridge the gap with existing
molecular dynamics simulations. It discriminates between
strong and weak interprotein bonds and therefore captures
effects of varying flexibility across the capsid. Moreover, it is
simple enough to highlight universal aspects of the low-
frequency spectrum of normal modes of vibration, inherited
from the underlying icosahedral symmetry, and to pin down
the influence of the elastic network design on the instability
of the capsid.

Our results should thus be viewed as a remarkable prop-
erty of the lowest order approximation to virus capsid vibra-
tions, which may potentially be relevant once subsequent
orders, with additional interactions and additional degrees of
freedom, are taken into account. A meaningful comparison
with existing virus NMA computations in the literature is
difficult at this stage, partly because of reasons highlighted in
Ref. �21� regarding the use of Tirion’s potential and the
distance-cutoff method. However, it is noteworthy that the
first nonzero mode �a singlet of I� in the spectrum of HK97,
as calculated in Ref. �19� using an all-atom simulation with a
cutoff, appears at mode 31 and is therefore compatible with
our qualitative arguments on the number of low-frequency
modes �29�.

II. LOW-FREQUENCY PLATEAU

The remainder of this paper provides the group theoretical
arguments leading to the 24 near zero-mode plateau in our
coarse-grained capsids. We first approximate a Caspar-Klug
T=n capsid by merging the 3n proteins per icosahedral face
into a single point mass whose equilibrium position is at the

center of the face. These point masses are connected by
springs �masses and spring constants normalized to 1� be-
tween nearest neighbors, forming a dodecahedral cage with
30 edges, dual to the icosahedron. Such a structure is un-
stable, since the number of genuine degrees of freedom is
3�20−6=54, while there are only 30 constraints. Accord-
ingly, the cage develops 24 nontrivial zero modes. To ana-
lyze these instabilities, we compare all possible motions of
this dodecahedral cage consistent with icosahedral symme-
try, with the dodecahedral motions induced by all possible
motions of the 12 vertices of an icosahedron. By induced, we
mean that the dual dodecahedron moves in such a way that
its vertices are located at the centers of the �deformed� icosa-
hedral faces at all times.

Standard group theoretical methods reviewed in Ref. �24�
are used to calculate the decomposition of the 36-
dimensional displacement representation �ICO

displ,36 of the ver-
tices into irreducible representations of the full icosahedral
group Ih, which contains 60 proper rotations and an extra 60
elements obtained by multiplication of the latter by the in-
version operation. The result is �see also Ref. �25��,

�ICO
displ,36 = �+

1 + �+
3 + 2�−

3 + �−
3� + �+

4 + �−
4 + 2�+

5 + �−
5 , �2�

where the numerical superscripts indicate the dimensionality
of the corresponding irreducible representation, while the �
subscripts refer to different irreducible representations of
same dimension. If the subgroup I of 60 proper rotations is
used instead, � representations are indistinguishable. The
same group theoretical method yields, for the motion of the
dodecahedral cage, the 60-dimensional displacement repre-
sentation �DODE

displ,60,

�DODE
displ,60 = �+

1 + �+
3 + 2�−

3 + �−
3� + �+

4 + �−
4 + 2�+

5 + �−
5 + �+

3�

+ �−
3� + �+

4 + �−
4 + �+

5 + �−
5 . �3�

Although Eq. �2� depends only on icosahedral symmetry and
not on actual links between icosahedral vertices, it is useful
to visualize an icosahedral cage formed by point masses at
its vertices joined by identical springs along its 30 edges. In
contradistinction with the dodecahedral cage, the icosahedral
cage would have no nontrivial zero modes, in accordance
with the fact that the number of its genuine degrees of free-
dom 3�12−6=30 is equal to the number of its constraints.
The spectra of the icosahedral and dodecahedral cages are
depicted in Figs. 1�a� and 1�b�.

As no icosahedral motion leaves the dual dodecahedron
fixed, the icosahedral motions induce a 36-dimensional vec-
tor space of �infinitesimal� motions of the dual dodecahe-
dron. These include the six global zero modes �+

3 +�−
3 which

are identical in both systems �as well as the global dilation
vibrational mode �+

1�. All icosahedral normal modes of vi-
bration pertaining to an irreducible representation of Ih in
�ICO

displ,36 must be linear combinations of dodecahedral normal
modes belonging to the same irreducible representation.
Hence, provided that the vibrational modes of the icosahe-
dron have nonvanishing components in the vibrational
modes of finite frequency of the dodecahedron, as is true by
inspection, the set of representations in Eq. �3� which are not
contained in Eq. �2� describe the nontrivial zero modes of the
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dodecahedron. It follows that a capsid whose proteins would
be modeled by 20 point masses located at the center of each
face of an icosahedron, and with 30 springs organized in a
network modeled at equilibrium by a dodecahedron, devel-
ops 24 zero modes of vibration which are organized in the
following irreducible representations of the icosahedral
group:

�+
3� + �−

3� + �+
4 + �−

4 + �+
5 + �−

5 . �4�

Note that the zero modes belonging to the �+
3� representation

appear in Eq. �3� but have no counterpart in Eq. �2�. Hence
they must induce no motion when mapped back to an icosa-
hedral system, that is, the sum of the displacements of any
five vertices defining a dodecahedral face must be zero. This
is indeed the case as illustrated in Fig. 2, where the icosahe-
dral system may be thought of as constructed from the
center-of-mass positions of the dodecahedron vertices of
each pentagon face. The stabilization of such a capsid re-
quires the introduction of at least 24 further springs in a
manner that respects the icosahedral symmetry. The magni-
tudes of the spring constants determine how much the zero
modes are lifted from zero, and shape the structure of the
created low-frequency plateau.

Despite its simplicity, the approximation just described
catches an essential feature of the Caspar-Klug viruses,
namely, the 24-state low-energy plateau with group content
�4�. Indeed, consider again a T=n capsid with 3n proteins
per icosahedral face but now treat them, in accordance with
our introductory discussions, as 3n point masses located at
the corresponding protein’s center of mass calculated from
the PDB files. We link them by springs according to the
association energies listed in VIPER �30�. Neglecting first
the links between different faces, we would expect a number
of capsid zero modes, N0= �9n−3k�20=60�3n−k�. Here the
9n degrees of freedom within a face are constrained only by
3k links, k an integer, as a consequence of the global three-
fold symmetry of the icosahedron whose axis passes through
the center of the icosahedral face. A stable capsid is charac-
terized by a force matrix having exactly six zero modes, so
that, in principle, one needs to introduce at least 60�3n−k�
−6 independent constraints �i.e., bonds� to stabilize the
whole capsid. How these must be chosen in a three-
dimensional context is a mathematical question which re-
quires further investigation. It is, however, interesting to note
that the VIPER website gives association energies for some
interface proteins, which correspond to “�icosahedron� edge-
crossing” bonds. By symmetry, these come as multiples of
30 or 60 when considering the capsid as a whole. We thus
expect that, keeping the 2�3n−k�−1 edge-crossing bonds per
edge with the largest association energies, would yield a
capsid with 24 nontrivial zero modes. In all stable coarse-
grained capsids we studied �26�, this indeed happens, and
adding extra edge-crossing bonds lifts the 24 zero modes
appearing in Eq. �4� to a low-frequency plateau. Our earlier
approximation thus simply amounts to replacing 3n−k by
unity in the above analysis.

III. EXAMPLES

We now illustrate our considerations with two examples.
The VIPER data for the T=3 Rice Yellow Mottle Virus
�PDB: 1f2n� is sufficient to stabilize the capsid. It is repro-
duced schematically in Fig. 3 together with the 40 lowest-
frequency normal modes of vibration. There are actually 11
bonds in Fig. 3, but 3 of them are superimposed �two linking
green C chains, and one linking a C and a B chain �red��. The
total number of bonds is obtained from the figure using the
global twofold, threefold, and fivefold symmetries of the
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FIG. 1. �Color online� Frequencies of normal modes of vibration
for �a� an icosahedral cage, �b� a dodecahedral cage. The modes �,
respectively, �, belong to three-dimensional irreducible representa-

tions ��
3 respectively, ��

3� of the icosahedral group. The diamond
�pentagon� modes belong to four- �five-� dimensional irreducible
representations. Small �large� symbols refer to even �odd� parity.
The x axis labels the normal modes while the y axis gives the wave
numbers up to an overall normalization.

FIG. 2. �Color online� Top and side views of the normal modes
of a dodecahedral system belonging to the irreducible representa-
tion �3�+ of the icosahedral group I.
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capsid. The capsids in our examples are not invariant under
inversion, hence the symmetry group is I, and the irreducible
representations are all of type “	.” Discarding the two weak-
est bonds �which are both edge crossing� leads to k=4 and 9
edge-crossing bonds per edge. In agreement with 2�3n−k�
−1=9 we then observe 24 nontrivial zero modes. Restoring
the weak long-range arms which stretch from the �green� C
chains has the crucial effect of lifting the 24 zero modes to
produce a low-frequency plateau. The T=7l Hong-Kong 97
bacteriophage �PDB: 2fte� has a stable capsid too. Keeping
all but the six weakest bonds �only one of them is edge
crossing in Fig. 4� leads to k=12 and 17 edge crossing bonds
per edge, in accordance with 2�3n−k�−1=17, so that there
are 24 nontrivial zero modes. The weak bonds serve to lift
these zero modes, and the spectrum indeed exhibits again a
very low-frequency plateau of 24 modes �see Fig. 4�. A va-
riety of other capsids with similar spectral signatures are pre-
sented in Ref. �26�.

IV. CONCLUSION AND DISCUSSION

We have analyzed a model of icosahedral virus capsids
which incorporates areas of varying flexibility. We have
given a simple mathematical argument which explains the
appearance of a low-frequency plateau of 24 states in the
vibrational spectrum of Caspar-Klug viruses. Our top-down
approach should be viewed as a first step in bridging the gap
with the few molecular dynamics analyses published on viral

capsids, and our results should be viewed as a remarkable
property of the lowest order approximation to virus capsid
vibrations.

We wish to stress that if the amplitudes of the very low
frequency modes were known, they could help decide
whether they trigger instabilities and some of the conforma-
tional changes observed experimentally. Such changes play a
fundamental role in the function of viruses, and a fundamen-
tal explanation of their origin is still lacking. It is moreover
widely believed that the only motions that change the capsid
surface, and hence influence significantly the interactions of
the virus with the environment, are those global large ampli-
tude, slow motions. Hence the importance of developing
models that pin them down as accurately as possible. An-
other application of their knowledge is to provide experi-
menters with systematics on how to tune laser pulses in the
near infrared to produce damage on viral capsids by forced
resonance, an innovative technique developed recently �27�.

We believe that our model can be developed beyond the
crude approximation we have used in our paper, and would
then greatly benefit from getting data on the absolute
strength of the bonds, which would provide us with quanti-
tative information on low-frequency motions. In order to test
our results, however, improved techniques are required as
there are, at present, no experimental setups which could
reliably and directly check our frequencies predictions �as
the frequencies we target are too low for commonly used
techniques�.
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FIG. 3. �Color online� �a� Bond structure of RYMV as given in
VIPER. �b� Its forty lowest frequency modes showing a plateau of
24 near-zero modes. Symbols and axes as in Fig. 1.
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FIG. 4. �Color online� �a� Bond structure of HK97 as given in
VIPER. �b� Its forty lowest frequency modes showing a plateau of
24 near zero modes with the representation content of Eq. �4�. Sym-
bols and axes as in Fig. 1.
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