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ABSTRACT. One of the main difficulties in extracting line networks from images, and in particular road networks
from remote sensing images, is the existence of interruptions in the data caused, for example, by occlusions. These
can lead to gaps in the extracted network that do not correspond to gaps in the real network. In this paper, we describe a
higher-order active contour energy that in addition to favouring network-like regions, includes a prior term penalizing
networks containing ‘nearby opposing extremities’, thereby making gaps in the extracted network less likely. The
new energy term causes such extremities to attract one another during gradient descent. They thus move towards one
another and join, closing the gap. To minimize the energy, wedevelop specific techniques to handle the high-order
derivatives that appear in the gradient descent equation. We present the results of automatic extraction of networks
from real remote-sensing images, showing the ability of themodel to overcome interruptions.

1. INTRODUCTION

The huge growth in the amount of digital imaging data of various types available in many fields, including
remote sensing, medicine, and biology, makes the construction of systems capable of automatically extracting
information of semantic value from this data a necessity. While each application comes with its own semantics,
prior knowledge, and other specificities that mean it must inprinciple be treated anew, in practice there are
frequently commonalities between different applicationsthat make a somewhat more generic approach feasible.
Line networks are an example. They represent information ofsemantic value in many applications: vascular
networks in medicine; filamentary structures in biologicalimages; road and river networks in remote sensing
and cartography; and galactic filaments in astronomy; whilepossessing many properties in common across these
applications. The extraction of their properties from imaging data (most often, the identification of the region
in the image domain corresponding to the network) is thus of some importance, but semi-automatic extraction
remains a time consuming and expensive task. Research concerned with these problems has therefore begun
to focus on the development of efficient methods for the automatic extraction of line networks. In this paper,
we particularly focus on the extraction of line networks from remote-sensing images, but the models described
should be equally useful for imagery from other applications, including medical and biological images.

In order to be able to extract networks, we must first be able tomodel them well, that is, be able implicitly or
explicitly to put an image-dependent probability distributionP(R|I) on the space of regions in the image domain
whose mass is concentrated on the region corresponding to the network inI. Such a probability can of course
be decomposed into two pieces: a prior probability on the space of regions given that the region corresponds to
a network,P(R), and a likelihood describing the images to be expected giventhat the regionR in the image
domain corresponds to a network,P(I|R). The construction of distributionsP(R) andP(I|R) that generate
a posterior probabilityP(R|I) concentrated on the network in a given image is not easy. Generic priors that
are not concentrated on network-shaped regions combined with likelihoods based on local image measurements
are not sufficient to concentrateP(R|I) on the network sought, because local image measurements typically
assume similar values for many regions that do not correspond to the network, and the prior is incapable of
distinguishing between them. To improve the situation, onecan thus advance in two directions. The first is to
design likelihoods that capture some of the dependencies amongst the image values associated with the network,
the use of line detection filters being the most common example. Even this does not suffice, though, since
the measurements are still relatively local, and may be similar for many structures that do not form part of a
network. The second is to design priors that are concentrated on network-shaped regions. Constructing such
priors is also non-trivial, however, first because the spaceof regions is an infinite-dimensional nonlinear space,
and second because networks form a subset of this space that is difficult to characterize. Networks possess
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strongly constrained geometric properties (e.g.narrow arms with roughly parallel sides), but arbitrary topology.
They cannot be defined, for example, as variations around a mean shape.

Rochery et al. (2003) (for more detail see (Rochery et al., 2006)) have proposed a method for the quasi-
automatic1 extraction of line networks based on advances in both these directions. These advances make use of
a new generation of active contour models, introduced by Rochery et al. (2003, 2006), and named ‘higher-order
active contours’ (HOACs).2 While classical active contours use only boundary length and interior area (and
perhaps boundary curvature) as prior knowledge, HOACs allow the incorporation of non-trivial prior knowledge
about region geometry, and the relation between region geometry and the data, via nonlocal interactions between
tuples of contour points. They are also intrinsically Euclidean invariant. They differ from most other methods for
incorporating prior geometric knowledge into active contours (Chen et al., 2001; Leventon et al., 2000; Foulon-
neau et al., 2003; Paragios and Rousson, 2002; Cremers et al., 2003) in not being based upon perturbations of a
reference region or regions. This allows them to model regions consisting of an arbitrary number of connected
components, for example, in which the morphology of each component and the inter-component interactions
are controlled. Using this new framework, Rochery et al. (2003, 2006) proposed a model that goes a long way
towards capturing the prior geometric knowledge we have of network regions, as well as the complex dependen-
cies between image values associated with networks. The prior model has as low-energy configurations, regions
composed of arms of roughly constant width that join together at junctions. The likelihood model predicts not
just high image gradients along the edges of the network, butincorporates longer-range dependencies that predict
that image gradients along one side of a network arm will be parallel, while image gradients on opposite sides of
a network arm will be anti-parallel.

Thanks to this prior knowledge, the model produces good results using gradient descent to minimize the
contour energy, starting from a generic initialization that renders the method quasi-automatic. The primary
failure mode of the method is the presence of ‘gaps’ in the extracted networks caused by ‘interruptions’ in the
image of the road. These interruptions are caused by varioustypes of ‘geometric noise’: in the case of road
networks, for example, trees and buildings close to the network that change its appearance either via occlusion
or because of cast shadows. The method fails to close these gaps for three reasons, two related to the model, and
one to the algorithm:

(1) the prior knowledge concerning the geometry of the network (P(R)) does not distinguish between two
distant arms that each comes to an end, and two arms that form agap, once the extremities are more
than a few pixels apart. Thus the model does not capture our prior knowledge that road networks, for
example, usually do not possess such gaps;

(2) the prior knowledge concerning the image to be expected from a given network (P(I|R)) does not allow
for the possibility that there will be interruptions in the observed road;

(3) the gradient descent algorithm may be unable to close thegap even if the configuration with the gap
closed has lower energy than the configuration with the gap present, due to the shape of the energy
surface between the two configurations.

Rochery et al. (2004) made a preliminary attempt to address the gap closure problem. They introduced a
‘gap closure’ force making nearby opposing network extremities attract one other, thus closing gaps between
them. The force was introduced directly to the gradient descent equation. While the results obtained with this
force are similar in quality to those obtained via the new work in this paper, the force was not a total functional
derivative,i.e. it could not be obtained from an energy. This complicates analysis, and more seriously means that
convergence is not guaranteed. It is the purpose of this paper3 to present a solution to all these problems, and
hence to the gap closure problem, by describing a new HOAC energy that penalizes configurations containing
gaps, while at the same time changing the shape of the energy surface so that it no longer obstructs the algorithm.

More specifically, based on the geometry of gaps in networks,we design a quadratic HOAC energy for gap
closure that penalizes ‘nearby opposing extremities’. These extremities are identified by pairs of points that have
high positive curvatures, lie outside the contour with respect to one another, and are closer than a certain distance.
The effect is that network extremities that are close attract, extend towards one another, and join, thus closing the
gap between them.

1By this we mean that no human initialization is required, butthat the model possesses parameters that cannot at present be set automatically.
2Nain et al. (2004) use an energy of the same form, although expressed in terms of region integrals, to segment vessels in medical images.
3A shorter article on the work described in this paper was published by Rochery et al. (2005a).
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The new energy leads to a complicated force in the gradient descent equation, a function of third and fourth
derivatives of the region boundary. The computation of these terms necessitates careful numerical treatment in
order to keep the evolution stable. We use the level set framework to evolve the contour and adapt it to the nature
of the gradient descent equation resulting from the HOAC terms in the energy.

Previous work on road extraction has also encountered the problem of interruptions of course, and has dealt
with it in different ways, often without addressing it explicitly. Tracking methods (Geman and Jedynak, 1996)
and methods minimizing the optimal path between endpoints (Merlet and Zerubia, 1996) generally constrain the
topology so that gaps are not possible. The same applies to active contour models requiring endpoints, such
as ‘ribbon snakes’ (Fua and Leclerc, 1990) and ‘ziplock snakes’ (Neuenschwander et al., 1997). Bicego et al.
(2003) use a road tracking method with an ‘inertia’ term thatallows a road extremity to extend a short distance
despite lack of support from the data, but do not address gapsas such. A number of methods attempt to close gaps
in the extracted network after the fact: Laptev et al. (2000)use ziplock snakes to connect gap endpoints, while
Zhang et al. (1999) use morphological operators. Tupin et al. (1998) construct a Markov random field on a graph
whose nodes represent line segments, the field labelling thesegments as ‘road’ or ‘non-road’. Some of these
line segments are extracted from the image by a line detector, while the rest consist of all reasonable potential
connections between the extracted segments. A MAP estimateis computed from a model containing the prior
geometric knowledge that, for example, roads are long and relatively straight, and that extremities are unlikely.
Methods using marked point processes (Stoica et al., 2004; Lacoste et al., 2003) also penalize extremities, not
gapsquagaps, but they have the advantage of stochastic algorithms that allow the energetic barrier mentioned
above to be overcome. The current method differs from the above methods in two ways. First, it concentrates
on gap closure by directly penalizing configurations containing gaps, rather than penalizing isolated extremities.
Second, while many of the above methods work with line segments, the method described in the current work
deals directly with 2D regions that have an elongated form.

In section 2 we first recall the model proposed by Rochery et al. (2003), and then go on to describe the new
energy in detail in section 3, including an analysis of the thin road case. In section 4, we develop the level set
method used to evolve the contour. We present results on realaerial images showing the benefits of the new
energy in section 5. We conclude in section 7.

2. A MODEL FOR NETWORK EXTRACTION

As discussed in section 1, Rochery et al. (2003, 2006) have proposed a HOAC energy as a model for automatic
line network extraction. In this section, we briefly review this model, and comment on its advantages and deficits.

We will parameterize the space of regions using boundaries,a generic boundary being denotedγ (we will
also call it a contour). The model breaks into two pieces, thelikelihood energyEi , and the prior energyEg,
corresponding toP(I|R) andP(R) respectively:

E0(γ) = Ei(γ; I) + Eg(γ) .

Here,I : Ω → R is an image,Ω ⊂ R
2 being the image domain. The prior energy,Eg, is the sum of three terms:

two linear (length and area), and one quadratic HOAC term, which defines an interaction between points:

Eg(γ) = λL(γ) + αA(γ)−
β

2

∫∫

dp dp′ t · t′ Ψ(R(p, p′)) ,(2.1)

where the integrals are over the contour, parameterized byp; unprimed quantities are supposed evaluated atp or
γ(p) and primed quantities atp′ or γ(p′); L(γ) is the contour length;A(γ) is the area inside the contour;t is the
tangent vector to the contour;R(p, p′) is the Euclidean distance fromγ(p) to γ(p′); andΨ is a function with the
form of a smoothed hard-core potential, given by

Ψ(x) =















1 x− dmin < −ρ,
1

2

(

1− x−dmin
ρ − 1

π sin
(

π x−dmin
ρ

))

|x− d| ≤ ρ,

0 x− dmin > ρ.

The functionΨ is plotted as a dashed line in figure 8 for the values of the parameters we use in the experiments:
dmin = 3 andρ = 1.
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FIGURE 1. Satellite image (c© CNES)and result of line network extraction with energyE0.
Parameter values:[λ = 1, α = 0.2, β = 0.2, λi = 2.4, αi = 0, βi = 2.4].

A few comments on the prior energyEg are necessary. Length and area are classical regularizing terms.
The length term suppresses high frequencies in the contour,and thereby enforces contour smoothness, while
the area controls the expansion of the contour. The most important part of the model is the HOAC term. This
introduces an interaction between pairs of points on the contour. The interaction causes pairs of nearby points
with antiparallel tangent vectors to repel each other, and pairs of nearby points with parallel tangent vectors to
attract each other. This has two effects: it prevents pairs of points with anti-parallel tangent vectors from coming
too close to each other, and it encourages the growth of arm-like structures. As a result, regions with a reticular
structure composed of narrow arms with parallel sides have very low energy under this model, and are thus highly
favoured. For certain ranges of parameters, such regions are in fact energy minima. The energy thus makes a
very good prior for networks.

The likelihood energy,Ei , is also composed of three terms:

Ei(γ; I) = λi

∫

dp n · ∇I + αi

∫

R

d2x G[I](x)−
βi

2

∫∫

dp dp′ t · t′ (∇I · ∇I ′) Ψ(R(p, p′)) .

The first, linear term favours situations in which the outward normal is opposed to a large image gradient, or in
other words, in which the road is brighter than its environment. The second, linear term incorporates a simple line
detector filter measurement. The third, quadratic HOAC termdescribes the joint behaviour of the data at pairs
of points on the contour, given the geometry at the pair of points. It favours situations in which pairs of nearby
points with antiparallel tangent vectors (i.e.points on opposite sides of the road), lie on large image gradients that
point in opposite directions, while pairs of nearby points with parallel tangent vectors (i.e. points on the same
side of the road), lie on large image gradients that point in the same direction.

Figures 1 and 2 show two results obtained using this model, from a satellite image and an aerial image
respectively. Two points are worth noting. First, the region occupied by the network in the image is recovered,
and not just its skeleton. Second, a generic initializationconsisting of a rounded rectangle slightly smaller than
the image was used for both experiments; the amount of prior knowledge included in the model means that no
special initialization is necessary.

These results (and in general the results obtained with the energyE0) are satisfactory: most of the network
is extracted in each case. However, they are clearly not completely correct. Consider, for instance, the two
images in the top row of figure 3. The corresponding results obtained with the energyE0 are shown in the
bottom row. Clearly there are gaps in the extracted networksthat do not correspond to gaps in the real road
network. Rather, they correspond to ‘interruptions’ in theimaged network: places where the luminance of
the road changes abruptly and ceases to be different from itsimmediate surroundings. These interruptions are
caused by the presence of trees, buildings, and so on close tothe network, which cause the interruptions either by
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FIGURE 2. Aerial image (c© IGN) and result of line network extraction with energyE0. Pa-
rameter values:[λ = 1, α = 0.17, β = 0.2, λi = 2, αi = 1, βi = 2].

FIGURE 3. Aerial images (c© IGN) with shadows on roads and results of extraction with
energyE0. Parameter values: left,[λ = 1, α = 0.7, β = 0.2, λi = 7.5, αi = 0, βi = 7.5];
right, [λ = 1, α = 0.35, β = 0.75, λi = 12.5, αi = 0, βi = 10].

occluding the road, or by casting shadows on the road. Some close-up examples of such interruptions are shown
in figure 4.

The presence of gaps in the extracted network caused by interruptions in the imaged network is the main
failure mode of the modelE0, and is therefore the first point to address in any attempt to improve the model.
This is the subject of the next section.
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FIGURE 4. Aerial images (c© IGN) with shadows on roads.

3. AN ENERGY TERM FOR GAP CLOSURE

In order to improve the modelE0, we must first understand in more detail why it fails. There are in fact three
reasons for the presence of gaps corresponding to interruptions, two connected to the model (the prior and the
likelihood terms), and one connected to the gradient descent algorithm used to minimize the energy.

First, the prior knowledge about geometry described byEg does not distinguish between two distant arms that
each comes to an end and two arms that form an aligned gap, oncethe extremities are further apart than the range
of Ψ, i.e. a few pixels: the contribution to the energy is the same. Thusthe model as it stands does not capture
our prior knowledge that road networks, for example, usually do not possess such gaps; it does not describe what
might be called the ‘continuity’ of roads.

Second, the prior knowledge about the image to be expected from a given network, described byEi , does not
include the possibility that there will be interruptions inthe observed road. If there is a road present,Ei says that
high gradients are expected normal to its sides; these gradients are expected to be parallel on the same side of the
road and antiparallel on opposite sides; and the line detector is expected to respond strongly in the interior of the
road. All these expectations are violated by situations such as those shown in figure 4.

Third, the gradient descent algorithm may be unable to closethe gap even if the configuration with the gap
closed has lower energy than the configuration with the gap present (which can be the case, for example, if
the image gradients on either side of the interruption are not too large). This is for two reasons. First, the
configuration with a gap may lie at a local energy minimum created by contributions from bothEi andEg. The
likelihood termEi contributes because at the edges of an interruption there are image gradients (see figure 4).
Moving the extremities of the region off these gradients into the low-gradient area in the interruption means
increasingEi . The prior termEg contributes because, in order to prevent arms from appearing all over the image
domain, the parameters inEg are adjusted so that the energy per unit length of an arm is slightly positive. This
means that if the arms on either side of a gap were to extend towards one another,Eg would increase. Second, a
local energy maximum is created byEg when two extremities are less than a few pixels apart; the same repulsion
force that controls the width of the arms in the network causes the extremities to repel one another like two
magnetic north poles. The top row of figure 15 illustrates this behaviour. The figure shows the result of a purely
geometric evolution usingEg, and starting from the leftmost image. The two arms extend (the parameters are
adjusted so that the energy per unit length is negative) but repel one another, resulting in a disconnected network.
It should to be stressed that, in contrast with the previous two paragraphs, the points made in this paragraph are
all algorithmic issues. They mean that once a gap has formed,it is hard to close it, not that gaps necessarily form
for all interruptions; sometimes the data configuration means that an interruption does not produce a gap.
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Each of these issues leads to a different approach to the gap closure problem. The first suggests that we
should modify the prior term, by penalizing configurations that possess gaps. By raising the energy of such
configurations, we decrease the possibility of their occurring in the extracted network (although because the
gradient descent algorithm does not find the global minimum,this cannot be guaranteed). The second suggests
that we should modify the likelihood term, by allowing for the possibility that interruptions may occur. This
means introducing extra variables to model interruptions,and then either estimating these variables or (in a
probabilistic framework) marginalizing them away. In principle, both these approaches should be followed,
since they are both required by the phenomena we are trying tomodel. In practice, the second approach increases
the complexity of the optimization problem significantly, and consequently we will not pursue it in this work,
particularly since a modification of the prior term seems to be sufficient to solve the problem.

The third issue, the algorithm, can be tackled in two ways. One is to use an algorithm with better optimality
properties than gradient descent. The other is to attempt toremove the local extrema created by the energy. In
conjunction with a modification of the prior term to increasethe energy of configurations with gaps, this should
allow the gap to close in the course of normal gradient descent. We opt for the second approach here.

The idea then is the following. We will introduce a new term tothe prior energy that will penalize gaps,
or more specifically ‘nearby opposing extremities’, a notion that will shortly be made more precise. Since the
energy has to take into account the joint geometry at distantpoints of the contour, it must necessarily be a HOAC
energy. The minimal choice is a quadratic energy, and this turns out to be sufficient. The energy will increase
with the separation between extremities up to a certain distance, meaning that extremities will attract one another
if closer than this distance. This attraction will be large enough to overcome the local minimum produced by
the image gradients at the edges of interruptions and the positive energy per unit length of the arms, while the
dependence on distance of the new energy term will be designed so that it also removes the local maximum
produced by the repulsive effect of the existing quadratic prior term.

3.1. Identification of gaps. In order to identify and penalize configurations containinggaps, we start by defining
a gap as consisting of two (or maybe more) ‘nearby opposing extremities’. Two pointsp andp′ of the contour
will be defined as belonging to nearby opposing extremities if they are close enough together, ‘opposing’ and
if they belong to ‘extremities’ (both terms to be defined shortly). Below, we define ‘switch’ functionsSn, So,
andSe that measure the extent to which each of these conditions is satisfied, and then combine them to form a
functionS that measures the extent to which the conjunction of the conditions is satisfied:

S(p, p′) = Sn(p, p
′)So(p, p

′)Se(p, p
′) .(3.1)

We now define the constituent functions of this product.

3.1.1. ‘Extremity’. We measure the extent to which two points belong to extremities by measuring the extent to
which they each belong to an extremity:

Se(p, p
′) = Se(p)Se(p

′) ,(3.2)

whereSe(p) measures the extent to whichp belongs to an extremity (we use the same symbol for the two-point
and one-point functions). To measure the extent to which a point p of the contour belongs to an extremity, we use
the signed curvatureκ(p) atp. Extremities are the only points in the network that have positive curvature whose
magnitude is significant compared to the the reciprocal of the width of the road (all other points have curvature
magnitudes small compared to the reciprocal of the width of the road, except for large negative curvatures at
junctions), and so we define

Se(p) = H(κ(p)) .(3.3)

Here,H is a smoothed Heaviside function given by

H(x) =















0 x < 0,
1

2

(

x
ρH

− 1

π sin
(

π x
ρH

))

0 ≤ x ≤ 2ρH ,

1 x > 2ρH ,

(3.4)

and plotted in figure 5. In the experiments shown in this paperwe takeρH = 1, although this value in principle
should depend on road width, and hence will depend also on image resolution. Figure 6 illustrates the idea behind
Se.
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FIGURE 5. The functionH with ρH = 1.

FIGURE 6. Identifying points with large, positive curvature

FIGURE 7. Identifying external points

3.1.2. ‘Opposing’. We measure the extent to which a pair of points is ‘opposing’ by measuring the extent to
which each is ‘external’ with respect to the other:

So(p, p
′) = Sex(p, p

′)Sex(p
′, p) ,(3.5)

whereSex(p, p
′) measures the extent to whichp′ is ‘external’ with respect top. To measure the extent to which

point p′ is external with respect to pointp, we use the dot product between the unit normal atp, n̂(p), and the
unit vector pointing fromp to p′, R̂(p, p′) = (γ(p′)− γ(p))/|γ(p′)− γ(p)|:

Sex(p, p
′) = H(R̂(p, p′) · n̂(p)) .

Figure 7 illustrates the idea behindSo. It is large whenp′ lies roughly along the outward pointing normal direction
from p, andp lies roughly along the outward pointing normal direction from p′, which corresponds to the fact
that ‘opposing’ extremities lie outside the contour with respect to one another and are roughly aligned.

3.1.3. ‘Nearby’. To measure extent of closeness, we use a function of the distanceR(p, p′) between the points:

Sn(p, p
′) = ΨA(R(p, p′)) .

The functionΨA is given by

ΨA(x) =

{

x
ρA

+ 1

π sin
(

πx
ρA

)

− 1 x ≤ ρA

0 x > ρA.
(3.6)
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Interaction functions
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FIGURE 8. The interaction functions. The short rangeΨ from the original model is shown
dashed (dmin = 3, ρ = 1), while the new attractive interaction functionΨA is shown solid
(ρA = 40). Note the difference in sign and range.

ΨA tends to zero at distanceρA, and is zero thereafter. In combination with the other functions, as in equa-
tion (3.1), this means that if the two points are further apart thanρA, they are assumed to belong to extremities
that do not form a gap in a continuous piece of the network. In the experiments shown in this paper, we take
ρA = 40, although again this is resolution-dependent.

3.2. Defining the energy for gap closure.Using the functionS defined in the last subsection, we can now form
a quadratic HOAC energy term by integrating this function (twice) over the contour, thus effectively ‘counting’
the number of pairs of points corresponding to nearby opposing extremities. This energy term thus penalizes
configurations containing nearby opposing extremities:

Epen(γ) = −
βA

2

∫∫

dp dp′ t · t′ S(p, p′)

= −
βA

2

∫∫

dp dp′ t · t′ ΨA(R(p, p′)) So(p, p
′)Se(p, p

′) .

This term could have been constructed using|t||t′| instead oft · t′ (Rochery et al., 2005b), but the use of the
tangent vectors reinforces the condition that the extremities should be opposing.4 Note the similarity between
Epen and the quadratic term in equation (2.1). The differences are threefold: first, the presence of the functions
ΨA, So, andSe mean that this energy ‘switches on’ only when the two points in the integrand belong to nearby
opposing extremities; second, the functionΨA increases with increasing distance, rather than decreasing as does
Ψ, thus producing an attractive force between antiparallel tangent vectors rather than a repulsive one; third, the
range over whichΨA and its gradient are non-zero is set to about ten times the width of a road, and is thus
much greater than the range ofΨ, which is about equal to the width of a road.Ψ andΨA are plotted in figure 8,
illustrating the difference in range and behaviour.

While the energyEpen succeeds in overcoming the local minimum caused by the imagegradients at the edges
of interruptions and the positive energy per unit length of the arms, it is not sufficient to overcome the local

4Sundaramoorthi and Yezzi (2005) give a nice application of an energy of the former type to the construction of a topology-preserving flow.



HOAC ENERGIES FOR GAP CLOSURE 10

maximum produced by the repulsive effect of the existing quadratic prior term. To achieve this, we define a
second new energy term,Ecan, whose function is to cancel the effect of this repulsion between pairs of points
that belong to nearby opposing extremities. It is given by

Ecan(γ) =
β

2

∫∫

dp dp′ t · t′ Ψ(R(p, p′))So(p, p
′)Se(p, p

′) .(3.7)

Equation (3.7) is the negative of the quadratic term in equation (2.1), except that the integrand now includes the
functions that identify opposing extremities.

We sum these energies to form a gap closure energy,Egap, given by

(3.8) Egap =
1

2

∫∫

dp dp′ t · t′ (βΨ(R(p, p′))− βAΨA(R(p, p′)))So(p, p
′)Se(p, p

′) .

The functionsΨA andΨ thus combine to form one positive functionΨC = βΨ − βAΨA that controls the
dependence on distance of the new energy.

Finally, the new prior energy we propose for the extraction of road networks, including gap closure, is given
by

E = E0 + Egap .

3.2.1. Functional derivative ofEgap. We will minimize the energyE using gradient descent:

(3.9)
∂γ

∂τ
(s) = −

δE

δγ(s)
= −

(

δE0

δγ(s)
+

δEgap

δγ(s)

)

.

The functional derivative ofE0 is given by Rochery et al. (2003, 2006). What remains is to calculate the func-
tional derivative ofEgap. The presence of the switches means that this calculation iscomplicated. The result is
given in equation (3.10) overleaf.
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δEgap

δγ(s)
=

−

∫

ds′
{

n̂ (R̂ · n̂′) Ψ̇C Hex H
′

ex He H
′

e

− t̂
′ (R̂ · n̂)s ΨC Ḣex H

′

ex He H
′

e

− t̂
′ (R̂′ · n̂′)s ΨC Hex Ḣ

′

ex He H
′

e

− 2t̂′ κs ΨC Hex H
′

ex Ḣe H
′

e

− n̂ (t̂ · t̂′)
1

R
ΨC Ḣex H

′

ex He H
′

e

+ n̂
′ (t̂ · t̂′)

1

R
ΨC Hex Ḣ

′

ex He H
′

e

+ R̂ (t̂ · t̂′)
(R̂ · n̂)

R
ΨC Ḣex H

′

ex He H
′

e

− R̂
′ (t̂ · t̂′)

(R̂′ · n̂′)

R
ΨC Hex Ḣ

′

ex He H
′

e

− R̂
⊥ (κs · t

′) Ḣex H
′

ex He H
′

e

+ R̂
⊥ (t̂ · t̂′) (R̂ · t̂) ΨC Ḣex H

′

ex He H
′

e

− R̂
⊥ (t̂ · t̂′) (R̂ · n̂)s ΨC Ḧex H

′

ex He H
′

e

− R̂
⊥ (t̂ · t̂′) (R̂′ · n̂′)s ΨC Ḣex Ḣ

′

ex He H
′

e

− R̂
⊥ (t̂ · t̂′) κs ΨC Ḣex H

′

ex Ḣe H
′

e

− R̂
⊥ (t̂ · t̂′)

(R̂ · t̂)

R
ΨC Ḣex H

′

ex He H
′

e

+ n̂ (κss · t
′) ΨC Hex H

′

ex Ḣe He

− n̂ (t̂ · t̂′)
(

Ψ̈C (R̂ · t̂) + Ψ̇C (R̂ · t̂)s

)

Hex H
′

ex Ḣe He

+ n̂ (t̂ · t̂′) ΨC

(

Ḧex (R̂ · n̂)s + Ḣex (R̂ · n̂)ss

)

H ′

ex Ḣe He

+ n̂ (t̂ · t̂′) ΨC Hex

(

Ḧ ′

ex (R̂
′ · n̂′)s + Ḣex (R̂

′ · n̂′)ss

)

Ḣe H
′

e

+ n̂ (t̂ · t̂′) ΨC Hex H
′

ex

( ...
He κs + Ḧe κss

)

H ′

e

+κ
⊥

s (t̂ · t̂′) ΨC Hex H
′

ex Ḣe H
′

e

}

+ tangential terms that do not contribute to the motion of the contour.

(3.10)

The notation·⊥ indicates rotation byπ/2 anticlockwise. As before, primed quantities are evaluatedat s′ or
γ(s′), while unprimed quantities are evaluated ats or γ(s). For functions of both variables, a prime indicates the
exchange ofs ands′ with respect to their definition. Dots indicate derivatives. Subscripts indicates a derivative
with respect tos. The arguments ofΨC and its derivatives are understood to beR. The functionsHex andHe

are both the functionH , but their arguments and those of their derivatives are understood to beR̂ · n̂ andκ
respectively.

3.3. Analysis of the thin road case.In order better to understand the new energy termEgap, it is useful to
consider it in the limit when the width of the arms becomes very small compared to the distance between them:
that is, they effectively become line elements. This also enables a comparison with some of the Gestalt-inspired
work on contour completion. We consider the case in which thearms consist of two parallel lines separated by a
distance2a, with ‘caps’ at the ends. The two caps are identical up to rotation. Figure 9 illustrates the situation
and defines the various geometric quantities involved.
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FIGURE 9. Geometric configuration of two arms, with various geometric quantities marked.

The caps are parameterized by the angles−π/2 ≤ θi ≤ π/2, i ∈ {1, 2}, and described by their ‘profile’r(θi)
relative to the centre of each cap. The equations for the capsare therefore

ri(θi) = (xi(θi), yi(θi)) = (xi,0, yi,0) + r(θi)(cos(θi + αi), sin(θi + αi)) .

Without loss of generality, we takex1,0 = y1,0 = α1 = 0. Sinceκ = 0 everywhere except the caps,Se means
that the only parts of the contour entering into the integralin equation (3.8) will be the caps. We further assume
that the caps are convex, so that for two points on the same cap, R̂ · n̂ ≤ 0. So then means that only pairs of
points on different caps interact. Since we can reasonably assume thatr ∼ a, the fact that the width of the arms
is much less than the distance between them,a ≪ R(θ1, θ2), implies that the vector from any point on the first
cap to any point on the second cap is given to a first approximation byR = (x2,0 − x1,0, y2,0 − y1,0), which
reduces toR0 = (x2,0, y2,0) in our coordinate system. It does not depend on theθi. The distanceR = |R0|
between points on different extremities is then also constant to a first approximation. All this information results
in the following factorized expression for the new energy term:

(3.11) Egap= ΨC(R)

π/2
∫

−π/2

dθ1 t1 H(R̂0 · n̂1) ·

π/2
∫

−π/2

dθ2 t2 H(−R̂0 · n̂2) .

We take the functionH in equation (3.4) to be a Heaviside function (limρH→0), which together with the assump-
tion of convexity means that the effect of the Heaviside functions in equation (3.11) is simply to impose limits on
the integrations over theθi. Forθi, these limits are functions ofβi only, being also functionals ofr. (We define
β2 = α2 − β1 − π. See figure 9.) Forθ1, we will name the upper limitB(β1) and the lower limitA(β1). The
upper and lower limits forθ2 are then−A(β2) and−B(β2) respectively, due to the difference in definition of
β1 andβ2. Once these limits are imposed, the integrals can be performed, because they are just integrals of the
tangent vectors, which are exact. The result is that

Egap= ΨC(R)[r1(B(β1))− r1(A(β1))] · [r2(−A(β2))− r2(−B(β2))] .

A particularly simple case is when the caps are semi-circular: r(θi) = a. In this case

B(β) = min(
π

2
,
π

2
+ β) and A(β) = max(−

π

2
,−

π

2
+ β) .

The resulting value ofEgap is

(3.12) Egap = −a2ΨC(r)[1 + cos(β1) + cos(β2) + cos(β1 + β2)] .
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FIGURE 10. A contour plot of the angular factor in equation (3.12).

Note that despite the local definition ofEgap, the final energy depends on the overall directions of the arms.
Figure 10 shows a contour plot of the angular term in the brackets. The units are multiples ofπ. As can be seen
from the figure, for fixedr, the energy is a minimum forβ1 = β2 = 0. For fixedβ1 + β2, i.e. for fixed angle
between the arms, the energy is minimum whenβ1 = β2, that is, when the arms are co-circular.

The radial force,−∂Egap/∂r, is given by

(3.13) Fr = a2Ψ̇C(r)[1 + cos(β1) + cos(β2) + cos(β1 + β2)] ,

where it should be noted thatΨ̇C < 0. This force is thus maximal when the two line segments are anti-parallel
and opposing,i.e.β1 = β2 = 0. It reduces to zero when|β1 + β2| = π, i.e.when the two segments are parallel.
There is thus no attraction in this case. When|β1 +β2| > π, i.e. the arms ‘diverge’, the force becomes repulsive.
The force is zero wheneverβ1 or β2 = π, i.e. whenever one arm points radially away from the position of the
other extremity. Note that for a fixed angle between the line segments (β1+β2 fixed), the maximum force occurs
whenβ1 = β2, that is when the two line segments are co-circular, and thatthis force increases as the radius of
the inscribed circle increases,i.e.asβ1 andβ2 decrease.

The angular forces,−∂Egap/∂β1 and−∂Egap/∂β2 are plotted as a vector field in theβ1, β2 plane in figure 11.
Note that the force tends to anti-align the segments (β1 = −β2), while also tending to make them oppose one
another (β1 = β2 = 0).

Figure 12 shows the direction that minimizes the energy of (and maximizes the radial force on) a second
segment as a function of its position,r andβ1, with respect to a first segment situated at the origin and pointing
along the positivex-axis. The magnitude of the vectors is proportional to the magnitude of the radial forceFr

acting at this optimal direction, but note that the arrows donot represent the forcedirection, which in this simple
model is always radial.

The thin road analysis allows a comparison of the above behaviour with some of the work in contour comple-
tion, for example, stochastic completion fields (Williams and Jacobs, 1997), extension fields (Guy and Medioni,
1996), and other variants (Williams and Thornber, 1999; Elder and Zucker, 1996; Ren and Malik, 2002). For
example, for smallβi, equation (3.12) becomes

Egap= a2ΨC(r)[
3

4
(β1 + β2)

2 +
1

4
(β1 − β2)

2 − 4] ,
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FIGURE 11. The angular force resulting from equation (3.12).

which can be compared to the approximate expression for the scale-invariant elastica energy given by Sharon
et al. (2000). The comparison is not completely clear, however, since the energyEgap in equation (3.12) does not
govern the gap completion in the same way that completion energies and affinities do: it is the energy of the gap
not the completion. For example, the optimal direction shown in figure 12 does not have a clear link with the way
in which a gap would be completed. In addition, the pertinence of perceptual completion criteria is not obvious
in an application to road networks, whose completion or otherwise is an objective fact independent of the human
visual system. Nevertheless further improvements inEgap may be possible using such criteria as a guide.

If we consider the scaling with arm widtha of Egap andFr in equations (3.12) and (3.13), and assume that
typical interruption lengths do not depend ona (although arguably such interruptions will be longer for narrower
roads, since they are easier to occlude), so thatΨC(r) typically assumes the same value for arms of different
widths, it appears that narrow arms will attract more weaklythan wider arms. To a large extent, however, this is
a result of the form of the functionH that we have assumed, which is scale-invariant. In practicethe value ofSe

depends on the curvature of the extremities, and for a range of curvature values this dependence is approximately
linear. ForρH = 1, the linear region is approximately1/2 < κ < 3/2, which translates into4/3 < w < 4,
wherew = 2a is the width of the road. For the image resolution we are considering here, this covers the majority
of road widths. The value ofSe(p, p

′) will thus scale as≃ a−2, thereby removing the strong dependence on arm
width.

We can also consider the scaling ofEgap with image resolution. Taking into account the behaviour ofSe

discussed above, we see, by re-expressing all lengths in physical units rather than pixels, thatEgap is invariant to
changes in image resolution provided we keepρA, andρH as it appears inSe (but notSo) constant in physical
units (ρA = b−1ρ̃A andρH = bρ̃H , whereb is the image resolution in metres per pixel, andρ̃A and ρ̃H are
constant), and make the maximum value ofSe proportional tob.

4. ENERGY MINIMIZATION

We now move on to the numerical implementation of the gradient descent equation (3.9). HOAC energies lead
to non-local forces in the evolution equation given by integrals over the contour, as can be seen in equation (3.10).
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FIGURE 12. The lowest energy direction of a second segment as a function of position (r and
β1) with respect to a first segment situated at the origin and pointing along the positivex-axis.
The length of the arrows is proportional to the magnitude of the energy associated with the
optimal direction (the longer the arrow, the lower the energy), or equivalently to the magnitude
of radial force at that point (but note that the arrows do not represent the forcedirection, which
in this simple model is always radial).

FIGURE 13. Contour with a gap

These integrals require specific treatment in the contour evolution. We do not discuss this further here, but refer
the reader to Rochery et al. (2006).

In addition, the energyEgap introduces its own complications. Note that amongst the terms in equation (3.10)
are some which contain first and second derivatives of the contour curvature, which translate into third and fourth
derivatives of the level set function, and first, second, andthird derivatives of the smoothed Heaviside function
H . These terms, which either have high-order or large derivatives, can cause instabilities numerically. We adopt
specific measures, described below, to ameliorate the difficulties that these terms could cause.

4.1. Gaussian smoothing and derivative computations.Before computing geometric quantities such curva-
ture and its derivatives that are part of the functional derivative ofEgap and thus present in the gradient descent
equation, we apply Gaussian smoothing to the level set function φ. We use an isotropic Gaussian kernel with
σ = 1. This smoothing corresponds to using a larger stencil for the computation of these geometric quantities,
and produces smoother results. In particular, the contour curvature is smoothed, meaning that extremities are
more clearly recognized. For example, consider the contourdepicted in figure 13.
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FIGURE 14. Curvatures computed before (top) and after (bottom) smoothing.

In figure 14, curvatures computed before and after smoothingthe level set function are depicted. The curvature
computed directly on the level set function is very irregular. In contrast, the curvature computed after smoothing
the level set function is smoother and reveals two clear peaks corresponding to the two extremities in figure 13.
This coincides well with the purpose ofEgap, which is to identify extremities that should be connected.

In addition to the above, we use finite differences of order four to calculate numerical derivatives. This
provides a reasonable degree of smoothness in the curvaturederivatives, which are otherwise very noisy even
after Gaussian smoothing.

4.2. Computation of contour integrals. In order to compute the non-local terms of the force, we approximate
the integrals over the contour by sums over the extracted contour segments. When the contour is closed, we can
improve the precision of this approximation and obtain accuracy of order four if we use equispaced points, as
follows. Consider a functionf that we want to integrate over the interval[a, b]. If we construct approximationŝfi
to f over a partition of[a, b] into intervals[xi, xi+1], i ∈ {0, . . . , n− 1}, then the integral can be approximated
by

b
∫

a

dx f(x) ≃ I =

n−1
∑

i=0

Ii =

n−1
∑

i=0

xi+1
∫

xi

dx f̂i(x) .

Using linear approximations on each interval leads to

I = h

(

1

2
(f(a) + f(b)) +

n−1
∑

i=1

fi

)

.

where for any functiong, gi = g(xi), ḡi = 1

2
(gi + gi+1) andδgi = gi+1 − gi, and we have takenδxi = h,

constant.
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On the other hand, if we approximatef on each interval by a third-order polynomial,

f̂i(x) = ai,3(x− xi)
3 + ai,2(x− xi)

2 + ai,1(x − xi) + ai,0 ,

and require that

f̂i(xi) = fi , f̂i(xi+1) = fi+1 ,
˙̂
fi(xi) = ḟi ,

˙̂
fi+1(xi+1) = ḟi+1 ,

where as before the dot indicates derivative, we find, on substituting the resulting values for theai, that

Ii =

h
∫

0

dx f̂i(x+ xi) = ai,3
h4

4
+ ai,2

h3

3
+ ai,1

h2

2
+ ai,0h = hf̄i −

h2

12
δḟi ,

and hence that

I = h

(

1

2
(f(a) + f(b)) +

n−1
∑

i=1

fi

)

−
h2

12
(ḟn − ḟ0) .

In the case of a function defined on a closed contour, we haveḟ0 = ḟn, whence all the derivatives disappear and
the fourth order accurate approximation is the same as the second order accurate approximation. Thus, using
equispaced points allows us to have fourth order accuracy atno extra cost. Therefore, in order to compute the
non-local force at each pointp of the extracted contour, we first redistribute the extracted contour points around
p so that they are equispaced; we then compute the necessary geometric quantities at these points, and finally
perform the numerical integration. The redistribution of the points in itself may introduce errors, so that the
above analysis is suggestive rather than directly applicable; nevertheless, empirically we find that this procedure
improves the stability of the evolution.

5. EXPERIMENTAL RESULTS

In order to give an understanding of the behaviour of the new energy termEgap, we first show the result of an
experiment using only the prior energiesEg andEgap. We then show the results of road network extraction on
real images using the new modelE = E0 + Egap, illustrating the performance of the new model in the presence
of occlusions. Parameter values in the experiments are shown in the corresponding figure captions. In common
with most variational methods, these parameters are fixed byhand.

5.1. Prior energy. Figure 15 shows the results of contour evolution usingEg andEg + Egap, given an initial
condition containing a gap, shown on the left. The top row is the evolution given byEg alone. The two arms
repel one another due to the antiparallel tangent vectors atthe extremities, and develop into a network with two
connected components. This effect is exactly what the new energy termEgap is designed to avoid. The second
row shows the evolution using the full prior energyEg + Egap. Now the arms extend towards one another and
join, resulting in a connected network with the gap closed.

5.2. Extraction of road networks from real images. Figure 16 shows a real image in which a tree and its
shadow obscure a road. The lower image in the first column shows the result of applying the previous modelE0

to this image. There is a gap in the result for all the reasons discussed at the beginning of section 3.
Moving to the second column, the upper image shows the previous solution, complete with gap. We then

apply the full model,E = E0 + Egap, using this as an initial condition. The lower image in the second column
shows the result. As hoped, the gap is closed.

In the third column, the lower image shows the result of applying the full modelE = E0 +Egap starting from
the generic initialization shown in the upper image. Again the gap is closed.

To illustrate what is happening, consider the contour shownin the leftmost image of the second row of fig-
ure 16. For this contour, the top row of figure 17 shows the value of the force resulting from the new termEgap.
Positive values indicate forces along the outward pointingnormal. Clearly the forces generated by the new term
are pulling both extremities outwards, and hence towards one another. The rest of the contour is unaffected.

The second row of figure 17 shows the graph of the following quantity:

(5.1) S(p) =

∫

dp′ So(p, p
′) Se(p, p

′) .
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FIGURE 15. Evolutions based on prior energies only (time runs from left to right). Top row:
Eg only, without gap closure energyEgap. Bottom row:Eg+Egap. Note the closure of the gap.
Parameter values: top,[λ = 1, α = 0.1, β = 0.4]; bottom,[λ = 1, α = 0.1, β = 0.4, βA =
0.4].

FIGURE 16. First column: aerial image (c© IGN) and the result of extraction usingE0. Second
column: initial contour and final closed contour using the new modelE = E0 + Egap. Third
column: generic initialization and result of extraction with the new modelE = E0 + Egap.
Parameter values: left,[λ = 1, α = 0.14, β = 0.03, λi = 2.9, αi = 0.3, βi = 2.9]; middle and
right, [λ = 1, α = 0.14, β = 0.06, λi = 2.9, αi = 0.3, βi = 2.9, βA = 6].

It is clear that the extremities are very well identified;S(p) is zero except for points that lie on nearby opposing
extremities.

Figure 18 shows another result of extraction usingE = E0 + Egap. Despite the trees obscuring the network,
the road is perfectly reconstructed with the new model. Notethat the initial contour is again a rounded rectangle
covering the image. Despite this generic initialization a long way from the solution, the model does not become
stuck in local minima, for example, those due to the borders of fields.

Figure 19 shows some more results. In each case, the gaps are closed. The slight errors that remain are
interesting. In the first row, the failure to complete the corner at the top of the image is due to the initialization,
which excluded it from the beginning. In the second row, the algorithm has not extrapolated the road to the left
of the junction, although it seems that the true road does continue. Clearly this is due to the almost complete
occlusion of this piece of road. In the third row, the algorithm has produced a curved piece of road, whereas to
the eye it seems clear that the occluded road is in fact straight. There is image data to support the conclusion
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FIGURE 17. Top: force resulting fromEgap for the contour shown in the leftmost image of
figure 16. Bottom: graph of the function given in equation (5.1), showing identification of
opposing extremities.

FIGURE 18. An aerial image (c© IGN) with occlusions and the result of applyingE = E0 +
Egap to this image. Parameter values:[λ = 1, α = 0.14, β = 0.06, λi = 2.9, αi = 0.3, βi =
2.9, βA = 6].

of the algorithm, however, so the result is not unreasonable. It is possible that a change of parameters might
eliminate the curve.

Figure 20 shows the result obtained on a larger image. The extracted network is again connected, the model
closing the gaps caused by occlusions.

6. DISCUSSION AND CRITIQUE

We have defined situations requiring gap closure as those consisting of ‘nearby opposing extremities’, and the
gap closure energyEgap implements this notion in a particular way, by introducing an interaction between pairs
of contour points both of which have high positive curvature, and that are ‘external’ with respect to one another.
It is then natural to ask whether the notion of ‘nearby opposing extremities’ is adequate for characterizing the gap
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FIGURE 19. Top row: aerial images (c© IGN) with occlusions. Bottom row: the results of
applyingE = E0 + Egap to these images. Parameter values:[λ = 1.5, α = 0.8, β = 3, λi =
1, αi = 30, βi = 1.1, βA = 1.1].

FIGURE 20. An aerial image (c© IGN) and the result of applyingE = E0+Egap to this image.
Parameter values:[λ = 1, α = 0.14, β = 0.05, λi = 2.9, αi = 0.3, βi = 2.9, βA = 10].

closure problem, and if so, whether it is adequately implemented in the energyEgap. The experimental results
reported above indicate that by and large this is the case, but the road network configurations that can arise in
real images are very diverse, and it is of interest to consider the possible failure modes of the new model in a
number of these situations. In particular, there may be ‘false negative’ gap closures, failing to join pieces of road
that should be joined, and ‘false positive’ gap closures, joining pieces of road that should not be joined.

It is easy to see that false negatives may occur in configurations in which closure is required but which do
not contain nearby opposing extremities. The clearest caseis a T-junction that has an interruption right next to
the main road, thus leaving an extremity facing a straight piece of contour. In this case, a gap in the extracted
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FIGURE 21. A configuration that might seem to threaten a false positive gap closure, but in
fact closure does not occur; the two pieces straighten and separate.

network corresponding to the interruption would not be closed becauseEgap would not contribute to the energy.
In principle, it is easy to relax equation (3.2), which uses aproduct of switches, one for each point, to represent
a logical ‘and’, to a sum of switches, representing a logical‘or’. This will ‘switch on’ the closure energy
when one or the other or both interacting points have high positive curvature, and should lead to the closure of
such T-junction gaps. In practice, however, this change leads to spurious attractions during the gradient descent
evolution that spoil the results. It is thus an algorithmic problem rather than a problem with the model necessarily,
but nevertheless the incorporation of this type of gap closure within the present framework must await future
research. That said, such situations are non-generic, in the sense that a slight displacement of the interruption
will result in two or three nearby opposing extremities, andare therefore unlikely to occur very often.

Another cause of false negatives might appear to be the failure of real extremities to conform to the implicit
assumptions about their shape inEgap. If, for example, extremities were formed by very long isosceles triangles,
there would only be a single point in each extremity contributing toEgap. The fact that this point has very large
curvature does not help, thanks to the thresholding performed in equation (3.3). The contribution ofEgap to the
total energy would thus be very small. Such extreme configurations are unlikely to arise in practice, however,
for two reasons. First, the prior energyEg favours a certain optimal profile for an extremity, and this profile is
smooth (this effect is also helped by the steps described in section 4.1). Of course the data terms may move the
profile away from optimal if the interruption does not have smooth edges, but since the lack of smoothness tends
to consist of a jagged edge containing many points of high positive curvature, this is not a barrier to closing the
gap. An example can be seen in figure 16, in the second column, where an initially jagged gap is closed.

In practice, the main cause of a failure to close gaps is simply that they are too long, the two extremities thus
being out of the range of the interactionΨA. This problem can in principle be solved by extending the range of
ΨA, but, similarly to the case of T-junctions, in practice thisagain leads to problems during gradient descent.

Turning now to false positives, we can consider the situation depicted in figure 21, consisting of two high
positive curvature pieces of contour close to one another. Such road pieces might attract one another, join, and
produce a crossroads. Under a purely geometric evolution usingEg + Egap and starting from this configuration,
however, this is not the case (adding image terms would make it less likely that the gap would close, unless the
image is very particular); the two pieces of road straightenand move apart. Indeed we have never observed this
type of false positive gap closure, and while it is hard to guarantee that it will never happen, it is straightforward
to see that it is very unlikely, simply because it is almost impossible for there to be a significant number of points
on the curves with curvature that exceeds the threshold inEgap. The threshold will in general be∼ 1/a or higher,
where2a is the width of the road (for example, we used a threshold of1 in our experiments, whilea ≃ 2 for
the roads in our images), while it is difficult for even a very tight curve to have an average curvature of more
than1/(2a). In fact, this information is included in the prior modelEg: the quadratic prior term says, among
other things, that we expect roads to be straight over distances of the order of2a at least, and therefore that their
curvatures will be significantly less than this.

Of course, false positives can also occur when a road really does stop for a certain length before continuing
in the same direction. To distinguish such situations from gaps that should be closed requires much greater
knowledge of context than is included in the current model. However, it is the very fact that such situations occur
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infrequently, and that most gaps correspond to occlusions or shadows, that motivates the present work. Were this
not the case, there would be no need for gap closure at all.

7. SUMMARY, CONCLUSIONS, AND FUTURE WORK

When attempting to extract line networks from images, and inparticular road networks from remote sensing
images, one of the key difficulties is created by the presenceof interruptions in the imaged network due to
occlusions, cast shadows, and other effects. Such interruptions can lead to gaps in the extracted network that do
not correspond to gaps in the real network. In this paper, we have described a solution to this problem within
the framework of higher-order active contours. A previously proposed higher-order active contour model for
the extraction of line networks (Rochery et al., 2003) was ingeneral successful, but it was unable to surmount
the problem of interruptions. Building on this model, we have defined a quadratic gap closure energy that
penalizes network configurations containing nearby opposing extremities. In the gradient descent algorithm used
to minimize the energy, the effect of this new energy is to cause such extremities to attract one another, to move
together, and to join, thereby closing the gap. We note that the new energy is inherently higher-order: it involves
the long-range interaction of two different extremities,i.e. of widely separated points on the contour; it thereby
demonstrates the ability of higher-order active contours to include sophisticated prior morphological knowledge.

Gradient descent using this new energy is a delicate matter due to the presence of numerous force terms
containing higher derivatives; these require special attention if instabilities are to be avoided. Working within
the level set framework, we have developed techniques to ameliorate the numerical difficulties caused by these
force terms. Experiments on real remote sensing images demonstrate that, with the exception of very long
interruptions, the new energy succeeds in overcoming interruptions in imaged networks to produce networks
without gaps.

The most significant difficulties that remain with the methodare its failure to close very long gaps, and the
computation time, which is long. As discussed in section 6, the obvious solution to the first difficulty, increasing
the range ofΨA, does not work very well in practice. Two other solutions suggest themselves. The first is
to develop a more directed interaction that drops off more rapidly as the angle away from the road direction
increases. The second is to turn long gaps into short ones using a multiscale approach. The latter is interesting in
its own right, and should also help with the computation timeproblem, as follows. The computation time is long
because of the need to calculate the force arising from the nonlocal terms. In principle, the force acting at each
point of the contour involves an integral over the contour, and thus to compute the force on the whole contour
takes time∼ L(γ)2. The total length of the road network scales liken, wheren is the number of pixels in the
image. One therefore expects the computation time per iteration to scale like∼ n2. In practice, the integrations
can be limited to those segments of the contour that lie within the range of the interaction functionsΨ andΨA,
which reduces the computation time to∼ n. However, since the range ofΨA is very much larger than the range
of Ψ, the addition ofEgap to the energyE0 greatly increases the constant of proportionality involved in these
expressions. It is clear that a multiscale approach, by reducing long range interactions to short range ones, can
aid in addressing this problem.

Although we have focused on the extraction of road networks from remote sensing images, as emphasized
in section 1, diverse line networks in different imagery types have much in common. The prior knowledge
captured by the model described in this paper is thus also relevant to other line network extraction problems, for
example, the extraction of hydrographic networks from remote sensing images, or vascular and other networks
from medical and biological images.
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W. M. Neuenschwander, P. Fua, L. Iverson, G. Székely, and O.Kubler. Ziplock snakes.International Journal of
Computer Vision, 25(3):191–201, 1997.

N. Paragios and M. Rousson. Shape priors for level set representations.Proc. European Conference on Computer
Vision (ECCV), pages 78–92, 2002.

X. Ren and J. Malik. A probabilistic multi-scale model for contour completion based on image statistics. In
Proc. European Conference on Computer Vision (ECCV), volume 1, pages 312–327, 2002.

M. Rochery, I. H. Jermyn, and J. Zerubia. Higher order activecontours and their application to the detection of
line networks in satellite imagery. InProc. IEEE Workshop Variational, Geometric and Level Set Methods in
Computer Vision, at ICCV, Nice, France, October 2003.

M. Rochery, I. H. Jermyn, and J. Zerubia. Gap closure in (road) networks using higher-order active contours. In
Proc. IEEE International Conference on Image Processing (ICIP), Singapore, October 2004.

M. Rochery, I. H. Jermyn, and J. Zerubia. New higher-order active contour energies for network extraction. In
Proc. IEEE International Conference on Image Processing (ICIP), Genoa, Italy, September 2005a.

M. Rochery, I. H. Jermyn, and J. Zerubia. Higher order activecontours. Research Report 5656, INRIA, France,
August 2005b. URLhttp://www.inria.fr/rrrt/rr-5656.html.

M. Rochery, I. H. Jermyn, and J. Zerubia. Higher-order active contours. International Journal of Computer
Vision, 69(1):27–42, 2006. URLhttp://dx.doi.org/10.1007/s11263-006-6851-y.

E. Sharon, A. Brandt, and R. Basri. Completion energies and scale. IEEE Trans. Pattern Analysis and Machine
Intelligence, 22(10):1117–1131, 2000.

R. Stoica, X. Descombes, and J. Zerubia. A Gibbs point process for road extraction from remotely sensed images.
International Journal of Computer Vision, 57(2):121–136, 2004.

G. Sundaramoorthi and A. Yezzi. More-than-topology-preserving flows for active contours and polygons. In
Proc. IEEE International Conference on Computer Vision (ICCV), pages 1276–1283, Washington DC, USA,
2005.

F. Tupin, H. Maitre, J-F. Mangin, J-M. Nicolas, and E. Pechersky. Detection of linear features in SAR images:
Application to road network extraction.IEEE Trans. Geoscience and Remote Sensing, 36(2):434–453, 1998.

L. R. Williams and D. W. Jacobs. Stochastic completion fields: A neural model of contour shape and salience.
Neural Computation, 9:849–870, 1997.

L. R. Williams and K. K. Thornber. A comparison of measures for detecting natural shapes in cluttered back-
grounds.International Journal of Computer Vision, 34(2-3):81–96, August 1999.



HOAC ENERGIES FOR GAP CLOSURE 24

C. Zhang, S. Murai, and E. Baltsavias. Road network detection by mathematical morphology. InProceedings
of ISPRS Workshop ”3D Geospatial Data Production: Meeting Application Requirements”, pages 185–200,
Paris, France, April 1999.


