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ABSTRACT

We investigate the environment dependence of dark matter halos in the symmetron modified gravity scenario. The
symmetron is one of three known mechanisms for screening a fifth force and thereby recovering general relativity in
dense environments. The effectiveness of the screening depends on both the mass of the object and the environment
it lies in. Using high-resolution N-body simulations we find a significant difference, which depends on the halo’s
mass and environment, between the lensing and dynamical masses of dark matter halos similar to the f (R) modified
gravity. The symmetron can however yield stronger signatures due to a freedom in the strength of coupling to matter.
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1. INTRODUCTION

Many theories of high-energy physics, such as string theory
and supergravity, predict light gravitationally coupled scalar
fields (see, e.g., Binetruy 2006; Linde 2008, and references
therein). These scalars may play the role of dark energy
(quintessence). If these scalar fields have non-minimal coupling
to matter fields, then they could mediate extra forces and are po-
tentially detectable in local experiments and from observations
on cosmological scales.

Several laboratory and solar system experiments over the
last decades have tried to detect a sign of such fundamental
coupled scalar fields (Adelberger 2002; Hoskins et al. 1985;
Decca et al. 2007; Bertotti et al. 2003), but the results so far show
no signature of them. Naively, the results of these experiments
have ruled out any such scalar fields, which also can have an
effect on the large-scale structure of the universe, unless there
is some mechanism which suppresses the scalar fifth force on
small scales where the experiments are performed. One should
keep in mind that general relativity (GR) is only well tested
on length scales ranging from millimeters to the size of the
solar system. Comparing this to the size of the horizon, this
leaves a wide range of scales where there could be deviations
from GR.

To this day we know three such types of theoretical mecha-
nisms (see Khoury 2010 for a review) that can explain why light
scalars, if they exist, may not be visible in experiments per-
formed near the Earth. One such class, the chameleon mecha-
nism (Khoury & Weltman 2004; Brax et al. 2004, 2010b; Clifton
et al. 2005; Mota & Barrow 2004a, 2004b; Mota & Shaw 2007),
operates when the scalars are coupled to matter in such a way
that their effective mass depends on the local matter density. In
regions where the local mass density is low, the scalars would be
light and deviations from GR would be observed. But near the
Earth, where experiments are performed, the local mass den-
sity is high and the scalar field would acquire a heavy mass
making the interactions short range and therefore unobserv-
able. This mechanism is the reason why f (R) modified gravity
can lead to viable cosmologies and still evade local gravity
constraints.

The second mechanism, the Vainshtein mechanism
(Vainshtein 1972; Deffayet et al. 2002; Arkani-Hamed et al.
2003), operates when the scalar has derivative self-couplings
which become important near matter sources such as the Earth.
The strong coupling near sources essentially cranks up the ki-
netic terms, which translates into a weakened matter coupling.
Thus, the scalar screens itself and becomes invisible to experi-
ments. This mechanism is central to the phenomenological via-
bility of braneworld modifications of gravity and galileon scalar
theories (Dvali et al. 2000; de Rham et al. 2008; Nicolis et al.
2008; Hinterbichler et al. 2010; Mota et al. 2010; Gabadadze
2009; de Rham 2010; Brax et al. 2011a).

The last mechanism, the one explored in this paper, is
the symmetron mechanism (Hinterbichler & Khoury 2010;
Hinterbichler et al. 2011; Olive & Pospelov 2008; Brax et al.
2011c; Gannouji et al. 2010). In this mechanism, the vacuum
expectation value (VEV) of the scalar depends on the local
matter density, becoming large in regions of low mass density,
and small in regions of high mass density. The scalar couples
with gravitational strength in regions of low density, but is
decoupled and screened in regions of high density. This is
achieved through the interplay of a symmetry-breaking potential
and a universal quadratic coupling to matter. A similar screening
mechanism applies for the environmentally dependent dilaton
model (Brax et al. 2010a).

In vacuum, the scalar acquires a nonzero VEV which sponta-
neously breaks the Z2 symmetry φ → −φ. In regions of suffi-
ciently high matter density, the field is confined near φ = 0, and
the symmetry is restored. The fifth force arising from the matter
coupling is proportional to φ, making the effects of the scalar
small in high-density regions. Because of this effect, dark matter
halos in high-density regions will produce different scalar fifth
forces compared to those in low-density regions.

This effect has been studied for the case of f (R) gravity
(chameleon mechanism) in Zhao et al. (2011b), Schmidt (2010),
and the Dvali–Gabadadze–Porratti (DGP) model (Vainshtein
mechanism) in Schmidt (2010). It was found that in the
DGP model the screening of halos is almost independent of
environment while in f (R) gravity there can be a significant
environmental dependence. Another signature that has been
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found recently in f (R) and symmetron models is that the
luminosity of galaxies (Davis et al. 2011b) might also depend
on the environment.

Recent work on the symmetron has focused on background
cosmology, linear (Brax et al. 2011c) and nonlinear structure
formation (Davis et al. 2011a), and also made halo scale
predictions (Clampitt et al. 2012). In this paper, we use the
high-resolution N-body simulations of Davis et al. (2011a) to
study the environment dependence of dark matter halos in the
symmetron modified gravity scenario (see, for instance, Zhao
et al. 2011a; Li & Zhao 2009, 2010; Li et al. 2011; Ferraro
et al. 2011; Oyaizu et al. 2008; Schmidt 2009; Hellwing &
Juszkiewicz 2009; Brax et al. 2011b for N-body simulations
within other scenarios of modified gravity).

This paper is organized as follows. In Section 2, we recall the
main properties of the symmetron model which are relevant for
our analysis. Then, in Section 3, we introduce the dynamical
and lensing masses of a halo and explain how these are obtained
from the N-body simulations. In Section 4, we explain how we
define the environment of a halo in our analysis. The main results
are shown and discussed in Section 5, and we also compare our
simulation results to semianalytical predictions in Section 6.
Finally, we summarize and give our conclusions in Section 7.

2. SYMMETRON REVIEW

The symmetron modified gravity is a scalar field theory
specified by the following action:

S =
∫

dx4√−g

[
R

2
M2

pl − 1

2
(∂φ)2 − V (φ)

]
+ Sm(g̃μν, ψi),

(1)

where g is the determinant of the metric gμν , R is the Ricci
scalar, ψi are the different matter fields, and Mpl ≡ 1/

√
8πG,

where G is the bare gravitational constant. The matter fields
couple universally to the Jordan frame metric g̃μν , which is a
conformal rescaling of the Einstein frame metric gμν given by

g̃μν = A2(φ)gμν. (2)

The equation of motion for the symmetron field φ following
from the action Equation (1) reads

�φ = V,φ + A,φρm ≡ Veff,φ, (3)

where the potential is chosen to be of the symmetry-breaking
form

V (φ) = −1

2
μ2φ2 +

1

4
λφ4 (4)

and the coupling is quadratic in φ to be compatible with the
φ → −φ symmetry

A(φ) = 1 +
1

2

(
φ

M

)2

. (5)

The effective potential can then be written as

Veff(φ) = 1

2

( ρm

M2
− μ2

)
φ2 +

1

4
λφ4, (6)

from which the range of the scalar field (i.e., the range of the
resulting fifth force) can be found as

λφ ≡ 1√
Veff,φφ

. (7)

The range of the field in vacuum, denoted λ0, is given by
λ0 = 1/

√
2μ.

In high-density regions where ρm > μ2M2, the effective
potential has a minimum at φ = 0. The fifth force, given by

Fφ = ∇A(φ) = φ

M2
∇φ, (8)

is proportional to φ and will be suppressed. In vacuum, or
in large underdensities, where ρm � μ2M2, the φ → −φ
symmetry is broken and the field settles at one of the two
minima φ = φ0 ≡ ±μ/

√
λ. The fifth force between two small

test masses in such a region will achieve its maximum value
compared to gravity,

Fφ

FN

= 2M2
pl

(
d ln A

dφ

)2

φ=φ0

= 2β2. (9)

For very large bodies in the sense that

α−1 ≡ 2
ρSSB

ρbody

(
λ0

Rbody

)2

� 1, (10)

the situation is quite different (Hinterbichler & Khoury 2010).
Here, the symmetry is restored in the interior of the body and
the fifth force on a test mass outside becomes suppressed by a
factor α−1:

Fφ

FN

= 2β2 1

α
. (11)

If the body lies in a high-density environment, where φ =
φenv < φ0, the fifth force will be further suppressed by a factor
(φenv/φ0)2. Thus, there are two ways a body can be screened: it
can be large enough so as to make α−1 � 1 or it can be located in
a high-density region where φenv � φ0. The latter in particular
leads to an environment dependence of the fifth force in a dark
matter halo which we will investigate in the next section.

Instead of working with μ, M, and λ we chose to define
three more physically intuitive parameters L, β, and zSSB
which are the (vacuum) range of the field in Mpc h−1, the
coupling strength to matter, and the cosmological redshift
where symmetry breaking takes place on the background level,
respectively. The conversion to the original model parameters is
given by

L = λ0

Mpc h−1
= 3000H0√

2μ
, (12)

β = φ0Mpl

M2
= μMpl√

λM2
, (13)

(1 + zSSB)3 = μ2M2

ρm0
. (14)

3. THE DYNAMICAL AND LENSING MASSES

In any universally coupled scalar-field theory, like the sym-
metron, we have the choice of describing the dynamics of the
model in two mathematically equivalent frames defined by
choosing either gμν or g̃μν in Equation (2) as the space–time
metric. In the Einstein frame, the one described by Equation (1),
gravity is described by standard GR, but the geodesic equation
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is modified compared to GR:

ẍμ + Γμ
αβ ẋαẋβ = −d log A(φ)

dφ
(φ,μ + 2φ,β ẋβ ẋμ). (15)

In the Jordan frame gravity is described by a scalar–tensor-
like modified gravity theory, but the matter particles follow the
geodesics of the space–time metric g̃μν :

ẍμ + Γ̃μ
αβ ẋαẋβ = 0, (16)

where Γ̃ is the Levi-Civita connection of g̃μν . The prediction of
the theory is usually easier to derive in the Einstein frame and
the corresponding quantities can be found in the Jordan frame
by performing the transformation Equation (2).

Working in the Einstein frame and the conformal Newtonian
gauge, the line element can be written as

ds2 = a2(η)[−dη2(1 + 2ΦN ) + (1 − 2ΦN )dx2], (17)

where ΦN is the usual Newtonian potential. Transforming to the
Jordan frame using Equation (2) we find

ds2 = a2(η)[−dη2(1 + 2Φ) + (1 − 2Ψ)dx2], (18)

where

Φ � ΦN + δA(φ), (19)

Ψ � ΦN − δA(φ), (20)

with

δA(φ) ≡ A(φ) − 1 = 1

2

(
φ

M

)2

. (21)

Note that we have neglected a term6 2ΦNδA(φ) � ΦN in
the equations above. In the solar system deviations from GR
are often phrased in terms of the so-called parameterized post-
Newtonian (PPN) parameter γ . In the case of the symmetron,
we have

γ = Ψ
Φ

= ΦN − δA(φ)

ΦN + δAφ)
= 1 − 2δA(φ)

ΦN + δA(φ)
. (22)

The solar system constraints for the symmetron were derived
in Hinterbichler & Khoury (2010) and give a constraint on
the range of the field and the symmetry-breaking redshift:
L(1 + zSSB)3 � 2.3 (Davis et al. 2011a).

Typically observations of, e.g., clusters probe forces (gradi-
ents of the potentials) instead of the potentials themselves and
different observables are related to different combinations of the
potentials. The fifth-force potential is given by the difference in
the above two potentials:

Φ− = Φ − Ψ
2

= δA(φ). (23)

Lensing, on the other hand, is affected by the lensing potential

Φ+ = Φ + Ψ
2

= ΦN, (24)

6 For the symmetron, it was shown in Davis et al. (2011a) that
δA(φ) � δA(φ0) ∼ β2 × 10−6 which for the values of β � O(1) we are
interested in is much less than one.

which satisfies the Poisson equation

∇2Φ+ = 4πGa2δρm. (25)

This is the same equation as in GR since the action of the
electromagnetic field is conformally invariant and thus photons
do not feel the scalar fifth force. In general, there will also be a
contribution from the clustering of the scalar field 4πGa2δV (φ),
but in our case this term is negligible as the difference in the
clustered and unclustered energy density of the scalar field is
always much less than the energy density of matter in a halo.7

We define the lensing mass as

ML = 1

4πGa2

∫
∇2Φ+dV, (26)

which is the actual mass of the halo. It is determined from the
N-body simulations by counting the number of particles within
a given radius. For spherical symmetry we can use Stokes’
theorem,

∫ ∇2Φ+dV = ∫ ∇Φ+ · dS = 4πr2(dΦ+/dr), which
gives

ML(r) ∝ r2 dΦ+

dr
. (27)

The dynamical mass MD(r) of a halo is defined as the mass
contained within a radius r as inferred from the gravitational
potential Φ, i.e.,

MD(r) = 1

4πGa2

∫
∇2ΦdV, (28)

where the integration is over the volume of the body out to radius
r. For spherical symmetry, we can again use Stokes’ theorem on
the right-hand side to find

MD(r) ∝
∫

r2 dΦ(r)

dr
= r2

(
dΦN

dr
+

φ

M2

dφ

dr

)
. (29)

The terms in the brackets are recognized as the sum of the
gravitational force and the fifth force. In our N-body simulations,
we measure MD of a halo by first using a halo finder to locate the
particles which make up the halo and binning them according
to radius. Then, we calculate the average total force in each
radial bin by summing over all the particles in the bin. Note
that the force obtained in this way can have a contribution
from the particles outside the halo. For spherical symmetry, this
contribution largely cancels out and we are left with the total
force produced by the halo itself. Observationally, MD can be
determined from measurements of, e.g., the velocity dispersion
of galaxies in halos (Schmidt 2010).

In GR, the lensing mass is the same as the dynamical mass,
but they can be significantly different in modified gravity. We
follow Zhao et al. (2011b) and define the relative difference

ΔM (r) = MD

ML

− 1 = dΦ−/dr

dΦ+/dr
. (30)

This allows us to quantity the difference between the two masses
in the simulations. In GR, we have ΔM ≡ 0 while in the
symmetron model ΔM will vary depending on the mass of the

7 The potential energy of the scalar field satisfies |δV (φ)| �
|V (φ0) − V (0)| = μ4/4λ ∼ ρSSBβ2

(
M/Mpl

)2 � ρm0β
2(1 + zSSB)3 × 10−6.

For β, zSSB � O(1) this term is negligible compared to the energy density of
matter in a halo.
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Figure 1. Three-dimensional distribution of the halos in the simulation box for a simulation with zSSB = 0.5 and β = L = 1.0. Left: the blue (D < 10) and purple
(D > 10) spheres are 500 randomly selected halos in the mass range 11.5 < log10(ML/Msun h−1) < 12.5. Because of the definition of the environment equation (32)
the largest halos in the simulation will almost always be in a low-density environment and we therefore separate out the 50 most massive halos and show these
separately in black with a fixed size for the spheres. Middle and right: the value of ΔM for the clustered halos (log10 D < 1) and the isolated halos (log10 D > 1),
respectively.

(A color version of this figure is available in the online journal.)

halo and the environment it lies in. The theoretical maximum is
achieved for small objects in a low-density environment where
the screening is negligible and reads (see Equation (9))

ΔMax
M (r) = 2β2. (31)

In the next section, we will apply these to the N-body simulation
results.

4. DEFINING THE ENVIRONMENT

The environment a halo lies in can have large effects on
the fifth force that operates by the halo since the fifth force is
directly proportional to the spatial gradient of the square of the
local field value (see Equation (29)). This value is small in high-
density regions and this will provide the halo with an additional
screening to the self-screening due to its size or mass.

As a result, when looking for an environmental dependence it
is crucial to choose a definition of the environment that does
not correlate heavily with the halo mass. The quantity one
chooses should also allow for an easy determination both in
our simulations and in observations. Such a quantity was found
in Haas et al. (2011) and used in the same analysis as we have
done, but for the case of f (R) gravity (Zhao et al. 2011b). This
quantity,

DN,f ≡ dN,MNB/ML�f

rNB
, (32)

is defined as the distance to the Nth nearest neighbor whose mass
exceeds f times the halo under consideration divided by the virial
radius of the neighboring halo. A large value of D indicates that
the halo lives in a low-density environment in the sense that it
has no larger halos close by. It was shown in Haas et al. (2011;
see also Fakhouri & Ma 2009, 2010) that the quantity D ≡ D1,1
represents the local density well and is almost uncorrelated with
the halo mass. We have explicitly checked that this is also the
case for our simulations.

We follow Zhao et al. (2011b) and define a high-density
environment as log10 D < 1 and a low-density environment

as log10 D > 1. Halos in low- and high-density environments
will be called isolated halos and clustered halos, respectively. In
order to study the variation of ΔM with halo mass we will say that
a halo with ML/(Msun h−1) > 5 × 1012 is a large halo, while a
halo with 5×1011 < ML/(Msun h−1) < 2×1012 is a small halo.
The lower limit comes from the fact that smaller halos in our
simulations are not well resolved (less than ∼500 particles per
halo) and will therefore not be used in this analysis. This choice,
arbitrary as it might seem, is made so that we have approximately
equal numbers of halos in each of the two categories.

In Figure 1, we show the three-dimensional halo lensing mass
distribution together with the corresponding value of ΔM in
the simulation box for one of the simulations. Each sphere
represents a halo; in the left panel the size of the spheres is
proportional to the halo lensing mass ML and in the other
two panels it is proportional to ΔM ; the color indicates the
environment of the halos as illustrated by the legend. This plot
shows the environmental dependence clearly: in high-density
environments the value of ΔM is generally smaller than in low-
density environments, and the definition of the environment used
here is capable of capturing this behavior fairly well.

5. RESULTS

We use the N-body simulations of Davis et al. (2011a) which
have been performed using a modified version (Li & Barrow
2011) of the publicly available N-body code MLAPM (Knebe
et al. 2001). The simulation suite consists of six simulations with
different model parameters {β,L, zSSB} shown in Table 1, and
we have calculated ΔM for the halos found in these simulations.
The initial conditions for the symmetron models are the same
for each simulation and allow for a direct comparison of the
effects of the different parameters in the theory. The halos in
the simulation have been found with the halo finder MHF (Gill
et al. 2004) using the definition Mvir = M(r340) ≡ M340 for the
halo mass, where r340 is the radius of the halo where the local
density is ρ = 340ρ.
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Table 1
The Symmetron Parameters for Each of the N-body Simulations A–F Together

with Some Relevant Cosmological and N-body Parameters
(Same for All Simulations)

Parameter Value
Ωm 0.267

Simulation A B C D E F ΩΛ 0.733

zSSB 0.5 0.5 1.0 1.0 2.0 2.0 h 0.719

β 0.5 1.0 0.5 1.0 0.5 1.0 σ8 0.801

L 1.0 1.0 1.0 1.0 1.0 1.0 ns 0.963

Nparticles 2563

B0 64 Mpc h−1

Note. For a complete list of parameters see Davis et al. (2011a).

The condition for screening of an isolated halo (i.e., not
taking the environment into account) can be found theoretically.
For a spherical top-hat overdensity with radius r340 and density
ρ = 340ρm0, we have

ΔM (r340)

ΔMax
M

�
{
α−1 α � 1,

1 α � 1,
(33)

where α is given in Equation (10). The condition for screening,
α � 1, can be written as

M340

1012 Msun h−1
� 0.6(1 + zSSB)3L2

(
r340

Mpc h−1

)
, (34)

where M340 = (4π/3)ρr3
340 is the halo mass. This condition

is not accurate for real halos as the top-hat approximation is
very crude (Clampitt et al. 2012), but it nevertheless is able to
capture the essence of the screening mechanism. In Table 2, we
show the ratio of halos more massive than 5 × 1011 Msun h−1

which are expected to be screened in the different simulations
based on this simple approximation. The effectiveness of the
symmetron screening mechanism increases with increasing halo
mass M340 and decreasing symmetry-breaking redshift zSSB.
This is because a larger value of zSSB means the symmetry is
broken at higher matter densities and consequently a larger halo
mass is required to restore the symmetry.

In Figure 2, we show ΔM (r340) for our simulations as a
function of the environment for both large (blue circles) and
small (purple circles) halos. First, we note that the predictions
from simulations with different β are very similar and the
only real effect of changing β is to change the normalization
factor ΔMax

M = 2β2. This can be understood from noting that
changing β only affects the geodesic equation (15) and not
the Klein–Gordon equation8 (3). However, for simulations with
larger β we will on average have more massive halos because
the fifth force, and therefore the matter clustering, is stronger.
This effect, which for our simulations is very small, can also be
seen in Table 2. Second, we note that the predictions of ΔM (r340)
for high-mass and low-mass halos in low-density environments
are easy to separate at 1σ for all our simulations. The small
dispersion about the solid curves (which represent the average

8 The Klein–Gordon equation (3) can be written as
�ψ = (1/2λ2

0)[(ρ/ρm0(1 + zSSB)3) − 1 + ψ2]ψ where ψ = φ/φ0. Using this
variable the fifth force can be written F = β2(M/Mpl)2ψ∇ψ . Thus, the
solution ψ is independent of β and its only the geodesic equation, through the
fifth force, which has a β dependence.

Table 2
The Percentage of Halos More Massive than 5 × 1011 Msun h−1 Which are

Expected to be Screened (to Some Degree) in the Different Simulations Based
on the Approximation Equation (34)

Simulation A B C D E F

Screened 99.82% 99.83% 64.38% 65.27% 13.91% 14.12%

Notes. There is a very small difference between the simulations where β = 0.5
(A, C, E) compared to β = 1.0 (B, D, F) even though the screening is
only sensitive to L and zSSB. This small difference comes from the fact that
simulations with stronger β will in general have more massive halos.

values in the two mass bands) seen in Figure 2 is due to the
difference in the halo masses within each mass band.

To see this more closely, we have used the size of the circles
(which represent halos) to denote their masses: bigger circles
are more massive halos. We can see the clear trend that ΔM

decreases with increasing circle size (or halo mass), and this
confirms that in a given environment the screening of a halo,
or equivalently ΔM , depends very sensitively on the mass of
that halo. Third, for very high density environments D → 0
we recover GR independent of the halo mass for all of our
simulations, which is because the local value of φ in a very high
density environment (which is often a part of or very close to a
very massive halo) is small and so the fifth force is suppressed.

In Figure 3, we show ΔM (r340) for our simulations as a
function of the halo mass in both high-density (purple circles)
and low-density (blue circles) environments. This figure shows
that GR is recovered for larger halos, independent of the
environment, as expected from Equation (34). For low-mass
halos we see a significant dispersion of ΔM from 0 to the
maximum value obtained in low-density environments for the
same mass ranges. This is because low-mass halos cannot
efficiently screen themselves and must rely on the environment
to get the screening. The environment, defined by D, ranges
from D = 0 up to D = 10 for these halos, and the lower the
value of D the better screened the halo will be. To observe this
point more clearly, in the figure we have also used the size
of the circles to denote the value of D: the bigger circles are
halos in environments with larger D (or lower density) and vice
versa. As expected, we see a clear trend that the small halos
which are efficiently screened generally reside in high-density
environments, while those which are less screened lie in low-
density environments.

Massive halos, on the other hand, can screen themselves
efficiently and the environment only plays a small role in their
total screening.

In Figure 4, we show ΔM (r) as a function of the distance
r from the halo center, for small and large halos in high- and
low-density environments respectively. Again we see a large
difference between large halos in dense environments and small
halos in low-density environments. The r dependence of ΔM (r)
is seen to be rather weak in high-density environments since the
value of the scalar field inside the halo is mainly determined by
the environment, while in low-density environments the value
of the scalar field mainly depends on the mass of the halo, which
leads to a stronger r dependence. Note also that in all the figures
above the deviation from GR is stronger for higher symmetry-
breaking redshift zSSB, as expected from Equation (34), and for
larger values of the coupling β, which implies a stronger fifth
force and therefore a stronger effect.

It should be emphasized that the environment dependences
that are seen in the figures above will depend on the way the
halos are binned, i.e., our definitions in Section 4.
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Figure 2. ΔM (r340)/ΔMax
M as a function of the environment for large halos ((ML/Msun h−1) > 5 × 1012, blue) and small halos ((ML/Msun h−1) < 2 × 1012, purple)

where ΔMax
M = 2β2 and where the size of the circles increases with the mass of the halos. The error bars are 1σ . We see a clear difference between the values of ΔM

for what we have defined as high-mass and low-mass halos.

(A color version of this figure is available in the online journal.)
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Figure 3. ΔM (r340)/ΔMax
M as a function of the halo lensing mass ML for high-density environments (D < 10, purple) and low-density environments (D > 10, blue)

where ΔMax
M = 2β2 and where the size of the circles increases with D (i.e., a smaller circle indicates a denser environment). The error bars are 1σ . For the high-mass

halos we recover GR independent of the environment as the effectiveness of the screening increases with mass.

(A color version of this figure is available in the online journal.)
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Figure 4. ΔM (r)/ΔMax
M as a function of the rescaled halo radius r/r340, where ΔMax

M = 2β2, for high- (D < 10) and low- (D > 10) density environments and small
(red) and large (blue) halos. The error bars are 1σ . For comparison, we show the profile for all halos in the simulation (dashed green) in each plot and this curve has
been displaced −5% in the r-direction to more clearly see the error bars.

(A color version of this figure is available in the online journal.)
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Figure 5. gvir as a function of halo mass for the isolated halos (D > 10)
in a simulation with {β = 1.0, L = 1.0, zSSB = 0.5} compared with the
semianalytical results of Clampitt et al. (2012, Figure 3 (red)). The dashed
black line shows the GR prediction gvir = 1. The semianalytical results are for
isolated halos and agree very well with the maximum gvir in our simulations.
Note that the symmetron parameters used in Clampitt et al. (2012), {β = 1.0,
L = 1.2, zSSB = 0.54}, are slightly different compared to our simulation, and
also the definition M = M300 was used for the virial mass as opposed to our
M = M340.

(A color version of this figure is available in the online journal.)

The results shown above are for halos at redshift z = 0.
Another signature in the symmetron scenario is the redshift
dependence of ΔM . For halos at large redshifts, z > zSSB, we
have ΔM ≈ 0, independent of the environment and mass as
the symmetry has not been broken at the background level
and φ ∼ 0 almost everywhere in space, as demonstrated in
Figures 7–10 in Davis et al. (2011a). If this signature is found
in observations, then by dividing the observational samples
into bins according to redshift one can probe the value of the
symmetry-breaking redshift zSSB. The maximal strength of the
deviation will again probe β, which can help to distinguish
the symmetron from f (R) gravity. If, for example, one finds
ΔMax

M > (1/3) then f (R) cannot account for the deviation.

6. COMPARISON WITH ANALYTICAL RESULTS

During the completion of this work a paper (Clampitt et al.
2012) came out with semianalytical halo scale predictions for
the symmetron. In their analysis they assumed an NFW profile
and calculated the symmetron fifth force for isolated halos. The
quantity of interest is gvir (see Clampitt et al. 2012; Schmidt
2010 for details) which in our notation is given by

gvir = 1 +

∫
r3ρ(r)FNΔM (r)dr∫

r3ρ(r)FNdr
, (35)

where FN is the gravitational force and gvir is the average force
to the average gravitational force over the halo. Since galaxies
are spread around inside the halo, a measurement of the velocity
dispersion of galaxies would therefore measure such an average.
One of the cases shown in Clampitt et al. (2012) can be compared
to our simulation results, and as a consistency check we perform
this comparison.

In Figure 5, we show gvir together with the predictions from
Clampitt et al. (2012). The results from their analysis seem to
be in good agreement with our numerical results. It would be
interesting to see if their analysis can be extended by taking the
environment into account to obtain the simulation results we

have presented here. This would allow for an easier comparison
with future observations as N-body simulations are in general
very time-consuming.

7. SUMMARY AND CONCLUSIONS

We have studied the environment dependence of the masses
of dark matter halos in the symmetron modified gravity scenario.
The potential governing the dynamics of the matter fields
(Φ− + Φ+) can differ significantly from the lensing potential
Φ+ in this model, which leads to a clear difference between the
mass of the halo as obtained from dynamical measurements and
that obtained from gravitational lensing. Such an effect found in
the symmetron model can be significantly stronger than in f (R)
gravity. This signature, which is unique to modified gravity, can
in practice be measured by combining dynamical (e.g., velocity
dispersion) and lensing mass measurements of clusters of
galaxies or even single galaxies. We find that the environmental
dependence is strongest for small halos as very large halos are
sufficiently massive to be able to screen themselves. This implies
that using dwarf galaxies (Jain & Vanderplas 2011) might prove
the best way to probe this effect.

This feature of environmental dependence discovered also
allows us, in principle, to distinguish between different modified
gravity scenarios such as f (R), more general chameleons, DGP,
and the symmetron. In both DGP and f (R), the maximum
fractions of the fifth force to the Newtonian force in halos
are around 30% while in chameleon/symmetron scenarios
this fraction can be either smaller or larger, depending on
the value of the coupling strength β. DGP differs from f (R)
and the symmetron in that there is basically no environmental
dependence. There is also the possibility of measuring the
redshift evolution of this effect by measuring clusters at high
and low redshifts. As the symmetron force is negligible for
z > zSSB we will recover the GR predictions for all clusters,
independent of mass and environment, at high redshifts.

Since different modified gravity theories can be highly
degenerate with regard to both background cosmology and the
growth rate of linear perturbations, it is crucial to identify new
probes which can be used to separate them from each other. If
one of these models is realized in nature then only a combination
of many different probes will be able to pin down the correct
theory. However, the first step would be to detect a deviation
from GR, and a detection of the effect considered in this paper
will be a smoking gun for modified gravity. It will therefore be
very interesting to look for this effect using data from upcoming
large-scale structure surveys.

The simulations used in this paper have been performed
on TITAN, the computing facility at the University of Oslo
in Norway. D.F.M. and H.A.W. thank the Research Council
of Norway for FRINAT Grant 197251/V30. D.F.M. is also
partially supported by project PTDC/FIS/111725/2009 and
CERN/FP/116398/2010. B.L. is supported by Queens’ Col-
lege, the Department of Applied Mathematics and Theoretical
Physics of University of Cambridge, and the Royal Astro-
nomical Society. H.A.W. thanks S. K. Næss for many useful
discussions.
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