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ABSTRACT. One of the main difficulties in extracting line networksrframages, and in particular road networks
from remote sensing images, is the existence of interragtio the data caused, for example, by occlusions. These
can lead to gaps in the extracted network that do not cornesfwogaps in the real network. In this paper, we describe a
higher-order active contour energy that in addition to tairmy network-like regions, includes a prior term penaligi
networks containing ‘nearby opposing extremities’, thgrenaking gaps in the extracted network less likely. The
new energy term causes such extremities to attract oneeratiing gradient descent. They thus move towards one
another and join, closing the gap. To minimize the energydexelop specific techniques to handle the high-order
derivatives that appear in the gradient descent equatiospMbent the results of automatic extraction of networks
from real remote-sensing images, showing the ability oftleglel to overcome interruptions.

1. INTRODUCTION

The huge growth in the amount of digital imaging data of vasitypes available in many fields, including
remote sensing, medicine, and biology, makes the congtruof systems capable of automatically extracting
information of semantic value from this data a necessityil®\#ach application comes with its own semantics,
prior knowledge, and other specificities that mean it mugprinciple be treated anew, in practice there are
frequently commonalities between different applicatitireg make a somewhat more generic approach feasible.
Line networks are an example. They represent informatioseafantic value in many applications: vascular
networks in medicine; filamentary structures in biologitaages; road and river networks in remote sensing
and cartography; and galactic filaments in astronomy; wioksessing many properties in common across these
applications. The extraction of their properties from ifmggdata (most often, the identification of the region
in the image domain corresponding to the network) is thusoafesimportance, but semi-automatic extraction
remains a time consuming and expensive task. Researchroedceith these problems has therefore begun
to focus on the development of efficient methods for the aatanextraction of line networks. In this paper,
we particularly focus on the extraction of line networksnfroemote-sensing images, but the models described
should be equally useful for imagery from other applicagidncluding medical and biological images.

In order to be able to extract networks, we must first be ableddel them well, that is, be able implicitly or
explicitly to put an image-dependent probability disttibn P(R|I) on the space of regions in the image domain
whose mass is concentrated on the region corresponding teetfavork in/. Such a probability can of course
be decomposed into two pieces: a prior probability on theespd regions given that the region corresponds to
a network,P(R), and a likelihood describing the images to be expected divanthe regionr in the image
domain corresponds to a networR(I|R). The construction of distributionB(R) and P(I|R) that generate
a posterior probability?(R|I) concentrated on the network in a given image is not easy. i&eprors that
are not concentrated on network-shaped regions combirtadikeélihoods based on local image measurements
are not sufficient to concentraf® R|I) on the network sought, because local image measuremeritsltyp
assume similar values for many regions that do not correspoithe network, and the prior is incapable of
distinguishing between them. To improve the situation, caxe thus advance in two directions. The first is to
design likelihoods that capture some of the dependenciesgshthe image values associated with the network,
the use of line detection filters being the most common exampven this does not suffice, though, since
the measurements are still relatively local, and may belainfor many structures that do not form part of a
network. The second is to design priors that are concent@ienetwork-shaped regions. Constructing such
priors is also non-trivial, however, first because the spdgegions is an infinite-dimensional nonlinear space,
and second because networks form a subset of this spaces tH#figult to characterize. Networks possess
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strongly constrained geometric propertieg(narrow arms with roughly parallel sides), but arbitrarydtmgy.
They cannot be defined, for example, as variations aroundea steape.

Rochery et al. (2003) (for more detail see (Rochery et al0620have proposed a method for the quasi-
automatié extraction of line networks based on advances in both thiesetins. These advances make use of
a new generation of active contour models, introduced byhBigcet al. (2003, 2006), and named ‘higher-order
active contours’ (HOACsJ. While classical active contours use only boundary lengith iaterior area (and
perhaps boundary curvature) as prior knowledge, HOACsvahe incorporation of non-trivial prior knowledge
about region geometry, and the relation between region gggrand the data, via nonlocal interactions between
tuples of contour points. They are also intrinsically Ede&in invariant. They differ from most other methods for
incorporating prior geometric knowledge into active camo(Chen et al., 2001; Leventon et al., 2000; Foulon-
neau et al., 2003; Paragios and Rousson, 2002; Cremers20@B8) in not being based upon perturbations of a
reference region or regions. This allows them to model mgmpnsisting of an arbitrary number of connected
components, for example, in which the morphology of eachgmment and the inter-component interactions
are controlled. Using this new framework, Rochery et al0@®006) proposed a model that goes a long way
towards capturing the prior geometric knowledge we havestfiark regions, as well as the complex dependen-
cies between image values associated with networks. Therpadel has as low-energy configurations, regions
composed of arms of roughly constant width that join toge#ttgunctions. The likelihood model predicts not
just high image gradients along the edges of the networknbatporates longer-range dependencies that predict
that image gradients along one side of a network arm will lvalled, while image gradients on opposite sides of
a network arm will be anti-parallel.

Thanks to this prior knowledge, the model produces gooditsesising gradient descent to minimize the
contour energy, starting from a generic initializationtthenders the method quasi-automatic. The primary
failure mode of the method is the presence of ‘gaps’ in theaektd networks caused by ‘interruptions’ in the
image of the road. These interruptions are caused by vatymes of ‘geometric noise’: in the case of road
networks, for example, trees and buildings close to the oitthat change its appearance either via occlusion
or because of cast shadows. The method fails to close thpsdaeéhree reasons, two related to the model, and
one to the algorithm:

(1) the prior knowledge concerning the geometry of the netw®(R)) does not distinguish between two
distant arms that each comes to an end, and two arms that fgap,aonce the extremities are more
than a few pixels apart. Thus the model does not capture aur prowledge that road networks, for
example, usually do not possess such gaps;

(2) the prior knowledge concerning the image to be expectad & given network®(I|R)) does not allow
for the possibility that there will be interruptions in thbserved road;

(3) the gradient descent algorithm may be unable to closg@dlpeeven if the configuration with the gap
closed has lower energy than the configuration with the gapgmt, due to the shape of the energy
surface between the two configurations.

Rochery et al. (2004) made a preliminary attempt to addtesgap closure problem. They introduced a
‘gap closure’ force making nearby opposing network exttemiattract one other, thus closing gaps between
them. The force was introduced directly to the gradient élesequation. While the results obtained with this
force are similar in quality to those obtained via the newlkniarthis paper, the force was not a total functional
derivative|.e.it could not be obtained from an energy. This complicate$yaisga and more seriously means that
convergence is not guaranteed. It is the purpose of thisrpaperesent a solution to all these problems, and
hence to the gap closure problem, by describing a new HOA@grikat penalizes configurations containing
gaps, while at the same time changing the shape of the engnfggs so that it no longer obstructs the algorithm.

More specifically, based on the geometry of gaps in netwavksdesign a quadratic HOAC energy for gap
closure that penalizes ‘nearby opposing extremities’.serextremities are identified by pairs of points that have
high positive curvatures, lie outside the contour with ezdppo one another, and are closer than a certain distance.
The effect is that network extremities that are close dttea¢end towards one another, and join, thus closing the
gap between them.

1By this we mean that no human initialization is required,that the model possesses parameters that cannot at presattautomatically.
2Nain et al. (2004) use an energy of the same form, althougresgpd in terms of region integrals, to segment vessels dicalémages.
3A shorter article on the work described in this paper wasiphbt by Rochery et al. (2005a).
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The new energy leads to a complicated force in the gradiestate equation, a function of third and fourth
derivatives of the region boundary. The computation oféhtesms necessitates careful numerical treatment in
order to keep the evolution stable. We use the level set frarieto evolve the contour and adapt it to the nature
of the gradient descent equation resulting from the HOA@$ain the energy.

Previous work on road extraction has also encountered thitdgmn of interruptions of course, and has dealt
with it in different ways, often without addressing it exgilly. Tracking methods (Geman and Jedynak, 1996)
and methods minimizing the optimal path between endpoMésiét and Zerubia, 1996) generally constrain the
topology so that gaps are not possible. The same appliedit@ @ontour models requiring endpoints, such
as ‘ribbon snakes’ (Fua and Leclerc, 1990) and ‘ziplock ssalNeuenschwander et al., 1997). Bicego et al.
(2003) use a road tracking method with an ‘inertia’ term dilldws a road extremity to extend a short distance
despite lack of support from the data, but do not addressaggpsch. A number of methods attempt to close gaps
in the extracted network after the fact: Laptev et al. (20088 ziplock snakes to connect gap endpoints, while
Zhang et al. (1999) use morphological operators. Tupin.€18P8) construct a Markov random field on a graph
whose nodes represent line segments, the field labellingagments as ‘road’ or ‘non-road’. Some of these
line segments are extracted from the image by a line detegtole the rest consist of all reasonable potential
connections between the extracted segments. A MAP estishatemputed from a model containing the prior
geometric knowledge that, for example, roads are long alatively straight, and that extremities are unlikely.
Methods using marked point processes (Stoica et al., 20@eh4dte et al., 2003) also penalize extremities, not
gapsquagaps, but they have the advantage of stochastic algorithatsatiow the energetic barrier mentioned
above to be overcome. The current method differs from theebtethods in two ways. First, it concentrates
on gap closure by directly penalizing configurations canitey gaps, rather than penalizing isolated extremities.
Second, while many of the above methods work with line segspéime method described in the current work
deals directly with 2D regions that have an elongated form.

In section 2 we first recall the model proposed by Rochery.¢2803), and then go on to describe the new
energy in detall in section 3, including an analysis of thia tlbad case. In section 4, we develop the level set
method used to evolve the contour. We present results oraegil images showing the benefits of the new
energy in section 5. We conclude in section 7.

2. A MODEL FOR NETWORK EXTRACTION

As discussed in section 1, Rochery et al. (2003, 2006) haygosed a HOAC energy as a model for automatic
line network extraction. In this section, we briefly revidvistmodel, and comment on its advantages and deficits.
We will parameterize the space of regions using boundagiggneric boundary being denotedwe will
also call it a contour). The model breaks into two pieces,likeihood energyEi, and the prior energyg,
corresponding td’(/| R) and P(R) respectively:

Eo(v) = Ei(v: 1) + Eg(7) -
Here,l : Q — Ris an image$2 C R? being the image domain. The prior energy, is the sum of three terms:

two linear (length and area), and one quadratic HOAC terniclmtiefines an interaction between points:

@) By(2) = A0 +ad) — 5 [[dpan' e w(ripp).

where the integrals are over the contour, parameterized byprimed quantities are supposed evaluatgdaat
~(p) and primed quantities at or y(p’); £(~) is the contour length4 () is the area inside the contotris the
tangent vector to the contouR(p, p’) is the Euclidean distance frofy(p) to v(p’); and¥ is a function with the
form of a smoothed hard-core potential, given by

Z — dmin < —p,
(1 — —”“'_;i’“‘” - %sin (ﬂ'—”“'_;fm‘”)) |z —d| < p,

U(z) =

S = =

The function¥ is plotted as a dashed line in figure 8 for the values of therpatars we use in the experiments:
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FIGURE 1. Satellite image(®© CNES)and result of line network extraction with enetgy.
Parameter value$A = 1, = 0.2, =0.2,\; = 2.4,; = 0, 3; = 2.4].

A few comments on the prior energy, are necessary. Length and area are classical regular&ingt
The length term suppresses high frequencies in the cordadrthereby enforces contour smoothness, while
the area controls the expansion of the contour. The mostriaptopart of the model is the HOAC term. This
introduces an interaction between pairs of points on théoewn The interaction causes pairs of nearby points
with antiparallel tangent vectors to repel each other, aitsf nearby points with parallel tangent vectors to
attract each other. This has two effects: it prevents pdipeimts with anti-parallel tangent vectors from coming
too close to each other, and it encourages the growth of ikastructures. As a result, regions with a reticular
structure composed of narrow arms with parallel sides hawelew energy under this model, and are thus highly
favoured. For certain ranges of parameters, such regi@ens dact energy minima. The energy thus makes a
very good prior for networks.

The likelihood energyEi, is also composed of three terms:

Ei(v;I) = )\i/dpn-VI—i—ai/de G[I)(z) — %//dpdp't -t/ (VI-VI')¥(R(p,p)) .
R

The first, linear term favours situations in which the outivaormal is opposed to a large image gradient, or in
other words, in which the road is brighter than its environtn&he second, linear term incorporates a simple line
detector filter measurement. The third, quadratic HOAC tdescribes the joint behaviour of the data at pairs
of points on the contour, given the geometry at the pair ofsoilt favours situations in which pairs of nearby
points with antiparallel tangent vectoi( points on opposite sides of the road), lie on large imageignasithat
point in opposite directions, while pairs of nearby poinithwarallel tangent vectors.€. points on the same
side of the road), lie on large image gradients that poirhénsame direction.

Figures 1 and 2 show two results obtained using this modem fa satellite image and an aerial image
respectively. Two points are worth noting. First, the regi@cupied by the network in the image is recovered,
and not just its skeleton. Second, a generic initializationsisting of a rounded rectangle slightly smaller than
the image was used for both experiments; the amount of prniowledge included in the model means that no
special initialization is necessary.

These results (and in general the results obtained withrteegg Fy) are satisfactory: most of the network
is extracted in each case. However, they are clearly not Eisip correct. Consider, for instance, the two
images in the top row of figure 3. The corresponding resultained with the energy, are shown in the
bottom row. Clearly there are gaps in the extracted netwtirtksdo not correspond to gaps in the real road
network. Rather, they correspond to ‘interruptions’ in thraged network: places where the luminance of
the road changes abruptly and ceases to be different fromiitediate surroundings. These interruptions are
caused by the presence of trees, buildings, and so on cltise hetwork, which cause the interruptions either by
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FIGURE 2. Aerial image © IGN) and result of line network extraction with energy. Pa-
rameter valuesh = 1,a =0.17,6=0.2,\; = 2,«; = 1, 5; = 2].

4

FIGURE 3. Aerial images © IGN) with shadows on roads and results of extraction with
energyE,. Parameter values: left\ = 1, = 0.7,8 = 0.2, \; = 7.5,; = 0,6; = 7.5];
right,[A=1,a=0.35,8=0.75,\; = 12.5,; = 0, 8; = 10].

occluding the road, or by casting shadows on the road. Soose-tlp examples of such interruptions are shown
in figure 4.

The presence of gaps in the extracted network caused byupt&ms in the imaged network is the main
failure mode of the modeky, and is therefore the first point to address in any attempijrave the model.
This is the subject of the next section.
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FIGURE 4. Aerial images© IGN) with shadows on roads.

3. AN ENERGY TERM FOR GAP CLOSURE

In order to improve the model,, we must first understand in more detail why it fails. Theeeiarfact three
reasons for the presence of gaps corresponding to inte@nsptwo connected to the model (the prior and the
likelihood terms), and one connected to the gradient desdgoarithm used to minimize the energy.

First, the prior knowledge about geometry described’pygloes not distinguish between two distant arms that
each comes to an end and two arms that form an aligned gapthenegtremities are further apart than the range
of ¥, i.e. a few pixels: the contribution to the energy is the same. Theasnodel as it stands does not capture
our prior knowledge that road networks, for example, uswddl not possess such gaps; it does not describe what
might be called the ‘continuity’ of roads.

Second, the prior knowledge about the image to be expeaeaddrgiven network, described iy, does not
include the possibility that there will be interruptiongire observed road. If there is a road pres&htays that
high gradients are expected normal to its sides; theseajrestthre expected to be parallel on the same side of the
road and antiparallel on opposite sides; and the line datecexpected to respond strongly in the interior of the
road. All these expectations are violated by situation$ sscthose shown in figure 4.

Third, the gradient descent algorithm may be unable to dlos@ap even if the configuration with the gap
closed has lower energy than the configuration with the gapgmt (which can be the case, for example, if
the image gradients on either side of the interruption atetow large). This is for two reasons. First, the
configuration with a gap may lie at a local energy minimum tedy contributions from botf; and Ey. The
likelihood term E; contributes because at the edges of an interruption thergrage gradients (see figure 4).
Moving the extremities of the region off these gradient® itite low-gradient area in the interruption means
increasingi. The prior termEy contributes because, in order to prevent arms from appealliover the image
domain, the parameters itiy are adjusted so that the energy per unit length of an armgltslipositive. This
means that if the arms on either side of a gap were to exteratttsmne anothef;)y would increase. Second, a
local energy maximum is created By when two extremities are less than a few pixels apart; thesapulsion
force that controls the width of the arms in the network caube extremities to repel one another like two
magnetic north poles. The top row of figure 15 illustrates tiéhaviour. The figure shows the result of a purely
geometric evolution usingy, and starting from the leftmost image. The two arms extene arameters are
adjusted so that the energy per unit length is negative)dmél one another, resulting in a disconnected network.
It should to be stressed that, in contrast with the previasgaragraphs, the points made in this paragraph are
all algorithmic issues. They mean that once a gap has foritnedhard to close it, not that gaps necessarily form
for all interruptions; sometimes the data configuration msethat an interruption does not produce a gap.
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Each of these issues leads to a different approach to thelgspre problem. The first suggests that we
should modify the prior term, by penalizing configuratiohattpossess gaps. By raising the energy of such
configurations, we decrease the possibility of their odogrin the extracted network (although because the
gradient descent algorithm does not find the global minimitnis,cannot be guaranteed). The second suggests
that we should modify the likelihood term, by allowing foretipossibility that interruptions may occur. This
means introducing extra variables to model interrupti@rs] then either estimating these variables or (in a
probabilistic framework) marginalizing them away. In piple, both these approaches should be followed,
since they are both required by the phenomena we are trymgdtel. In practice, the second approach increases
the complexity of the optimization problem significantlyydaconsequently we will not pursue it in this work,
particularly since a modification of the prior term seemsegbfficient to solve the problem.

The third issue, the algorithm, can be tackled in two wayse Brio use an algorithm with better optimality
properties than gradient descent. The other is to attermetnbove the local extrema created by the energy. In
conjunction with a modification of the prior term to incredlse energy of configurations with gaps, this should
allow the gap to close in the course of normal gradient deast®s opt for the second approach here.

The idea then is the following. We will introduce a new ternthe prior energy that will penalize gaps,
or more specifically ‘nearby opposing extremities’, a notibat will shortly be made more precise. Since the
energy has to take into account the joint geometry at digtaints of the contour, it must necessarily be a HOAC
energy. The minimal choice is a quadratic energy, and thisstaut to be sufficient. The energy will increase
with the separation between extremities up to a certaiaugiést, meaning that extremities will attract one another
if closer than this distance. This attraction will be largmegh to overcome the local minimum produced by
the image gradients at the edges of interruptions and thidygosnergy per unit length of the arms, while the
dependence on distance of the new energy term will be designdhat it also removes the local maximum
produced by the repulsive effect of the existing quadraimrgerm.

3.1. Identification of gaps. In order to identify and penalize configurations contairgags, we start by defining

a gap as consisting of two (or maybe more) ‘nearby oppositrgmities’. Two pointgp andp’ of the contour
will be defined as belonging to nearby opposing extremifi¢isay are close enough together, ‘opposing’ and
if they belong to ‘extremities’ (both terms to be defined slygr Below, we define ‘switch’ functions),, S,
and Se that measure the extent to which each of these conditioragisfied, and then combine them to form a
function S that measures the extent to which the conjunction of theitiond is satisfied:

3.1) S(p,p") = Sn(p,p")So(p, ") Se(p, 1) -
We now define the constituent functions of this product.

3.1.1. ‘Extremity’. We measure the extent to which two points belong to extremiiy measuring the extent to
which they each belong to an extremity:

(3.2) Se(p,p/) = Se(p)Se(p/) )

whereSg(p) measures the extent to whiptbelongs to an extremity (we use the same symbol for the tviotpo
and one-point functions). To measure the extent to whichira pef the contour belongs to an extremity, we use
the signed curvature(p) atp. Extremities are the only points in the network that havetpescurvature whose
magnitude is significant compared to the the reciprocal @ftidth of the road (all other points have curvature
magnitudes small compared to the reciprocal of the widttefrbad, except for large negative curvatures at
junctions), and so we define

(3.3) Se(p) = H(k(p)) -

Here,H is a smoothed Heaviside function given by
0 x <0,

(3.4) H(x) = % (piH — %sin (ﬂ'piH)) 0<z<2py,
1 x > 2pH,

and plotted in figure 5. In the experiments shown in this papetakepy = 1, although this value in principle
should depend on road width, and hence will depend also ogemesolution. Figure 6 illustrates the idea behind
Se.
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FIGURE 5. The functionH with pgy = 1.

FIGURE 6. ldentifying points with large, positive curvature

R(p,p")

n(p)
FIGURE 7. ldentifying external points

3.1.2.'Opposing’. We measure the extent to which a pair of points is ‘opposiygimeasuring the extent to
which each is ‘external’ with respect to the other:

(3.5) So(p,p") = Sex(p, ") Sex(v, P) ,

whereSex(p, p’) measures the extent to whiphis ‘external’ with respect t@. To measure the extent to which
pointp’ is external with respect to poipt we use the dot product between the unit normal, at(p), and the

unit vector pointing fronp to p’, R(p,p) = (v(p') — v(p))/Iv(®") —v(p)!:
Sex(p, ') = HR(p, 1) - 8(p)) -

Figure 7 illustrates the idea behid. Itis large when' lies roughly along the outward pointing normal direction
from p, andp lies roughly along the outward pointing normal directioarfrp’, which corresponds to the fact
that ‘opposing’ extremities lie outside the contour witkpect to one another and are roughly aligned.

3.1.3. ‘Nearby’. To measure extent of closeness, we use a function of thendis(p, p’) between the points:

Sn(p. ") = Pa(R(p,p")) -
The functionV 4 is given by

2 4 lgn(z) -1 <
(3.6) W) = 4 P2 + = sin (pA) T < pa
0 T > pA.
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Interaction functions
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-0.6

-0.84

FIGURE 8. The interaction functions. The short rangefrom the original model is shown
dashed dmin = 3, p = 1), while the new attractive interaction functidn, is shown solid
(pa = 40). Note the difference in sign and range.

U 4 tends to zero at distangey, and is zero thereafter. In combination with the other fiomg, as in equa-
tion (3.1), this means that if the two points are further aff@n 4, they are assumed to belong to extremities
that do not form a gap in a continuous piece of the network hénexperiments shown in this paper, we take
pa = 40, although again this is resolution-dependent.

3.2. Defining the energy for gap closure.Using the functiort defined in the last subsection, we can now form
a quadratic HOAC energy term by integrating this functiani¢e) over the contour, thus effectively ‘counting’

the number of pairs of points corresponding to nearby omgosktremities. This energy term thus penalizes
configurations containing nearby opposing extremities:

Epen(y) = —ﬁ—;// dpdp’ t-t' S(p,p’)

=2 [ vt ¢t 0a (.1 Selo )56l ).

This term could have been constructed ugitjit’| instead oft - t (Rochery et al., 2005b), but the use of the
tangent vectors reinforces the condition that the extiemighould be opposirfyNote the similarity between
Epenand the quadratic term in equation (2.1). The differencestameefold: first, the presence of the functions
U 4, So, andSe mean that this energy ‘switches on’ only when the two pointdhe integrand belong to nearby
opposing extremities; second, the functibp increases with increasing distance, rather than decigasidoes
W, thus producing an attractive force between antiparalelént vectors rather than a repulsive one; third, the
range over whichl' 4 and its gradient are non-zero is set to about ten times ththwida road, and is thus
much greater than the range®f which is about equal to the width of a roal.and¥ 4 are plotted in figure 8,
illustrating the difference in range and behaviour.

While the energy,en succeeds in overcoming the local minimum caused by the igeapiients at the edges
of interruptions and the positive energy per unit lengthhef &rms, it is not sufficient to overcome the local

4Sundaramoorthi and Yezzi (2005) give a nice applicationnodr@ergy of the former type to the construction of a topolpggserving flow.
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maximum produced by the repulsive effect of the existingdyatic prior term. To achieve this, we define a
second new energy ternfc,n, Whose function is to cancel the effect of this repulsiomtaetn pairs of points
that belong to nearby opposing extremities. It is given by

(3.7) Ecan(y) = g// dpdp’ t -t W(R(p,p"))So(p,p’)Se(p,p’) -

Equation (3.7) is the negative of the quadratic term in eéqugR.1), except that the integrand now includes the
functions that identify opposing extremities.
We sum these energies to form a gap closure engigy, given by

38) Eyp=5 [ [ dodf ¢+ € (BU(R(.9") ~ BAV AR )l )Selp, 1)

The functions¥ 4 and ¥ thus combine to form one positive functidho = V¥ — 54V 4 that controls the
dependence on distance of the new energy.
Finally, the new prior energy we propose for the extractibroad networks, including gap closure, is given

by
E = Ey + Egap.

3.2.1. Functional derivative ofgs,. We will minimize the energy” using gradient descent:

@(S) _ 6B ( 0Ey 6Egap)

or 67(s) dv(s) ~ 6v(s)

The functional derivative of is given by Rochery et al. (2003, 2006). What remains is touwtate the func-
tional derivative offlgp. The presence of the switches means that this calculaticoniplicated. The result is
given in equation (3.10) overleaf.

(3.9)
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—/ds’ {ﬁ(f{-ﬁ’) Ue Hex H.y He H.,
t' (R-1), Ue Hex Hl He H,
t' (R -0), Uo Hex H.y He H,
— 2t" ks W Hex H He H),

PO | .
— 0 (b ¥) % Vo Hox HY, He H,
o1 .
+1 (& ¥) & Vo Hox Hy, He H,
N (1. F/ (Rﬁ)

U Hex HL, He HY,

(3.10) LR

+
+n
80 (b ) We Hox Hiy (Hors+ Heres) H,

+rE (8-1) O Hex H, He H, }
+ tangential terms that do not contribute to the motion of tretcur.

The notation indicates rotation byr/2 anticlockwise. As before, primed quantities are evaluated or
~(s"), while unprimed guantities are evaluated ar ~(s). For functions of both variables, a prime indicates the
exchange of ands’ with respect to their definition. Dots indicate derivativBsibscripts indicates a derivative
with respect tos. The arguments o¥ - and its derivatives are understood to Be The functionsHex and He
are both the functior, but their arguments and those of their derivatives are tstoled to beR - fi and »
respectively.

3.3. Analysis of the thin road case.In order better to understand the new energy téfgr, it is useful to
consider it in the limit when the width of the arms becomeywnall compared to the distance between them:
that is, they effectively become line elements. This alsabéas a comparison with some of the Gestalt-inspired
work on contour completion. We consider the case in whichathes consist of two parallel lines separated by a
distance2a, with ‘caps’ at the ends. The two caps are identical up tatiarta Figure 9 illustrates the situation
and defines the various geometric quantities involved.
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FIGURE 9. Geometric configuration of two arms, with various geoimefnantities marked.

The caps are parameterized by the angleg2 < 0, < 7/2,i € {1, 2}, and described by their ‘profile’(6;)
relative to the centre of each cap. The equations for the aagptherefore

r;(0;) = (:(0:),v:(6:)) = (wi,0,yi,0) + r(6;)(cos(0; + «;),sin(0; + a;)) .

Without loss of generality, we take, o = y10 = o1 = 0. Sincex = 0 everywhere except the capgs means
that the only parts of the contour entering into the integraquation (3.8) will be the caps. We further assume
that the caps are convex, so that for two points on the sameltap < 0. S, then means that only pairs of
points on different caps interact. Since we can reasonasiyrae that ~ a, the fact that the width of the arms
is much less than the distance between therg;, R(61, 6-2), implies that the vector from any point on the first
cap to any point on the second cap is given to a first approioméy R = (z20 — *1,0,¥2,0 — ¥1,0), Which
reduces tdRy = (x2,0,y2,0) in our coordinate system. It does not depend ondtheThe distance? = |Ry|
between points on different extremities is then also coni$taa first approximation. All this information results
in the following factorized expression for the new energyne

w/2 /2
(3.11) Egap= ¥c(R) / do, t1 HRg - 1y) - /d92t2H(—RO-ﬁ2).
—m/2 —m/2

We take the functiodt! in equation (3.4) to be a Heaviside functidin,,, _.o), which together with the assump-
tion of convexity means that the effect of the Heaviside fioms in equation (3.11) is simply to impose limits on
the integrations over th&. Ford;, these limits are functions @f; only, being also functionals of. (We define

B2 = aes — B — w. See figure 9.) Fof;, we will name the upper limiB(5;) and the lower limitA(8;). The
upper and lower limits fof, are then— A(32) and—B(/32) respectively, due to the difference in definition of
(B andf,. Once these limits are imposed, the integrals can be peefhrbecause they are just integrals of the
tangent vectors, which are exact. The result is that

Egap= Yo (R)[r1(B(61)) — r1(A(B1))] - [r2(=A(B2)) — r2(=B(B2))] -
A particularly simple case is when the caps are semi-circul@;) = a. In this case
m™ T T ™
505 T B) and A(B) = max(—g, 3
The resulting value oEy,pis

(3.12) Egap= —a*Wc(r)[1 + cos(B1) + cos(B2) + cos(B1 + B2)] -

B(8) = min( +8).
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beta2 Angular energy term

betal

FIGURE 10. A contour plot of the angular factor in equation (3.12).

Note that despite the local definition &,y the final energy depends on the overall directions of thesarm
Figure 10 shows a contour plot of the angular term in the ltcklhe units are multiples af As can be seen
from the figure, for fixed-, the energy is a minimum fo8; = 5> = 0. For fixeds; + 32, i.e. for fixed angle
between the arms, the energy is minimum wi¥enrn= 3., that is, when the arms are co-circular.

The radial force;~0Eqap/Or, is given by

(3.13) F, = aQ\ifc(r)[l + cos(B1) + cos(B2) + cos(B1 + B2)] ,

where it should be noted thétc < 0. This force is thus maximal when the two line segments ariepamallel
and opposing.e. 51 = 82 = 0. It reduces to zero whel; + (82| = 7, i.e.when the two segments are parallel.
There is thus no attraction in this case. Whén+ 32| > , i.e.the arms ‘diverge’, the force becomes repulsive.
The force is zero whenevey or 3, = m, i.e. whenever one arm points radially away from the position ef th
other extremity. Note that for a fixed angle between the lewnsents§; + - fixed), the maximum force occurs
whenpg; = Bs, that is when the two line segments are co-circular, andttheforce increases as the radius of
the inscribed circle increasas. asf, andj, decrease.

The angular forces; 0 Egap/ 081 and—0Eqap/ 032 are plotted as a vector field in ti¥e, 3> plane in figure 11.
Note that the force tends to anti-align the segmefits=£ —3>), while also tending to make them oppose one
another §; = B2 = 0).

Figure 12 shows the direction that minimizes the energy oél (maximizes the radial force on) a second
segment as a function of its positionand;, with respect to a first segment situated at the origin andtjgj
along the positive:-axis. The magnitude of the vectors is proportional to thegmitade of the radial forcé’.
acting at this optimal direction, but note that the arrowsidbrepresent the foradirection which in this simple
model is always radial.

The thin road analysis allows a comparison of the above behawith some of the work in contour comple-
tion, for example, stochastic completion fields (Willianmslalacobs, 1997), extension fields (Guy and Medioni,
1996), and other variants (Williams and Thornber, 1999gElhd Zucker, 1996; Ren and Malik, 2002). For
example, for smalB;, equation (3.12) becomes

Fgap= W) (81 + 62)? + 3 (B — B2 — 4]
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FIGURE 11. The angular force resulting from equation (3.12).

which can be compared to the approximate expression fordhle-fnvariant elastica energy given by Sharon
etal. (2000). The comparison is not completely clear, h@uesince the energlgap in equation (3.12) does not
govern the gap completion in the same way that completiorggseand affinities do: it is the energy of the gap
not the completion. For example, the optimal direction shawfigure 12 does not have a clear link with the way
in which a gap would be completed. In addition, the pertimenicperceptual completion criteria is not obvious
in an application to road networks, whose completion or e is an objective fact independent of the human
visual system. Nevertheless further improvementSgg, may be possible using such criteria as a guide.

If we consider the scaling with arm widthof Eg,, and F,. in equations (3.12) and (3.13), and assume that
typical interruption lengths do not depend®(although arguably such interruptions will be longer forrower
roads, since they are easier to occlude), so fhatr) typically assumes the same value for arms of different
widths, it appears that narrow arms will attract more wealkén wider arms. To a large extent, however, this is
a result of the form of the functioH that we have assumed, which is scale-invariant. In prattie@alue ofSe
depends on the curvature of the extremities, and for a rahgeeature values this dependence is approximately
linear. Forpy = 1, the linear region is approximately'2 < x < 3/2, which translates intd/3 < w < 4,
wherew = 2a is the width of the road. For the image resolution we are c@8ig here, this covers the majority
of road widths. The value df(p, p’) will thus scale as~ a2, thereby removing the strong dependence on arm
width.

We can also consider the scaling Bfap with image resolution. Taking into account the behaviouSef
discussed above, we see, by re-expressing all lengths igathyinits rather than pixels, th&y,pis invariant to
changes in image resolution provided we kegp andpy as it appears itbe (but notS,) constant in physical
units (p4 = b~1pa andpg = bpzr, whereb is the image resolution in metres per pixel, afid and p3; are
constant), and make the maximum valuesgproportional tob.

4. ENERGY MINIMIZATION

We now move on to the numerical implementation of the gradieacent equation (3.9). HOAC energies lead
to non-local forces in the evolution equation given by imgdgjover the contour, as can be seen in equation (3.10).
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FIGURE 12. The lowest energy direction of a second segment as aduaraftposition ¢ and
(1) with respect to a first segment situated at the origin andtpa along the positive-axis.
The length of the arrows is proportional to the magnitudehef énergy associated with the
optimal direction (the longer the arrow, the lower the eggrgr equivalently to the magnitude
of radial force at that point (but note that the arrows do rptesent the forcgirection, which

in this simple model is always radial).

~

FIGURE 13. Contour with a gap

These integrals require specific treatment in the contooluéen. We do not discuss this further here, but refer
the reader to Rochery et al. (2006).

In addition, the energyyap introduces its own complications. Note that amongst thesen equation (3.10)
are some which contain first and second derivatives of thescorurvature, which translate into third and fourth
derivatives of the level set function, and first, second, third derivatives of the smoothed Heaviside function
H. These terms, which either have high-order or large deviestcan cause instabilities numerically. We adopt
specific measures, described below, to ameliorate theudiféis that these terms could cause.

4.1. Gaussian smoothing and derivative computationsBefore computing geometric quantities such curva-
ture and its derivatives that are part of the functionahdgive of Eq.p and thus present in the gradient descent
equation, we apply Gaussian smoothing to the level setifumgt We use an isotropic Gaussian kernel with

o = 1. This smoothing corresponds to using a larger stencil ferctmputation of these geometric quantities,

and produces smoother results. In particular, the contovature is smoothed, meaning that extremities are
more clearly recognized. For example, consider the cortepicted in figure 13.
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FIGURE 14. Curvatures computed before (top) and after (bottom)oghirag.

In figure 14, curvatures computed before and after smoothiadevel set function are depicted. The curvature
computed directly on the level set function is very irregula contrast, the curvature computed after smoothing
the level set function is smoother and reveals two clear peakesponding to the two extremities in figure 13.
This coincides well with the purpose ékap Which is to identify extremities that should be connected.

In addition to the above, we use finite differences of order fim calculate numerical derivatives. This
provides a reasonable degree of smoothness in the cundstivatives, which are otherwise very noisy even
after Gaussian smoothing.

4.2. Computation of contour integrals. In order to compute the non-local terms of the force, we agprate
the integrals over the contour by sums over the extractetbaosegments. When the contour is closed, we can
improve the precision of this approximation and obtain aacy of order four if we use equispaced points, as
follows. Consider a functioff that we want to integrate over the inter{@lb]. If we construct approximatioryé

to f over a partition ofq, b] into intervalsjz;, z;11], @ € {0,...,n — 1}, then the integral can be approximated
by

b n—1 n—1 Titt

/dzf(z)zI:ZIi:Z dx fi(x)

a 1=0 =0 z;

Using linear approximations on each interval leads to
n—1
I=h<5ﬂ®+fwn+§:ﬁ>-
i=1

where for any functiony, g; = g(z;), 3 = 3(g; + gi+1) anddg; = giy1 — g;, and we have takef; = h,
constant.
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On the other hand, if we approximafeon each interval by a third-order polynomial,
fz(ll?) =a;3(z — ;)° + ai2(x — 2:)” + ai1(x — 23) + aip

and require that

filz) = fi fi(zis1) = fisr s filzi) = fi fir1(@is1) = fiyr
where as before the dot indicates derivative, we find, ontdubisg the resulting values for the, that

h R h4 h3 2 _ h2 .
I = . N L L R N X
i /dm f1($+xz) ;.3 4 + a;2 3 +a;1 D) +az,0h hfi 125f1 )
0

and hence that )
n— 2 . .
I=h <%(f(a) + f(b)) + Z fi) - %(fn — fo) -
=1

In the case of a function defined on a closed contour, we liave f,,, whence all the derivatives disappear and
the fourth order accurate approximation is the same as ttendeorder accurate approximation. Thus, using
equispaced points allows us to have fourth order accurang aitra cost. Therefore, in order to compute the
non-local force at each poiptof the extracted contour, we first redistribute the extrdctntour points around

p so that they are equispaced; we then compute the necessanetiie quantities at these points, and finally
perform the numerical integration. The redistribution loé fpoints in itself may introduce errors, so that the
above analysis is suggestive rather than directly apgicalevertheless, empirically we find that this procedure
improves the stability of the evolution.

5. EXPERIMENTAL RESULTS

In order to give an understanding of the behaviour of the nesvgy termFy,,, we first show the result of an
experiment using only the prior energig§ and Egap. We then show the results of road network extraction on
real images using the new model= E, + Egap, illustrating the performance of the new model in the presen
of occlusions. Parameter values in the experiments arershotiie corresponding figure captions. In common
with most variational methods, these parameters are fixdthhy.

5.1. Prior energy. Figure 15 shows the results of contour evolution usifygand Eq + Egap, given an initial
condition containing a gap, shown on the left. The top rovhes évolution given by alone. The two arms
repel one another due to the antiparallel tangent vectdreatxtremities, and develop into a network with two
connected components. This effect is exactly what the ne@sggrtermFEg,, is designed to avoid. The second
row shows the evolution using the full prior energy + Eqap Now the arms extend towards one another and
join, resulting in a connected network with the gap closed.

5.2. Extraction of road networks from real images. Figure 16 shows a real image in which a tree and its
shadow obscure a road. The lower image in the first column shiosvresult of applying the previous modg)
to this image. There is a gap in the result for all the reas@staidsed at the beginning of section 3.

Moving to the second column, the upper image shows the mrevdolution, complete with gap. We then
apply the full model.E = Ey + Egap, using this as an initial condition. The lower image in thes®l column
shows the result. As hoped, the gap is closed.

In the third column, the lower image shows the result of ajpgiyhe full modelE = Ey + Eyqp Starting from
the generic initialization shown in the upper image. Agaia gap is closed.

To illustrate what is happening, consider the contour shimathe leftmost image of the second row of fig-
ure 16. For this contour, the top row of figure 17 shows theevalithe force resulting from the new tetfyap
Positive values indicate forces along the outward pointiognal. Clearly the forces generated by the new term
are pulling both extremities outwards, and hence towarésamother. The rest of the contour is unaffected.

The second row of figure 17 shows the graph of the followingntjtia

(5.1) S(p) = / dp’ So(p, p') Se(p,p’) -
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FIGURE 15. Evolutions based on prior energies only (time runs frefntb right). Top row:
E4 only, without gap closure enerdyyap. Bottom row: Eg + Eqap Note the closure of the gap.
Parameter values: top\ = 1, = 0.1, 8 = 0.4]; bottom,[A = 1, = 0.1,8 = 0.4,84 =

0.4].
.
g / /
'

FIGURE 16. Firstcolumn: aerial imagéd) IGN) and the result of extraction usirtg,. Second
column: initial contour and final closed contour using thevmeodelE = Ey + Egap Third
column: generic initialization and result of extractiortiwthe new modeE = Ey + Egap

Parameter values: left\ = 1, = 0.14, 8 = 0.03, \; = 2.9, ; = 0.3, 5; = 2.9]; middle and
right,[A =1, = 0.14, 8 = 0.06, \; = 2.9, ; = 0.3, 3; = 2.9, B4 = 6].

It is clear that the extremities are very well identifiét{p) is zero except for points that lie on nearby opposing
extremities.

Figure 18 shows another result of extraction usthe: Ey + Egap Despite the trees obscuring the network,
the road is perfectly reconstructed with the new model. Ntwaethe initial contour is again a rounded rectangle
covering the image. Despite this generic initializatiomag way from the solution, the model does not become
stuck in local minima, for example, those due to the bordéfieluls.

Figure 19 shows some more results. In each case, the gap®see.c The slight errors that remain are
interesting. In the first row, the failure to complete thersarat the top of the image is due to the initialization,
which excluded it from the beginning. In the second row, tg@@dthm has not extrapolated the road to the left
of the junction, although it seems that the true road doesiraom Clearly this is due to the almost complete
occlusion of this piece of road. In the third row, the algamithas produced a curved piece of road, whereas to
the eye it seems clear that the occluded road is in fact &traithere is image data to support the conclusion
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FIGURE 17. Top: force resulting fromy,, for the contour shown in the leftmost image of
figure 16. Bottom: graph of the function given in equatiorij5showing identification of
opposing extremities.
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FIGURE 18. An aerial image®© IGN) with occlusions and the result of applyidg= FE; +
Eqapto this image. Parameter valuds:= 1,a = 0.14, 5 = 0.06,\; = 2.9, = 0.3, 6; =
2.9, 84 = 6].

of the algorithm, however, so the result is not unreasonallis possible that a change of parameters might

eliminate the curve.
Figure 20 shows the result obtained on a larger image. Thieat®t network is again connected, the model

closing the gaps caused by occlusions.

6. DISCUSSION AND CRITIQUE

We have defined situations requiring gap closure as thossstmg of ‘nearby opposing extremities’, and the
gap closure energgs, implements this notion in a particular way, by introducimgiateraction between pairs
of contour points both of which have high positive curvatamed that are ‘external’ with respect to one another.
Itis then natural to ask whether the notion of ‘nearby oppgsixtremities’ is adequate for characterizing the gap
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FIGURE 19. Top row: aerial imagesdj IGN) with occlusions. Bottom row: the results of
applyingE = Ej + Egapto these images. Parameter valugs= 1.5,a = 0.8,3 = 3, \; =
1,ai = SO,ﬁi = 1.1,ﬁA = 1.1].

FIGURE 20. An aerialimage®© IGN) and the result of applying = Ey+ Egapto this image.
Parameter value$A = 1, = 0.14, 3 = 0.05, \; = 2.9, ; = 0.3, 5; = 2.9, B4 = 10].

closure problem, and if so, whether it is adequately impleteet in the energyrgap The experimental results
reported above indicate that by and large this is the cagghbuoad network configurations that can arise in
real images are very diverse, and it is of interest to comgite possible failure modes of the new model in a
number of these situations. In particular, there may beéfalegative’ gap closures, failing to join pieces of road
that should be joined, and ‘false positive’ gap closuresjig pieces of road that should not be joined.

It is easy to see that false negatives may occur in configuraiin which closure is required but which do
not contain nearby opposing extremities. The clearestisasd-junction that has an interruption right next to
the main road, thus leaving an extremity facing a straigbt@iof contour. In this case, a gap in the extracted
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FIGURE 21. A configuration that might seem to threaten a false pesgap closure, but in
fact closure does not occur; the two pieces straighten gratate.

network corresponding to the interruption would not be etbbecausé’y,, would not contribute to the energy.

In principle, it is easy to relax equation (3.2), which usgs@duct of switches, one for each point, to represent
a logical ‘and’, to a sum of switches, representing a logiodl This will ‘switch on’ the closure energy
when one or the other or both interacting points have higlitipesurvature, and should lead to the closure of
such T-junction gaps. In practice, however, this changédéa spurious attractions during the gradient descent
evolution that spoil the results. It is thus an algorithnmialgem rather than a problem with the model necessarily,
but nevertheless the incorporation of this type of gap elsuthin the present framework must await future
research. That said, such situations are non-genericeisghse that a slight displacement of the interruption
will result in two or three nearby opposing extremities, anel therefore unlikely to occur very often.

Another cause of false negatives might appear to be thedaiireal extremities to conform to the implicit
assumptions about their shapeligy, If, for example, extremities were formed by very long iselss triangles,
there would only be a single point in each extremity contiiimito £ya, The fact that this point has very large
curvature does not help, thanks to the thresholding peddrim equation (3.3). The contribution 6§, to the
total energy would thus be very small. Such extreme conftqans are unlikely to arise in practice, however,
for two reasons. First, the prior enerdy favours a certain optimal profile for an extremity, and thisfite is
smooth (this effect is also helped by the steps describeedtion 4.1). Of course the data terms may move the
profile away from optimal if the interruption does not haveositih edges, but since the lack of smoothness tends
to consist of a jagged edge containing many points of higltipesurvature, this is not a barrier to closing the
gap. An example can be seen in figure 16, in the second coluhrerevan initially jagged gap is closed.

In practice, the main cause of a failure to close gaps is sithalt they are too long, the two extremities thus
being out of the range of the interactigry. This problem can in principle be solved by extending theyeaof
WU 4, but, similarly to the case of T-junctions, in practice thgain leads to problems during gradient descent.

Turning now to false positives, we can consider the sitmatiepicted in figure 21, consisting of two high
positive curvature pieces of contour close to one anoth#érh $oad pieces might attract one another, join, and
produce a crossroads. Under a purely geometric evolutiog Us, + Egap and starting from this configuration,
however, this is not the case (adding image terms would ntd&ed likely that the gap would close, unless the
image is very particular); the two pieces of road straigtsied move apart. Indeed we have never observed this
type of false positive gap closure, and while it is hard torgagee that it will never happen, it is straightforward
to see that it is very unlikely, simply because it is almogpassible for there to be a significant number of points
on the curves with curvature that exceeds the threshali§ip The threshold will in general be 1/a or higher,
where2a is the width of the road (for example, we used a thresholdl iof our experiments, while ~ 2 for
the roads in our images), while it is difficult for even a veight curve to have an average curvature of more
than1/(2a). In fact, this information is included in the prior modE}: the quadratic prior term says, among
other things, that we expect roads to be straight over distaf the order ofa at least, and therefore that their
curvatures will be significantly less than this.

Of course, false positives can also occur when a road rea#g dtop for a certain length before continuing
in the same direction. To distinguish such situations frapgythat should be closed requires much greater
knowledge of context than is included in the current mode\welver, it is the very fact that such situations occur
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infrequently, and that most gaps correspond to occlusioskadows, that motivates the present work. Were this
not the case, there would be no need for gap closure at all.

7. SUMMARY, CONCLUSIONS AND FUTURE WORK

When attempting to extract line networks from images, anghiriicular road networks from remote sensing
images, one of the key difficulties is created by the pres@fdeterruptions in the imaged network due to
occlusions, cast shadows, and other effects. Such intesngxan lead to gaps in the extracted network that do
not correspond to gaps in the real network. In this paper, awe ldescribed a solution to this problem within
the framework of higher-order active contours. A previgysloposed higher-order active contour model for
the extraction of line networks (Rochery et al., 2003) wagéneral successful, but it was unable to surmount
the problem of interruptions. Building on this model, we éalefined a quadratic gap closure energy that
penalizes network configurations containing nearby opppsktremities. In the gradient descent algorithm used
to minimize the energy, the effect of this new energy is tosessuch extremities to attract one another, to move
together, and to join, thereby closing the gap. We note Hehew energy is inherently higher-order: it involves
the long-range interaction of two different extremities, of widely separated points on the contour; it thereby
demonstrates the ability of higher-order active contoniiat¢lude sophisticated prior morphological knowledge.

Gradient descent using this new energy is a delicate mattertal the presence of numerous force terms
containing higher derivatives; these require speciahétia if instabilities are to be avoided. Working within
the level set framework, we have developed techniques tdi@aie the numerical difficulties caused by these
force terms. Experiments on real remote sensing images mtnate that, with the exception of very long
interruptions, the new energy succeeds in overcomingriméons in imaged networks to produce networks
without gaps.

The most significant difficulties that remain with the mettasd its failure to close very long gaps, and the
computation time, which is long. As discussed in sectioiné abvious solution to the first difficulty, increasing
the range ofl 4, does not work very well in practice. Two other solutions gest themselves. The first is
to develop a more directed interaction that drops off mopédig as the angle away from the road direction
increases. The second is to turn long gaps into short oneg asnultiscale approach. The latter is interesting in
its own right, and should also help with the computation tpnablem, as follows. The computation time is long
because of the need to calculate the force arising from théonal terms. In principle, the force acting at each
point of the contour involves an integral over the contond &hus to compute the force on the whole contour
takes time~ £(v)2. The total length of the road network scales likewheren is the number of pixels in the
image. One therefore expects the computation time petitarto scale like~ n2. In practice, the integrations
can be limited to those segments of the contour that lie withé range of the interaction functiodsand ¥ 4,
which reduces the computation time~on. However, since the range &4 is very much larger than the range
of ¥, the addition ofEqy,p to the energyry greatly increases the constant of proportionality invdlire these
expressions. It is clear that a multiscale approach, byadieduong range interactions to short range ones, can
aid in addressing this problem.

Although we have focused on the extraction of road networti fremote sensing images, as emphasized
in section 1, diverse line networks in different imagerydgghave much in common. The prior knowledge
captured by the model described in this paper is thus alsgast to other line network extraction problems, for
example, the extraction of hydrographic networks from rensensing images, or vascular and other networks
from medical and biological images.
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