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ABSTRACT

Using data from the COSMOS survey, we perform the first joint analysis of galaxy–galaxy weak lensing, galaxy
spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between
stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical
framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass
relation (SHMR) from z = 0.2 to z = 1. At low stellar mass, we find that halo mass scales as Mh ∝ M0.46

∗ and
that this scaling does not evolve significantly with redshift from z = 0.2 to z = 1. The slope of the SHMR rises
sharply at M∗ > 5 × 1010 M� and as a consequence, the stellar mass of a central galaxy becomes a poor tracer
of its parent halo mass. We show that the dark-to-stellar ratio, Mh/M∗, varies from low to high masses, reaching
a minimum of Mh/M∗ ∼ 27 at M∗ = 4.5 × 1010 M� and Mh = 1.2 × 1012 M�. This minimum is important
for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central
galaxy has been the most efficient. We describe the SHMR at this minimum in terms of the “pivot stellar mass,” M

piv
∗ ,

the “pivot halo mass,” M
piv
h , and the “pivot ratio,” (Mh/M∗)piv. Thanks to a homogeneous analysis of a single data

set spanning a large redshift range, we report the first detection of mass downsizing trends for both M
piv
h and M

piv
∗ .

The pivot stellar mass decreases from M
piv
∗ = 5.75±0.13×1010 M� at z = 0.88 to M

piv
∗ = 3.55±0.17×1010 M�

at z = 0.37. Intriguingly, however, the corresponding evolution of M
piv
h leaves the pivot ratio constant with redshift

at (Mh/M∗)piv ∼ 27. We use simple arguments to show how this result raises the possibility that star formation
quenching may ultimately depend on Mh/M∗ and not simply on Mh, as is commonly assumed. We show that simple
models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss
the implications of our results in the context of popular quenching models, including disk instabilities and active
galactic nucleus feedback.
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1. INTRODUCTION

A fundamental goal in observational cosmology is to
understand the link between the luminous properties of
galaxies and the dark matter halos in which they reside. From
an astrophysical perspective, measurements of the relationship
between dark matter halo mass (Mh) and galaxy observables
such as luminosity or stellar mass (M∗) are critical for under-
standing how galaxy properties and their evolution with time
are shaped by the halos that host them. Growing evidence
suggests that halos accumulate stellar mass with an efficiency
η(Mh, z) ≡ (M∗/Mh)×(ΩM/Ωb) that depends strongly on halo
mass, peaking at Mh ∼ 1012 M� and declining toward lower
and higher masses at z ∼ 0 (e.g., Mandelbaum et al. 2006b;
Conroy & Wechsler 2009; Moster et al. 2010; Behroozi et al.
2010; Guo et al. 2010; More et al. 2010). The stellar mass content
is determined by the past merging of smaller sub-components
but also by processes that regulate the conversion of gas into
stars, including the rate at which fresh material is supplied to the
halo, feedback mechanisms from supernovae, galactic winds,
and active galactic nuclei (AGNs), and environmental effects
such as ram pressure stripping, just to name a few. The global
relationship between halo mass and average stellar content—the
stellar-to-halo mass relation (SHMR)—probes the integrated
outcome of these processes and, as such, provides clues to their
physical nature and constrains both semi-analytic models (e.g.,
Bower et al. 2006; Croton et al. 2006; Somerville et al. 2008;
Zehavi et al. 2011a) and hydrodynamical simulations (Kereš
et al. 2005, 2009; Crain et al. 2009; Brooks et al. 2009; Gabor
et al. 2011; Agertz et al. 2011) that aim to disentangle the relative
contributions of such mechanisms.

From a cosmological perspective, the SHMR is vital for
determining how galaxies trace dark matter. A complete picture
of the manner in which galaxies populate dark matter halos
enhances the reconstruction of the dark matter power spectrum
from redshift surveys (Sánchez & Cole 2008; Yoo et al. 2009)
and leads to improved constraints on cosmological parameters
(Yoo et al. 2006; Zheng & Weinberg 2007; Cacciato et al. 2009).

There are currently only two observational techniques capable
of directly probing the dark matter halos of galaxies out to large
radii (above 50 kpc): galaxy–galaxy lensing (e.g., Brainerd et al.
1996; McKay et al. 2001; Hoekstra et al. 2004; Sheldon
et al. 2004, 2009; Mandelbaum et al. 2006a, 2006b; Heymans
et al. 2006a; Johnston et al. 2007; Leauthaud et al. 2010) and the
kinematics of satellite galaxies (McKay et al. 2002; Prada et al.
2003; Brainerd & Specian 2003; van den Bosch et al. 2004;
Conroy et al. 2007; Becker et al. 2007; Norberg et al. 2008;
More et al. 2009, 2010). The galaxy–galaxy lensing technique
(hereafter “g–g lensing”) uses weak gravitational lensing to
probe the gravitational potential around foreground (“lens”)
galaxies. The kinematic method uses satellite galaxies as test
particles that trace the local velocity field (and hence the local
gravitational potential).

Another popular albeit more indirect method to infer the
galaxy–dark matter connection is to measure the statistics of
galaxy clustering. The results are commonly interpreted using
the Halo Occupation Distribution (HOD) model which describes
the probability distribution P (N |Mh) that a halo of mass Mh is
host to N galaxies above some threshold in luminosity or stellar
mass (e.g., Seljak 2000; Peacock & Smith 2000; Scoccimarro
et al. 2001; Berlind & Weinberg 2002; Bullock et al. 2002;
Zehavi et al. 2002, 2005, 2011b; Zheng et al. 2005, 2007; Tinker

et al. 2007; Skibba & Sheth 2009; Brown et al. 2008; Wake et al.
2011; Foucaud et al. 2010; White et al. 2011). Variations on
the HOD approach include the conditional luminosity function
Φ(L|Mh)dL which specifies the average number of galaxies of
luminosity L ± dL/2 that reside in a halo of mass Mh (e.g.,
Yang et al. 2003; van den Bosch et al. 2003, 2007; Vale &
Ostriker 2004, 2008; Cooray 2006) and the conditional stellar
mass function (SMF) Φ(M∗|Mh)dM∗ which yields the average
number of galaxies with stellar masses in the range M∗ ± dM∗/2
as a function of host halo mass Mh (e.g., Yang et al. 2009; Moster
et al. 2010; Behroozi et al. 2010).

Finally, constraints on the SHMR have also been derived from
the so-called abundance matching technique, which assumes
that there is a monotonic correspondence between halo mass (or
circular velocity) and galaxy stellar mass (or luminosity) (e.g.,
Kravtsov et al. 2004; Vale & Ostriker 2004, 2006; Tasitsiomi
et al. 2004; Conroy & Wechsler 2009; Drory et al. 2009; Moster
et al. 2010; Behroozi et al. 2010; Guo et al. 2010).

While individual applications of the techniques described
above have provided important insight, in Leauthaud et al.
(2011b, hereafter Paper I) we take a further step by combining
separate probes into a self-consistent theoretical framework.
Specifically, our method combines measurements of g–g lens-
ing, galaxy clustering, and the galaxy SMF. Beginning with the
standard HOD formalism, we make several modifications that
enable us to (1) extract the parameters that determine the SHMR
and to (2) simultaneously fit data from multiple probes while
allowing for independent binning schemes for each probe. The
goal of the current paper is to apply the methodology devel-
oped in Paper I to observations from the COSMOS survey from
z = 0.2 to z = 1.0. This enables confident measurements of the
shape of the SHMR and its evolution with time, with important
implications for models of galaxy formation. In Paper III (Leau-
thaud et al. 2011b), we will use the HOD constraints from this
paper to probe the total stellar content of dark matter halos.

While stellar mass estimates are a key galaxy observable
in this work, it is important to highlight the uncertainties
and sometimes unknown systematic biases that affect them
and, if not treated carefully, can muddle attempts to compare
results from disparate surveys (see discussion in Behroozi et al.
2010). One of the advantages of the COSMOS data set is that
evolutionary trends can be studied within the sample using self-
consistent stellar mass estimates, making our conclusions more
robust.

The layout of this paper is as follows. The data are described in
Section 2 followed by the presentation of the g–g lensing, clus-
tering, and SMF measurements in Section 3. In the interest of
brevity, we only give a short and necessarily incomplete review
of the theoretical background in Section 4. We strongly encour-
age the reader to refer to Paper I for a complete description of
the theoretical foundations for this work. Our main results are
presented in Section 5. Finally, we discuss the results and draw
up our conclusions in Sections 6 and 7.

We assume a WMAP5 ΛCDM cosmology with Ωm = 0.258,
ΩΛ = 0.742, Ωbh

2 = 0.02273, ns = 0.963, σ8 = 0.796,
H0 = 72 km s−1 Mpc−1 (Hinshaw et al. 2009). All distances
are expressed in physical Mpc units. The letter Mh denotes
halo mass in general whereas M200b is explicitly defined
as M200b ≡ M(< r200b) = 200ρ̄ 4

3πr3
200b, where r200b is the

radius at which the mean interior density is equal to 200 times
the mean matter density (ρ̄). Stellar mass is denoted M∗ and
has been derived using a Chabrier initial mass function (IMF).
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Stellar mass scales as 1/H 2
0 . Halo mass scales as 1/H0. All

magnitudes are given on the AB system.

2. DESCRIPTION OF DATA

The COSMOS survey (Scoville et al. 2007) brings together a
broad array of panchromatic observations with imaging data
from X-ray to radio wavelengths and a large spectroscopic
follow-up program (zCOSMOS) with the Very Large Telescope
(VLT; Lilly et al. 2007). In particular, the COSMOS program
has imaged the largest contiguous area (1.64 deg2) to date with
the Hubble Space Telescope(HST) using the Advanced Camera
for Surveys (ACS) Wide Field Channel (WFC; Koekemoer et al.
2007).

2.1. The ACS Lensing Catalog

The general methodology for the construction of the COS-
MOS ACS weak lensing catalog and our shape measurement
procedure are presented in Leauthaud et al. (2007) and Rhodes
et al. (2007). In this section, we present several updates to the
pipeline that we have implemented since those publications. In
Leauthaud et al. (2007), we used a parametric correction for
the effects of charge transfer inefficiency (CTI) on galaxy shape
measurements. Instead, in this paper, we use a physically moti-
vated CTI correction scheme that operates on the raw data and
returns electrons to pixels from which they were unintentionally
dragged out during readout. This correction scheme has been
shown by Massey et al. (2010) to reduce the CTI trails by a
factor of ∼10 everywhere in the CCD and at all flux levels.

Following CTI correction in the raw images, image reg-
istration, geometric distortion, sky-subtraction, cosmic ray
rejection, and the final combination of the dithered images are
performed by the MultiDrizzle algorithm (Koekemoer et al.
2002). As described in Rhodes et al. (2007), a finer pixel scale of
0.′′03 pixel−1 was used for the final co-added images. The lensing
source catalog is constructed from 575 ACS/WFC tiles. Defects
and diffraction spikes are carefully removed, leaving a total of
1.2 × 106 objects to a limiting magnitude of IF814W = 26.5.

The next step is to measure the shapes of galaxies and to
correct them for the distortion induced by the time varying
ACS point-spread function (PSF; see Rhodes et al. 2007). We
continue to use a PSF model based on physical parameters
rather than arbitrary principal components. In Leauthaud et al.
(2007), we modeled the PSF as a multivariate polynomial in
x, y, and focus. We now fit the PSF as a function of x, y,
focus, and velocity aberration of the pointing (recorded in
CALACS headers as “VAFACTOR”). Schrabback et al. (2010)
found that VAFACTOR partially correlates with the higher-
order PSF variations, motivating our use of this quantity. In
the g–g lensing analysis presented here, the weak lensing shear
is azimuthally averaged. Thus, any effects of PSF anisotropy
cancel to leading order. Therefore, our science analysis is
insensitive to subtle differences in the PSF modeling. We
confirmed this by repeating our analysis with the independently
obtained weak lensing catalog by Schrabback et al. (2010),
which yields fully consistent results.

Finally, simulated images are used to derive the shear sus-
ceptibility factors that are necessary in order to transform
shape measurements into unbiased shear estimators (Leauthaud
et al. 2007). Representing a number density of 66 galaxies per
arcminute2, the final COSMOS weak lensing catalog contains
3.9 × 105 galaxies with accurate shape measurements.

2.2. Photometric and Spectroscopic Redshifts

We use two updated versions (v1.8 dated from 2010 July 13
and v1.7 dated from 2009 August 1) of the photometric redshifts
(hereafter photo-z’s) presented in Ilbert et al. (2009) which have
been computed with over 30 bands of multi-wavelength data. In
particular, deep Ks, J, and u∗ band data allow for a good photo-z
estimate at z > 1 via the 4000 Å break which is increasingly
shifted into the near-infrared (IR). Further details regarding the
data and the photometry can be found in Capak et al. (2007).

The photo-z catalog v1.8 has improved redshifts at z > 1
compared to v1.7. At z < 1, the difference between the
two catalogs is minor. We use catalog v1.8 for g–g lensing
measurements and v1.7 for the SMF and galaxy clustering.
Interchanging the two catalogs does not affect our results.

Photo-z’s were estimated using a χ2 template fitting method
(Le Phare; Ilbert et al. 2009) and calibrated with large spec-
troscopic samples from VLT-VIMOS (Lilly et al. 2007) and
Keck-DEIMOS. The dispersion in the photo-z’s as measured by
comparing to the spectroscopic redshifts is σΔz/(1+zspec) = 0.007
at i+

AB < 22.5, where Δz = zspec − zphot. The deep IR and
IRAC (Infrared Array Camera on the Spitzer Space Telescope)
data enable the photo-z’s to be calculated even at fainter mag-
nitudes with a reasonable accuracy of σΔz/(1+zspec) = 0.06 at
i+
AB ∼ 24 mag.

Figure 1 compares the spectroscopic and photometric red-
shifts of 8812 galaxies that belong to both the lensing source
catalog and the zCOSMOS “bright” or “faint” programs. This
figure also illustrates the sensitivity of g–g lensing signals to
photometric redshift errors. As can be seen from Figure 1, g–g
lensing signals are increasingly insensitive to photometric red-
shift errors for source galaxies at higher redshifts.

2.3. Stellar Mass Estimates

Stellar masses are estimated using the Bayesian code de-
scribed in Bundy et al. (2006) assuming a Chabrier IMF. Briefly,
an observed galaxy’s spectral energy distribution (SED) and
redshift is referenced to a grid of models constructed using
the Bruzual & Charlot (2003) synthesis code. The grid includes
models that vary in age, star formation history, dust content, and
metallicity. The assumed dust model is Charlot & Fall (2000).
At each grid point, the probability that the observed SED fits
the model is calculated, and the corresponding stellar mass to
K-band luminosity ratio and stellar mass is stored. By marginal-
izing over all parameters in the grid, the stellar mass probability
distribution is obtained. The median of this distribution is taken
as the stellar mass estimate, and the width encodes the uncer-
tainty due to degeneracies and uncertainties in the model param-
eter space (also described as “model error” in Section 4.2). The
final uncertainty on the stellar mass also includes the K-band
photometry uncertainty as well as the expected error on the lu-
minosity distance that results from the photo-z uncertainty. The
typical final uncertainty is 0.1–0.2 dex (also see Section 4.2 and
Figure 4). Systematic uncertainties also come from the choice
of stellar population templates used to fit the data as well as the
assumption of a universal IMF. To first order these will cause
global offsets in the mass estimates that will not affect compar-
isons within our sample but may impact comparisons to work
by other authors. Since the primary goal of this paper is to study
the redshift evolution of the SHMR derived from COSMOS data
alone, we do not include these systematic uncertainties in our
analysis and refer to Conroy et al. (2009) and Behroozi et al.
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Figure 1. Effects of photometric redshift errors on galaxy–galaxy lensing
signals. This figure illustrates the quality of the photometric redshifts for
source galaxies in this paper by comparing them to a combined sample of
8812 spectroscopic redshifts from the zCOSMOS “bright” and “faint” programs
for which we have applied the same selection as for source galaxies. We
emphasize that since the spectroscopic sample does not go as faint as our source
catalog, this figure is necessarily an underestimate of the true redshift errors
for the source catalog—a complete sample of faint galaxies with spectroscopic
redshift would be necessary in order to fully test the photometric redshifts.
There are three ways in which photometric redshift errors can impact g–g
lensing signals. First, any type of photometric error such that zphot < zlens
will have no effect on the signal because such objects are not included in the
background selection (bottom hashed region). Second, photometric errors such
that zphot > zlens and zspec < zlens will lead to a signal dilution (left hashed
region). Finally, photometric errors such that zphot > zlens and zspec > zlens
but zphot 	= zspec will lead to a bias in ΔΣ (the surface mass density contrast)
because Σcrit will be misestimated when transforming γ (gravitational shear)
into ΔΣ. The dotted and dashed lines indicate where photo-z errors lead to a
10% and a 20% error on ΔΣ for a lens located at z = 0.2. As can be seen, g–g
lensing signals are increasingly insensitive to photometric redshift errors for
source galaxies at higher redshifts.

(A color version of this figure is available in the online journal.)

(2010) for a broad discussion of systematic errors in stellar mass
estimates.

Following the approach in Bundy et al. (2010), we obtained
PSF-matched 3.′′0 diameter aperture photometry from the
ground-based COSMOS catalogs (filters u∗, BJ , VJ , g+, r+, i+,
z+,Ks) described in Capak et al. (2007), Ilbert et al. (2009), and
McCracken et al. (2010), after applying the photometric zero-
point offsets tabulated in Capak et al. (2007). The depth in all
bands reaches at least 25th magnitude (AB) with the Ks-band
limited to Ks < 24 mag. Unlike Drory et al. (2009), we require
Ks-band detections for all galaxies in the sample. We have found
that the mass estimates in Bundy et al. (2010) agree with those
of Drory et al. (2009) within the expected uncertainties (i.e.,
<0.2 dex). The mass estimates used in this work are slightly
different from those in Bundy et al. (2010) in that they are
based on updated redshift information (v1.7 of the photo-z cat-
alog and the latest available spectroscopic redshifts as compiled
by the COSMOS team) and use a slightly different cosmology
(H0 = 72 km s−1 Mpc−1 instead of H0 = 70 km s−1 Mpc−1).

The bins in our analysis are defined by using two estimates
of the mass completeness of the sample, as determined by the
magnitude limits Ks < 24 mag and I814W < 25 mag. The
first estimate is more conservative and comes from estimating
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Figure 2. Distribution of COSMOS galaxies as a function of redshift and stellar
mass. The completeness limit for passive galaxies is shown by the red dashed
line and for star-forming galaxies by the blue dotted line (see Section 2.3 for the
derivation of the completeness limits). The green hashed region approximately
shows the cross-over mass above which the number of red galaxies becomes
larger than the number of blue galaxies. The vertical solid dark blue lines
delineate the three redshift bins z1, z2, and z3 while the horizontal solid dark
blue lines show the binning scheme for the g–g lensing measurements.

(A color version of this figure is available in the online journal.)

the observed magnitude of a maximal M∗/L stellar population
model with solar metallicity, no dust, and a τ = 0.5 Gyr burst
of star formation that occurred at zform = 5. As a function of
redshift, the stellar mass of such a population at the point where
its observed Ks- and I814W-band flux falls below the magnitude
limits defines the mass completeness and roughly matches the
80% completeness limits determined when deeper samples are
available (Bundy et al. 2006). This redshift-dependent limit is
plotted as the dashed line in Figure 2. In practice, low-mass
galaxies exhibit more star formation and therefore have lower
M∗/L ratios than the passive template described above so we
also define a second, more liberal mass limit (i.e., lower) that
corresponds to a star-forming population. This is plotted as the
dotted line. The majority of the sample bins lie above the more
conservative limit, but the lowest mass bins are allowed to reach
the star-forming mass limit under the assumption that passive
stellar populations (potentially missed) at such low masses are
extremely rare.

3. MEASUREMENTS

3.1. Sample Selection

We use two COSMOS galaxy catalogs: the Subaru (photo-z)
catalog and the ACS (lensing) catalog. The ACS catalog
corresponds to the COSMOS area that has been imaged with
HST and covers a slightly smaller area than the Subaru catalog.
The ACS coverage of COSMOS is 1.64 deg2 and the Subaru
coverage of COSMOS is 2.3 deg2. The ACS catalog is used for
our g–g lensing measurements and for the SMFs. The Subaru
catalog is used to calculate the galaxy clustering.

Galaxies are selected with Ks < 24 mag to ensure that
stellar masses can be computed for all galaxies in the sam-
ple. Note that for the g–g lensing analysis, these cuts only apply
to the foreground lens sample. In addition to these cuts, we
also reject galaxies that are in masked areas where the photom-
etry is deemed unreliable. For this, we use the union of four
masks in the BJ , VJ , i+, and z+ (“COSMOS.B.mask,” “COS-
MOS.V.mask,” “COSMOS.ip.mask,” “COSMOS.zp.mask”).
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Table 1
Characteristics of Three Redshift Bins

zmin zmax z Median ACS Volume Subaru Volume Min M∗ N Galaxies ACSa N Galaxies Subarua

(106 Mpc3) (106 Mpc3)

0.22 0.48 0.37 0.88 1.24 108.7 M� 14956 20426
0.48 0.74 0.66 2.03 2.84 109.3 M� 15103 20068
0.74 1.0 0.88 3.13 4.39 109.8 M� 14387 18853

Note. a Numbers are quoted after stars have been removed, the selection Ks < 24 as well as the lower limit stellar mass limit has been applied, and objects in
masked areas have been removed from the catalog.

Table 2
Thresholds for the Angular Correlation Function

w bin1 w bin2 w bin3 w bin4 w bin5 w bin6

Minimum log10(M∗), z1 = [0.22, 0.48] 11.1 10.8 10.3 9.8 9.3 8.8
Minimum log10(M∗), z2 = [0.48, 0.74] 11.1 10.8 10.3 9.8 9.3 None
Minimum log10(M∗), z3 = [0.74, 1.0] 11.1 10.8 10.3 9.8 None None

For the ACS sample, star–galaxy separation is performed us-
ing the morphological classifier described in Leauthaud et al.
(2007). For the Subaru sample, we reject stars by imposing
the condition that χ2

gal − χ2
star > 0.5 where χ2

gal represents the
chi-square value of the best-fitting galaxy SED template and
χ2

star represents the chi-square value of the best-fitting stellar
SED template. In conjunction with the Ks cut, this stellar selec-
tion agrees with our ACS-based morphological classification at
the 97% level. According to our ACS morphological classifier:
2% of the objects (or 5095 objects in the ACS area) in the final
Subaru catalog are classified as stars and 0.1% of galaxies are
misclassified as stars (or 246 objects in the ACS area) so the
stellar sample reliability is 0.048.

We compute the g–g lensing, galaxy clustering, and stellar
mass in three redshift intervals: z1 = [0.22, 0.48], z2 =
[0.48, 0.74], and z3 = [0.74, 1]. For each redshift bin, we
define a lower limit on the stellar mass to ensure that all
samples are complete in terms of stellar mass. These cuts
correspond to M∗ > 108.7 M� for z1, M∗ > 109.3 M� for z2,
and M∗ > 109.8 M� for z3 (see Table 1) and are defined by the
stellar mass completeness limit at the far edge of the redshift
bin (see Figure 2). All galaxy samples used in this paper are
complete.

3.2. Stellar Mass Functions

The SMFs are calculated using the ACS catalog. As in
Bundy et al. (2010), we compute mass functions using the Vmax
technique (Schmidt 1968). We weight galaxies by the maximum
volume in which they would be detected within the Ks-band and
I814W-band limits in a given redshift interval. For each host
galaxy i in the redshift interval j, the value of V i

max is given by
the minimum redshift at which the galaxy would drop out of the
sample,

V i
max =

∫ zhigh

zlow

dΩ
dV

dz
dz, (1)

where dΩ is the solid angle subtended by the survey area and
dV/dz is the comoving volume element. The redshift limits are
given as

zhigh = min
(
zj

max, z
j

Klim
, z

j

Ilim

)
, (2)

zlow = zj
min, (3)

where the redshift interval, j, is defined by [zj
min, z

j
max] and

z
j

Klim
and z

j

Ilim
refer to the redshift (see Table 1 for the redshift

limits) at which the galaxy would still be detected below the
Ks- and I814W-band limits. We use the best-fit SED template
as determined by the stellar mass estimator to calculate these
values, thereby accounting for the k-corrections necessary to
compute Vmax values (no evolutionary correction is applied).

3.3. Galaxy Autocorrelation Function

The galaxy clustering samples are defined by a series of
stellar mass thresholds rather than bins. For galaxy clustering,
threshold samples are the most straightforward to model in the
HOD context. At small scales, the signal-to-noise ratio (S/N)
in galaxy clustering is due mostly to Poisson noise and at
large scales it is subject to sample (“cosmic”) variance. The
optimal binning scheme for clustering can be different than
that for g–g lensing. For example, massive galaxies produce
the strongest shear signals, thus a relatively small sample is
required to produce a robust measurement relative to a simple
pair-counting statistic like the two-point correlation function
whereas the inverse would be true for low-mass galaxies. The
threshold samples we employ for clustering measurements are
listed in Table 2. Except at the high-mass end where galaxies
become scarce, the binning scheme employed for the clustering
is a constant 0.5 dex in log10(M∗).

Since we do not need galaxy shape information to measure
the angular correlation function w(θ ), we are not restricted to
the ACS coverage of the COSMOS field. We therefore use the
COSMOS Subaru catalog to calculate w(θ ). For each threshold
sample we measure w(θ ) using the well-known Landy & Szalay
(1993) estimator of

w(θ ) = DD − 2DR + RR

RR
, (4)

where DD are the number of data–data pairs in a given bin of
angle θ , RR are the number of random–random pairs, and DR
are the number of data–random pairs. Data and random pairs are
normalized by the total number of galaxies and random points,
respectively. In all measurements we use 105 random points. The
distribution of the random points is taken from a combination
of four COSMOS masks (BJ , VJ , i+, and z+), thus mimicking
the angular completeness and geometry of the survey.

Because the volumes probed in each sample are small, our
clustering measurements are subject to the effect of the integral
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constraint (IC; Groth & Peebles 1977). Due to spatial fluctu-
ations in the number density of galaxies, the mean correlation
function measured from an ensemble of samples will be smaller
than the correlation function measured from a single contiguous
sample of the same volume as the sum of the ensemble sample.
This attenuation of w(θ ) becomes relevant on angular scales
significant with respect to the sample size. We estimate the
IC correction to our w(θ ) measurements through the use of
mock galaxy distributions described in Paper I and Section 4.
In practice, we do not modify the measurements for the IC but
rather adjust the theoretical models to account for the finite
sample size.

Finally, in order to compute w(θ ) from our model, we need
to know the normalized redshift distribution of the galaxy
sample, N (z) (see Equation (32) in Paper I). For this we use the
probability distribution functions of the photometric redshifts
to estimate the true N (z) for our photo-z slices. However,
the COSMOS photo-z errors are accurate enough such that in
tests we find a minimal effect when using a flat top-hat z-bin
for N (z).

3.4. Galaxy–Galaxy Lensing: From Galaxy Shapes to ΔΣ

In the weak gravitational lensing limit, the observed shape
εobs of a source galaxy is directly related to the lensing induced
shear γ according to

εobs = εint + γ, (5)

where εint is the source galaxy’s intrinsic shape that would be
observed in the absence of gravitational lensing. In our notation,
εint, εobs, and γ are spin-2 tensors. The above relationship
indicates that galaxies would be ideal tracers of the distortions
caused by gravitational lensing if the intrinsic shape εint of
each source galaxy was known a priori. However, lensing
measurements exhibit an intrinsic limitation, encoded in the
width of the ellipticity distribution of the galaxy population,
denoted here as σint, and often referred to as the “intrinsic shape
noise.” Because the intrinsic shape noise (of order σint ∼ 0.27;
Leauthaud et al. 2007) is significantly larger than γ , shears
must be estimated by averaging over a large number of source
galaxies.

Throughout this paper, the gravitational shear is noted as γ
whereas γ̃ represents our estimator of γ . The uncertainty in the
shear estimator is a combination of unavoidable intrinsic shape
noise, σint =

√
〈ε2

int〉, and of shape measurement error, σmeas:

σ 2
γ̃ = σ 2

int + σ 2
meas. (6)

We will refer to σγ̃ as “shape noise” whereas σint will be
called the “intrinsic shape noise.” The former includes shape
measurement error and will vary according to each specific
data set and shape measurement method. Averaged over the
whole COSMOS field, the weak lensing distortions represent a
negligible perturbation to Equation (6).

The derivation of our shear estimator is presented in
Leauthaud et al. (2007). We employ the RRG method (see
Rhodes et al. 2000 for further details) for galaxy shape mea-
surements. Briefly, we form γ̃ from the PSF-corrected ellipticity
according to

γ̃ = C × εobs

G
, (7)

where the shear susceptibility factor,19 G, is measured from
moments of the global distribution of εobs and other, higher-

19 Not to be confused with Newton’s constant which we have noted GN.

order shape parameters (see Equation (28) in Rhodes et al.
2000). Using a set of simulated images similar to those of Shear
TEsting Program (STEP; Heymans et al. 2006b; Massey et al.
2007) but tailored exclusively to this data set, we find that, in
order to correctly measure the input shear on COSMOS-like
images, the RRG method requires an overall calibration factor
of C = (0.86+0.07

−0.05)−1. Shear calibration factors are a generic
feature of all shape measurement algorithms. This is because no
shear measurement technique is independent of the observing
conditions and the underlying galaxy population (Massey et al.
2007; Bernstein 2010; Zhang & Komatsu 2011). Thus, it is
a common practice in weak lensing measurements to derive
survey-specific calibration factors using simulations designed
to mimic both the observing conditions and the surveyed galaxy
population.

The shear signal induced by a given foreground mass dis-
tribution on a background source galaxy will depend on the
transverse proper distance between the lens and the source and
on the redshift configuration of the lens–source system. A lens
with a projected surface mass density, Σ(r), will create a shear
that is proportional to the surface mass density contrast, ΔΣ(r):

ΔΣ(r) ≡ Σ(<r) − Σ(r) = Σcrit × γt (r). (8)

Here, Σ(<r) is the mean surface density within proper radius
r, Σ(r) is the azimuthally averaged surface density at radius r
(e.g., Miralda-Escude 1991; Wilson et al. 2001), and γt is the
tangentially projected shear. The geometry of the lens–source
system intervenes through the critical surface mass density,20

Σcrit, which depends on the angular diameter distances to the
lens (DOL), to the source (DOS), and between the lens and
source (DLS):

Σcrit = c2

4πGN

DOS

DOL DLS
, (9)

where GN represents Newton’s constant. Hence, if redshift
information is available for every lens–source pair, each estimate
of γt can be directly converted to an estimate of ΔΣ(r) which
is a more desirable quantity than γt because it depends only on
the mass distribution of the lens.

To measure ΔΣ(r) with high S/N, the lensing signal must be
stacked over many foreground lenses and background sources.
For every ith lens and jth source separated by a proper distance
rij, an estimator of the mean excess projected surface mass
density (ΔΣ̃ij ) at rij is computed according to

ΔΣ̃ij (rij ) = γ̃t,ij × Σcrit,ij , (10)

where γ̃t,ij is the tangential shear of the source relative to
the lens. The COSMOS photometric redshifts described in
Section 2.2 are used to estimate Σcrit,ij for every lens–source
pair. In order to optimize the S/N, an inverse variance weight-
ing scheme is employed when ΔΣij is summed over many
lens–source pairs. Each lens–source pair is attributed a weight
that is equal to the estimated variance of the measurement:

wij = 1

(Σcrit,ij × σγ̃ ,ij )2
. (11)

20 Note that some authors define the comoving critical surface mass density
which has an extra factor of (1 + z)−2 with respect to ours due to the use of
comoving instead of physical distances.
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ΔΣ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

ΔΣ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ΔΣ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, 〈Ncen〉 and 〈Nsat〉. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
) = log10(Mh)

= log10(M1) + β log10

(
M∗
M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ
− 1

2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 3. Illustration of the influence of M1, M∗,0, β, δ, and γ on the shape of the SHMR.

(A color version of this figure is available in the online journal.)

each parameter on the shape on the SHMR and further details
on the role of each parameter can be found in Section 2.1 of
Paper I.

In contrast to B10, we do not parameterize the redshift
evolution of this functional form. Rather, we bin the data
into three redshift bins and check for redshift evolution in the
parameters a posteriori. We also assume that Equation (13)
is only relevant for central galaxies. Following the HOD
ansatz, satellite galaxies within groups and clusters occupy
subhalos—bound, virialized halos that are contained within the
radius of a larger halo. Abundance matching models like B10
assume that the halos and subhalos of the same mass (or circular
velocity) contain galaxies of the same stellar mass, where the
subhalo mass is taken as the mass at the last time the galaxy was a
central galaxy. Here we put no such prior on the galaxy–subhalo
connection. Rather, the halo occupation of satellite galaxies is
constrained by the data.

4.2. Scatter between Stellar and Halo Mass

The measured scatter in stellar mass at fixed halo mass has an
intrinsic component (denoted σ i

log M∗ ), but also includes a stellar
mass measurement error due to redshift, photometry, and mod-
eling uncertainties (denoted σ m

log M∗ ). Ideally, we would measure
both components but unfortunately we can only constrain the
quadratic sum of these two sources of scatter. Nonetheless, given
a model for σ m

log M∗ , we could in principle extract σ i
log M∗ from

σlog M∗ .
Previous work suggests that σlog M∗ is independent of halo

mass. For example, Yang et al. (2009) find that σlog M∗ =
0.17 dex and More et al. (2009) find a scatter in luminosity
at fixed halo mass of 0.16 ± 0.04 dex. Both Moster et al.
(2010) and B10 are able to fit the Sloan Digital Sky Survey
(SDSS) galaxy SMF assuming σlog M∗ = 0.15 dex and σlog M∗ =
0.175 dex, respectively. However, these results are derived with
spectroscopic samples of galaxies. In contrast to these surveys,
we expect a larger measurement error for the COSMOS stellar
masses due to the use of photometric redshifts. In addition, since
photo-z errors increase for fainter galaxies, we might also expect
that σ m

log M∗ (and thus σlog M∗ ) will depend on M∗.
To test if the assumption that σlog M∗ is constant with M∗ has

any impact on our results, we implement two models for σlog M∗ .

In the first case (called “sig_mod1”), σlog M∗ is assumed to be
constant (this is our base-line model). In the second case (called
“sig_mod2”), we explicitly model σ m

log M∗ to reflect stellar mass
measurement errors. Note that the goal of this exercise is not
to perform a careful and thorough error analysis, but simply
to build a realistic enough model to asses whether or not an
M∗-dependent error has any strong impact on our conclusions.

For the sig_mod2 model, we consider three contributions to
the stellar mass error budget. The first is called “model error”:
this is measured by the 68% confidence interval of the mass
probability distribution determined for each galaxy by the mass
estimator. It represents the range of model templates (each with
its own M/L ratio) that provide reasonable fits to the observed
SED. This range is determined by the photometric uncertainty
in the observed SED, degeneracies in the grid of models used to
fit the data, and how well the grid of models represents the true
parameter space of observed galaxy populations as well as their
colors.22 The second term is the photo-z error, which derives
from the uncertainty in the luminosity distance owing to the
error on a given photometric redshift. The final component is the
photometric uncertainty from the observed K-band magnitude,
which translates into an uncertainty in luminosity and therefore
stellar mass. The total measurement error, σ m

log M∗ , is the sum in
quadrature of these three sources of error. The results are shown
in Figure 4 for the three redshift bins.

As detailed in Section 5, we find that our results are largely
unchanged, regardless of which form we adopt for σlog M∗ .
This can be explained as follows. Since the data are binned
by M∗, the observables are in fact sensitive to the scatter
in halo mass at fixed stellar mass, denoted σlog Mh

. Given a
model for the SHMR, σlog Mh

can be mathematically derived from
σlog M∗ . Further details on the mathematical connection between
σlog M∗and σlog Mh

can be found in Paper I. We find that the
slope of the SHMR increases steeply at M∗ > 1011 M� so that
σlog Mh

becomes quite large at the high-mass end. For example,
σlog Mh

∼ 0.46 dex at M∗ = 1011 M� and σlog Mh
∼ 0.7 dex

at M∗ = 1011.5 M�. As a result, the data are particularly

22 Model template problems, especially in the rest-frame near-IR, and
age–metallicity degeneracies may help explain the slight rise in the “model
error” contribution to the total stellar mass uncertainty for high-mass galaxies
at low redshift in Figure 4.
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Figure 4. Three sources of error that contribute to σm
log M∗ for the sig_mod2 model. At all redshifts, σm

log M∗ is dominated by model error followed by photo-z error and
finally by K-band magnitude error. The rise in the total error at high masses in the low-z bin is caused by the model error term. This is likely a result of degeneracies
and template errors in the parameter space of models that provide reasonable fits to the early-type SEDs which dominate the high-mass end at low redshift. Indeed,
the estimated stellar mass probability distribution functions at high mass in the low-z bin tend to show more bi-modality. The difference in error across the full mass
range from this effect is small however, corresponding to only 0.03 dex.

(A color version of this figure is available in the online journal.)

sensitive to σlog M∗at large M∗ but not very sensitive to σlog M∗at
low M∗. Therefore, accounting for the mass dependence of
σlog M∗has little impact on the results because the constraints
on σlog M∗mainly originate from high-mass galaxies anyway.

Finally, we note that our derived values for the parameters
of the SHMR should be independent of σlog M∗ (we will show
that σlog M∗ is not largely degenerate with any of the other
nine parameters in Section 5). The observables (g–g lensing,
clustering, and SMF) do themselves depend on σlog M∗but since
we account for σlog M∗ in the model, the extracted SHMR should
reflect the true underlying physical relationship between halo
and stellar mass (this however would not be the case if one were
to neglect σlog M∗ ). In other terms, our model fully accounts for
Eddington bias in all three observables (also see discussion in
Paper I).

4.3. Parameters in the Model

To model the central occupation function, we use five free
parameters (M1,M∗,0, β, δ, γ ) to model fshmr and we leave
σlog M∗ as an additional free parameter. As described in Paper I,
the central occupation function for a sample of galaxies more
massive than Mt1

∗ (where Mt1
∗ represents some threshold in M∗)

is expressed as

〈Ncen(Mh|Mt1
∗ )〉

= 1

2

[
1 − erf

(
log10(Mt1

∗ ) − log10(fshmr(Mh))√
2σlog M∗

)]
. (14)

Our model also has an additional five parameters that are
necessary to model the satellite occupation function, 〈Nsat〉. For
a set of galaxies more massive than threshold Mt

∗, 〈Nsat〉 is

〈Nsat(Mh|Mt
∗)〉 = 〈Ncen(Mh|Mt

∗)〉
(

Mh

Msat

)αsat

exp

(−Mcut

Mh

)
.

(15)
The free parameters that determine satellite occupation as a
function of stellar mass are βsat, Bsat, βcut, Bcut, and αsat. The
first two parameters, βsat and Bsat, determine the amplitude of
〈Nsat〉. The second two parameters, βcut and Bcut, set the scale

of the exponential cutoff. These parameters enter into 〈Nsat〉 as

Msat

1012 M�
= Bsat

(
f −1

shmr(Mt1∗ )

1012 M�

)βsat

, (16)

and

Mcut

1012 M�
= Bcut

(
f −1

shmr(Mt1∗ )

1012 M�

)βcut

. (17)

Finally, αsat represents the power-law slope of the satellite mean
occupation function. We set αsat = 1 for all samples which
should be a good choice because the theoretical expectation is
that the number of sub-halos above a given mass scales linearly
with halo mass (Kravtsov et al. 2004; Conroy et al. 2006; Moster
et al. 2010; Tinker et al. 2010). Results from group catalogs also
indicate that αsat ∼ 1 (Collister & Lahav 2005; Yang et al. 2009).
Previous HOD analyses of clustering results at varying redshifts
also vary little from a value of unity (Zehavi et al. 2005, 2011b;
Zheng et al. 2007; van den Bosch et al. 2007; Tinker et al. 2007).

In total, our model contains ten free parameters and one fixed
parameter (αsat). A summary and description of these parameters
can be found in Table 4 and also in Paper I.

4.4. Covariance Matrices

The COSMOS survey covers a relatively small volume and
therefore sample variance effects must be taken into account.
The volumes probed in the three redshift bins are given in
Table 1 and vary from 0.88 × 106 Mpc3 for the ACS region in
z1 (0.22 < z < 0.48) to 4.39 × 106 Mpc3 for the Subaru region
in z3 (0.74 < z < 1.0). The volumes sampled by COSMOS are
too small to obtain an accurate estimate of the sample variance
from the data itself.

A series of mock catalogs are used to calculate the covari-
ance matrices for all three observables. Details regarding the
construction of these mocks can be found in Paper I. Briefly,
COSMOS-like mocks are created from a single simulation
(named “Consuelo”) 420 h−1 Mpc on a side, resolved with
14003 particles, and a particle mass of 1.87 × 109 h−1M�.23

This simulation can robustly resolve halos with masses above

23 In this paragraph, numbers are quoted for H0 = 100 h km s−1 Mpc−1.
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Table 4
Parameters in Model

Parameter Unit Description 〈Ncen〉 or 〈Nsat〉 Free/Fixed

M1 M� Characteristic halo mass in the SHMR 〈Ncen〉 Free
M∗,0 M� Characteristic stellar mass in the SHMR 〈Ncen〉 Free
β None Low-mass slope in the SHMR 〈Ncen〉 Free
δ None Controls high-mass slope in the SHMR 〈Ncen〉 Free
γ None Controls the transition regime in the SHMR 〈Ncen〉 Free
σlog M∗ dex Log-normal scatter in stellar mass at fixed halo mass 〈Ncen〉 Free
βsat None Slope of the scaling of Msat 〈Nsat〉 Free
Bsat None Normalization of the scaling of Msat 〈Nsat〉 Free
βcut None Slope of the scaling of Mcut 〈Nsat〉 Free
Bcut None Normalization of the scaling of Mcut 〈Nsat〉 Free
αsat None Power-law slope of the satellite occupation function 〈Nsat〉 Fixed at 1

∼1011 h−1M� and is part of the Las Damas suite24 (J. McBride
et al., in preparation). We create mocks for the three redshift in-
tervals: z1 = [0.22, 0.48], z2 = [0.48, 0.74], and z3 = [0.74, 1].
For each redshift interval, we construct a series of mocks cre-
ated from random lines of sight through the simulation volume
that have the same area as COSMOS and the same comoving
length for the given redshift slice. This yields 405 independent
mocks for the z1 bin, 172 mocks for the z2 bin, and 109 mocks
for the z3 bin. For each redshift bin, mocks are created from the
simulation output at the median redshift of the bin (see Table 1).

We converge on the mocks used for estimating errors using
an iterative method. To begin with, we find an initial best-fit
model to the data, without using any covariance matrices. This
initial fit is used to populate the mocks and to create a first
set of covariance matrices. We then re-fit the data using these
covariance matrices and use the best-fit HOD models to create
our final covariance matrices. All results presented here use this
final set of covariance matrices.

5. RESULTS

We now present the results of fitting the model described in
Paper I to the observed COSMOS g–g lensing, clustering, and
SMFs.

5.1. Constraining the Model

In order to fit the model to the data, we minimize

χ2
tot = χ2

ΦSMF
+

∑
i

χ2
ΔΣ,i +

∑
j

χ2
w(θ),j , (18)

where the sum over i and j indicates summation over the different
stellar mass bins and thresholds, respectively. For the SMF and
each stellar mass sample in w(θ ) and ΔΣ, χ2 is calculated by

χ2 =
∑
n,l

(xn − yn) C−1
nl (xl − yl) , (19)

where xn is the model calculation of the quantity for data point n,
yn is the measurement, and C−1 is the inversion of the covariance
matrix.

To obtain the posterior probability distributions for the
parameter set (M1, M∗,0, β, δ, γ , σlog M∗ , βsat, Bsat, βcut, Bcut), we
implement a Markov Chain Monte Carlo (MCMC) algorithm as
follows.

24 Further details regarding this simulation can be found at
http://lss.phy.vanderbilt.edu/lasdamas/simulations.html

1. We sample the region of interest around the best fit by
initializing all chains close to the minimum χ2 solution
with varying initial random spreads.

2. We apply conservative limits on all 10 parameters. As
shown in Figure 8, the recovered posterior distributions
are independent of these limits.

3. The covariance matrix is updated for the first 3000 elements
in the chain, and then held fixed for the remainder of the
chain.

4. We run six chains per case, with ∼ 40,000 steps. We discard
all elements before the covariance matrix is constant (the
first 3000), leaving ∼37,000 elements per chain.

5. We use the GetDist package provided with CosmoMC
(Lewis & Bridle 2002) for computing convergence diag-
nostics. The chains are tested for convergence and mixing
with the Gelman–Rubin criterion (Gelman & Rubin 1992;
Gilks et al. 1996). We impose a limit on the worst R − 1
statistic of R−1 < 0.01 and observe that for all cases under
study the mean and marginalized posterior distributions are
well constrained.

6. We use GetDist output statistics to estimate confidence
limits on all parameters.

5.2. Fits to the Data

Figures 5–7 show the best-fit models for each of the three
redshift bins for the galaxy clustering, the g–g lensing, and the
SMF. The upper panels show the angular correlation function
w(θ ) for stellar mass threshold samples. The middle right panel
shows the COSMOS SMF which is measured for all galaxies
with M∗ > 108.7 M� for z1, M∗ > 109.3 M� for z2, and
M∗ > 109.8 M� for z3. The dotted blue line shows the SMF
of satellite galaxies from our model. The lower panels show
the g–g lensing signals for the stellar mass bins defined in
Table 3. When looking at Figures 5–7, one must keep in mind
that the data points are correlated (see Paper I for the covariance
matrices) and so it is difficult to evaluate “by eye” whether or
not the fits are adequate. The reduced χ2 for the fits are 1.7, 1.6,
and 1.9 for z1, z2, and z3, respectively.

For our z1 sample, we have compared the COSMOS mass
function with previously published mass functions from SDSS
(Li & White 2009; Baldry et al. 2008; Panter et al. 2007).
Because of the use of photometric redshifts in COSMOS, we
expect a larger stellar mass measurement error which should
cause Eddington bias and lead to an inflated observed SMF at
the high-mass end in COSMOS compared to SDSS. A more
in-depth comparison of the mass functions is discussed further
in Section 5.6.
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Figure 5. Best-fit model for the z1 (0.22 < z < 0.48) redshift bin (blue solid line). Panels (a)–(f): amplitude of the angular correlation function w as a function of
angular separation θ (in arcseconds) in stellar mass thresholds. Note that in this redshift bin, the amplitude of w at large separations is artificially deflated by integral
constraint (but this is accounted for in the fitted model). Panel (g): COSMOS SMF for M∗ > 108.7 M� (completeness limit for this redshift bin). For reference, in
panel (f), we also show the SDSS mass functions from Li & White (2009) (triple Schechter fit, black dashed line), Baldry et al. (2008) (green dash-dotted line),
and from Panter et al. (2007) (orange, dash-dotted line). The dotted blue line in panel (g) shows the SMF of satellite galaxies for the best-fit model. Panels (h)–(n):
galaxy–galaxy lensing signal in stellar mass bins. Note that in panel (m), there is a negative data point represented by a gray square (this can occur due to noise and is
not a concern). The lensing signal is decomposed into four components: the baryonic term (red dotted line), the central one-halo term (green dashed line), the satellite
one-halo term (orange dash-dotted), and the two-halo term (gray triple-dot-dashed line).

(A color version of this figure is available in the online journal.)

5.3. Parameter Constraints and Redshift Evolution

Table 5 gives the best-fit values from GetDist for all
10 parameters and for the three redshift bins. Figure 8 shows
the one-dimensional and two-dimensional joint marginalized
constraints on the parameters for the z2 bin. All of the parameters
have well-behaved, uni-modal distributions. In the interest of

brevity, we have not included equivalent figures for z1 and z3 but
they are similar to Figure 8. All parameters are well constrained
in the three redshift bins.

Table 5 lists the best-fit values for sig_mod1 where we have
assumed that σlog M∗ is constant and for sig_mod2 where we have
explicitly accounted for stellar mass-dependent errors. We find
no strong difference in our results, regardless of which model we
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Figure 6. Same as Figure 5 but for the second redshift bin, z2. Panels (a)–(e): angular correlation function. The angular correlation function is less affected by
integral constraint in this redshift bin since the volume probed is 2.3 times larger than z1. Panel (f): COSMOS SMF for M∗ > 109.3 M�. The dotted blue line in
panel (f) shows the SMF of satellite galaxies for the best-fit model. Panels (g)–(m): galaxy–galaxy lensing signal.

(A color version of this figure is available in the online journal.)

adopt. We conclude that our results are robust to the effects of
mass-dependent scatter. In the sig_mod2 case, we model σ m

log M∗
and assume that σlog M∗ is the sum in quadrature of σ i

log M∗ (which
is assumed to be constant) and σ m

log M∗ . Therefore, the quantity
that we actually fit for in the sig_mod2 case is σ i

log M∗ (whereas in
sig_mod1 we fit for σlog M∗ ). This is why, as expected, the best-
fit scatter in Table 5 is slightly lower for sig_mod2 compared
to sig_mod1. Note that we are not claiming to actually extract
meaningful values for the intrinsic scatter in stellar mass at fixed
halo mass. To do so would require a more thorough error analysis
which is beyond the scope of this paper. Overall, our conclusions

regarding σlog M∗ are twofold. First, we can safely assume
that σlog M∗ is constant and ignore any mass-dependent effects
induced by measurement error. This is due to the fact that all
three observables are primarily sensitive to the effects of σlog M∗
at large M∗ where the slope of the SHMR increases sharply.
Similar conclusions were reached by B10 who find that the
effects of scatter are insignificant below M∗ = 1010.5 M� where
the slope of the SHMR is not steep enough to have a significant
impact. Second, we find that σlog M∗ ∼ 0.23±0.03 dex, in broad
agreement with previous results. For example, B10 estimate that
σm

log M∗ = 0.07 dex and σ i
log M∗ = 0.16 dex, resulting in a total
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Figure 7. Same as Figure 5 but for the third redshift bin, z3. Panels (a)–(d): angular correlation function. The angular correlation function is less affected by
integral constraint in this redshift bin since the volume probed is five times larger than z1. Panel (e): COSMOS SMF for M∗ > 109.8 M�. The dotted blue line in
panel (e) shows the SMF of satellite galaxies for the best-fit model. Panels (f)–(k): galaxy–galaxy lensing signal.

(A color version of this figure is available in the online journal.)

scatter of σlog M∗ = 0.175 dex (their total scatter is lower than
ours as expected because we have a larger σ m

log M∗ component).
Figure 9 shows the measured redshift evolution for all

10 parameters. Previous work on this topic has been strongly
limited by systematic differences in stellar mass estimates
between low- and high-z surveys. The main factors that con-
tribute to this systematic uncertainty arise from the choice of an
IMF, a stellar population synthesis (SPS) model, a dust model,
and a population history model (estimates for the magnitude of
each effect can be found in B10). According to B10, the total
systematic uncertainty of stellar mass estimates (excluding IMF
uncertainties) is of order 0.25 dex. In addition, the choice of an

IMF results in another 0.25 dex uncertainty. We stress that the
results in this paper have been derived in a homogeneous fashion
from high to low redshift. Our conclusions regarding redshift
evolution should thus be more robust than those from work that
combine results from distinct low- and high-z surveys. While we
believe that a homogeneous analysis globally reduces the sys-
tematic errors associated with redshift trends, we should note
that our results might still be affected at some level by redshift-
dependence systematic errors in stellar mass estimators. These
could be caused, for example, by a redshift evolution of the IMF.
Currently, however, the magnitude of such redshift-dependence
systematic errors is very poorly known. For this reason, we do
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(A color version of this figure is available in the online journal.)

not discuss such errors further in this paper, however, this is
clearly an issue that requires further investigation.

The most striking result from Figure 9 is the redshift evolution
in the two parameters M1 and M∗,0. This is one of the major
results of this paper which we will discuss in more detail in
the following section. Apart from these two parameters, there
is marginal evidence for some evolution in γ and Bsat. No
strong evolution is detected in the remaining six parameters.
It is interesting to note that β (which controls the low-mass
slope of the SHMR) remains constant at β ∼ 0.46. We will
provide an interpretation of this result in the discussion section.

5.4. The SHMR from z = 0 to z = 1

Figure 10 shows the best-fit SHMR for z1 compared to a vari-
ety of low-redshift constraints from weak lensing (Mandelbaum

et al. 2006b; Leauthaud et al. 2010; Hoekstra 2007), abundance
matching (Moster et al. 2010; Behroozi et al. 2010), satellite
kinematics (Conroy et al. 2007; More et al. 2010), and the
Tully–Fisher relation (Geha et al. 2006; Pizagno 2006; Springob
et al. 2005; Blanton et al. 2008) (see Section 5.5 for a more in-
depth comparison). Most of the data are in broad agreement and
show clear evidence for a variation in the dark-to-stellar mass
ratio with a minimum of Mh/M∗ ∼ 27 at M∗ ∼ 4.5 × 1010 M�
and Mh ∼ 1.2 × 1012 M�. As demonstrated by B10, however,
meaningful and detailed comparisons between various data sets
are hampered by systematic uncertainties in stellar mass esti-
mates. For this reason, we will mainly focus in what follows on
the conclusions that can be drawn by inter-comparing the three
COSMOS redshift bins.

At low stellar mass, Mh scales as Mh ∝ (M∗)0.46 and this
scaling does not evolve significantly with redshift from z = 0.2
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(A color version of this figure is available in the online journal.)

Table 5
Best-fit Parameters for the Three Redshift Bins

Parameter z1 = [0.22, 0.48] z2 = [0.48, 0.74] z3 = [0.74, 1]

sig_mod1

log10(M1) 12.520 ± 0.037 12.725 ± 0.032 12.722 ± 0.027
log10(M∗,0) 10.916 ± 0.020 11.038 ± 0.019 11.100 ± 0.018
β 0.457 ± 0.009 0.466 ± 0.009 0.470 ± 0.008
δ 0.566 ± 0.086 0.61 ± 0.13 0.393 ± 0.088
γ 1.53 ± 0.18 1.95 ± 0.25 2.51 ± 0.25
σlog M∗ 0.206 ± 0.031 0.249 ± 0.019 0.227 ± 0.020
Bcut 1.47 ± 0.73 1.65 ± 0.65 2.46 ± 0.53
Bsat 10.62 ± 0.87 9.04 ± 0.81 8.72 ± 0.53
βcut −0.13 ± 0.28 0.59 ± 0.28 0.57 ± 0.20
βsat 0.859 ± 0.038 0.740 ± 0.059 0.863 ± 0.053

sig_mod2

log10(M1) 12.518 ± 0.038 12.724 ± 0.033 12.726 ± 0.028
log10(M∗,0) 10.917 ± 0.020 11.038 ± 0.019 11.100 ± 0.017
β 0.456 ± 0.009 0.466 ± 0.009 0.470 ± 0.008
δ 0.582 ± 0.083 0.62 ± 0.12 0.47 ± 0.10
γ 1.48 ± 0.17 1.93 ± 0.25 2.38 ± 0.24
σ i

log M∗
a 0.192 ± 0.031 0.245 ± 0.019 0.220 ± 0.019

Bcut 1.52 ± 0.79 1.69 ± 0.65 2.57 ± 0.56
Bsat 10.69 ± 0.89 9.01 ± 0.81 8.66 ± 0.53
βcut −0.11 ± 0.29 0.60 ± 0.27 0.58 ± 0.20
βsat 0.860 ± 0.039 0.740 ± 0.059 0.863 ± 0.053

Note. a In the sig_mod2 case we fit for σ i
log M∗ whereas in the sig_mod1 case

we fit for σlog M∗ .

to z = 1. At high stellar mass, the SHMR rises sharply at
M∗ > 1010.5 M� as a result of which σlog Mh

(the scatter in halo
mass at fixed stellar mass) also increases and M∗ is clearly
no longer a good tracer of halo mass. For example, a galaxy
with M∗ ∼ 1011.3 M� may be the central galaxy of group with
Mh ∼ 1013–1014 M� or may also be the central galaxy of a
cluster with Mh > 1015 M�.

A quantity that is of particular interest is the mass at which the
ratio Mh/M∗ reaches a minimum. This minimum is noteworthy
for models of galaxy formation because it marks the mass at

which the accumulated stellar growth of the central galaxy
has been the most efficient. We describe the SHMR at this
minimum in terms of the “pivot stellar mass,” M

piv
∗ , the “pivot

halo mass,” M
piv
h , and the “pivot ratio,” (Mh/M∗)piv. Note that

M
piv
∗ and M

piv
h are not simply equal to M1 and M∗,0. Indeed, the

mathematical formulation of the SHMR is such that the pivot
masses depend on all five parameters. The three parameters that
have the strongest effect on the pivot masses are M1, M∗,0, and
γ (see Paper I).

Figure 11 shows the redshift evolution of the SHMR. Three
points are of particular interest in this figure. First, we detect no
strong redshift evolution in the low-mass slope of the SHMR
(M∗ < 1010.2 M�). Indeed, as highlighted in the previous
section already, β is remarkably constant out to z = 1. In
Paper I, we have shown that β regulates the low-mass slope
of the SMF so in other terms, we could also state that the
faint end slope of the SMF shows remarkably little redshift
evolution. We do however find that the amplitude of the low-
mass (M∗ < 1010.2M�) SHMR was higher at earlier times so
that galaxies at fixed stellar mass live in more massive halos
at earlier epochs. We will return to this result in the discussion
section.

Second, we detect a strong redshift evolution in M
piv
∗ and

M
piv
h which is shown more explicitly in Figure 12. The detected

evolution is such that both the halo mass and the stellar
mass for which the accumulated stellar growth of the central
galaxy has been the most efficient are smaller at late times
than at earlier times. This trend is a manifestation of at least
one meaning of the term “downsizing” (Cowie et al. 1996;
Brinchmann & Ellis 2000; Juneau et al. 2005). Originally,
the term downsizing referred to the notion that the maximum
K-band luminosity of galaxies above a specific star formation
rate (SSFR) threshold decreases with time (Cowie et al. 1996).
Since then, downsizing has been widely employed to more
generally describe the behavior in which a certain parameter
that regulates galaxy formation decreases with time (for recent
discussions on downsizing see Fontanot et al. 2009 and Conroy
& Wechsler 2009). Our results show strong evidence for
downsizing in both the pivot halo mass and the pivot stellar
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Figure 10. Top panel: inferred SHMR in the z1 redshift bin compared to other low-redshift measurements from weak lensing (WL), abundance matching (AM),
satellite kinematics (SK), and the Tully–Fisher relation (TF). The COSMOS z1 results are shown by the solid dark blue line and the shaded gray region represents
the 1σ error on the SHMR. This SHMR represents 〈log10(M∗(Mh))〉. With the exception of Conroy et al. (2007), all data points either use or have been converted
to this same averaging system. Overall, there is a broad agreement between various probes. Detailed comparisons between various data sets, however, are limited
by systematic differences in stellar mass estimates due to varying assumptions (e.g., star formation histories, extinction laws, stellar population models). Bottom
panel: dark-to-stellar mass ratio as a function of stellar mass. We observe a clear variation in M200b/M∗ with M200b/M∗ reaching a minimum of Mh/M∗ ∼ 27 at
M∗ ∼ 4.5 × 1010 M� and M200b ∼ 1.2 × 1012 M�. The dark-to-stellar mass ratio rises sharply at M∗ > 5 × 1010 M� so that a cluster of halo mass M200b ∼ 1015 M�
will reach a ratio of M200b/M∗ ∼ 2000. Note that this ratio only refers to the ratio between the halo mass and the stellar mass of the central galaxy. For example, in
the case of clusters, we are comparing the ratio of the cluster halo mass to stellar mass of the central brightest cluster galaxy (BCG).

(A color version of this figure is available in the online journal.)

mass. We have already remarked in the previous section that a
strong evolution in M1 and M∗,0 is seen in Figure 9. Although
these two parameters are not strictly equal to M

piv
∗ and M

piv
h ,

they do have a strong impact on the location of the pivot
masses. Thus, the evolution seen in M1 and M∗,0 is directly
related to the observed downsizing behavior in the pivot masses
that is apparent in Figures 11 and 12. The pivot stellar mass
evolves from M

piv
∗ = 5.75 ± 0.13 × 1010 M� at z = 0.88 to

M
piv
∗ = 3.55 ± 0.17 × 1010 M� at z = 0.37 with an evolution

detected at 10σ . We note that all errors have been derived by
marginalizing over all other parameters.

The evolution in M
piv
∗ varies smoothly in the three redshift

bins, however the evolution in M
piv
h is less smooth, in particular

in the z2 bin. We suggest that M
piv
h is more sensitive to sample

variance than M
piv
∗ . Indeed, the first-order effect of sample

variance is to change the normalization of the SMF (see Paper I);
this will directly affect M1 and thus M

piv
h . In summary: M

piv
h is

sensitive to sample variance between redshift bins whereas M
piv
∗

is sensitive to systematic errors in stellar mass measurements
between redshift bins.

Finally, at high masses (M∗ > 1011 M�) there is an interesting
hint that the amplitude of the SHMR is decreasing at higher
redshifts, but we lack the statistics for a clear detection, mainly
due to the small volume probed by COSMOS.

5.5. Comparison with Previous Work

Figure 10 compares our z1 SHMR to previous work on this
topic at low redshift. The general picture that emerges from
Figure 10 is one of remarkable broad agreement between various
methods on the overall shape of the SHMR. In detail, however,
meaningful comparison between various surveys is severely
limited by systematic differences in stellar mass estimates
(∼0.25 dex between different surveys). For this reason, we
mainly focus on qualitative comparisons in this section. All
results have been adjusted to our assumed value of H0 =
72 km s−1 Mpc−1 and unless stated otherwise, halo masses are
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Figure 11. Left panel: redshift evolution in the SHMR. Because the COSMOS results have been derived in a homogeneous fashion, we can inter-compare the three
COSMOS redshift bins. The low-mass slope of the SHMR remains constant with β ∼ 0.46. We detect a clear evolution in M

piv
∗ and M

piv
h which are respectively the

stellar and halo mass at which M200b/M∗ reaches a minimum (see the right panel). At high masses, there is an interesting hint that the amplitude of the SHMR is
decreasing at higher redshifts, but we lack the statistics to make a clear detection, mainly due to the small volume probed by COSMOS. We have also plotted the
SHMR reported by B10. However, caution must be taken when making a direct comparison between COSMOS and B10 because our stellar masses have been derived
under different assumptions. According to B10, the level of systematic uncertainty in stellar masses is of order 0.25 dex. Given this 0.25 dex systematic uncertainty, we
are in broad agreement with B10 but a direct comparison would require a more homogeneous analysis between COSMOS and SDSS. Right panel: redshift evolution
in M200b/M∗. Both M

piv
∗ and M

piv
h exhibit downsizing trends, decreasing at later epochs. This effect is shown more explicitly in Figure 12.

(A color version of this figure is available in the online journal.)

converted to M200b assuming a Navarro–Frenk–White (NFW)
profile and a Muñoz-Cuartas et al. (2011) mass–concentration
relation for a WMAP5 cosmology when necessary. All results
quoted here assume either a Kroupa or a Chabrier IMF. Since
the systematic shift in M∗ between these two IMFs is small
(∼0.05 dex), we do not adjust for this difference. We also do not
attempt to correct for differences in the assumed cosmological
model.

5.5.1. Comparison with Previous Work: Low Redshift

Mandelbaum et al. (2006a) have used g–g lensing in the
SDSS to measure halo masses for lens galaxies at z ∼ 0.1.
Since Mandelbaum et al. (2006a) only present their results as a
function of both M∗ and color, the data points in Figure 10
have been re-computed as a function of M∗ only (Rachel
Mandelbaum 2011, private communication). Except perhaps for
one data point at low M∗, these results are in good agreement
with ours.

At high masses, an alternative method to probe the central
SHMR is to directly compare the halo masses of groups and
clusters of galaxies to the masses of their central galaxies.
Since we are primarily interested in Φc(M∗|Mh), it is critical,
as much as possible, to use halo mass selected samples of
groups and clusters for this type of comparison. Using samples
selected on the basis of the stellar mass of the central galaxy,
for example, would result in biased conclusions. In Leauthaud
et al. (2010), we presented a sample of X-ray groups (M200b ∼
1013–1014 M�) in COSMOS for which we have calibrated the
relationship between halo mass and X-ray luminosity (LX) using
g–g lensing. The expected scatter in halo mass at fixed LX is of
order 0.13 dex so the sample presented in Leauthaud et al. (2010)
is halo mass selected to a good approximation. In parallel,
George et al. 2011 and M. R. George et al. (in preparation)
have constructed an algorithm to identify the central galaxies

of these groups and have used the weak lensing signal itself to
optimize the algorithm by maximizing the weak lensing signal
at small radial separations from the central galaxy. The gray
squares in Figure 10 report the stellar mass of the central galaxy
versus Mh for groups at 0.22 < z < 0.48 and with a high-quality
flag. These data points are directly comparable to ours since we
have used exactly the same stellar masses and confirm that our
results are consistent with Leauthaud et al. (2010).

We present a similar exercise for a sample of X-ray luminous
clusters (A68, A209, A267, A383, A963, A1689, A1763,
A2218, A2390, A2219) from Hoekstra (2007) with weak lensing
masses from Mahdavi et al. (2008). The central galaxies of
these clusters have been studied in detail by Bildfell et al.
(2008). Using the same stellar mass code and assumptions as
in this paper, we have computed stellar masses for the central
cluster galaxies using a compilation of optical data provided
by Chris Bildfell. The results are shown by the red asterisk
points in Figure 10. Unfortunately, these mass estimates are
based on just two optical bands (B-band and R-band) and as
such will have larger uncertainties than the COSMOS stellar
masses used in this paper which are constrained with many
more filters and normalized to a near-IR luminosity. We estimate
that an additional 0.25 dex stellar mass uncertainty should be
included when interpreting these data points, which may account
for their scatter in stellar mass seen in Figure 10. With this
cautionary note, plus the additional caveat that this sample is not
as homogeneously selected as the groups from Leauthaud et al.
(2010), and that COSMOS is too small to probe overdensities
of these masses, the results are nonetheless in good agreement
with the extrapolation of our z1 SHMR.

Both Moster et al. (2010) and B10 have presented constraints
on the SHMR and its redshift evolution by using the abundance
matching technique. A more detailed comparison with their
work is presented in Sections 5.5.3 and 5.5.4.
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Conroy et al. (2007) have used the kinematics of satellite
galaxies in SDSS and DEEP2 (Davis et al. 2003) to probe the
SHMR at z ∼ 0.06 and at z ∼ 0.8. Their low-redshift results
are shown by the blue diamonds in Figure 10. A 30% downward
correction to halo masses has been applied due to incomplete-
ness effects as described in their paper. In addition to systematic
differences in stellar mass estimates, direct comparisons with
our results are further complicated by the fact that our model
describes 〈log10(M∗(Mh))〉 whereas the Conroy et al. (2007)
results represent 〈Mh(M∗)〉. The two averaging systems will
yield different results: 〈Mh(M∗)〉 will be increasingly biased
low with respect to 〈log10(M∗(Mh))〉 with increasing σlog M∗ and
for steeper values of the slope of the SHMR.

More et al. (2010) have used SDSS data to probe the halo
masses of ∼3900 central galaxies in the range 0.02 � z � 0.072
using the kinematics of satellite galaxies. In their paper, More
et al. (2010) have analyzed red and blue galaxies separately.
For Figure 10 we have asked the authors to provide the data for
all central galaxies as a function of M∗, irrespective of color,
and also to convert their results to reflect the mean–log relation
(〈log10(M∗(Mh))〉 as opposed to 〈Mh(M∗)〉). Overall, there is
some disagreement between our results and More et al. (2010)
regarding the general shape of the SHMR. Indeed, our results
display a more strongly varying power-law index compared to
More et al. (2010). This disagreement is perhaps more apparent
in the lower panel of Figure 10. Indeed, the More et al. (2010)
results display a fairly broad minimum in M200b/M∗ whereas
our results predict a more strongly varying M200b/M∗ ratio
that reaches a minimum at M∗ ∼ 4.5 × 1010 M�. More et al.
(2010) have suggested that satellite kinematics may yield halo
masses that may be systematically higher by a factor of two to
three than other methods at low M∗. Lowering the More et al.
(2010) results at low M∗ would certainly bring their results into
better agreement with ours in terms of the shape of the SHMR.
More et al. (2010) also provide estimates for σlog M∗ . They find
σlog M∗ = 0.190.03

−0.03 for red centrals and σlog M∗ = 0.150.12
−0.07 for

blue centrals. Both of these values are in broad agreement with
our estimate of σlog M∗ ∼ 0.23 dex.

In the z1 redshift bin, the COSMOS results are limited by
completeness to M∗ > 108.7 M�. Nonetheless, it is of interest to
see how our results extrapolate to galaxies of even lower stellar
masses, even though measurements of Mh for such low-mass
galaxies are fraught with difficulties and for the most part limited
to the local volume. Blanton et al. (2008) have presented an
effort to address the very low mass SHMR (see their Figure 12)
using measurements of the maximum circular velocities from
HI disks around isolated nearby dwarf galaxies. Since Blanton
et al. (2008) have applied criteria to specifically select isolated
galaxies, their sample should be dominated by central galaxies
and so comparable to our Figure 10. Upon request, the authors
provided us with the full data set from Figure 12 in Blanton
et al. (2008) which we have reproduced in Figure 10, including
additional data from Springob et al. (2005) and Pizagno et al.
(2007) based on HI and Hα rotation curves, respectively. This
data compilation is restricted to galaxies that are isolated and
with axis ratios b/a < 0.5 in order to minimize inclination
uncertainties and extinction corrections. Halo masses in Blanton
et al. (2008) have been estimated by assuming that the optical
circular velocity, Vopt, is equal to Vmax, the maximum circular
velocity for an NFW halo. Vmax is then converted to the virial
velocity, V200, using N-body calibrations from Bullock et al.
(2001). For galaxy mass halos, Vmax/V200  1.1–1.2 under the
assumption of no adiabatic contraction of the dark matter due

to galaxy formation. When incorporating adiabatic contraction
into Tully–Fisher analyses, Gnedin et al. (2007) find a factor of
∼2.5 decrease in the inferred halo mass at fixed stellar mass.
Such a correction would put the Tully–Fisher constraints into
better agreement with our results.

To first order, there is relatively good agreement between
our SHMR and the data from Blanton et al. (2008), albeit
with a much larger scatter in the Tully–Fisher based SHMR
than predicted by our results. In particular, the dwarf galaxy
data points from the Geha et al. (2006) sample are in good
agreement with the extrapolation of our SHMR to lower masses.
At 109 M� < M∗ < 1011 M�, however, there may be some
indication that the halo masses inferred by Blanton et al. (2008)
are too high on average compared to our results with the
possible implication that the Vopt/V200 is larger than 1.1–1.2.
The Vopt/V200 ratio contains information about the relative
importance of baryons versus dark matter on galaxy scales:
Vopt/V200 � 1.1–1.2 would imply that the baryons have
modified the dark matter profile in the very inner halo regions.
Dutton et al. (2010) have used the Pizagno et al. (2007)
data in combination with a compilation of prior work on the
SHMR to place constraints on Vopt/V200 for late-type galaxies
(the requirement that the Pizagno et al. 2007 galaxies have
sufficiently extended Hα emission to yield a useful rotation
curve implies that this is primarily a late-type sample). They
find that Vopt ∼ V200, however, the normalization of the SHMR
that they employ is more similar to the More et al. (2010) results
than to ours. Therefore, a similar analysis as Dutton et al. (2010)
but applied to the Pizagno et al. (2007) data in combination with
our results would yield a higher Vopt/V200.

The agreement between the extrapolation of our SHMR to
lower masses and the Geha et al. (2006) sample is encouraging.
In fact, Busha et al. (2010) found that a similar scaling
continues to work down to the faintest satellites of the Milky
Way. However, Figure 10 clearly reveals a lack of data at
M∗ < 109 M� due to the stellar mass completeness limits of
current optical and IR surveys. Pushing the SHMR down to
108 M� < M∗ < 109 M� using techniques such as described in
this paper is clearly an exciting avenue to explore and will be
facilitated by upcoming very deep optical and IR surveys such
at UltraVista and the Hyper Suprime Cam (HSC) survey on the
Subaru telescope.25

5.5.2. Comparison with Previous Work: High Redshift

Heymans et al. (2006a) have used g–g lensing to estimate
halo masses for a sample of 626 galaxies with M∗ > 1010.5 M�
and with 0.2 < z < 0.8 from the 0.25 deg2 HST/GEMS
(galaxy evolution from morphology and SEDs) survey (Rix
et al. 2004). Heymans et al. (2006a) find Mvir/M∗ = 53+13

−16

at a mean stellar mass of M∗ = 7.2 × 1010M�. Converting
their result to our assumed value of H0 and to M200b yields
M200b/M∗ ∼ 58+14

−17. In a similar mass and redshift range,
our results produce M200b/M∗ ∼ 34. We note, however, that
a careful comparison between our work and Heymans et al.
(2006a) is limited by several differences in the way the analyses
have been performed. First, Heymans et al. (2006a) fit an NFW
profile to the g–g lensing signal and so the masses that they
measure will reflect the mean halo mass at fixed stellar mass,

25 For example, the UltraVista survey of the COSMOS field will obtain IR
imaging to Y = 26.7, J = 26.6, H = 26.1, and Ks = 25.6 mag, pushing
low-redshift stellar mass completeness limits to below M∗ = 108 M� at
z < 0.3. The HSC intermediate layer survey will cover 20 deg2 to g = 28.6,
r = 28.1, i = 27.7, z = 27.1, and Y = 26.6 mag.
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which is different than our averaging system. Second, Heymans
et al. (2006a) do not account for the contribution of satellite
galaxies to the g–g lensing signal and so they will tend to
overestimate halo masses. The lens sample of Heymans et al.
(2006a) is roughly similar to our g–g bin4 in the z2 redshift
range: the contribution to the g–g lensing signal from satellites
for this sample is shown in panel (j) of Figure 6. Given these
two caveats our results are in fairly good agreement.

5.5.3. Comparison with Moster et al.

Moster et al. (2010) derive constraints on the redshift evolu-
tion of the SHMR by abundance matching to the SDSS SMF of
Panter et al. (2007) at low redshift and to mass functions from
the MUNICS survey (detection limit K ∼19.5, area 0.28 deg2;
Drory et al. 2004) and the GOODS-MUSIC sample (detection
limit K ∼ 23.5, area 143.2 arcmin2; Fontana et al. 2006) at
high redshift. There are two main differences between Moster
et al. (2010) and our work. First, we adopt the functional form
advocated by B10 for the SHMR which is sub-exponential at
high M∗. In contrast, the Moster et al. (2010) parameterization
asymptotes to a power law at high M∗. According to B10, such a
parameterization may be problematic. Indeed, because the log-
arithmic slope of the SHMR increases with increasing M∗, the
best-fit power law for high-mass galaxies will depend on the up-
per limit in the available data for the SMF. Second, the Moster
et al. (2010) errors do not reflect possible systematic errors in
stellar mass estimates between Panter et al. (2007), Drory et al.
(2004), and Fontana et al. (2006).

Although we find the same qualitative behavior as Moster
et al. (2010): Mh/M∗ decreases to a minimum at Mh ∼ 1012 M�
and then rises at higher masses, interestingly, our results differ
regarding the evolutionary trends of the SHMR. The two
parameters for which our conclusions differ in particular are
M

piv
∗ and (Mh/M∗)piv. In Figure 12 (yellow dash-dotted line), we

show the evolution of M
piv
h , M

piv
∗ , and (Mh/M∗)piv, as inferred

from Table 7 in Moster et al. (2010).
Our results agree with Moster et al. (2010) in terms of

the qualitative downsizing trend seen for M
piv
h . However, it is

interesting to note that our measurements differ with respect to
the normalization of M

piv
h . The exact origin of this discrepancy

remains unclear. In light of the results of B10, we hypothesize
that this discrepancy may be caused by the difference in the
assumed parametric form of the SHMR. In any case, further
investigation regarding the source of this discrepancy, though
beyond the scope of this paper, is clearly warranted.

Our conclusions differ with respect to M
piv
∗ and (Mh/M∗)piv.

Whereas our results suggest that Mpiv
∗ increases with redshift and

that (Mh/M∗)piv remains constant, in contrast, the Moster et al.
(2010) results imply that M

piv
∗ is constant with redshift and that

instead, (Mh/M∗)piv increases with redshift. We hypothesize that
this discrepancy is simply due to the fact that the errors in Moster
et al. (2010) are likely to be underestimated. Indeed, accounting
for sample variance with mocks as well as for systematic
differences in the relative stellar masses between Panter et al.
(2007), Drory et al. (2004), Fontana et al. (2006) would lead to
similar errors as B10 (Figure 12, green diamonds). Indeed, the
evolution that we detect in M

piv
∗ is ∼0.21 dex from z = 0.37

to z = 0.88 which is similar to the expected error in stellar
mass estimates between different surveys. This could perhaps
also explain why we reach similar conclusions regarding the
evolution of Mh (which should be less affected by systematic
errors associated with M∗) but not M

piv
∗ or (Mh/M∗)piv.

5.5.4. Comparison with Behroozi et al.

The closest comparison with our work is B10 since we employ
the same functional form for the SHMR, the same halo mass
function from Tinker et al. (2008), and we both account for the
effect of scatter in the SHMR and for sample variance in the
data using mock catalogs.

B10 derive constraints on the redshift evolution of the SHMR
by abundance matching to the SDSS SMF of Li & White
(2009) at low redshift and to mass functions from the FIDEL
Legacy Project in the extended Groth strip at higher redshifts
(Pérez-González et al. 2008). As a result of the fact that
B10 combine data from distinct surveys, their systematic
uncertainties on the evolution of the SHMR are fairly large.
We also note that there are differences between the stellar mass
estimates used in B10 and in this paper (see Section 5.6) which
will lead to normalization differences in M

piv
∗ and (Mh/M∗)piv

for example.
Another difference between B10 and our work is the treat-

ment of satellite galaxies. In our model, the SHMR only applies
to central galaxies and satellites are modeled via 〈Nsat〉. Indeed,
we require a more sophisticated treatment of satellites in order to
fit the clustering and the g–g lensing for which the satellite term
plays a larger role than in the SMF (the satellite term is subdom-
inant at all scales for the SMF). In contrast, B10 assume that the
SHMR applies also to satellite galaxies, on condition that the
“halo mass” for satellite galaxies is defined as the halo mass at
the epoch when satellites were accreted onto their parent halos
(the “infall mass,” Minfall). Thus, there could be subtle differ-
ences between the two methods due to the treatment of satellite
galaxies (for example, see discussion in Neistein et al. 2011).

Figure 12 (green diamonds) shows the prediction from B10
for the pivot quantities. Our results are in striking agreement
with B10 with respect to the evolution of M

piv
h . The errors from

B10 are larger for M
piv
∗ and (Mh/M∗)piv. Thus our results agree

with B10 in terms of qualitative evolutionary trends for M
piv
∗

and (Mh/M∗)piv. There is a normalization difference for M
piv
∗

between B10 and our results. However, this normalization offset
is not unexpected given systematic differences due to varying
assumptions for stellar mass estimates. We address this issue
further below.

5.5.5. Testing the Redshift Evolution of the Pivot Masses

Given the striking downsizing signal that we detect for the
pivot masses, we would like to check that this result is not an
artifact of the method we are using. As such we have also
re-analyzed the three COSMOS SMFs using the abundance
matching method of B10. In this test, the method followed here
is identical to that of B10 but with different constraints on the
SMF. Specifically, we use the three cosmos SMFs to constrain
the redshift evolution of the SHMR and do not include any
SDSS data. The results are shown in Figure 13. We find that
the downsizing signal for M

piv
h and M

piv
∗ is clearly detected in

the COSMOS data using the methods of B10. This provides an
independent test on our detected evolution of the pivot quantities
and suggests that the detected downsizing signal is robust to the
methodology that is employed.

This test also raises the interesting question of how the method
used in this paper (an HOD-based model that includes fits to
clustering and g–g lensing) compares to the method of B10
(abundance matching using only the SMF). As can be seen in
Figure 13, we find that the two methods yield very similar results
for the pivot quantities. We do however find subtle differences
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Figure 12. Redshift evolution in the pivot halo mass, the pivot stellar mass, and the pivot ratio. Dark blue circles show the results from this paper. We detect a striking
evolution in M

piv
∗ with M

piv
∗ decreasing at later epochs. This downsizing in M

piv
∗ is accompanied by a downsizing in M

piv
h with M

piv
h also decreasing at later epochs. We

detect no strong evolution in the pivot ratio which remains constant at (Mh/M∗)piv ∼ 27. Green diamonds: comparison with B10. Yellow dash-dotted line: comparison
with Moster et al. (2010) (from Table 7 of their paper). The downsizing trend in M

piv
h (which is not sensitive to systematic errors associated with M∗) is detected by all

three studies. The normalization and evolution of M
piv
h is similar for COSMOS and for B10. However, the normalization of M

piv
h from Moster et al. (2010) is higher

than our prediction. This could be due to differences in the adopted parametric form of the SHMR. The three studies show different results for the evolution of M
piv
∗ .

We stress that stellar mass estimates computed under different assumptions may present relative systematic errors of order 0.25 dex. This error will affect quantitative
comparisons for the normalization M

piv
∗ (and by consequence, also (Mh/M∗)piv). Since our results have been derived homogeneously from z = 0.2 to z = 1, our

conclusions regarding the evolutionary trends of M
piv
∗ should be robust. In contrast, B10 and Moster et al. (2010) infer evolutionary trends from a combination of

SDSS data and other distinct surveys at higher redshifts. Therefore, their results have larger systematic uncertainties with respect to M
piv
∗ . These systematic errors are

reflected in the B10 error bars (B10 account for systematic errors and sample variance). The Moster et al. (2010) results do not account for systematic error or sample
variance from mock catalogs. Adding these two sources of error to the Moster et al. (2010) results would lead to errors on the pivot quantities of roughly the same
order as B10. Given these considerations: both the B10 and the Moster et al. (2010) results (provided larger errors are included) are consistent with our detection of
an evolving M

piv
∗ and a constant (Mh/M∗)piv.

(A color version of this figure is available in the online journal.)
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Figure 13. Independent validation of the evolution of the pivot masses using the abundance matching method of B10. Blue circles show our detected evolution of
the pivot quantities. Magenta diamonds show the evolution of the pivot quantities when the abundance matching method of B10 is applied to the COSMOS SMFs.
We find that the analysis of B10 applied to the COSMOS results fully agrees with our claims concerning the evolution of the pivot quantities. We conclude that the
detected downsizing behavior of M

piv
h and M

piv
∗ is robust to the methodology that is employed.

(A color version of this figure is available in the online journal.)

in the actual SHMRs between the two methods. Tracking down
the cause of the exact differences, although a very interesting
question in itself, is beyond the scope of this paper and we defer
this study to follow-up work. For the purposes of this paper, we
will simply emphasize that the analysis of B10 applied to the
COSMOS results fully agrees with our claims concerning the
evolution of the pivot quantities.

5.6. The Role of the Stellar Mass Function

In our analysis, the errors on the SMF are small compared
to the clustering and the lensing. It is always the case that a
measurement of a one-point statistic from a given set of data
is more precise than a measurement of a two-point (or higher)
statistic. Thus, the SMF plays an important role in constraining
our parameter set. Therefore, we investigate the SMF in further
detail in this section, and in particular, we show a more in-depth
comparison with SDSS mass functions.

Figure 14 shows the COSMOS mass functions compared
to various SDSS mass functions that have been commonly
employed in the literature (Panter et al. 2007; Baldry et al. 2008;

Li & White 2009). The main difference that we may expect
between the COSMOS mass functions and the SDSS ones
(besides sample variance and systematic error) is that the high
end of the mass function may be inflated due to a larger value of
σlog M∗ in COSMOS. To gauge how much the COSMOS mass
functions are affected by Eddington bias compared to SDSS,
we use our model to predict the COSMOS mass functions, de-
convolved to the expected scatter for SDSS (σlog M∗ ∼ 0.17 dex).
The results are shown in the right-hand panel of Figure 14. We
find that the difference in scatter is not significant enough to
explain the differences between the COSMOS and SDSS mass
functions. It is more likely that the differences are due, for
example, to varying assumptions regarding stellar population
and dust models.

The difference between COSMOS and Li & White (2009)
corresponds roughly “by eye” to a “left/right” shift along the
X-axis (log10(M li

∗ ) ∼ log10(Mcosmos
∗ ) − 0.2). This difference

is within the estimated systematic uncertainties (0.25 dex
according to B10). However, this type of systematic shift will
be reflected directly in the SHMR (Figures 10 and 11) by
a “left/right” shift along the X-axis and will also affect the
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Figure 14. Comparison of the COSMOS stellar mass functions to the SDSS mass functions of Panter et al. (2007), Baldry et al. (2008), and Li & White (2009). In
the left panel, we show the COSMOS z1 mass function. The error bars represent the expected sample variance in COSMOS. In the right panel, we show the mass
functions for all three COSMOS mass functions, de-convolved to a common σlog M∗ of 0.17 dex. The differences between the COSMOS mass functions and the SDSS
mass functions cannot be explained by Eddington bias and are therefore more likely to be due, for example, to differences in assumptions regarding stellar population
and/or dust models.

(A color version of this figure is available in the online journal.)

Figure 15. Left panel: the conditional stellar mass functions for central and satellite galaxies for three different halos masses. Results are for z = 0.66. Solid curves
represent Φs (M∗|Mh) while dashed curves represent Φc(M∗|Mh). The curves are normalized such that the total area is the mean number of galaxies at that halo mass.
Right panel: conditional stellar mass functions for halos of Mh = 1013 M� for our three redshift bins.

(A color version of this figure is available in the online journal.)

normalization of M
piv
∗ and (Mh/M∗)piv. This ∼0.2 dex shift

would bring the normalization of B10 into closer agreement with
our results. Tracking down the exact source of this systematic
shift is beyond the scope of this paper but it could be associated
with differences in the assumed dust model26 for example.

We conclude that in order to use the low-z SDSS data as a
z ∼ 0 anchor to study the redshift evolution of the SHMR, a
homogeneous analysis of both the SDSS and the COSMOS data
is critical. This will be the focus of a future paper.

5.7. The Total Galaxy Stellar Content as a
Function of Halo Mass

Figure 15 shows the conditional SMFs for various halo masses
and redshifts from our best-fit model. We can use these functions
to calculate the total amount of stellar material locked up

26 Our stellar masses used the Charlot & Fall (2000) dust model whereas Li &
White (2009) use Blanton & Roweis (2007).

in galaxies as a function of halo mass, noted hereafter M tot
∗

(see Equation (16) in Paper I). Investigating M tot
∗ is of interest

because it reveals the efficiency with which dark matter halos
accumulate stellar mass from the combined effects of in situ star
formation and accretion via merging.

One might worry that calculating the total amount of stellar
material locked up in satellite galaxies requires extrapolating our
model beyond the lower and upper stellar mass bounds for which
our model has been calibrated. As discussed in Section 5.5.1,
the extrapolation of our model is in good agreement with results
from Blanton et al. (2008) at low M∗ and with Hoekstra (2007) at
high M∗. Thus, to first order, this extrapolation does not appear
unreasonable. Let us therefore make the assumption that the
extrapolation of our SHMR is not wildly incorrect. We will now
investigate which mass range of satellite galaxies contributes
most to M tot

∗ .
From Figure 15, it is clear that satellite galaxies are a sub-

dominant component of the total stellar mass at Mh = 1012M�.
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Figure 16. Total stellar content locked up in galaxies as a function of halo mass compared to the cosmic baryon fraction measured by the Wilkinson Microwave
Anisotropy Probe (WMAP5; fb = Ωb

Ωm
= 0.171 ± 0.009; Dunkley et al. 2009). Left panel: our prediction from the z1 bin (z ∼ 0.37). Right panel: our three redshift

bins. z1 is shown by the solid dark blue line, z2 is shown by the orange line, and z3 is shown by the magenta line. Dotted lines show the contribution to M tot∗ from
the central galaxy and dashed lines show the contribution from satellite galaxies. Shaded regions represent the errors on M tot∗ /M200b . M tot∗ is dominated by the central
galaxy at Mh < 2 × 1013 M� and by satellites at Mh > 2 × 1013 M�.

(A color version of this figure is available in the online journal.)

Our present concern is therefore only relevant for Mh >
1012 M�. Let us consider the total stellar mass associated with
satellite galaxies as a function of Mh in a fixed stellar mass bin:
M tot,sat

∗ (Mh|Mt1
∗ ,Mt2

∗ ). As shown in Paper I, the expression for
M tot,sat

∗ (Mh|Mt1
∗ ,Mt2

∗ ) is given by

M tot,sat
∗ (Mh|Mt1

∗ ,Mt2
∗ ) =

∫ Mt2
∗

Mt1∗
Φs(M∗|Mh)M∗dM∗. (20)

We have tested how M tot,sat
∗ (Mh|Mt1

∗ ,Mt2
∗ ) varies with the

integral limits, Mt1
∗ and Mt2

∗ . We find that at fixed halo mass,
most of the stellar mass associated with satellite galaxies arises
from a relatively narrow range in stellar mass. In particular, for
halos with Mh > 1011 M�, the bulk of M tot,sat

∗ is built from
satellite galaxies in the range 1010 M� < M∗ < 1011 M�.
Therefore, provided that the extrapolation of our model is not
wildly incorrect, the bulk of M tot,sat

∗ arises from satellites that
are within the tested limits of our model.

Having underlined this caveat, we have calculated M tot
∗ using

the best-fit parameters for each of the three redshift bins and the
results are shown in Figure 16. This figure will be discussed in
detail in the following section.

6. DISCUSSION

Using a self-consistent framework to simultaneously fit the
g–g lensing, spatial clustering, and number densities of galaxies
in COSMOS, we have obtained a robust characterization of the
evolving relationship between stellar mass and halo mass over
two orders of magnitude in M∗. The nature of this relationship,
shown in Figure 16, is not only a byproduct of cosmic mass
assembly but is also shaped by the physical processes that drive
galaxy formation, ultimately providing valuable constraints on
both. In this section, we begin by discussing various processes
that shape the form of M∗/Mh versus Mh. We will then introduce
a simple framework for interpreting evolution in this relation by
considering the relative growth of stellar mass as compared
to the growth of dark matter halos. Finally, we will discuss the

observed evolution of the pivot quantities and we will show how
a constant pivot ratio may imply that the mechanism responsible
for the shutdown of star formation in massive galaxies may have
a physical dependence on M∗/Mh.

6.1. The Total Stellar Mass Content of Dark Matter Halos

Figure 16 separates the stellar content of the average dark
matter halo into a contribution from the central galaxy and a
contribution from the sum of satellite galaxies. Central galaxies
show an M∗/Mh ratio that rises steeply to a maximum at
Mh ∼ 1012 M� before decreasing somewhat more gradually
in halos of higher mass. The fact that halos above this mass
scale (at the redshifts considered) have cooling times longer
than their dynamical times has been invoked by modelers for
some time to help explain why cooling and star formation shut
down at the highest masses, with some refinement due to the
presence of so-called cold-mode accretion (Birnboim & Dekel
2003; Kereš et al. 2005; Birnboim et al. 2007; Cattaneo et al.
2006). We will return to the evolution of this mass scale at a
later point in the discussion.

Central galaxies strongly dominate the total stellar mass
content at Mh � 2×1013 M� (“the central dominated regime”),
including at the peak mass, Mh ∼ 1012 M�, while the stellar
mass in satellites dominates at Mh � 2×1013 M� (“the satellite
dominated regime”).

The transition between the two regimes is driven by the steep
decline in Mcen

∗ /Mh at Mh > 1012 M�. This decline occurs as
the contribution from satellites begins to rise. One might then
naturally ask if central galaxies in group-scale halos experience
stunted growth simply because stellar mass is accumulating
within the halo in the form of satellite galaxies, instead of
merging onto the central galaxy. Figure 16 reveals that this is not
the case. Indeed, the solid line in this figure demonstrates that the
total stellar mass fraction of halos declines at Mh > 1012M�.
Thus, even if all satellite galaxies were allowed to rapidly
coalesce at the center of the potential well, the central galaxies
of group-scale halos would still have lower M∗/Mh ratios than
those in halos of Mh ∼ 1012 M�. Thus, we conclude that dark
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matter halos globally decline in the efficiency by which they
accumulate stellar mass at Mh > 1012 M�.

We note that in massive halos, the intra-cluster light (ICL;
not accounted for in this analysis) is estimated to contribute an
additional 20%–30% of the total stellar mass (Feldmeier et al.
2004; Zibetti et al. 2005; Gonzalez et al. 2005; Krick et al.
2006). Adding this to the satellite component in Figure 16 does
little to bridge the factor of two to four gap in M tot

∗ /Mh between
the satellite component in high-mass halos and centrals at the
peak mass.

6.2. The Role of Galaxy Mergers in Determining
the Shape of M tot

∗ /Mh

The majority of the total mass in an average dark matter halo
is built from halo–halo mergers with mass ratios above 1:10
(e.g., Hopkins et al. 2010a). At halo masses below 1012M�,
the steep rise in M tot

∗ /Mh with Mh implies that the typical
stellar mass ratio of galaxy mergers will be less than the typical
mass ratio of the dark matter halos hosting these galaxies. In
other words, major halo mergers are minor galaxy mergers
in this regime. Thus, the accumulation of stellar mass through
the effects of merging will be limited compared to the growth
in total mass of such halos. The steep rise of M tot

∗ /Mh must
therefore reflect the greater importance of star formation at
masses below Mh ∼ 1012 M� over assembly from galaxy
mergers (Bundy et al. 2009). Similar conclusions have also been
reached by Conroy & Wechsler (2009) (see their Figures 2
and 3 in particular).

Simple arguments suggest, however, that once halos grow past
the pivot mass and in the absence of significant star formation,
M tot

∗ /Mh should dip below the peak value since these halos can
only grow by merging with halos with lower values of M tot

∗ /Mh.
At slightly higher mass, the decline in M tot

∗ /Mh now means that
stellar mass ratios are enhanced with respect to halo mass ratios,
and the trend must reverse again. This repeating pattern should
cause a flattening of M tot

∗ /Mh above the pivot mass. While
this behavior is certainly apparent in Figure 16, our different
redshift bins also reveal that at fixed mass among high-mass
halos (Mh > 4 × 1013), the total stellar mass content declines at
later epochs. We speculate that this trend could arise from the
smooth accretion of dark matter, which brings no new stellar
mass, and amounts to as much as 40% of the growth of dark
matter halos (e.g., Fakhouri & Ma 2010). One way to test this
hypothesis would be to populate a z = 0.88 N-body simulation
with our z3 HOD and evolve the subhalo and halo populations
to z = 0, assuming no star formation. This would reveal the
amount of stars that are acquired through mergers in this redshift
range (Zentner et al. 2005). We note that the destruction of
satellites and a growing ICL component could also contribute to
this trend given that the ICL at z = 0 could make up 20%–30%
of the stellar content of massive halos, roughly the amount by
which M tot

∗ /Mh declines over our redshift range.

6.3. The Pivot Quantities and the Quenching of Star
Formation in Central Galaxies

The location at which halos reach their maximum accumu-
lated stellar mass efficiency is encoded by the pivot mass quanti-
ties, Mpiv

∗ , Mpiv
h , and (Mh/M∗)piv. While we observe downsizing

trends for both M
piv
∗ and M

piv
h , the co-evolution of these two pa-

rameters leaves (Mh/M∗)piv constant with redshift. This can be
seen in the right panel of Figure 16: the pivot ratio evolves very
little over our redshift range, while the mass scale of the peak
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Figure 17. Schematic illustration of our results in terms of galaxy mass assembly
vs. halo growth. The magenta line represents our z3 result and the dark blue line
represents our z1 result. From the relative positions of these two curves we can
infer that from z ∼ 0.88 to z ∼ 0.37 and at Mh < 1012 M�, the stellar mass of
the central galaxy has experienced a stronger growth in proportion to the growth
of the dark matter. On the contrary, at Mh > 1012 M�, the stellar mass of the
central galaxy has experienced a more mild growth in proportion to the dark
matter.

(A color version of this figure is available in the online journal.)

(Mpiv
h ) does evolve downward by nearly a factor of two. Given

the low satellite content of halos at these masses, merging is not
likely to play a dominant role in driving growth in M∗ below the
pivot peak, arguing instead that the regulation of star formation
is key to understanding this behavior. The physical process that
sets the pivot peak at Mh = 1012 M�, and drives the subsequent
decline in Mcen

∗ /Mh at higher halo masses, must be linked to the
shutdown of star formation in central galaxies. In the reminder
of this discussion, we will focus on interpreting the downsizing
behavior of the pivot quantities in this context.

6.4. A Simple Model for Interpreting
Evolution in M∗/Mh versus Mh

A complete and comprehensive interpretation of our results
requires modeling and accounting for dark matter accretion
histories, galaxy merger rates, and star formation rates (SFRs)
as a function of redshift (for example, see Conroy & Wechsler
2009). Nonetheless, we will introduce some toy models based on
simple arguments to provide a first interpretation of our results.
Our goal here is to evaluate our results in the context of other
observations and theoretical work on galaxy formation models
and to set the stage for a more detailed treatment in subsequent
work. We begin with a general treatment of evolution in the
SHMR and then will focus on applying this treatment to interpret
the evolution we observe in the pivot quantities.

The physical basis for evolution in M∗/Mh versus Mh must
be considered carefully because the stellar mass and associated
halo mass of a galaxy can evolve independently, depending on
the mass scale involved and on processes including merging,
smooth (diffuse) dark matter accretion, star formation, and even
tidal stripping. The sum of these processes on the growth of Mh
and M∗ shapes the behavior of M∗/Mh versus Mh in different
ways, as illustrated by the schematic diagram in Figure 17.
Here we let η1 represent the ratio M∗/Mh at redshift zhigh and η0
represent the equivalent ratio at redshift zlow with zhigh > zlow.
We further consider a dark matter halo of mass Mh that has
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grown by a relative factor of λMh
from zhigh to zlow. We can write

that Mh(zlow) = λMh
× Mh(zhigh). Characterizing growth in the

stellar mass of the central galaxy (although similar arguments
apply to M tot

∗ ) by a factor of λM∗ , we can simply write that

λM∗ = η0

η1
× λMh

. (21)

If η0 > η1, we infer that λM∗ > λMh
and that the stellar mass

has experienced a stronger relative amount of growth compared
to that of the dark matter from zhigh to zlow. If on the contrary,
η0 < η1 then the relative growth of the stellar mass is less than
the dark matter. Note that this schematic view demonstrates that
identical curves for M∗/Mh versus Mh at different redshifts do
not necessarily indicate a lack of evolution, since λMh

is always
greater than zero.

We now apply this intuitive framework to the evolution
observed in Figure 16. Considering values of η1 and η0 applied
to the total stellar mass curves in Figure 16, we see that below
Mh = 1012, the fractional growth in stellar mass outweighs the
growth in halo mass. This reflects the greater importance of star
formation at low masses over assembly from galaxy mergers,
the same conclusion reached above by simply considering the
shape of the SHMR. This evolutionary trend reverses above
Mh = 1012 M�, consistent with the notion that star formation
is largely shut down in centrals above this mass.

6.5. Understanding the Evolution of the Pivot Quantities

We now apply these simple arguments to the evolution in the
pivot quantities. We focus only on central galaxies, neglecting
the minor contribution from satellites near the pivot mass. The
aim here is to explore several simple models for the quenching of
star formation and to investigate which models might reproduce
the observed evolution of the pivot quantities, namely, a pivot
halo and stellar mass that decrease at later epochs (downsizing)
but leave the pivot ratio constant.

Shown schematically in Figure 18, we consider how our high-
redshift (z = 0.88) SHMR relation would evolve toward lower
redshifts under several prescriptions for stellar and halo growth.
We begin with no assumptions about the SFR but adopt a halo
growth rate (λMh

) that is roughly constant over the mass range
spanned by the peak. This assumption is well justified by dark
matter mass accretion rates derived from N-body simulations
(Wechsler et al. 2002; McBride et al. 2009; Fakhouri et al.
2010). For example, Fakhouri et al. (2010) find that Ṁh/Mh is
only weakly dependent on halo mass with Ṁh/Mh ∝ M0.1

h .
We now consider several different quenching models and

investigate their impact on the redshift evolution of the pivot
quantities.

1. No quenching model. To begin with, we consider a model
with no quenching of star formation and in which the stellar
growth rate (λM∗) is constant over the halo mass range
spanned by the peak (Row A in Figure 18). We consider
the redshift evolution of the SHMR for three values of λM∗
defined with respect to λMh

. In all three cases, this model
leads to an increase in M

piv
h with time (contrary to what

we observe). We can therefore conclude that λM∗ must vary
with Mh, not a surprise given the expectation that the SFR
shuts down above Mh = 1012M�.

2. Fixed halo mass for quenching. We next consider a model in
Row B in which star formation is quenched as galaxies cross
above a fixed halo mass, Mq. However, this instantaneous
quenching model fails to reproduce (not surprisingly) the

downward evolution of M
piv
h and also yields evolution in

the pivot ratio, which is not detected.
3. Redshift-dependent halo mass for quenching. Row C shows

a model in which Mq shifts downward with time. This model
leads to downsizing in the pivot halo mass if λM∗ > λMh

below Mq (Row C, middle panel). However, in order to keep
the pivot ratio fixed in this scenario, the growth rate, λM∗ ,
must be tuned with respect to the rate at which Mq declines.
This would require a fortuitous coincidence, but obviously
cannot be dismissed as an explanation.

4. Critical M∗/Mh ratio for quenching. We finally consider
an alternative scenario in which star formation is limited by
a critical mass ratio, ηcrit ≡ M∗/Mh ≈ 0.04 (Row E). In
this model, we can qualitatively reproduce our main results,
including the downsizing trends in the pivot stellar and halo
mass, and, by construction, a constant pivot ratio set by ηcrit
(compare the middle panel of Row D to the middle panel of
Row E). However, in order to produce downsizing behavior
in this model, λM∗ must be larger than λMh

below ηcrit. It is
important to note that if λM∗ � λMh

below ηcrit, this model
would fail to produce downsizing.

The model explored in Row E seems a promising and simple
mechanism that can explain the observed evolution of the pivot
quantities. We now test if observations are consistent with the
requirement that λM∗ > λMh

below Mh ∼ 1012 M�. A halo of
mass Mh ∼ 2 × 1011 M� grows by a factor of λMh

∼ 1.4 from
z = 0.88 to z = 0.37 (Fakhouri et al. 2010). SFRs as a function
of M∗ and redshift have recently been measured by Noeske et al.
(2007), Cowie & Barger (2008), and Gilbank et al. (2010). These
measurements indicate that galaxies of mass M∗ ∼ 1010 M�
grow by roughly a factor of λM∗ = 2–3 from z = 0.88 to
z = 0.37. Therefore, at z < 1 and for Mh < M

piv
h , current

estimates for halo growth coupled with estimates for stellar
growth are indeed consistent with our observation that stellar
mass has experienced a stronger relative amount of growth
compared to that of the dark matter (λMh

< λM∗ below ηcrit).
We further note that the relatively weak dependence of λM∗

on Mh required to maintain a constant slope in M∗/Mh versus
Mh with redshift (again for Mh < M

piv
h ) is implied by the

weak SSFR–M∗ relation observed for galaxies with M∗ < M
piv
∗

(a typical power-law fit gives SSFR ∼ M0.4
∗ ). This could explain

why β (the low-mass slope of the SHMR) is observed to remain
remarkably constant at β = 0.46 at z < 1.

Given the simple arguments outlined above, we argue that
the fact that the pivot ratio remains constant may suggest
that star formation is fundamentally limited by a critical mass
ratio, ηcrit ≡ M∗/Mh ≈ 0.04. A very elegant and compelling
consequence of this model is that the observed downsizing
trends in M

piv
∗ and M

piv
h can be automatically explained given

the observation that λM∗ > λMh
below Mh ∼ 1012 M�. Previous

work by Bundy et al. (2006) on the evolution of the galaxy SMF
has found a similar downsizing trend for the “transition mass,”
Mtr, which is defined in terms of M∗ by the declining fraction of
star-forming galaxies at the highest masses. The transition mass
from Bundy et al. (2006) evolves from Mtr ∼ 9 × 1010M� at
z ∼ 0.9 to Mtr ∼ 5 × 1010M� at z ∼ 0.6. This transition mass
is similar to M

piv
∗ , reinforcing the notion that the pivot mass

marks the end of rapid star formation among halos. The obvious
difference between Bundy et al. (2006) and this paper is that our
work adds a key missing ingredient, which is the evolution of
the pivot halo mass and the pivot ratio. If the quenching of star
formation depends on a critical M∗/Mh ratio then the fact that
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Figure 18. Schematic (and simplistic picture) of how M∗/Mh (for central galaxies) varies with redshift for different quenching models and for various prescriptions
for stellar growth and halo growth (parameterized here by λM∗ and λMh

, respectively). Our z3 (z = 0.88) relation is represented by the solid red line. In this picture,
we are not interested in understanding why the high-redshift relation has the particular form that is observed, but simply in predicting roughly what the evolution of
this relation should look like given various quenching models. The orange dashed line and the blue dotted line show how we expect the SHMR to evolve with time. In
Row A we consider a model without any quenching and where λM∗ and λMh

are constant with redshift and halo mass. In this model, the pivot halo mass will increase
at later epochs which is not what we observe. In Row B, we consider a model in which star formation is quenched above a fixed halo mass, Mq. This model fails to
produce the observed downsizing behavior for M

piv
h . In Row C, we consider a model where Mq decreases at lower redshifts. In this case when λM∗ > λMh

below Mq

(Row C, middle panel), M
piv
h follows a downsizing trend. However, in this scenario, a pivot ratio that is constant with redshift requires a fine tuning between λM∗ and

the rate at which Mq declines. In Row E, instead of assuming that star formation is quenched at a fixed halo mass, we now assume that star formation is quenched at a
fixed critical M∗/Mh ratio (ηcrit). Given this assumption and if λM∗ > λMh

below ηcrit (a reasonable assumption given estimates for halo growth and star formation at
these scales), we can qualitatively reproduce our main results (compare the middle panel of Row D to the middle panel of Row E).

(A color version of this figure is available in the online journal.)
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low-mass galaxies grow more rapidly than dark matter below
the pivot scale provides a simple explanation for the observed
downsizing in the sites of star formation observed by studies
such as Bundy et al. (2006).

6.6. Physical Mechanisms that might Depend on M∗/Mh

In the previous section, we demonstrated that a constant pivot
ratio provides important clues concerning the physical mech-
anisms that quench star formation. We now discuss possible
mechanisms that might tie quenching to M∗/Mh.

The notion of a fixed maximum stellar-to-dark matter ratio,
ηcrit, has been relatively unexplored in the literature. Theoretical
arguments tend to favor a relatively fixed (if broad) critical halo
mass (see Birnboim & Dekel 2003) at z � 1, with significant
modifications from cold-mode accretion occurring mostly at
higher redshifts. But, quenching at fixed halo mass alone is not
sufficient to reproduce the local SMF and red-sequence fraction,
and also fails from simple arguments to produce downsizing
in the pivot masses, as shown by Row B of Figure 18. As a
result, most semi-analytic models include a quenching channel
initiated by mergers or disk instabilities among galaxies in halos
below the critical halo mass threshold (e.g., Bower et al. 2006;
Croton et al. 2006; Cattaneo et al. 2006). Above the critical
halo mass, once a quasi-static halo of hot gas has formed, low-
luminosity feedback (i.e., radio-mode AGN feedback) is often
invoked to prevent cooling and star formation in massive halos at
late times. Using simple arguments, we have shown that mergers
do not provide a likely explanation for determining the scale of
the pivot mass. We therefore focus on AGN feedback and disk
instabilities as possible mechanisms.

It is common practice to consider low-luminosity AGN
feedback only in halos above a fixed halo mass. However, in
practice, efficient AGN feedback is more complex and requires
at least two ingredients. First, a quasi-static halo of hot gas
must exist to which the AGN jets can couple. However, AGN
feedback also requires a sufficiently large black hole to produce
jets powerful enough to initiate this coupling. Given that gas
cooling rates scale roughly with halo mass and that black hole
mass scales roughly with galaxy mass, via the M∗–σ relation
(Gebhardt et al. 2000; Ferrarese & Merritt 2000), it is reasonable
to speculate that AGN feedback efficiency would depend on
M∗/Mh.

Considering the galaxy population broadly, this scenario re-
quires a sufficiently large bulge component for AGN quench-
ing to be effective. While bulges may be built stochastically in
galaxy mergers, a further link may tie secular bulge formation
via disk instabilities to the value of M∗/Mh, thereby cement-
ing the relationship between quenching and ηcrit. It has been
shown that disks become unstable to bar modes if the disk mass
dominates the gravitational potential (Efstathiou et al. 1982; Mo
et al. 1998). Semi-analytic models typically consider that disk
instabilities occur if

Vmax/(GNMdisk/rdisk)0.5 � 1, (22)

where Mdisk represents disk mass, rdisk is the disk radius, and
Vmax is the maximum of the rotation curve. Depending on the
implementation of this criterion, Vmax may be equated either to
the halo virial velocity or the disk velocity at its half-mass radius
(see discussion in Parry et al. 2009). An instability will cause
either a partial or a total collapse of the disk, leading to a burst
of star formation at the center, the formation of a spheroid, and
also possibly fueling the central black hole. The disk instability

criterion in Equation (22) shows a dependence on (Mh/Mdisk)
(relating Vmax to Mh) which could be reflected in Mh/M∗ as the
instability converts cold gas into stars. Disk instabilities might
therefore play a role in setting the pivot masses and enforcing
ηcrit. The coincident fueling of the central black hole during the
instability may help initiate AGN quenching and regulate the
global decline in Mcen

∗ /Mh beyond the pivot mass.
Assuming the disk instability framework, we can test whether

the predicted sizes of stable galactic disks given our critical pivot
ratio, ηcrit ≡ M∗/Mh ≈ 0.04, are consistent with observations.
Approximating the halo virial velocity for Vmax, we rewrite
Equation (22) to derive the maximum size of stable disks:

rdisk < Rh × (M∗/Mh). (23)

Applying this criterion to the pivot masses yields the condition
that rdisk < 8 kpc. Interestingly, this condition is very well
satisfied by the observed size distributions of disk galaxies which
tend to fall off rapidly just below rdisk = 8 kpc at both z ∼ 0
(see Figure 11 in Shen et al. 2003) and at z > 0 (see Figure 10 in
Sargent et al. 2007). We conclude that, via the growth of bulges
and initialization of AGN feedback, disk instabilities provide
a promising link between our observed critical pivot ratio and
quenching, although further investigation is clearly needed.

Finally, we note that ηcrit might also be related to the
competition between the cooling and accretion of cold gas
in central starbursts and the resulting feedback from either
star formation itself or a co-evolving quasar-mode AGN. This
Eddington-like limit has been explored in the context of stellar
systems by Hopkins et al. (2010b) who derive a maximum
stellar surface density from simple arguments. In the context
of dark matter halos explored here, similar arguments might
naturally yield a fixed value for ηcrit similar to that obtained by
our analysis.

7. CONCLUSIONS

The aim of this paper is to study the form and evolution of
the SHMR from z = 0.2 to z = 1.0. To achieve this goal, we
have performed a joint analysis of galaxy–galaxy lensing, spatial
clustering, and number densities of galaxies in COSMOS. As
a result, we have obtained a robust characterization of the
evolving relationship between stellar mass and halo mass over
two to three orders of magnitude in M∗. The nature of this
relationship is not only a byproduct of cosmic mass assembly
but is also shaped by the physical processes that drive galaxy
formation, ultimately providing valuable constraints on both.
A complete and comprehensive interpretation of our results
requires modeling and accounting for dark matter accretion
histories, galaxy merger rates, and SFRs as a function of redshift.
This will be the focus of future work. Nonetheless, we show
how simple evolutionary models can already provide a first
interpretation of our results, setting the stage for a more detailed
treatment in future work. Using simple arguments, we evaluate
our results in the context of other observations and theoretical
work on galaxy formation models.

We have defined the pivot quantities (Mpiv
∗ , M

piv
h , and

(Mh/M∗)piv) as the location at which halos reach their maxi-
mum accumulated stellar mass efficiency. The evolution of the
pivot quantities contains key clues about the physical processes
that are responsible for the quenching of star formation in halos
above Mh > 1012 M�. While we observe downsizing trends for
both M

piv
∗ and M

piv
h , the co-evolution of these two parameters

leaves (Mh/M∗)piv roughly constant with redshift. We argue that

26



The Astrophysical Journal, 744:159 (28pp), 2012 January 10 Leauthaud et al.

this result raises the intriguing possibility that the quenching of
star formation may have a physical dependence on Mh/M∗ and
not simply on Mh as is commonly assumed. If the quenching of
star formation indeed depends on a critical M∗/Mh ratio then
the fact that low-mass galaxies grow more rapidly than dark
matter below the pivot scale provides a simple explanation for
observations of downsizing in the sites of star formation. Ad-
ditional and more precise measurements of the pivot quantities
would be highly interesting in order to confirm whether or not
the pivot ratio remains constant, or if instead it evolves mildly
with redshift. Interestingly, there are hints from the results of
Behroozi et al. (2010) that the pivot mass might in fact remain
constant back to z = 4.

We highlight four avenues of exploration that would be
interesting to pursue in the future and that would improve
this analysis. First, we note that the comparison of our results
with SDSS abundance matching results (e.g., Behroozi et al.
2010) is limited by systematic differences between stellar mass
estimates. In order to use the SDSS data set as a low-z anchor
point, a homogeneous analysis of SDSS and COSMOS would be
necessary. Second, our work in COSMOS is limited at the high-
mass end by sample variance. Larger data sets at higher redshifts
than SDSS such as the Baryon Oscillation Spectroscopic Survey
(BOSS)27 and the Canada–France–Hawaii Telescope Legacy
Survey (CFHTLS)28 should provide interesting constraints on
the evolution of the high-mass end of the SHMR. Third, pushing
the SHMR down to 108 M� < M∗ < 109 M� using techniques
such as described in this paper is clearly an exciting avenue
to explore and will be facilitated by upcoming very deep
optical and IR surveys such at UltraVista and the HSC survey
on the Subaru telescope. Finally, we note that the SMF is a
powerful tool for placing constraints on the SHMR. However,
the derivation of SMFs is clearly currently limited by systematic
uncertainties in stellar mass estimates. Working toward an
improved understanding of stellar mass estimates and toward
reducing systematic errors in the SMF will be the single most
important avenue for improving the type of analysis presented
in this paper.

Finally, while our analysis demonstrates that the combina-
tion of multiple and complementary dark matter probes is a
powerful tool with which to elucidate the galaxy–dark matter
connection, we emphasize that such probe combinations also
hold great potential to constrain fundamental physics, including
the cosmological model and the nature of gravity. Exploring
the sensitivity of the combination of g–g lensing, clustering,
and the SMF to cosmological parameters will be the focus of a
follow-up paper.
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