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Abstract30

Ecotoxicological hazard assessment relies on species effect data to estimate quantities such as the31

predicted no-effect concentration. Whilst there is a concerted effort to quantify uncertainty in risk32

assessments, the uncertainty due to inter-test variability in species effect measurements is an overlooked33

component. The EU REACH guidance document suggests that multiple toxicity records for a given34

chemical-species combination should be aggregated by the geometric mean. Ignoring this issue or applying35

unjustified so-called harmonisation methods weakens the defensibility of uncertainty quantification and36

interpretation about properties of ecological models, for example the predicted no-effect concentration.37

In the present study we propose a simple and broadly theoretically justifiable model to quantify38

inter-test variability and analyse it using Bayesian methods. The value of data in ecotoxicity databases39

is maximised by utilising (interval-)censored data. An exploratory analysis is provided to support the40

model. We conclude, based on a large ecotoxicity database of acute-effects to aquatic species, that the41

standard deviation of inter-test variability is about a factor (or fold-difference) of 3. The consequences42

for decision makers of (not) adjusting for inter-test variability are demonstrated.43

Keywords: Inter-test variability, REACH, Species sensitivity distribution, Toxicity data, Bayesian44

statistics45
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1 Introduction46

A fundamental component of ecotoxicological risk assessment within the European Union (EU) regula-47

tion concerning the ‘Registration, Evaluation, Authorisation & restriction of CHemicals’, better known as48

REACH’, is the predicted no-effect concentration (PNEC) [1]. This is divided by an estimate of the pre-49

dicted environmental concentration (PEC) to yield the risk characterisation ratio (RCR). Risk assessment50

frameworks of chemical products and water quality criteria which do not fall under the remit of REACH51

(e.g. pesticides [2] and metals [3, 4]) or those outside of the EU (e.g. United States [5, 6, 7], Canada [8]52

and Australia and New Zealand [9]) also generally rely on quantities equivalent to the PNEC, although53

terminology and the mechanics do differ slightly.54

All of the aforementioned frameworks rely on ecotoxicity data at some tier, whether through the applica-55

tion of assessment factors [10] or probabilistic modelling (e.g. species sensitivity distributions [11]). Standard56

types of ecotoxicity data are (i) concentrations which affect x% of members of a species with respect to a57

given toxicological endpoint (ECx; denoted LCx when the endpoint is lethality) and (ii) no-observed ef-58

fect concentrations (NOECs). As an example, the current REACH guidance document (GD) [12] defines59

PNECaquatic for freshwater compartments according to one of two methods. The first is the minimum ob-60

served toxicity value divided by an assessment factor between 1000 and 10 which is determined according to61

the type, quantity and taxonomic diversity of the measured toxicity data. The second is as the estimated62

5-th percentile of a species sensitivity distribution (SSD) which is fitted to a minimum of 10 NOEC values63

(spanning a minimum level of taxonomic diversity), called the hazardous concentration to 5% of species64

(HC5), and subsequently divided by an SSD-specific assessment factor between 5 and 1. In principle, an65

SSD can be fitted to acute toxicity data and extrapolated a posteriori using an acute-to-chronic assessment66

factor; this approach is not currently endorsed by REACH.67

The general SSD model only describes the interspecies variability. Some practitioners [13, 14, 15] have68

also incorporated sampling variation and assemblage parameter uncertainty into estimation methods. The69

actual uncertainty about the toxicity values used to fit the SSD and derive a PNEC (or similar quantity) is70

generally overlooked [16]. In this regard, we shall use the term inter-test variability to refer to variability,71

potential or actual, between test results for the same chemical on the same species. Inter-test variability is72

implicitly acknowledged in the REACH GD [12] under the description of the sources of uncertainty intended73

to be accounted for by assessment factors. Inter-test variability is present even when only a single ECx or74

NOEC is a available for a particular chemical-species combination but we observe it empirically when, for a75

given chemical-species combination, there exist multiple records (i.e. toxicity values) that are considered to76

be broadly comparable (e.g. all acute median effect concentrations), a situation often found in the analysis77
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of large databases of existing data.78

Inter-test variability has several sources, including: (1) inter- and intra-laboratory variation; (2) in-79

traspecies variation (biological variance); (3) variation in experimental conditions (e.g. pH, salinity, water80

hardness, formulation); and (4) differences in dose-response modelling and statistical analysis. There is con-81

siderable overlap between (1) and the others. The European Food Safety Authority (EFSA) has referred to82

measurement uncertainty as the first two items [17].83

We make no blanket definition of inter-test variability as it would require a judgement as to which84

particular potential sources of such variability would be considered relevant or acceptable in any particular85

context. Nonetheless, in choosing to pool certain data in a statistical analysis or to average certain records for86

risk assessment, a judgement is being made. For the example we give later, the scope of inter-test variability87

is defined clearly by our choice of rules for selecting records from a database.88

A further potential source of inter-test variability is variation in the effect endpoint measured. For exam-89

ple, if three EC50 values are available for Chlorpyrifos tested on Daphnia magna with effects on mortality,90

growth and reproduction, aggregating them into a single EC50 measurement to be applied in a risk as-91

sessment incorporates this addidional source into the inter-test variability. Combining concentrations for92

different endpoints may be controversial but is part of some current practice; a research database developed93

by the United States Environmental Protection Agency (US EPA) to build interspecies correlation estimation94

models [18] aggregates acute lethal (i.e. LC50) and sub-lethal effects (EC50 for immobilisation). If more95

than one life-stage is of interest for a species, this too may become a component of inter-test variability.96

When considering a large database, there may be a temporal element to laboratory variation since analytical97

techniques have improved over the years.98

There is relatively little available information quantifying overall inter-test variability; this is in contrast99

to (i) the wealth of data quantifying one component, namely statistical uncertainty for the specific dose-100

response model used to analyse the data, which is published alongside most effect concentrations; and (ii)101

chemical-specific studies of inter- and intra-laboratory variation. Baird et al. [19] note that standardised102

laboratory toxicity tests performed with D. magna and the same chemical may vary by a factor of 2–3103

within and between laboratories. Raimondo et al. [20] notes that in the development of the aforementioned104

US EPA research database, the percentage of records for a chemical-species combination differing by less than105

a factor of 2, 5, and 10 was 56%, 86%, 94% respectively. Fairbrother [21] reports that differences between106

records for a chemical-(aquatic-)species combination can be as great as a factor of 5; a similar difference was107

recorded for a US EPA wildlife toxicity research database [22].108

Existing probabilistic risk assessment frameworks do not address inter-test variability quantitatively since109

they rely on the species effect data to be precisely known. In the REACH GD [12, pp. 7–8, 21–22] it is110
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required that records for a chemical-species combination are aggregated; this is so-called ‘harmonisation’ .111

The procedure can be considered as a type of meta-analysis. For each chemical-species combination: (1)112

filter the data measurements according to a systematic review of the reported experimental conditions; (2) if113

multiple values remain, test if the maximum value exceeds the minimum value by more than a single order of114

magnitude; (3) take the geometric mean and apply as a substitute value. If the outcome of step (2) is greater115

than a single order of magnitude, further review is required. The International Council on Mining and Metals116

(ICMM) [4] provide similar guidance with respect to metal toxicity, stating additionally that normalisation117

may be appropriate if differences in values are an apparent result of differences in bioavailability.118

Current SSD practice does not take the presence of inter-test variability into account when fitting SSDs119

and estimating hazardous concentrations. The ICMM states that the focus of risk assessment “should be120

on interspecies variability and not on intraspecies variability” [4]. This requirement in conjunction with the121

REACH requirement of transparent uncertainty analysis [23] motivates the present study. Simply fitting122

an SSD to individual or aggregated estimated effect concentrations includes inter-test variability along with123

interspecies variation in the SSD; consequently this undermines the interpretation of the estimated hazardous124

concentration as a summary of interspecies variation. In the present study, we first model and quantify inter-125

test variability using a large database of ecotoxicity data for aquatic species and then consider the effect of126

taking the magnitude of inter-test variability into account when estimating the hazardous concentration as127

a summary of interspecies variation. Although the consequences of inter-test variability under the scope of128

REACH will stem from chronic data, we use acute data because there exist much larger databases of acute129

data to analyse. Quality-controlled metadata (e.g. experimental conditions, life-stage) is unavailable for130

many records; therefore, we do not explore individual components of inter-test variability.131

2 Data and methods132

2.1 Data133

A large aquatic ecotoxicity research database[24] was used which is comprised of 30,369 acute (EC50 and134

LC50) and chronic (NOEC) records spanning 3442 distinct chemicals and 1549 species. Approximately 22,000135

records were extracted from the U.S. EPA ECOTOX database; the remainder were extracted from multiple136

other U.S. EPA and RIVM programme databases; all references are available in De Zwart [24], Section 8.2.1.137

Key fields of the database include: species, chemical, endpoint, effect, duration of experiment, whether the138

endpoint was acute or chronic (denoted A/C), concentration (µg/L) and whether the measurement was139

censored or pointwise. Incomplete experimental data were available for some records; see De Zwart [24] for140
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further details. The database is freely available as Supporting Information.141

In addition to scientific review of original data sources, De Zwart [24], pp. 136–138 describes an ad hoc142

collection of data filtering queries applied to a larger database which yielded the research database described143

here. In particular, censored data points were removed unless they were either the smallest, greatest, or only144

reported concentration for the corresponding chemical-species-A/C combination. Therefore, it is likely that145

some records, whether ‘outliers’ or censored values, have been removed which would have been informative146

for making inferences about inter-test variability.147

We predominantly focus on a subset of the database selected according to the following rules: (i) all148

records are either LC50 or sub-lethal EC50 (effect defined as immobility) values; (ii) each record is identi-149

fiable at the species level; (iii) species belonging to the taxonomic order Insecta or Crustacea must have a150

minimum 48h exposure; (iv) species not belonging to the taxonomic order Insecta or Crustacea must have151

a minimum 96h exposure; (v) no qualitative ‘approximate’ values were admissible; and (vi) each chemical152

must have at least 5 distinct species pointwise measurements. Acute and chronic data are not amalgamated153

for purposes of estimating inter-test variability since it would be a source of systematic error. Item (v)154

enhances comparability of results reported here of statistical analyses which have varying data requirements;155

this is described in Section 2.4. In this data subset, there are 6576 records: 6279 classed as pointwise; 112156

as interval censored; 173 as right censored and 12 as left censored. Of these 6576 records there were 4854157

unique chemical-species combinations spanning 339 chemicals and 610 species.158

We will use the following notation. Let yijk be the k-th log (base 10) transformed toxicity value for159

species j tested on chemical i. Also, let Kij be the number of toxicity records for species j tested on160

chemical i. The three possible cases are: (1) Kij = 0 which means zero records are available for chemical-161

species combination (i, j); (2) Kij = 1 which means precisely one record is available; and (3) Kij > 1 which162

means multiple records are available. It is case (3) which allows for inferences to be made about inter-test163

variability; when it is part of a larger statistical model, case (2) data can also influence model parameter164

estimates.165

2.2 Exploratory analysis166

The most straightforward exploratory analysis is to calculate the sample standard deviation of log toxicity167

values for each chemical-species combination (i, j) for cases when Kij > 1, namely168

sij =

√√√√ 1
Kij − 1

Kij∑
k=1

(yijk − ȳij)2,
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where ȳij is the sample mean for chemical-species combination (i, j). Whilst this statistic is non-parametric,169

it is only calculable with pointwise toxicity data. Therefore, we only analyse the 6279 pointwise records170

extracted previously.171

2.3 Classical modelling172

Inferences about a simple exploratory analysis can be made if a model is proposed. Pragmatic modelling is

advocated here in light of the limited number of records for chemical-species combinations generally available

in ecotoxicity databases and the lack of quality controlled metadata. We therefore propose a simple model,

namely

yijk = µij + εijk,

where µij is the ‘true’ log-transformed toxicity value for chemical-species combination (i, j) and εijk is the173

inter-test variability. In addition, we make two initial modelling assumptions: (i) inter-test variability in the174

database subset is random and not systematic, thus not requiring bias correction; and (ii) εijk |σ ∼ N(0, σ2),175

where the tilde is read as ‘distributed’. These two assumptions combine to state that each residual about176

the ‘true’ log-transformed toxicity value for chemical-species combination (i, j) is a random sample from a177

normal distribution centered about zero with homogeneous variance σ2 that is independent of experimental178

conditions, chemical and species.179

Since there is no a priori reason why the sum of variation, which is extraneous to the interspecies180

variation, should be a unique property of the specific risk assessment (i.e. chemical or species tested)181

rather than one which is globally defined, this modelling assumption appears reasonable. This model is,182

however, incompatible with the joint modelling of multiple arbitrary endpoints, e.g. acute and chronic183

together. Although the normal distribution assumption allows for confidence statements to be made, testing184

the assumption is difficult since for each chemical-species combination (i, j), Kij — the number of available185

L(E)C50 measurements for the chemical-species combination, is generally too small to (confidently) make186

inferences from goodness-of-tests. This exact problem is faced by risk assessors trying to fit SSDs. Despite187

there being strong criticism of distributional assumptions [25], the REACH GD [12] states that normality is:188

‘the pragmatic choice. . . because of the available description of its mathematical properties (meth-189

ods exist that allow for most in depth analyses of various uncertainties)’.190

It is also a standard distributional choice in statistical modelling of errors [26], therefore we adopt it here. If191

inter-test variability can be envisaged as the sum of many smaller error components, then appealing to the192

central limit theorem [26] would offer some further justification for the model proposed here.193
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Based on these assumptions, a statistically unbiased estimate of σ2 is the pooled variance, namely194

s2pooled =

∑
(i,j)(Kij − 1)s2ij∑

(i,j)(Kij − 1)
, (1)

where the sum is over all chemical-species combinations (i, j) in the database. Pooling variances across195

chemicals is not new [27, 28]; however, here we are pooling inter-test variances rather than interspecies196

variances. For each Kij bin we can determine whether the variation in observed sij values is consistent with197

distributional assumptions, or whether there is over- or under-dispersion. An approximate 95% interval for198

each bin Kij = K∗ is determined as
(
χK∗,0.025σ̂/

√
K∗ − 1, χK∗,0.975σ̂/

√
K∗ − 1

)
with σ̂ = spooled, where199

χ(K∗−1),α is the 100α-th percentile of the Chi distribution with K∗ − 1 degrees of freedom.200

2.4 Bayesian modelling201

The application of Bayesian modelling in ecotoxicological risk assessment has recently gained attention202

[13, 10, 29, 14, 36, 30, 31, 32, 33, 15]. The basic idea of the Bayesian paradigm is that prior knowledge203

(or some suitable objective proxy) can be updated with the data likelihood function to yield a posterior204

distribution of the unknown model parameters, from which probabilistic statements can be made. For an205

introduction to Bayesian methods in ecological risk assessment, consult Warren-Hicks and Hart [34] and206

references therein.207

We earlier proposed the data model as yijk |µij , σ ∼ N(µij , σ2) for k = 1, . . . ,Kij and species j tested208

on with chemical i; this defines the likelihood function for a given ecotoxicity database. In order to analyse209

the model from a Bayesian perspective we need to specify [prior] distributions for (i) σ2 and (ii) µij .210

For (i), a default prior distribution, which is referred to as non-informative, is the Jeffreys prior: π(σ2) ∝211

σ−2 for σ2 > 0. This is equivalent to the assumption that all values of log(σ) are equally likely a priori.212

Although not universally accepted, it has been applied to the interspecies standard deviation parameter in213

many Bayesian SSD analyses [13, 35, 10, 36, 15]. See Gelman [37], pp. 62–66 and references therein for214

general consideration of Jeffreys’ and other priors.215

For (ii), the standard ecotoxicological model is the normal species sensitivity distribution, which can be216

described in terms of a probability distribution, namely217

µij |αi, ψi ∼ N(αi, ψ2
i ), (2)

where αi and ψi are the per-chemical SSD mean and standard deviation parameters on log concentration218

for chemical i. Note that, in a situation where ecotoxicity data are measured for a single chemical only219
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without inter-test variability, i.e. σ = 0, the model reduces to the one described in Aldenberg and Jaworska220

[13] subject to notational differences; their µ and σ are then our αi and ψi respectively and our µij then221

correspond to their data. The inclusion of a common inter-test variability parameter means that the SSDs222

are only conditionally independent (probabilistically) between chemicals. This hierarchical structure requires223

us to either estimate each pair of hyper-parameters (αi, ψi) or model them; we do the latter using standard224

independent non-informative priors: π(αi, ψi) ∝ 1. This is equivalent to the assumption that all values225

of ψi > 0 are equally likely a priori. The Jeffreys prior used for the inter-test variance parameter is not226

applicable here since it would lead to an unbounded integrated probability density; see [37], pp. 521–522.227

The approach taken here was made to meet the necessary technical requirements and is deemed reasonable228

by Gelman [37]. Alternatively, one may consider the per-SSD parameters as exchangeable [10, 15] and model229

them as coming from a larger hyper-population, or use expert elicitation to specify prior beliefs. This,230

however, is beyond the scope of the present study which is primarily interested in estimating σ and in the231

consequences within the remit of the current simple SSD modelling framework.232

The requirement in the database subset extraction routine that each chemical must have a minimum233

of 5 distinct species with pointwise measurements was made to overcome a technical issue regarding the234

analytical structure of the posterior distribution and to reduce sensitivity to the choice of prior distribution235

for the ψi parameters. Consult the Supporting Information for further details.236

The posterior distribution of the parameters of interest is calculated using Bayes’ rule and is proportional237

to238

N∏
i=1

∏
j∈Ji

Kij∏
k=1

`(yijk |µij , σ2)π(µij |αi, ψi)π(αi)π(ψi)π(σ2), (3)

where Ji is the set of all species tested with chemical i. A mathematical derivation of the posterior distri-239

bution, and a description of the sampling methodology used to analyse it and a computer code script for240

running it are all given in the Supporting Information.241

The normal distribution assumption is not a prerequisite of this analysis; alternative distribution propos-242

als for SSDs include the logistic [38]; Burr Type III [39]; triangular [5]; and uniform, exponential and Weibull243

[40]. This is an ongoing and widely debated issue in the ecotoxicological risk assessment arena. We adopt244

the normal distribution based on its prevalence in the ecotoxicological SSD-based risk assessment arena and245

its convenient properties for mathematical analysis of the posterior distribution.246

2.5 Consequences in setting environmental standards247

Inter-test variability is not taken into account in standard procedures for determining hazardous con-248

centrations, although it should be due to the simple fact that it is an additional component of uncertainty.249
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We briefly examine the consequences of adjusting for its presence. The usual method for fitting an SSD250

assumes the ‘true’ log-transformed toxicity value µij for chemical-species combination (i, j) to be equal to251

the aggregated measurements ȳij ; no account of uncertainty is made. Therefore, we define the ‘inter-test252

variability adjusted’ (ITVA) SSD for chemical i to be the distribution of the µij values, the true interspecies253

variation. From this ITVA SSD, we can in turn calculate a ITVA estimate of the HC5 which can be used to254

set environmental standards. A numerically simple method is to observe that based on the model described255

by Equation. 2, the ITVA log10(HC5) for chemical i, which extrapolates for interspecies variation only, is256

equal to αi −K5ψi where K5 is the 95-th percentile of the standard normal distribution [13]. The posterior257

distribution of the ITVA log10(HC5) can be calculated from the full posterior distribution (Eqn. 3).258

A comparison between the ITVA HC5 estimator and the usual HC5 estimator (i.e. ignoring the issue259

of inter-test variability by aggregating multiple chemical-species combination) allows us to infer the conse-260

quences of accounting for inter-test variability in ecotoxicological risk assessment. For the Bayesian analysis,261

the median of the ITVA log10(HC5) distribution is calculated for each chemical in the robust database subset262

for (a) all the data, and (b) the pointwise-only data. The latter allows for direct comparability with the263

usual estimator methodology which assumes pointwise data. Details of how the Bayesian hierarchical model264

can be fit with censored data is described in the Supporting Information. For the usual method, we calcu-265

late the median log10(HC5) for each chemical in the robust database subset, using the frequentist method266

described in Aldenberg and Jaworska [13] who also showed that the estimator corresponded to the Bayesian267

posterior median under Jeffreys prior [36]; we used pointwise-only toxicity data, harmonising multiple mea-268

surements for the same chemical and species using the geometric mean, as per the guidance in the REACH269

GD [12, pp. 7–8]. Qualitative aspects of the meta-analysis aggregation method were not undertaken as270

the database was developed to meet strict quality control standards [24] a priori, thus residual variation is271

scientifically attributable to inter-test variability. Moreover, we consider the REACH GD threshold of one272

order of magnitude to be entirely arbitrary.273

3 Results274

3.1 Empirical & classical analysis275

In Figure 1 we display boxplots, for the pointwise-only subset of the acute data, of sij for every chemical-276

species combination (i, j) for which Kij > 1 (sij is not defined otherwise). Note that sij is reported in units277

of log10 µg/L. Since sampling uncertainty will undoubtedly be greater for small Kij , we stratify the boxplots278

according to Kij bins. The red dashed line shows the estimated pooled standard deviation, spooled = 0.507.279
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Since sij is measured on the log (base 10) scale, spooled corresponds to a factor (or fold-difference) of about280

3.2. There is no evidence of sij being explained by major taxonomic grouping, however this conclusion is281

not surprising since 79% of the 4615 distinct (i, j) combinations are for Crustacea and Osteichthyes only —282

a reflection of the imbalance between ecotoxicity databases and ecological representativeness.283

Conditional on the model assumption that the log-toxicity values are realisations from a normal distribu-284

tion with homogeneous variance (with the mean equal to the ‘true’ log-toxicity value for that chemical-species285

combination), an approximate ‘region of high probability’ for future sij is highlighted blue in Figure 1. For286

2 ≤ Kij ≤ 6 the median of the boxplots tend towards spooled from below which, assuming the population287

inter-test variance is homogenous, is expected since the sampling distribution of sij is skewed to the right.288

As shown by the grey line graph overlay, the number of chemical-species combinations for which Kij is large289

(Kij ≥ 8) is generally less than 5. Although as Kij increases the standard error about sij reduces, with only290

a handful of (i, j) combinations there will be less information to gauge whether homogeneity is a reasonable291

assumption. Qualitatively we conclude that homogeneity is a reasonable hypothesis. The null hypothesis292

of homogeneity was examined using Levene’s test based on the sum of median squares. A P -value of 0.656293

(F = 0.8125 on 14 and 912 degrees of freedom) does not provide evidence to reject the hypothesis of homo-294

geneity. This test, however, is limited in value since it is not generally appropriate to consider meaningful295

populations (in the statistical sense) defined by the Kij bins.296

As a side analysis to the focal acute dataset in the present study, an estimate of the NOEC-based inter-297

test pooled standard deviation is calculated as 0.580. There are much fewer data available (174 distinct298

(i, j) combinations with repeated measurements such that 145 combinations fall into the Kij = 2 bin; 17 in299

the Kij = 3 bin; 8 into the Kij = 4 bin; 3 into the Kij = 5 bin and 1 into the Kij = 6 bin) to test the300

homogeneity hypothesis, although qualitative analysis suggested the hypothesis was reasonable. Although301

test methods for assessing chronic (NOEC) toxicity are inherently more complex than those for assessing302

acute (EC50 / LC50) toxicity, conditional on the homogeneity model, the average increase in inter-test303

variability is only 18%. However, the uncertainty about this estimate is also larger.304

3.2 Bayesian analysis & consequences305

Using Markov chain Monte Carlo sampling methods, 10000 samples were drawn from the posterior306

distribution (Eqn. 3); technical details of this are provided in the Supporting Information. A kernel density307

plot of σ (derived by applying the square-root function to all samples of σ2) is shown in Figure 2. The308

posterior median of σ is 0.466 log10 µg/L with 95% credible interval (the Bayesian analogue of a confidence309

interval) (0.454, 0.480). The frequentist estimate, spooled, falls outside the Bayesian credible interval; by310
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fitting some additional models to the data, the slight difference between spooled and the posterior median311

estimate, which is of negligible practical significance, was found to be due largely to the hierarchical (SSD)312

modelling of the chemical-species mean toxicities µij rather than to any difference between Bayesian and313

frequentist procedures or to the incorporation of censored data in the Bayesian analysis. The posterior314

distribution of σ was also found to be insensitive to the choice of prior distribution for σ.315

In Figure 3, for 339 chemicals we plot the posterior ITVA median log10(HC5) estimate (based on all data316

[left panel] and pointwise-only data [right panel]) against the usual log10(HC5) estimate which aggregates317

measurements by the geometric mean. There is a strong linear correlation between the two estimates.318

The median difference between the estimates was 0.152 and 0.157 based on the inclusion and omission of319

censored data respectively. This corresponds to 83% of posterior median estimates being larger than the320

usual estimates, i.e. accounting for ITV leads to a more conservative estimator on average. The standard321

deviation and 95% quantile interval of the difference between ITVA and usual log10(HC5) estimates were322

respectively 0.192 and (−0.264, 0.469) when censored data was included; and 0.160 and (−0.166, 0.443) when323

censored data was omitted.324

4 Discussion325

Inter-test variability is a source of uncertainty and therefore should be considered by risk assessors326

and risk managers. Since uncertainty analysis is a necessary requirement under the REACH GD at the327

intermediate and higher tiers of risk assessment [23], it seems contradictory that the same GD authorises328

averaging out the effects of inter-test variability [12].329

According to [11], the HCx is the concentration hazardous to x% of species; equivalently, the probability330

that a randomly selected species from the assemblage has its endpoint exceed is x%. It can be inferred from331

common practice and risk assessment guidance that the SSD, of which the HCx is a summary statistic, rep-332

resents interspecies variability to toxicity of a toxicant. However, by not accounting for inter-test variability333

properly, the interpretation of the usual HC5 estimate does not align with the theoretical statistical model334

structure which is used. In many cases, correcting for this will not seriously alter decisions made; however,335

it will allow for improved quantification that can only serve to benefit risk assessment. Furthermore, it has336

been noted that SSDs lack ecological interpretability [25, 42, 41]; ignoring the issue of inter-test variability337

would only further undermine interpretability.338

Although the present study focused on acute data because of their prevalence in ecotoxicity databases,339

chronic data are generally required by regulators for intermediate and higher tier risk assessments and for340

environmental standards, e.g. [12]. The NOEC, which is highly criticised by environmental statisticians341
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working in the field of ecotoxicology [43, 44], may be incompatible with the inter-test variability model here342

due to its lack of statistical robustness. A more radical approach may be to use more sophisticated models343

with concentration-effect data, such as that proposed by Fox [31], whereby arbitrary chronic endpoints, such344

as the NOEC, are replaced by modelled values. The models could, in principle, be augmented to account345

for some other sources of variation.346

An estimate of a homogeneous inter-test standard deviation was determined to be approximately 0.47–347

0.51 on log10 µg/L concentration scale. This equates to a factor (or fold-difference) of about 3. In addition348

to the frequentist and Bayesian estimates being concordant, qualitative empirical analysis suggested the349

homogeneity assumption was reasonable.350

The homogeneity assumption is the simplest model for inter-test variability. Our prior justification for351

starting with a parsimonious model of inter-test variability was two-fold: (1) the state of the science, namely352

the SSD, is itself a very simple model in reflection of the lack of available ecotoxicity data; and (2) the353

number of chemical-species combinations with more that one measurement was small in the database used354

in the present study, as shown by the grey line graph overlaid on Figure 1. More sophisticated models could355

be considered. For example, inter-test variability could be made to depend on taxonomic and/or chemical356

groups. Unfortunately, without additional data, it would not be possible to estimate all the parameters.357

Moreover, if certain species [groups] are typically more sensitive than others, poor fit of the SSD model may358

be exacerbated through the process of parameter leveraging, leading to erroneous inferences. In the interests359

of gaining an initial handle on the magnitude of inter-test variability and its consequences, the homogeneity360

model is clearly preferable as an initial step forward. Furthermore, the present study does not consider the361

appropriateness of the standard SSD model, a topic about which there is a a lot of on-going research [25, 40].362

Exploration of the consequences of ignoring inter-test variability showed that for many chemicals, the363

median HC5 would be underestimated — equivalent to being over-conservative — for the majority of risk364

assessments. The magnitude of this difference is unlikely to be sufficient to radically reverse decisions based365

on the existing methods whereby inter-test variation is ignored. However, in general the importance will be366

proportional to the measure of the underlying true interspecies variation. EFSA [10] showed this can vary367

substantially between species taxonomic groups, and therefore the impact of inter-test variability may be368

more pronounced for some species communities.369

There are two important differences between the two analyses done here. Firstly, and fundamentally, there370

are differences between the two models describing the SSD, namely the status quo model (each [aggregated]371

species log-toxicity value is a random observation from a normal distribution) and the hierarchical model372

(each unknown species true log-toxicity value is a random sample from a normal distribution but we can373

make multiple observations with error). Secondly, since the underlying models are different, matching of374
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prior distributions is not a trivial concept. Nonetheless, the frequentist estimator is equivalent to a Bayesian375

model which assumes the Jeffreys prior distribution for ψi (π(ψi) ∝ ψ−1
i ) where the µij = ȳij . That is,376

the inter-test variability model is discarded and the ‘true’ log toxicity values are replaced by the aggregated377

(geometric mean) toxicity values for chemical-species combination (i, j), denoted ȳij . The more general378

hierarchical model based estimator assumes a uniform prior distribution (π(ψi) ∝ 1). It can be shown379

that the Jeffreys prior cannot be assigned to the ψi parameters in the hierarchical model due to posterior380

probability density function being improper [37]. Consequently, posterior distributions will be different,381

however this will typically only be noticeable for small ni.382

It has been made clear elsewhere [41, 14] that censored data are valid for ecotoxicological risk assessment,383

including the quantification of inter-test variability. The standard practices of fitting SSDs and estimating384

HC5s (e.g. method-of-moments, look-up tables based on prior derived asymptotic theory, and graphical385

regression models) do not facilitate or readily include the tools necessary by risk assessors to incorporate386

censored data values into their analyses. Despite the existence of proposals, which are relatively diffi-387

cult to implement, for augmenting the existing tools, the Bayesian counterpart is clearly preferable since it388

straightforwardly handles censored data whilst coherently measuring uncertainty in hierarchical models. The389

Bayesian paradigm also offers a rich framework to include subjective prior knowledge which will undoubtedly390

allow experts with specialities in specific chemical groups and species to come together to reduce uncertainty391

quantitatively whilst providing a transparent mechanism with which to examine expert judgements a poste-392

riori. A grand model would also seek to include correlation structure for the underlying ‘true’ species toxicity393

values, such as that implemented in the US EPA Interspecies Correlation Estimation programme [18]. Such394

an exercise to incorporate all these features is beyond the scope of the present study which intends only to395

naturally extend the basic normal SSD model to include inter-test variation and to serve as a platform for396

risk assessors to build upon.397

5 Conclusions398

Based on an acute toxicity subset of quality controlled ecotoxicity database, the standard deviation of399

inter-test variability was quantified to be approximately 0.47–0.51 log10 µg/L on the log (base 10) concen-400

tration scale, equivalent to a factor (or 3-fold difference) of about 3. It is a risk management decision as401

to whether this constitutes a value of concern, however it is a source of uncertainty nonetheless and should402

be discussed in risk assessments since it will only serve to compound with other sources of uncertainty. In403

many assessments, accounting for inter-test variability will lead to larger (or equivalently, relatively less404

conservative) estimates of the HC5 — a fundamental component in risk characterisation under the REACH405
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guidance document — compared to those derived from current methodology.406

Supporting Information407

Supporting Information 1: A cleaned version of the ecotoxicity database used to quantify the inter-test408

variance parameter as described in De Zwart [24]. Supporting Information 2: A mathematical description409

of the Bayesian analysis of measurement including the R script used to perform the Bayesian calculations in410

this paper.411
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Figure captions530

Figure 1: Boxplots of standard deviations [left axis] of log (base 10) acute toxicity values for chemical-
species combinations (i, j) with Kij records [horizontal axis]. Red horizontal dashed line is the pooled
standard deviation, spooled, calculated from Eqn. 1. Translucent blue band indicates a 95% probable interval
based on the assumption of normality and σ = spooled. Grey line gives the number of records (using the
vertical axis on the right-hand side) in the robust subset of the database for each Kij bin.

Figure 2: Posterior kernel density function for σ2 based on 4000 samples drawn from the joint posterior
distribution (Eqn. 3). See Supporting Information for technical description.

Figure 3: Plot of log10(HC5) estimates for 339 chemicals (i) adjusted to take into account inter-test variability
[horizontal axis]; (ii) calculated using the usual methodology which does not account for inter-test variability
[vertical axis]. Left panel: using all data in the robust acute effects database subset. Right panel: using only
pointwise data in the robust acute effects database subset. N.B. the unadjusted estimates are based only on
pointwise data. The legend provides an indication of the number of species with pointwise measurements
tested for each chemical i.
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Figure 1
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Figure 2
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Figure 3

Inter−test variability adjusted (ITVA) median log10(HC5)
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EC50 LC50 NOEC Total

A 5 12 0 17
I 79 467 33 579
R 944 948 35 1927
P 9777 15963 1852 27592
L 37 61 156 254

Total 10842 17451 2076 30369

Table 1: Summary of the ecotoxicity database according to the endpoint and datapoint type. A = approxi-
mate (i.e. ⇡ x); I = interval censored (i.e. > x1 and < x2); R = right censored (i.e. > x); L = left censored
(i.e. < x); P = pointwise (i.e. = x). The final column and row give the total number of observations over
observational status and endpoint respectively. EC50 = median e↵ect concentration; LC50 = median lethal
e↵ect concentration; NOEC = no observed e↵ect concentration.
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February 23, 2012

A Technical Details of Bayesian Analysis

A.1 Derivation of the Posterior Distribution

The simplest hierarchical model for SSDs which incorporates measurement error is

yijk |µij , σ
2 ∼ N(µij , σ

2); and

µij |αi, ψi ∼ N(αi, ψ
2
i ) (1)

where yijk is the k-th (= 1, . . . ,Kij) log (base 10) toxicity value for chemical i (= 1, . . . , N) tested on species
j. For convenience, define Ji to be the set of species tested with chemical i and Y to be the entire database
of measured log toxicity measurements. The (hyper-)parameters are assigned prior distributions as follows:

π(σ2) ∼ σ−2 for σ2 > 0;

π(αi) ∼ 1 independently for each αi ∈ R, i = 1, . . . , N ; and

π(ψi) ∼ 1 independently for each ψi > 0, i = 1, . . . , N.

Conditional on observing log toxicity values, the full-data likelihood function, which is the probability of
observing the data but as a function of the model parameters, is given as

`(µ, σ2) =
N∏

i=1

∏
j∈Ji

Kij∏
k=1

(2π)−
1
2σ−1 exp

{
− 1

2σ2
(yijk − µij)2

}
,

where µ is the vector of ‘true’ toxicity values µij for all relevant chemical-species combinations (i, j). This
can be simplified for analytical tractability as

`(µ, σ2) ∝
N∏

i=1

∏
j∈Ji

σ−Kij exp
{
−Kij

2σ2
(µij − ȳij)2

}
exp

{
− (Kij − 1)

2
s2ij
σ2

}
,
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where ȳij and s2ij are the sample mean and variance of the log toxicity values for chemical-species combination
(i, j).

The µij values are ‘nuisance’ parameters in this analysis and would ordinarily be integrated out of
the density function. However, the later complication of censored data requires us to work with the full
posterior. The posterior distribution of µ, σ2 and the hyper-parameters, α1, . . . , αN , ψ1, . . . , ψN , can then
be determined using Bayes’ rule:

π(µ, σ2, α1, . . . , αN , ψ1, . . . , ψN |Y) ∝ `(µ, σ2)π(µ |α1, . . . , αN , ψ1, . . . , ψN )π(σ2)
N∏

i=1

π(αi)π(ψi), (2)

where each µij conditional on αi and ψi independently follows the distribution given by Eqn. 1.

A.2 Sampling

In order to sample from this posterior distribution, a block Gibbs Markov chain Monte Carlo (MCMC)
sampler was written. The Gibbs sampler requires the posterior distribution of each parameter conditional
on all the others in the model. With these distributions, starting from a “best” guess for the parameters,
we cycle through them sampling each block of random variables one at a time based on the most recent
version of the other parameters. All the conditional distributions described here belong to standard families
(e.g. Gaussian) and therefore sampling from them is trivial once the location, scale and shape parameters
are analytically determined. Further details of MCMC techniques can be found in Gelman et al. [1].

Derivation of the conditional distributions follows on straightforwardly from the decomposition in Eqn. 2;
here we list them.

A.2.1 Conditional distributions: µ

µij |αi, ψi, σ
2; Y ∼ N

((
Kij ȳij

σ2
+
αi

ψ2
i

)
ωij , ωij

)
,

where,

ωij =
(
Kij

σ2
+

1
ψ2

i

)−1

.

A.2.2 Conditional distributions: ψ1, . . . , ψN , α1, . . . , αN

ψ−2
i |µ, σ

2; Y ∼ Γ

ni − 2
2

,
∑
j∈Ji

(µij − µ̄i)2

2

 ,

αi |µ, ψi, σ
2; Y ∼ N

(
µ̄i, ψ

−2
i /ni

)
.

where ni is the number of unique species tested with chemical i, i.e. the cardinality of the set Ji, and
µ̄i = (µi1 + · · ·+ µini

)/ni.

A.2.3 Conditional distribution: σ−2

σ−2 |µ, α1, . . . , αN , ψ1, . . . , ψN ; Y ∼ Γ

 1
2

N∑
i=1

∑
j∈Ji

Kij ,
1
2

(
Kij(µij − ȳij)2 + (Kij − 1)s2ij

) .

2



A.3 Censored Data

The posterior distribution calculations above are reliant on the database of measurements, Y, all being
observed. Frequently laboratory measurements will yield censored measurements such that yijk ∈ (Lijk, Uijk)
where Lijk and Uijk define the lower and upper bounds of the measurement value respectively. The type of
censoring depends on the values of Lijk and Uijk as described in the table below.

Lijk Uijk Censoring

finite finite interval
finite ∞ right
−∞ finite left

Write Y = (Yobs,Ycens), where Yobs is the collection of observed measurements and Ycens is the collec-
tion of (unknown) censored measurements with corresponding (known) intervals (L,U). Then the posterior
distribution of all the unknown parameters and Ycens conditional on Yobs, π(Ycens,µ, α1, . . . , αN , ψ1, . . . , ψN , σ

2 |Yobs),
has the same form as the right-hand side of Eqn. 2. Hence, the Gibbs sampler can be augmented with the
additional conditional distributions for all data yijk ∈ Ycens:

yijk |µ, σ2 ∼ N(µij , σ
2)

restricted to Lijk ≤ yijk ≤ Uijk. It is useful to exploit the probability integral transform to generate this
sample:

Step 1. Set

PLijk
= Φ

(
Lijk − µij

σ

)
and PUijk

= Φ
(
Uijk − µij

σ

)
,

where Φ(·) is the standard normal cumulative distribution function.

Step 2. Randomly generate Uijk ∼ U(PLijk
, PUijk

) where U(a, b) is the uniform distribution with support
on [a, b].

Step 3. Set yijk = µij + Φ−1(Uijk)σ

As per the model (hyper-)parameters, it is necessary to initialise the Markov chain at some possible value
which satisfies the constraints of the censoring.

A.4 Implementation

A technical issue arises in the resulting posterior distribution regarding whether its normalisation constant is
finite, stemming from the variance component parameters ψ1, . . . , ψN . However, by restricting the minimum
sample size of the number of distinct species tested with each chemical to ni ≥ 3, the issue is resolved [2]. It is
conceivable that the heavy right tail deriving from the typically small sample sizes found in ecotoxicological
risk assessment will influence posterior inferences. This is of particular importance since estimates of the
hazardous concentration to a fixed proportion of species (i.e. the HCp) are a function of ψi. Based on
heuristic suggestions in Gelman [2], we therefore restrict sample sizes to ni ≥ 5.

The Metropolis-within-Gibbs sampler was programmed in R (http://www.r-project.org/) [3]. The
code is provided in the next section. After a burn-in period of 5,000 samples (to reach stationarity of the

3

http://www.r-project.org/


chain), 10,000 samples of the random variables were generated with a thinning rate of 50 (i.e. only every
50-th sample was kept; the rest discarded) to remove the presence of serial correlation. In Fig. 1 we show
the autocorrelation plot and a partial time series plot of the σ parameter sample, which are two diagnostic
tools used to assess convergence properties.
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Figure 1: Diagnostic tools to assess (part of) the convergence property of MCMC sample with respect to
the parameter σ. Left panel: the autocorrelation function. Right panel: time-series plot (after the burn-in
period and thinning regime).
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B R Code

##############

## PREAMBLE ##

##############

## This code is produced by Peter Craig, Dept. of Mathematical Sciences,

## Durham University and Graeme Hickey, NIBHI, Manchester University.

## It is freely available for all purposes. However, the authors of the manuscript

## assume no responsibility for any possible errors in the code.

##

## If you have any questions, please contact: P.S.Craig@durham.ac.uk.

##

## To being using the code, you will need to install the R statistical software

## program and the packages listed below.

library(doBy)

library(stringr)

library(reshape)

library(ggplot2)

library(Matrix)

rivm = dget(file.choose()) # load a CSV version of the database from files

rivm = rivm[rivm$endpoint %in% c("EC50", "LC50", "NOEC"), ]

rivm = droplevels(rivm)

#----------------------------------------------------------------

######################

## DATA MANANGEMENT ##

######################

# full robust acute (EC50/LC50)

inds1 = with(rivm,

(endpoint == "LC50" | endpoint == "EC50") &

(effect == "MOR" | effect == "IMM"))

inds2 = with(rivm,

(dur.low == 2) &

(major %in% c("CR", "IN")))

inds3 = with(rivm,

(dur.low == 4) &

!(major %in% c("CR", "IN")))

inds4 = !(grepl(" sp$", rivm$species) | grepl(" sp.", rivm$species))
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inds5 = grepl(" ", rivm$species)

inds6 = !(rivm$major == "MI")

inds7 = !(rivm$conc.ind == "A")

acute.r = rivm[which(inds1 & (inds2 | inds3) & inds4 & inds5 & inds6 & inds7), ]

acute.r = drop.levels(acute.r)

# Robust with n >= 5 distinct species *pointwise* measurements

# (incl. censored data)

n = by(

acute.r,

factor(acute.r$CAS),

function(d) length(unique(d[d$conc.ind == "P", ]$species))

)

status = (n >= 5)

acute.r2 = acute.r[acute.r$CAS %in% names(n)[status], ]

acute.r2 = drop.levels(acute.r2)

# Robust with n >= 5 distinct species *pointwise* measurements

# (not incl. censored data)

acute.r3 = acute.r2[acute.r2$conc.ind == "P", ]

acute.r3 = drop.levels(acute.r3)

##################

## MCMC SAMPLER ##

##################

## Options:

## -- data (data.frame): appropriately labelled as per acute.r2.

## -- N (integer > 1): number of MCMC samples to return.

## -- thin (integer >= 1): thinning rate.

## -- detailed (logical): return nusiance variables? Default = FALSE.

gibbs.fast = function(data, N, thin = 10, detailed = FALSE) {

## Add CAS:Species interaction term to each record

data = cbind(

ij = interaction(data$CAS, data$species, drop = TRUE),

data[c("CAS", "species", "conc.ind", "lconc.low", "lconc.upp")]

)

## Calculate ’approximate’ values for y.ijk (i.e. for each measurement)

data = transform(data,
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yapprox = ifelse(

conc.ind %in% c("P","L"),

lconc.low,

ifelse(conc.ind=="U",

lconc.upp,

(lconc.low + lconc.upp) / 2

)

)

)

## Calculate ’approximate’ values for y.ij (i.e. for each CAS:Species)

data.ij = summaryBy(yapprox ~ ij, id = ~ CAS, data = data, FUN = c(length, mean))

data.ij = transform(

data.ij,

k = yapprox.length,

yapprox.length = NULL

)

k.total = sum(data.ij$k)

## Calculate ’approximate’ values y.i (i.e. for each chemical SSD)

data.i = summaryBy(yapprox.mean ~ CAS, data = data.ij, FUN = c(length, mean, sd))

data.i = transform(

data.i,

n = yapprox.mean.length, # number of distinct species per chemical

yapprox.mean.length = NULL

)

data.ij$data.i.index = match(data.ij$CAS, data.i$CAS)

M2.tapply = 1.0 * outer(data.i$CAS, data.ij$CAS, "==") # no. chems x no. ij-pairs

M2.tapply = Matrix(M2.tapply, sparse = TRUE)

is.pw = data$conc.ind == "P" # Is pointwise?

interval = data[!is.pw, ] # Interval censored data

do.interval = nrow(interval) > 0 # Is there any censored data

if (do.interval)

interval$data.index = seq(nrow(data))[!is.pw] # index of record in data

pw = data[is.pw, ] # subset of pointwise data

## Statistics for pointwise data only

pw.ij = summaryBy(

lconc.low ~ ij,

id = ~ CAS + species,

data = pw,

FUN = c(mean, sd, length)
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)

pw.ij = transform(

pw.ij,

ybar = lconc.low.mean, s = lconc.low.sd, k = lconc.low.length,

lconc.low.mean = NULL, lconc.low.sd = NULL, lconc.low.length = NULL

)

pw.ij = transform(pw.ij, ysum = k*ybar, sse = ifelse(k>1, (k-1)*s^2, 0))

pw.ij$data.ij.index = match(pw.ij$ij, data.ij$ij)

## Modify representation of interval data + add in index for unique ij-table

if(do.interval) {

interval$data.ij.index = match(interval$ij, data.ij$ij)

unique.interval.ij.indices = unique(interval$data.ij.index)

M.tapply = 1.0 * outer(unique.interval.ij.indices, interval$data.ij.index

, "==") # no. unique censored ij-pairs x no. ij-pairs

M.tapply = Matrix(M.tapply, sparse = TRUE)

interval[interval$conc.ind == "L", "lconc.upp"] = Inf

interval[interval$conc.ind == "U", "lconc.low"] = -Inf

}

## Allocate memory for posterior samples

n.ij = nrow(data.ij) # no. of unique ij-pairs

n.i = nrow(data.i) # no. of chemicals

if(detailed) mu.ij.mcmc = matrix(NA, n.ij, N)

sigma.mcmc = numeric(N)

alpha.mcmc = matrix(NA, n.i, N)

psi.mcmc = matrix(NA, n.i, N)

if(do.interval) {

n.interval = nrow(interval)

if(detailed) y.interval.mcmc = matrix(NA, n.interval, N)

}

ysum.ij.pw = rep(0, n.ij)

ysum.ij.pw[match(pw.ij$ij, data.ij$ij)] = pw.ij$ysum

## Initial values

alpha.i = data.i$yapprox.mean.mean

psi.i = pmax(0.5, data.i$yapprox.mean.sd)

mu.ij = data.ij$yapprox.mean

sigma = with(

subset(pw.ij, k>1),

sqrt(sum((k-1)*s^2) / sum(k-1))

)
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## Function to sample from normal distribution with (interval) censoring

rcensnorm = function(n, low, upp, mu, sigma) {

tophalf = low > mu

tmp = low[tophalf]

low[tophalf] = -upp[tophalf]

upp[tophalf] = -tmp

mu[tophalf] = -mu[tophalf]

plow = pnorm(low, mu, sigma)

pupp = pnorm(upp, mu, sigma)

p = plow + runif(n)*(pupp-plow)

x = qnorm(p, mu, sigma)

x = pmin(pmax(x, low), upp)

x[tophalf] = -x[tophalf]

x

}

for(t in 1:(N*thin)) {

## Sample y.interval

if(do.interval)

y.interval = rcensnorm(

n.interval,

interval$lconc.low, interval$lconc.upp,

mu.ij[interval$data.ij.index],

sigma

)

ysum.ij = ysum.ij.pw

if(do.interval) {

ysum.ij.interval = as.vector(M.tapply %*% y.interval)

ysum.ij[unique.interval.ij.indices] =

ysum.ij[unique.interval.ij.indices] + ysum.ij.interval

}

ybar.ij = ysum.ij/data.ij$k

## Sample sigma

sse.pw = sum(pw.ij$sse + pw.ij$k*(pw.ij$ybar-ybar.ij[pw.ij$data.ij.index])^2)

if(do.interval) {

sse.interval = sum((y.interval-ybar.ij[interval$data.ij.index])^2)

sse.total = sse.pw + sse.interval

} else sse.total = sse.pw
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total.variation = sse.total + sum(data.ij$k * (ybar.ij-mu.ij)^2)

sigma = 1 / sqrt(rgamma(1, k.total/2, total.variation/2))

## Sample mu.ij

prec.alpha.ij = 1/psi.i[data.ij$data.i.index]^2

alpha.ij = alpha.i[data.ij$data.i.index]

prec.ybar.ij = data.ij$k / sigma^2

prec.mu.ij = prec.alpha.ij + prec.ybar.ij

E.mu.ij = (prec.alpha.ij * alpha.ij + prec.ybar.ij * ybar.ij) / prec.mu.ij

mu.ij = rnorm(length(ybar.ij), E.mu.ij, 1/sqrt(prec.mu.ij))

## Sample psi.i

mubar.i = as.vector((M2.tapply %*% mu.ij)) / data.i$n

sse.mubar.i = as.vector(M2.tapply %*% ((mu.ij - mubar.i[data.ij$data.i.index])^2))

df.i = data.i$n-2

psi.i = 1 / sqrt(rgamma(length(mubar.i), df.i/2, sse.mubar.i/2))

## Sample alpha.i

alpha.i = rnorm(length(mubar.i), mubar.i, psi.i / sqrt(data.i$n))

## Save the results

if (t %% thin == 0) {

if(detailed) mu.ij.mcmc[ , t/thin] = mu.ij

sigma.mcmc[t/thin] = sigma

if(do.interval && detailed) y.interval.mcmc[ , t/thin] = y.interval

alpha.mcmc[ , t/thin] = alpha.i

psi.mcmc[ , t/thin] = psi.i

}

}

## Output

res = list(

data = data,

data.ij = data.ij,

pw.ij = pw.ij,

N = N,

alpha = t(alpha.mcmc),

psi = t(psi.mcmc),

sigma = sigma.mcmc

)

if(detailed) res$mu.ij = t(mu.ij.mcmc)
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if(do.interval) {

res$interval = interval

if(detailed) res$y.interval = t(y.interval.mcmc)

}

res

}

#--------------------------------------------------------------------------

########################

## POSTERIOR ANALYSIS ##

########################

## Extract required MCMC chains

out.c = gibbs.fast(acute.r2, N = 5000, thin = 100)

alpha.c = out.c$alpha

psi.c = out.c$psi

sigma.c = out.c$sigma

out.p = gibbs.fast(acute.r3, N = 5000, thin = 100)

alpha.p = out.p$alpha

psi.p = out.p$psi

sigma.p = out.p$sigma

## Calculate posterior median log(HC5)s

delta.c = alpha.c - qnorm(0.95)*psi.c

hc5.bayes.c = data.frame(

CAS = levels(acute.r2$CAS),

delta.tilde = apply(delta.c, 2, median),

alpha.mean = apply(alpha.c, 2, mean),

psi.mean = apply(psi.c, 2, mean))

delta.p = alpha.p - qnorm(0.95)*psi.p

hc5.bayes.p = data.frame(

CAS = levels(acute.r3$CAS),

delta.tilde = apply(delta.p, 2, median),

alpha.mean = apply(alpha.p, 2, mean),

psi.mean = apply(psi.p, 2, mean))
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hc5.bayes = merge(hc5.bayes.c, hc5.bayes.p,

by = "CAS", suffixes = c(".c", ".p"))

## Calculate frequentist median log(HC5)s

# Aggreagtion of acute.r3 over chemicals

acute.r3.agg = summaryBy(

lconc.low ~ CAS + species,

data = acute.r3,

FUN = mean,

keep.names = TRUE)

hc5.freq = do.call("rbind", by(

acute.r3.agg,

acute.r3.agg$CAS,

FUN = function(d) {

y = d$lconc.low;

data.frame(

CAS = d$CAS[1],

n = length(y),

ybar = mean(y),

s = sd(y)

)

}

))

hc5.freq$delta.hat = with(

hc5.freq,

ybar - qt(0.5, n-1, qnorm(0.95)*sqrt(n))*s/sqrt(n))

## Combine into an overall summary dataframe

hc5 = merge(hc5.bayes, hc5.freq, by = "CAS")

d = melt(hc5,

id.vars = c("CAS", "n", "delta.hat"),

measure.vars = c("delta.tilde.c", "delta.tilde.p"))

levels(d$variable) = c("with censored data", "without censored data")

## Generate plot of log(HC5)s: Bayes-corrected vs. freq.

p = ggplot(d, aes(x = value, y = delta.hat))

p = p + geom_point(aes(size = n)) +

xlab(expression(paste("Measurement error adjusted median log"[10], "(HC"[5], ")"))) +

ylab(expression(paste("Usual median log"[10], "(HC"[5], ")")))
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p = p + facet_grid(.~variable)

p = p + scale_size(expression(italic(n)[i]), breaks = c(seq(5, 55, 10), 100))

p = p + geom_abline(intercept = 0, slope = 1, colour = "grey", line = "dashed", size = 0.8)

p + theme_bw()

## Generate plot of posterior density of sigma

df = data.frame("sigma" = sigma.c)

q = ggplot(aes(x = sigma), data = df)

q = q + geom_density(fill = "lightgrey") + xlab(expression(sigma))

q + theme_bw(base_size = 9) +

opts(title = expression(paste("Posterior distribution of ", sigma)))

## Display diagnostics of sigma

par(mfrow = c(1, 2))

acf(sigma.c, main = "Autocorrelation plot")

plot(ts(sigma.c), main = "Time-series plot", xlab = "Sample iteration", ylab = expression(sigma))
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