
Nathan Huntley and Matthias C. M. Troffaes. Normal Form Backward Induction for Decision
Trees with Coherent Lower Previsions. Annals of Operations Research, 195(1):111-134, 2012.

http://dx.doi.org/10.1007/s10479-011-0968-2

NORMAL FORM BACKWARD INDUCTION FOR DECISION TREES WITH

COHERENT LOWER PREVISIONS

NATHAN HUNTLEY AND MATTHIAS C. M. TROFFAES

Abstract. We examine normal form solutions of decision trees under typical choice functions

induced by lower previsions. For large trees, finding such solutions is hard as very many strate-

gies must be considered. In an earlier paper, we extended backward induction to arbitrary
choice functions, yielding far more efficient solutions, and we identified simple necessary and

sufficient conditions for this to work. In this paper, we show that backward induction works

for maximality and E-admissibility, but not for interval dominance and Γ-maximin. We also
show that, in some situations, a computationally cheap approximation of a choice function

can be used, even if the approximation violates the conditions for backward induction; for
instance, interval dominance with backward induction will yield at least all maximal normal

form solutions.

1. Introduction

In classical decision theory, one aims to maximize expected utility. Such approach requires
probabilities for all relevant events. However, when information and knowledge are limited, sadly,
the decision maker may not be able to specify or elicit probabilities exactly. To handle this,
various theories have been suggested, including lower previsions [35], which essentially amount
to sets of probabilities.

In non-sequential problems, given a lower prevision, various generalizations of maximizing
expected utility exist [34]. Sequential extensions of some of these alternatives have been sug-
gested [29, 9, 13, 1, 30, 5, 14, 31], yet not systematically studied. In this paper, we study,
systematically, using lower previsions, which decision criteria admit efficient solutions to sequen-
tial decision problems, by backward induction, even if probabilities are not exactly known. Our
main contribution is that we prove for which criteria backward induction coincides with the usual
normal form.

We study very general sequential decision problems: a subject can choose from a set of
options, where each option has uncertain consequences, leading to either rewards or more options.
Based on her beliefs and preferences, the subject seeks an optimal strategy. Such problems are
represented by a decision tree [25, 18, 3].

When maximizing expected utility, one can solve a decision tree by the usual normal form
method, or by backward induction. First, note that the subject can specify, in advance, her actions
in all eventualities. In the normal form, she simply chooses a specification which maximizes her
expected utility. However, in larger problems, the number of specifications is gargantuan, and
the normal form is not feasible.

Fortunately, backward induction is far more efficient. We find the expected utility at the
final decision nodes, and then replace these nodes with the maximum expected utility. The
previously penultimate decision nodes are now ultimate, and the process repeats until the root is
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reached. Backward induction is guaranteed to coincide with the normal form [25] if probabilities
are non-zero [8, p. 44].

The usual normal form method works easily with decision criteria for lower previsions: apply
it to the set of all strategies. Generalizing backward induction is harder, as no single expectation
summarizes all relevant information about substrategies, unlike with expected utility. We follow
Kikuti et al. [14], and instead replace nodes with sets of optimal substrategies, moving from
right to left in the tree, eliminating strategies as we go. De Cooman and Troffaes [5] presented
a similar idea for dynamic programming.

In this general setting, normal form and backward induction can differ, as noted by many
[29, 20, 30, 14, 5, 13, 1]. However, for some decision criteria the methods always coincide.
In [11], we found conditions for coincidence. In this paper, we expand the work begun in [12],
and investigate what works for lower previsions, finding that maximality and E-admissibility
work, but the others do not.

This coincidence is of interest for at least two reasons. First, as mentioned, the normal form is
not feasible for larger trees, whereas backward induction can eliminate many strategies early on,
hence being far more efficient. Secondly, one might argue that a solution where the two methods
differ is philosophically flawed [11, 8, 29, 21].

The paper is organized as follows. Section 2 explains decision trees and introduces notation.
Section 3 presents lower previsions and their decision criteria, and demonstrates normal form
backward induction on a simple example. Section 4 formally defines the two methods, and
characterizes their equivalence, which is applied in Section 5 to lower previsions. Section 6
discusses a larger example. Section 7 concludes. Readers familiar with decision trees and lower
previsions can start with Sections 3.3 and 6.

2. Decision Trees

2.1. Definition and Example. Informally, a decision tree [18, 3] is a graphical causal represen-
tation of decisions, events, and rewards. Decision trees consist of a rooted tree [7, p. 92, Sec. 3.2]
of decision nodes, chance nodes, and reward leaves, growing from left to right. The left hand
side corresponds to what happens first, and the right side to what happens last.

Consider the following example. Tomorrow, a subject is going for a walk in the lake district.
It may rain (E1), or not (E2). The subject can either take a waterproof (d1), or not (d2). But the
subject may also choose to buy today’s newspaper, at cost c, to learn about tomorrow’s weather
forecast (dS), or not (dS), before leaving for the lake district. The forecast has two possible
outcomes: predicting rain (S1), or not (S2).

The corresponding decision tree is depicted in Figure 1. Decision nodes are depicted by
squares, and chance nodes by circles. From each node, a number of branches emerge, representing
decisions at decision nodes and events at chance nodes. The events from a node form a partition
of the possibility space: exactly one of the events will take place. Each path in a decision tree
corresponds to a sequence of decisions and events. The reward from each such sequence appears
at the right hand end of the branch.

2.2. Notation. A particular decision tree can be seen as a combination of smaller decision
trees: for example, one could draw the subtree corresponding to buying the newspaper, and also
draw the subtree corresponding to making an immediate decision. The decision tree for the full
problem is then formed by joining these two subtrees at a decision node.

So, we can represent a decision tree by its subtrees and the type of its root node. Let T1, . . . ,
Tn be decision trees. If T combines the trees at a decision node, we write

T =

n⊔
i=1

Ti.
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Figure 1. A decision tree for walking in the lake district.

If T combines the trees at a chance node, with subtree Ti being connected by event Ei (E1, . . . ,
En is a partition of the possibility space) we write

T =

n⊙
i=1

EiTi.

For instance, for the tree of Fig. 1 with c = 1, we write

(S1(T1 t T2)� S2(T1 t T2)) t (U1 t U2)

with, where we denoted the reward nodes by their utility,

T1 = E19� E214 U1 = E110� E215

T2 = E14� E219 U2 = E15� E220

The above notation shall prove very useful when considering recursive definitions.
In this paper we often consider subtrees of larger trees. For subtrees, it is important to know

the events that were observed in the past. Two subtrees with the same configuration of nodes
and arcs may have different preceding events, and should be treated differently. Therefore we
associate with every decision tree T an event ev(T ) representing the intersection of all the events
on chance arcs that have preceded T .

Definition 1. A subtree of a tree T obtained by removal of all non-descendants of a particular
node N is called the subtree of T at N and is denoted by stN (T ).

These subtrees are called ‘continuation trees’ by Hammond [8].
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Consider all possible ways that sets of decision trees T1, . . . , Tn can be combined. Our notation
easily extends. For any partition E1, . . . , En,

n⊙
i=1

EiTi =

{
n⊙
i=1

EiTi : Ti ∈ Ti

}
.

For any sets of consistent decision trees T1, . . . , Tn,

n⊔
i=1

Ti =

{
n⊔
i=1

Ti : Ti ∈ Ti

}
.

For convenience we only work with decision trees for which there is no event arc that is
impossible given preceding events.

Definition 2. A decision tree T is called consistent if for every node N of T ,

ev(stN (T )) 6= ∅.

Clearly, if a decision tree T is consistent, then for any node N in T , stN (T ) is also consistent.
Considering only consistent trees is not really a restriction, since inconsistent trees would only
be drawn due to an oversight and could easily be made consistent.

2.3. Solving Decision Trees with Probabilities and Utilities. We give a brief overview of
the standard method of solving a decision tree when probabilities of events are known. Suppose
in Fig. 1 we have p(S1) = 0.6, p(E1|S1) = 0.7, and p(E1|S2) = 0.2, so p(E1) = 0.5. We first
calculate the expected utility of the final chance nodes. For example, the expected utility at
N1

1
1
1 is 0.7(10− c) + 0.3(15− c) = 11.5− c, and the expected utility at N1

1
1
2 is 9.5− c.

We now see that at N1
1
1 it is better to choose decision d1. We then replace N1

1
1 and its subtree

with the expected utility of N1
1
1
1: 11.5 − c. Also follow this procedure for N1

1
2 and N12, and

the tree has been reduced by a stage. We find that d2 is optimal at N1
1
2 with value 17− c, and

at N12 both decisions are optimal with value 12.5.
Next, take expected utility at N1

1, which is 0.6(11.5− c) + 0.4(17− c) = 13.7− c. At N1, we
therefore take decision dS if c ≤ 1.2 and dS if c ≥ 1.2. This procedure is illustrated in Fig. 2,
where the dashed lines indicate decision arcs that are rejected because their expected utility is
too low (for any specific c 6= 1.2, either dS or dS would be dashed).

This method can only be carried out if the subject has assessed precise probabilities and
utilities and wishes to maximize expected utility. It may be that the subject is unable or un-
willing to comply with these requirements. The next section considers a possible solution, and
demonstrates how backward induction can be generalized.

3. Credal Sets and Lower Previsions

First, we outline a straightforward generalization of the theory of probability, allowing the
subject to model uncertainty in cases where too little information is available to identify a
unique probability distribution (see for instance [2, 26, 6, 33, 36, 37, 35]).

3.1. Gambles, Credal Sets and Lower Previsions. The possibility space Ω is the set of all
possible states of the world. Elements of Ω are denoted by ω. Subsets of Ω are called events,
and are denoted by capital letters A, B, etc. The arcs emerging from chance nodes in a decision
tree correspond to events.

A gamble is a function X : Ω → R, interpreted as an uncertain reward: should ω ∈ Ω be the
true state of the world, the gamble X will yield the reward X(ω).

A probability mass function is a non-negative real-valued function p : Ω → R+ whose values
sum to one [28, p. 138, Sec. 4.2]. For convenience, we will write p(A) for

∑
ω∈A p(ω).
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Figure 2. Solving the Lake District problem with expected utility.

For the purpose of this paper, we assume that

• Ω is finite,
• rewards are expressed in utiles,
• the subject can express her beliefs by means of a closed convex set M of probability

mass functions p (M is called the credal set), and
• each probability mass function p ∈M satisfies p(ω) > 0, for all ω ∈ Ω.

Under the above assumptions, each p in M determines a conditional expectation

Ep(X|A) =

∑
ω∈AX(ω)p(ω)

p(A)
,

and the whole set M determines a conditional lower and upper expectation

P (X|A) = min
p∈M

Ep(X|A) P (X|A) = max
p∈M

Ep(X|A),

and this for every gamble X and every non-empty event A.
The functional P is called a coherent conditional lower prevision, and similarly, P is called

a coherent conditional upper prevision. Although here we have defined these by means of a set
of probability measures, there are different ways of obtaining and interpreting lower and upper
previsions (see for instance Miranda [22] for a survey).

Following De Finetti [6], where it is convenient we denote the indicator gamble

IA(ω) =

{
1 if ω ∈ A
0 if ω 6∈ A
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of an event A also simply by A: for instance, if X is a gamble, and A is an event, then AX is
just a shorthand notation for IAX.

Below are some properties of coherent conditional lower and upper previsions that we require
later (see Williams [36, 37] or Walley [35] for proofs).

Proposition 3. For all non-empty events A,B, gambles X,Y , and constants λ > 0:

(i) If AX = AY then P (X|A) = P (Y |A).
(ii) P (X|A) + P (Y |A) ≤ P (X + Y |A) ≤ P (X|A) + P (Y |A).

(iii) P (λX|A) = λP (X|A) and P (λX|A) = λP (X|A).
(iv) P (X|A) = −P (−X|A).
(v) P (A(X − P (X|A ∩B))|B) = 0.

Property (v) generalizes the generalized Bayes rule, which describes how conditional lower
previsions are linked to unconditional lower previsions. For instance, if P (A|B) > 0, then
P (·|A ∩B) is uniquely determined by P (·|B) via property (v) [35, p. 297, Thm. 6.4.1].

3.2. Choice Functions and Optimality. Suppose a subject must choose a gamble from a
set X . In classical decision theory, a gamble is optimal if its expectation is maximal. More
generally, given a credal set M, the subject might consider as optimal for example any gambles
whose expectation is maximal for at least one p ∈ M: in fact, most criteria determine optimal
decisions by comparison of gambles. So, we suppose that the subject has a way of determining
an optimal subset of any set of gambles, conditional on any event A (think of A as ev(T )):

Definition 4. A choice function opt is an operator that, for each non-empty event A, maps each
non-empty finite set X of gambles to a non-empty subset of this set:

∅ 6= opt(X|A) ⊆ X .

Note that common uses of choice functions in social choice theory, such as by Sen [32, p. 63,
ll. 19–21], do not consider conditioning on events, and define choice functions for arbitrary sets
of options, rather than for gambles only.

The interpretation of a choice function is that when the subject can choose among the elements
of X , having observed A, she would only choose from opt(X|A). Therefore, we say the elements
of opt(X|A) are optimal (relative to X and A). Note that the subject may not consider them
equivalent: adding a small incentive to choose a particular optimal option would not necessarily
make it the single preferred option.

We now consider four popular choice functions that have been proposed for choosing between
gambles given a coherent lower prevision. Further discussion of the criteria presented here can
be found in Troffaes [34].

3.2.1. Maximality. Maximality is based on the following strict partial preference order >P |A.

Definition 5. Given a coherent lower prevision P , for any two gambles X and Y we write
X >P |A Y whenever P (X − Y |A) > 0.

The partial order >P |A gives rise to the choice function maximality, proposed by Condorcet

[4, pp. lvj–lxix, 4.e Exemple], Sen [32], and Walley [35], among others.1

Definition 6. For any non-empty finite set of gambles X and each event A 6= ∅,

opt>P|·(X|A) = {X ∈ X : (∀Y ∈ X )(Y 6>P |AX)}.

1Because all probabilities in M are assumed to be strictly positive, Walley’s admissibility condition is implied

and hence omitted in Definition 6.



NORMAL FORM BACKWARD INDUCTION FOR DECISION TREES WITH COH. LOWER PREVISIONS 7

3.2.2. E-admissibility. Another criterion is E-admissibility, proposed by Levi [17]. Recall that
P (·|A) is the lower envelope of M. For each p ∈M we can maximize expected utility:

optp(X|A) = {X ∈ X : (∀Y ∈ X )(Ep(Y |A) ≤ Ep(X|A))}.
Then the set of E-admissible options is defined by:

Definition 7. For any non-empty finite set of gambles X and each event A 6= ∅,

optM(X|A) =
⋃
p∈M

optp(X|A).

A gamble X is therefore E-admissible when it maximizes expected utility under at least one
p ∈M. Any E-admissible gamble is maximal [35, p. 162, ll. 26–28].

3.2.3. Interval Dominance. Interval dominance is based on the strict partial preference order
AP |A.

Definition 8. Given a coherent lower prevision P , for any non-empty event A and any two
A-consistent gambles X and Y we write X AP |A Y whenever P (X|A) > P (Y |A).

This ordering induces a choice function usually called interval dominance [38, 34]:

Definition 9. For any non-empty finite set of gambles X and each event A 6= ∅,
optAP|·

(X|A) = {X ∈ X : (∀Y ∈ X )(Y 6AP |AX)}.

The above criterion was apparently first introduced by Kyburg [15] and was originally called
stochastic dominance.

3.2.4. Γ-maximin. Γ-maximin selects gambles that maximizes the minimum expected reward.

Definition 10. For any non-empty finite set of gambles X and each event A 6= ∅,
optP(X|A) = {X ∈ X : (∀Y ∈ X )(P (X|A) ≥ P (Y |A))}.

Γ-maximin is a total preorder, and so usually selects a single gamble regardless of the degree
of uncertainty in P . Γ-maximin can be criticized for being too conservative (see Walley [35,
p. 164]), as it only takes into account the worst possible scenario.

3.3. Sequential Problems Using Lower Previsions. Consider again the lake district prob-
lem depicted in Fig. 1, but now suppose that the subject has specified a coherent lower prevision,
instead of a singe probability measure. For this example, we consider an ε-contamination model:
with probability 1− ε, observations follow a given probability mass function p, and with proba-
bility ε, observations follow an unknown arbitrary distribution. One can easily check that, under
this model, the lower expectation for a gamble X is

P (X) = (1− ε)Ep(X) + ε inf X

The conditional lower expectation is [35, p. 309]

P (X|A) =
(1− ε)Ep(AX) + ε infω∈AX(ω)

(1− ε)p(A) + ε

As before, let p(S1) = 0.6, p(E1|S1) = 0.7, and p(E1|S2) = 0.2, so p(E1) = 0.5. Let ε = 0.1.
Naively, she could solve the problem with the usual normal form method : she lists all possible

strategies (actions to take in all eventualities), finds the corresponding gambles, and applies a
suitable choice function, say maximality.

Table 1 lists all strategies and their gambles. Each strategy gives a reward determined entirely
by ω, and hence has a corresponding gamble. For example, the gamble for the last strategy is

(5− c)S1E1 + (20− c)S1E2 + (10− c)S2E1 + (15− c)S2E2 = S1Y + S2X − c,
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strategy gamble
dS , then d1 X
dS , then d2 Y
dS , then d1 if S1 and d1 if S2 X − c
dS , then d2 if S1 and d2 if S2 Y − c
dS , then d1 if S1 and d2 if S2 S1X + S2Y − c
dS , then d2 if S1 and d1 if S2 S1Y + S2X − c

Table 1. Strategies and gambles for the lake district problem.

(i) N1

N1
1

N1
1
1

{X − c}d1

{Y − c}d2
S1

N1
1
2

{X − c}d1

{Y − c}d2

S
2

dS

N12

{X}d1

{Y }d2

d
S

(ii) N1

N1
1

opt({X − c, Y − c}|S1) = {X − c}S1

opt({X − c, Y − c}|S2) = {Y − c}S2

dS

opt({X,Y }) = {X,Y }d
S

(iii) N1

opt({S1(X − c) + S2(Y − c)}) = {S1X + S2Y − c}dS

{X,Y }d
S

(iv) opt({S1X + S2Y − c,X, Y }) =


{S1X + S2Y − c} if c < 29/50

{X,Y } if c > 79/50

{S1X + S2Y − c,X, Y } otherwise

Figure 3. Solving the lake district example by normal form backward induction.

with X = 10E1+15E2 and Y = 5E1+20E2. Recall that (5−c)S1E1 is just a shorthand notation
for (5− c)IS1IE1 , and similarly for all other terms.

Maximality can then be applied to find the optimal gambles: this requires comparison of all
six gambles at once. Skipping the details of this calculation, for instance with c = 0.5, we find
that we should buy the newspaper and follow its advice.

However, could we think of a backward induction scheme which might not require comparison
of all six gambles at once? Obviously, any such scheme will not work as easily as in Section 2.3,
because we are not maximizing for a single number (i.e. expected utility). Instead, we retain the
optimal strategies in subtrees, as illustrated in Fig. 3.

Denote subtrees at a particular node N∗∗ by T ∗∗ = stN∗∗ (T ).

(i) First, write down the gambles at the final chance nodes. For example, at N1
1
1
1 the

gamble is (10− c)E1 + (15− c)E2 = X − c, and similarly for all others.
(ii) Let us first deal with the branch corresponding to refusing the newspaper. At the decision

node N12, we have a choice between two strategies that correspond to the gambles X and
Y . We also have ev(T 12) = Ω. So to determine the optimal strategies in this subtree,



NORMAL FORM BACKWARD INDUCTION FOR DECISION TREES WITH COH. LOWER PREVISIONS 9

we must compare these two gambles unconditionally:

P (X − Y ) = P (Y −X) = −5ε = −1/2,

so at T 12 the strategies d1 and d2 are both optimal.
Now we move to the branch corresponding to buying the newspaper. At N1

1
1, we need

to compare X − c and Y − c. We have that ev(T 1
1
1) = S1, and

P ((X − c)− (Y − c)|S1) = 6−31ε
3+2ε > 0,

so X − c >P |S1
Y − c and the uniquely optimal strategy is d1. Next, considering N1

1
2,

we see that ev(T 1
1
2) = S2, and

P ((Y − c)− (X − c)|S2) = 6−31ε
2+3ε > 0,

so the optimal strategy here is d2.
(iii) Moving to N1

1, we see that only one of the original four strategies remains: “d1 if S1

and d2 if S2”, corresponding to the gamble S1X + S2Y − c.
(iv) Finally, considering the entire tree T , three strategies are left: “d1 if S1 and d2 if S2”;

“dS , then d1”; “dS , then d2”. Therefore we need to find

opt>P|·({S1X + S2Y − c,X, Y }).

We have

P (X − (S1X + S2Y − c)) = c− (6 + 19ε)/5 = c− 79/50

P ((S1X + S2Y − c)−X) = (6− 31ε)/5− c = 29/50− c
P (Y − (S1X + S2Y − c)) = c− (6 + 19ε)/5 = c− 79/50

P ((S1X + S2Y − c)− Y ) = (6− 31ε)/5− c = 29/50− c

Concluding (see Fig. 3(iv)):
• if the newspaper costs less than 29/50, we should buy and follow its advice.
• if it costs more than 79/50, we do not buy, but have insufficient information to

decide whether to take the waterproof or not.
• if the newspaper costs between 29/50 and 79/50, we can take any of the three

remaining options.

Comparing this with the solution calculated in Section 2.3, we observe that the imprecision
has created a range of c for which it is unclear whether buying the newspaper is better than not,
rather than the single value for c in the precise case. Despite this, should the subject decide to
buy the newspaper, she will follow the same policy in both cases: take the waterproof only if the
newspaper predicts rain. Finally it should be noted that, although in both cases both dSd1 and
dSd2 are involved in optimal normal form decisions for some values of c, in the precise case this
is because they are equivalent and in the imprecise case they are incomparable. A tiny increase
in value for, say, not taking the waterproof and no rain, would make dSd1 always non-optimal
under Ep but still optimal under P for c ≥ 29/50.

For this particular example, it is easy though tedious to check that backward induction gives
the same answer as the usual normal form method (that is, applying maximality to all six
gambles), for any value of c. It is easy to find choice functions and decision trees where this
does not work [16, 13, 30]. We want to know for which of the coherent lower previsions choice
functions the two methods agree. To answer this, we invoke a theorem relating to general choice
functions, outlined in the next section.
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4. Normal Form Solutions for Decision Trees

We now introduce the necessary terminology for examining our two methods of solution in
detail, and provide theorems stating when they coincide. These two methods yield normal form
solutions, that is, sets of optimal strategies at the root node.

4.1. Normal Form Decisions, Solutions, Operators, and Gambles. Suppose the subject
specifies a decision for each eventuality, and resolves to follow this policy. She now has no choice
at decision nodes, and her reward is entirely determined by the state of nature. This corresponds
to a reduced decision tree obtained by taking the initial tree and removing all but one of the
arcs at each decision node. Such a reduced tree is called a normal form decision, and represents
what we called a “strategy” in Section 3.3. We denote the set of all normal form decisions of T
by nfd(T ).

It is unlikely that the subject can specify a single optimal normal form decision for all problems.
Nevertheless, she might be able to eliminate some unacceptable ones: a normal form solution
of a decision tree T is simply a non-empty subset of nfd(T ). A normal form operator is then a
function mapping every decision tree to a normal form solution of that tree. The two methods
we investigate are normal form operators.

As we saw in Section 3.3, the reward for a normal form decision is determined entirely by the
events that take place. That is, a normal form decision has a corresponding gamble, which we
call a normal form gamble. The set of all normal form gambles associated with a decision tree T
is denoted by gamb(T ), so gamb is an operator on trees that yields the set of all gambles induced
by normal form decisions of the tree.

We will need to know when a set of gambles can be represented by a consistent decision tree
(as defined earlier in Section 2.2):

Definition 11. Let A be any non-empty event, and let X be a set of gambles. Then the following
conditions are equivalent; if they are satisfied, we say that X is A-consistent.

(A) There is a consistent decision tree T with ev(T ) = A and gamb(T ) = X .
(B) For all r ∈ R and all X ∈ X such that X−1(r) 6= ∅, it holds that X−1(r) ∩A 6= ∅.

Proof of equivalence of (A) and (B) is fairly straightforward, whence omitted here.
The following notation proves convenient for normal form gambles at chance nodes.

Definition 12. For any events E1, . . . , En which form a partition, and any finite family of sets
of gambles X1, . . . , Xn, we define the following set of gambles:

(1)

n∑
i=1

EiXi =

{
n∑
i=1

EiXi : Xi ∈ Xi

}
4.2. Normal Form Operator Induced by a Choice Function. We can now formalize the
simple normal form method described at the start of Section 3.3. Listing all strategies corre-
sponds to finding nfd(T ). Listing their corresponding gambles corresponds to finding gamb(T ).
Then calculate opt(gamb(T )|ev(T )), and find all elements of nfd(T ) that induced these optimal
gambles. The solution is then the set of all these normal form decisions. Formally,

Definition 13. Given any choice function opt, and any decision tree T with ev(T ) 6= ∅,

normopt(T ) = {U ∈ nfd(T ) : gamb(U) ⊆ opt(gamb(T )|ev(T ))}.

The following important equality follows immediately:

(2) gamb(normopt(T )) = opt(gamb(T )|ev(T )).
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Let us demonstrate this definition on lake district problem. For any particular strategy U , say
for instance “buy the newspaper and take the waterproof only if the newspaper predicts rain”,
we can calculate its associated gamble U , which is in our instance

X = (10− c)E1S1 ⊕ (15− c)E2S1 ⊕ (5− c)E1S2 ⊕ (20− c)E2S2.

We check whether X is optimal in the set of all gambles associated with T , that is, whether
X ∈ opt(gamb(T )|ev(T )). If so, then gamb(U) = {X} ⊆ opt(gamb(T )|ev(T )) and so U ∈
normopt(T ). Otherwise, gamb(U) = {X} 6⊆ opt(gamb(T )|ev(T )) and so U 6∈ normopt(T ). This
procedure for each strategy in T will determine normopt(T ).

4.3. Normal Form Backward Induction. The operator normopt is a natural and popular
choice, but for practical or philosophical reasons one may wish to be able to find it by backward
induction. Even for an almost trivial problem such as Fig. 1 there are already six normal form
decisions. If a tree T has at least n decision nodes in every path from the root to any leaf, and
each decision node has at least two children, then there will be at least 2n normal form decisions
associated with T (and often a lot more). Working with sets of 2n gambles may be impractical
for large n, particularly for maximality and E-admissibility, so a method that may avoid applying
the choice function on a large set is necessary.

Implementation of backward induction is easy when there is a unique choice at every node,
but a choice function may not have this property, so we need to adapt the traditional approach.
The technique informally introduced in Section 3.3 is a generalization of the method of Kikuti
et al. [14], where the only difference is that we apply our choice function at all nodes, not just
decision nodes. Although the focus of Kikuti et al. is also on uncertainty models represented by
coherent lower previsions, their approach, and so our generalization, can be used for any choice
function on gambles.

The goal of our backward induction algorithm is to reach a normal form solution of T by
finding normal form solutions of subtrees of T , and using these to remove some elements of
nfd(T ) before applying opt. A formal definition requires many definitions that hinder clarity, so
in this paper we prefer a more intuitive informal approach. Rigorous treatment of our backward
induction operator can be found in [10, 11].

The algorithm moves from right to left in the tree as follows. At a subtree stN (T ), find the
set of normal form decisions nfd(T ), but remove any strategies that contain substrategies judged
non-optimal at any descendent node. For example, in Fig. 1, at N1

1 there are four normal form
decisions, but in the example the substrategy d2 was removed at N1

1
1, and d1 was removed at

N1
1
2, so the only strategy at N1

1 that is retained is d1 if S1, d2 if S2. Next, find the corresponding
gambles of all surviving normal form decisions, apply opt, and transform back to optimal normal
form decisions. Move to the next layer of nodes, and continue until the root node is reached.
This yields a set of normal form decisions at the root node, that is, the algorithm corresponds
to a normal form operator, which we call backopt.

A further example using maximality, but this time using the notation of this section, can be
found in Section 6, if further clarification is required.

In [10, 11], we found four necessary and sufficient properties on opt for backopt and normopt

to coincide for any consistent decision tree.

Property 1 (Backward conditioning property). Let A and B be events such that A∩B 6= ∅ and
A ∩ B 6= ∅, and let X be a non-empty finite A ∩ B-consistent set of gambles, with {X,Y } ⊆ X
such that AX = AY . Then X ∈ opt(X|A ∩ B) implies Y ∈ opt(X|A ∩ B) whenever there is a
non-empty finite A ∩B-consistent set of gambles Z such that, for at least one Z ∈ Z,

AX +AZ ∈ opt(AX +AZ|B).
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This property requires that, if two gambles agree on A, it is not possible for exactly one to be
optimal, conditional on any subset of A, unless there is no suitable Z.

Property 2 (Insensitivity of optimality to the omission of non-optimal elements). For any event
A 6= ∅, and any non-empty finite A-consistent sets of gambles X and Y,

opt(X|A) ⊆ Y ⊆ X ⇒ opt(Y|A) = opt(X|A).

If opt satisfies this property, then removing non-optimal elements from a set does not affect
whether or not each of the remaining elements is optimal. The property is called ‘insensitivity
to the omission of non-optimal elements’ by De Cooman and Troffaes [5], and ‘property ε’ by
Sen [32] who attributes this designation to Douglas Blair.

Property 3 (Preservation of non-optimality under the addition of elements). For any event
A 6= ∅, and any non-empty finite A-consistent sets of gambles X and Y,

Y ⊆ X ⇒ opt(Y|A) ⊇ opt(X|A) ∩ Y.

This is called ‘property α’ by Sen [32], Axiom 7 by Luce and Raiffa [19, p. 288], and ‘indepen-
dence of irrelevant alternatives’ by Radner and Marschak [24].2 It states that any gamble that
is non-optimal in a set of gambles Y is non-optimal in any set of gambles containing Y.

Properties 2 and 3 are together equivalent to the well-known property of path independence,
which can often be checked more conveniently.

Property 4. A choice function opt is path independent if, for any non-empty event A, and for
any finite family of non-empty finite A-consistent sets of gambles X1, . . . , Xn,

opt

(
n⋃
i=1

Xi

∣∣∣∣∣A
)

= opt

(
n⋃
i=1

opt(Xi|A)

∣∣∣∣∣A
)
.

Path independence appears frequently in the social choice literature. Plott [23] gives a detailed
investigation of path independence and its possible justifications. Path independence is also
equivalent to Axiom 7′ of Luce and Raiffa [19, p. 289].

Lemma 14 (Sen [32, Proposition 19]). A choice function opt satisfies Properties 2 and 3 if and
only if opt satisfies Property 4.

Property 5 (Backward mixture property). For any events A and B such that B ∩ A 6= ∅ and
B ∩ A 6= ∅, any B ∩ A-consistent gamble Z, and any non-empty finite B ∩ A-consistent set of
gambles X ,

opt
(
AX +AZ|B

)
⊆ A opt(X|A ∩B) +AZ.

Theorem 15 (Backward induction theorem). Let opt be any choice function. The following
conditions are equivalent.

(A) For any consistent decision tree T , it holds that backopt(T ) = normopt(T ).
(B) opt satisfies Properties 1, 2, 3, and 5.

5. Application to Coherent Lower Previsions

In this section we investigate which of the choice functions for coherent lower previsions satisfy
the conditions of Theorem 15(B). Some of the results are based on proofs for more general choice
functions that can be found in the Appendix.

2This is different from several other properties bearing the same name, such as that of Arrow’s Impossibility

Theorem. For further discussion, see Ray [27].
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5.1. Maximality. Maximality is a strict partial order, so Properties 2 and 3 hold, by Proposi-
tion A.1.

Proposition 16. Maximality satisfies Property 1.

Proof. We prove a stronger result. Let A be a non-empty event, X be a non-empty finite set of
A-consistent gambles, and {X,Y } ⊆ X with AX = AY . We show that, for any event B such
that A ∩B 6= ∅, X ∈ opt>P|·(X|A ∩B) implies Y ∈ opt>P|·(X|A ∩B).

If X ∈ opt>P|·(X|A∩B), then for every Z ∈ X , P (Z −X|A∩B) ≤ 0. But AX = AY implies

(A ∩B)X = (A ∩B)Y , and, by Proposition 3(i), P (Z −X|A ∩B) = P (Z − Y |A ∩B), and so it
immediately follows that Y ∈ opt>P|·(X|A ∩B). �

Proposition 17. Maximality satisfies Property 5.

Proof. Consider events A and B such that A ∩ B 6= ∅ and A ∩ B 6= ∅, a non-empty finite set
of A ∩ B-consistent gambles X , and an A ∩ B-consistent gamble Z. To establish Property 5, it
suffices to show that for any Y ∈ X ,

Y /∈ opt>P|·(X|A ∩B) =⇒ AY +AZ /∈ opt>P|·(AX ⊕AZ|B).

If Y /∈ opt>P|·(X|A ∩B) then there is an X ∈ X with P (X − Y |A ∩B) > 0. The result follows

if we show that P (AX +AZ − (AY +AZ)|B) > 0. By Proposition 3(ii)–(v),

0 = P (A(X − Y − P (X − Y |A ∩B))|B)

≤ P (A(X − Y )|B) + P (−AP (X − Y |A ∩B)|B)

= P (A(X − Y )|B)− P (AP (X − Y |A ∩B)|B)

= P (A(X − Y )|B)− P (A|B)P (X − Y |A ∩B)

where we relied on P (X − Y |A ∩B) > 0 in the last step. So, indeed

P (A(X − Y )|B) ≥ P (A|B)P (X − Y |A ∩B) > 0.

�

Corollary 18. For any consistent decision tree T , it holds that

backopt>P|·
(T ) = normopt>P|·

(T ).

Proof. Immediate, from Propositions A.1, 16, and 17, and Theorem 15. �

5.2. E-admissibility. Since E-admissibility is a union of maximality choice functions we have:

Corollary 19. For any consistent decision tree T , it holds that

backoptM(T ) = normoptM(T ).

Proof. Immediate, from Proposition A.2, Corollary 18, and Theorem 15. �

Further, from Theorem A.3, we have:

Corollary 20. For any consistent decision tree T ,

normoptM(T ) = normoptM(backopt>P|·
(T )).
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A A
X 1 1
Y 1.5 3.5
Z 0 4

P (·|B) P (·|B)
X 1 1
Y 2 3
Z 1 3

P P

BX +BZ 1 2
BY +BZ 1.5 3

Table 2. Gambles and their lower and upper previsions for Example 21.

5.3. Interval Dominance. By Proposition A.1, interval dominance satisfies Properties 2 and 3,
and it satisfies Property 1 because AX = AY implies P (X|A) = P (Y |A) and P (X|A) = P (Y |A).
We now show that interval dominance fails Property 5.

Example 21. Suppose A and B are events, and X, Y , and Z are the gambles given in Table 2.
Let M contain all mass functions P such that A and B are independent, 1/4 ≤ P (A) ≤ 3/4,
and P (B) = 1/2. Let P be the lower envelope of M.

Lower and upper previsions of relevant gambles are given in Table 2; for example,

P (BY +BZ) = max
P∈M

P (BY +BZ) = max
P∈M

P (B)P (Y |B) + P (B)P (Z|B)

=
1

2
max
P∈M

(P (Y ) + P (Z)) =
1

2
max
p∈[ 14 ,

3
4 ]

(1.5(1− p) + 3.5p+ 4p) = 3

and similar for all other gambles. Clearly, Y interval dominates X conditional on B, however,
BY +BZ does not interval dominate BX +BZ, violating Property 5.

Even though interval dominance violates Property 5, it can still be of use in backward induc-
tion. It is easily shown that (see for instance Troffaes [34])

opt>P|·(X|A) ⊆ optAP|·
(X|A).

By Theorem A.3, we therefore have:

Corollary 22. For any consistent decision tree T ,

normopt>P|·
(T ) = normopt>P|·

(backoptAP|·
(T ))

normoptM(T ) = normoptM(backoptAP|·
(T ))

It can also be shown that backoptAP|·
(T ) ⊆ normoptAP|·

(T ) for all T , so all strategies found by

backward induction will be optimal with respect to optAP|·
.

5.4. Γ-maximin. Γ-maximin fails Theorem 15(A): see for example Seidenfeld [30, Sequential
Example 1, pp. 75–77]. Since Γ-maximin is induced by an ordering, it satisfies Properties 2
and 3 by Proposition A.1. As for interval dominance, Γ-maximin satisfies Property 1. Hence, Γ-
maximin must fail Property 5. Indeed, backward induction can fail in a particularly serious way:
it can select a single gamble that is inferior to another normal form gamble. Hence, backward
induction may not find any Γ-maximin gambles.

6. The Oil Wildcatter Example

We now illustrate our algorithm using the same example as Kikuti et al. [14, Fig. 2]. Fig. 4
depicts the decision tree, with utiles in units of $10000. The subject must decide whether to drill
for oil (d2) or not (d1). Drilling costs 7 and provides a return of 0, 12, or 27 depending on the
richness of the site. The events S1 to S3 represent the different yields, with S1 being the least
profitable and S3 the most. The subject may pay 1 to test the site before deciding whether to
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Figure 4. Decision tree for the oil wildcatter.

T1 T2 T3
0.183, 0.222 0.333, 0.363 0.444, 0.454

Table 3. Unconditional lower and upper probabilities P (Ti) and P (Ti) for oil example.

T1 T2 T3
S1 0.547, 0.653 0.222, 0.333 0.111, 0.166
S2 0.222, 0.272 0.363, 0.444 0.333, 0.363
S3 0.125, 0.181 0.250, 0.363 0.471, 0.556

Table 4. Conditional lower and upper probabilities P (Si|Ti) and P (Si|Ti) for
oil example.

drill; this gives one of three results T1 to T3, where T1 is the most pessimistic and T3 the most
optimistic.

Lower and upper probabilities are given for each Ti (Table 3), and for each Si conditional
on Ti (Table 4). (Some intervals are tighter than those in Kikuti et al., since their values are
incoherent—we corrected these by natural extension [35, §3.1].)

By marginal extension [35, §6.7.2], the lower prevision of a gamble Z is then

P (Z) = P (T1P (Z|T1) + T2P (Z|T2) + T3P (Z|T3)).

Let X = −7S1+5S2+20S3, and again let T ∗∗ = stN∗∗ (T ). Since we will only be concerned with
maximality, and normal form decisions in this problem are uniquely identified by their gambles,
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(i) N1

N1
1

N1
1
1

{−1}d1

{X − 1}d2T1

N1
1
2

{−1}d1

{X − 1}d2
T2

N1
1
3

{−1}d1

{X − 1}d2

T
3

d T

N12

{0}d1

{X}d2

d
T

(ii) N1

N1
1

opt({−1, X − 1}|T1) = {−1, X − 1}T1

opt({−1, X − 1}|T2) = {X − 1}
T2

opt({−1, X − 1}|T3) = {X − 1}
T3

dT

opt({0, X}) = {X}d
T

(iii) N1

opt({T1(−1) + T2(X − 1) + T3(X − 1), T1(X − 1) + T2(X − 1) + T3(X − 1)}) = {(T2 + T3)X − 1, X − 1}dT

{X}d
T

(iv) opt({(T2 + T3)X − 1, X − 1, X}) = {X}

Figure 5. Solving the oil wildcatter example by normal form backward induction.

we can conveniently work with gambles in this example. Therefore, we use the following notation:

opt = opt>P|· back = gamb ◦ backopt>P|·
norm = gamb ◦normopt>P|·

Fig. 5 depicts the process of backward induction described next.

(i) Of course, back(·) at the final chance nodes simply reports the gamble: back(T 1
1
1
2) =

back(T 1
2
1
2) = back(T 1

3
1
2) = {X − 1}, and back(T 12

2) = {X}.
(ii) For T 1

1
1, we must find P ((X − 1) − (−1)|T1) and P (−1 − (X − 1)|T1). These lower

previsions can be computed using Table 4 as follows: X will have lowest expected value
when the worst outcome S1 is most likely (probability 0.653) and the best outcome S3

is least likely (probability 0.125), and so the probability of S2 is 0.222. So, P (X|T1) =
−7× 0.653 + 5× 0.222 + 20× 0.125 = −0.961. Similarly, P (−X|T1) = −1.151. Neither
of these is positive, so back(T 1

1
1) = {X − 1,−1}.

For T 1
1
2, P ((X−1)−(−1)|T2) = 4.754, and therefore d2 dominates d1, so back(T 1

1
2) =

{X − 1}. Similarly, P ((X − 1)− (−1)|T3) = 10.073, so back(T 1
1
3) = {X − 1}.

For T 12, we need to find P (X − 0). By marginal extension we have

P (X) = P (T1P (X|T1) + T2P (X|T2) + T3P (X|T3))

= P (−0.961T1 + 4.754T2 + 10.073T3)

= 0.222×−0.961 + 0.334× 4.754 + 0.444× 10.073 = 5.846906.

This is greater than zero, so back(T 12) = {X}.
(iii) At T 1

1 there are two potentially optimal gambles: T1(X − 1) + T2(X − 1) + T3(X −
1) = X − 1 and T1(−1) + T2(X − 1) + T3(X − 1) = (T2 + T3)X − 1. We must find
P ((X−1)−((T2+T3)X−1)) = P (T1X) and P (((T2+T3)X−1)−(X−1)) = P (−T1X).
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Using marginal extension,

P (T1X) = P (T1P (X|T1)) = P (−0.961T1) = 0.222×−0.961 = −0.213342 < 0,

P (−XT1) = P (T1P (−X|T1)) = P (−1.151T1) = 0.222×−1.151 = −0.255522 < 0,

so back(T 1
1) = {X − 1, (T2 + T3)X − 1}.

(iv) Finally, for T , we must consider {X,X − 1, (T2 + T3)X − 1}. It is clear that P (X −
(X − 1)) = 1 > 0, so X − 1 can be eliminated. It is also clear that if a gamble does not
dominate X − 1 then is also does not dominate X, so by our calculation at T 1

1 we know
that X is maximal. We finally have

P (X − ((T2 + T3)X − 1)) = P (T1X + 1) = P (T1X) + 1 = −0.213342 + 1 > 0,

so back(T ) = {X}. So, the optimal strategy is: do not test and just drill.

We found a single maximal strategy. By Corollary 20, it is also the unique E-admissible
strategy. (Our solution differs from Kikuti et al. [14]; since they do not detail their calculations,
we could not identify why.) Of course, if the imprecision was larger, we would have found
more, but it does show that non-trivial sequential problems can give unique solutions even when
probabilities are imprecise.

In this example, the usual normal form method requires comparing 10 gambles at once. By
normal form backward induction, we only had to compare 2 gambles at once at each stage (except
at the end, where we had 3), leading us much quicker to the solution: the computational benefit
of normal form backward induction is obvious.

7. Conclusion

When solving sequential decision problems with limited knowledge, it may be impossible to
assign a probability to every event. An alternative is to use a coherent lower prevision, or,
equivalently, a closed convex set of probability mass functions. Under such a model there are
several plausible generalizations of maximizing expected utility.

Given any criterion, we considered two methods of solving decision trees: the usual normal
form, where the subject applies the criterion to the lists all strategies, and normal form backward
induction, adapted from [14]. If they coincide, backward induction helps efficiently solving trees.
If they differ, doubt is cast on the criterion’s suitability.

In Theorem 15 we identified when the two methods coincide. We then applied these results
to the choice functions for coherent lower previsions. As was already known, Γ-maximin fails
Property 5. Interval dominance fails the same condition. However, and perhaps surprisingly,
maximality and E-admissibility satisfy all conditions, in the case where lower probabilities are
non-zero. If any lower probabilities are zero, then Property 5 fails (unsurprisingly, as in this case
it already fails with precise probabilities).

When analysing choice functions, whether for lower previsions or not, usually Property 5 is
most troublesome. Failing Property 1 would involve an unnatural form of conditioning, and
path independence (Property 4) is a very natural consistency condition that one usually wants
to satisfy before even considering decision trees.

We have not argued that a normal form operator, and normopt in particular, gives the best
solution to a decision tree. A normal form solution requires a policy to be specified and adhered
to. The subject does this policy only by her own resolution: she of course can change her
policy upon reaching a decision node [29]. One might argue that a normal form solution is only
acceptable when the subject cannot change her mind (for example, if she instructs, in advance,
others to carry out the actions).

Further, many choice functions cause normopt to have undesirable properties, even when they
satisfy Properties 1, 2, 3, and 5. For example, using maximality or E-admissibility with a lower
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prevision allows the subject to choose to pay for apparently irrelevant information instead of
making an immediate decision [31], and a gamble that is optimal in a subtree may become
non-optimal in the full tree [8, 10, 11].

Moreover, normal form backward induction does not always help with computations. The
need to store, at every stage, all optimal gambles, could be a burden. Secondly, if imprecision
is large, causing only few gambles to be deleted, the set of optimal gambles at each stage will
still eventually become too large. In such situations, a form of approximation may be necessary.
Even so, we have shown that, perhaps surprisingly, the normal form can be solved exactly with
backward induction, and when either trees or imprecision are not too large, the method will be
computationally feasible.
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Appendix A. Results for General Choice Functions

This appendix details intermediate results required for the proofs in Section 3. Since the
results are applicable for choice functions that are nothing to do with coherent lower previsions,
and so may be useful for investigating other uncertainty models, we present them separately.

Proposition A.1. For each non-empty event A, let �A be any strict partial order on A-
consistent gambles. The choice function induced by these strict partial orders, that is,

opt�|·(X|A) = {X ∈ X : (∀Y ∈ X )(Y 6�A X)}

satisfies Properties 2 and 3.

Proof. By Lemma 14, it suffices to show that opt�|· is path independent. Let X1, . . . , Xn be

non-empty finite sets of A-consistent gambles, and let A be a non-empty event. Let X =
⋃n
i=1 Xi

and Z =
⋃n
i=1 opt�|·(Xi|A). We show must show that

(3) opt�|·(X|A) = opt�|·(Z|A).

By definition,

opt�|·(Z|A) = {Z ∈ Z : (∀Y ∈ Z)(Y 6�A Z)},

and, observe that, if X ∈ X but X /∈ Z, by transitivity of �A and finiteness of X , there is a
Y ∈ Z such that Y �A X. Therefore again by transitivity of �A, for any Z ∈ Z such that
X �A Z, we have Y �A Z. So,

= {Z ∈ Z : (∀Y ∈ X )(Y 6�A Z)},

and once again, by definition of Z, if X ∈ X but X /∈ Z there is a Y ∈ X such that Y �A X, so
we have

= {X ∈ X : (∀Y ∈ X )(Y 6�A X)}
= opt�|·(X|A).

�

Proposition A.2. Let {opti : i ∈ I} be a family of choice functions. For any non-empty event
A and any non-empty finite set of A-consistent gambles X , let

opt(X|A) =
⋃
i∈I

opti(X|A).

(i) If each opti satisfies Property 2, then so does opt.
(ii) If each opti satisfies Property 3, then so does opt.

(iii) If each opti satisfies Property 5, then so does opt.
(iv) If each opti satisfies Properties 1, 3, and 5, then opt satisfies Property 1.

Proof. (i). By definition of opt and by assumption, for any finite non-empty sets of gambles
X and Y such that Y ⊆ X and for any i ∈ I, opti(X|A) ⊆ opt(X|A) ⊆ Y, and therefore by
Property 2, opti(X|A) = opti(Y|A). Whence,

opt(Y|A) =
⋃
i∈I

opti(Y|A) =
⋃
i∈I

opti(X|A) = opt(X|A).
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(ii). By assumption, for any finite non-empty sets of gambles X and Y such that Y ⊆ X and
for any i ∈ I, opti(Y|A) ⊇ opti(X|A) ∩ Y. Therefore,

opt(Y|A) =
⋃
i∈I

opti(Y|A) ⊇
⋃
i∈I

(opti(X|A) ∩ Y)

= Y ∩
⋃
i∈I

opti(X|A) = opt(X|A) ∩ Y.

(iii). By assumption, for any non-empty finite set of gambles X , any gamble Z, any events A
and B such that A ∩B 6= ∅, and for any i ∈ I,

opti(AX ⊕AZ|B) ⊆ A opti(X|A ∩B)⊕AZ,

whence

opt(AX ⊕AZ|B) =
⋃
i∈I

opti(AX ⊕AZ|B)

⊆
⋃
i∈I

(A opti(X|A ∩B)⊕AZ)

= AZ ⊕A
⋃
i∈I

opti(X|A ∩B)

= AZ ⊕A opt(X|B).

(iv). Let A and B be events such that A ∩ B 6= ∅ and A ∩ B 6= ∅, Z be a non-empty finite
set of A ∩ B-consistent gambles, and X be a non-empty finite set of A ∩ B-consistent gambles
such that there is {X,Y } ⊆ X with AX = AY . Suppose that there is a Z ∈ Z such that
AX +AZ ∈ opt(AX +AZ|B).

By definition of opt, there is a j such that AX + AZ ∈ optj(AX + AZ|B). We show that
both X and Y are in optj(X|A ∩ B), and therefore are both in opt(X|A ∩ B). It follows from
Properties 3 and 5 that

optj(AX +AZ|B) ⊆ A optj(X|A ∩B) +A optj(Z|A ∩B).

Therefore, there is a V ∈ optj(X|A ∩B) with AV = AX. Finally, optj satisfies Property 1, and
therefore both X and Y must be in optj(X|A ∩B). This establishes Property 1 for opt.

�

The final result is the following: if opt1 satisfies the necessary properties, opt2 does not,
but opt1 ⊆ opt2, then we can use opt1(backopt2(·)) to find normopt1 . This could be of interest
in situations where opt2 is much more computationally efficient than opt1, and still eliminates
enough gambles to be useful.

Theorem A.3. Let opt1 and opt2 be choice functions such that opt1 satisfies Properties 1, 2,
3, and 5, and for any non-empty event A and any non-empty finite set of A-consistent gambles
X ,

opt1(X|A) ⊆ opt2(X|A).

Then, for any consistent decision tree T ,

(4) normopt1(T ) = normopt1(backopt2(T )).
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