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Abstract 14 

For effective catchment management and intervention in hydrological systems a process-based 15 

understanding of hydrological connectivity is required so that: i) conceptual rather than solely 16 

empirical understanding drives how systems are interpreted; and ii) there is an understanding of 17 

how continuous flow fields develop under different sets of environmental conditions to enable 18 

managers to know when, where and how to intervene in catchment processes successfully.  In order 19 

to direct future research into process-based hydrological connectivity this paper: i) evaluates the 20 

extent to which different concepts of hydrological connectivity have emerged from different 21 

approaches to measure and predict flow in different environments; ii) discusses the extent to which 22 

these different concepts are mutually compatible; and iii) assesses further research to contribute to 23 

a unified understanding of hydrological processes. Existing research is categorised into five different 24 

approaches to investigating hydrological connectivity: i) evaluating soil -moisture patterns (soil-25 

moisture connectivity); ii) understanding runoff patterns and processes on hillslopes (flow-process 26 

connectivity); iii) investigating topographic controls (terrain-connectivity) including the impact of 27 

road networks on hydrological connectivity and catchment runoff; iv) developing models to explore 28 

and predict hydrological connectivity; and v) developing indices of hydrological connectivity . Analysis 29 

of published research suggests a relationship between research group, approach, geographic setting 30 

and the interpretation of hydrological connectivity. To further understanding of hydrological 31 

connectivity our knowledge needs to be developed using a range of techniques and approaches, 32 

there should be common understandings between researchers approaching the concept from 33 

different perspectives, and these meanings need to be communicated effectively with those 34 

responsible for land management. 35 
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1 Introduction  43 

‘Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or 44 

between elements of the hydrologic cycle’ (Freeman et al., 2007, p1). The concept of hydrological 45 

connectivity is a useful frame for understanding spatial variations in runoff and runon and (Bracken 46 

and Croke, 2007; Ali and Roy, 2009). The development of hydrological connections via overland and 47 

subsurface flows is a function of water volume (supplied by rainfall and runon, depleted by 48 

infiltration, evaporation, transpiration and transmission losses) and rate of transfer (a function of 49 

pathway, hillslope length and flow resistance).  These processes interact with flow resistance , 50 

varying as a function of flow depth.  This interaction establishes a feedback between rainfall, 51 

infiltration and flow routing which produces the nonlinearity see n in river hydrographs and scale-52 

dependence of runoff coefficients (Wainwright and Bracken, 2011).   53 

 54 

Catchment management is an important application of understanding hydrological connectivity. 55 

Catchment management is necessary to protect habitats and species, improve flood resistance and 56 

resilience, and to support enjoyment of our landscapes.  The purpose of management is usually to 57 

maintain appropriate (dis)connectivity for different niches (hydrological, ecological, 58 

geomorphological), especially when catchment processes and characteristics are perturbed. Thus, 59 

for effective management and intervention in catchments a process-based understanding of 60 

connectivity is required so that: i) conceptual rather than solely empirical understanding drives how 61 

managers interpret a system; and ii) there is an understanding of how continuous flow fields develop 62 

under different sets of environmental conditions to enable managers to know when, where and how 63 

to intervene successfully in catchment processes to achieve sustainable management. Presently 64 

there is confusion around the definition of hydrological connectivity since i t has been interpreted 65 

and measured differently between groups of researchers. One aspect ripe for confusion is the 66 

structure-process dichotomy, shifting focus from producing static indices influencing hydrological 67 

connectivity, to understanding the dynamics of processes (see Bracken and Croke, 2007; Turnbull et 68 

al., 2008; Birkel et al., 2010).  69 

 70 

Despite a series of published review articles (e.g. Bracken and Croke, 2007; Tetzlaff  et al., 2007; 71 

Turnbull et al. 2008; Ali and Roy, 2009; Lexartza-Artza and Wainwright, 2009) there is no consensus 72 

about how to define and measure hydrological connectivity.  The research community has  been 73 

content to work with multiple, slightly different and nuanced meanings of the concept to enable the 74 

colour and depth of the topic to be investigated as fully as possible (Ali and Roy, 2009). However, 75 

certain definitions and interpretations of hydrological connectivity are starting to be more 76 
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commonly used and so it seems timely that these are evaluated to determine how this may shape 77 

and direct future research investigations.  The aims of this paper are therefore to: i) evaluate the 78 

extent to which different concepts of hydrological connectivity have emerged from different 79 

approaches to measure and predict flow in different environments; ii) discuss the extent to which 80 

these different concepts are mutually compatible; and iii) assess what further research needs to be 81 

carried out to contribute to a unified understanding of hydrological processes.  In section 2 we 82 

discuss the different definitions that have been used to interpret hydrological connectivity, we then 83 

explore the different approaches that have been used to investigate connectivity (section 3) and 84 

analyse the locations where research has been conducted (section 4). In section 5 we explore the 85 

relationship between approach and definition before evaluating whether it is possible to develop a 86 

unified definition (section 6). Section 7 and 8 present suggestions for future research and 87 

conclusions. A different group of authors may have produced a different interpretation of research 88 

around hydrological connectivity; we hope the ideas and thoughts presented become an agenda for 89 

debate. In this paper we do not address sediment connectivity. 90 

 91 

2 Definitions 92 

In their 2009 paper, Ali and Roy present a synthesis of definitions (Table 1). Of these definitions we 93 

feel that number 11, concerning hillslope-riparian-stream (HRS) hydrologic connectivity via the 94 

subsurface flow system, seems to be coming to the fore as the most used interpretation of 95 

hydrological connectivity (e.g. Jensco et al., 2009; 2010; Detty and McGuire, 2010; Jensco and 96 

McGlynn, 2011). This definition emerges from the approach to hydrological connectivity based on 97 

assessing flow processes, in particular from research which proposes that the timing and duration of 98 

groundwater connectivity between riparian zones and the stream network is the dominant control 99 

on the magnitude and timing of observed catchment discharge (e.g. McGlynn and McDonnell 2003; 100 

McGlynn and Seibert 2003; Jensco et al., 2009; Detty and McGuire, 2010; Jensco and McGlynn, 101 

2011). This research was conducted in locations with steep slopes that exhibit a seasonal runoff 102 

response. We question however whether this is the most suitable definition for other geomorphic 103 

regions. On one hand, this definition is process-based, but on the other it is more about a certain 104 

type of connection which could be considered only part of the idea behind the concept of 105 

hydrological connectivity, and hence only represents one particular process in certain landscape 106 

settings: Hillslope-riparian-stream connectivity is best suited to humid temperate settings (Beven, 107 

1997; Bracken and Croke, 2007). We do not think it is possible to develop a single, overarching and 108 

agreed definition of hydrological connectivity that works across all environments, but we do wish to 109 
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highlight that there are different definitions that relate to different aspects of hydro logical 110 

connectivity.  111 

 112 

3 Approaches to understanding hydrological connectivity 113 

Closely linked to the definitions outlined in Table 1 are the ways in which hydrological connectivity is 114 

conceptualised.  Two elements to hydrological connectivity have been identified: static/structural 115 

and dynamic/functional connectivity  (Bracken and Croke, 2007; Turnbull et al., 2008). Bracken and 116 

Croke (2007) proposed that static elements of hydrological connectivity were ‘spatial patterns, such 117 

as hydrological runoff units (HRUs), that can be categorized, classified and estimated‘ (p1757). They 118 

used the term dynamic hydrological connectivity to mean ‘both the longer term landscape 119 

development, such as changes following abandonment of agriculture, and short-term variation in 120 

antecedent conditions and rainfall inputs to systems that result in non-linearities in hillslope and 121 

catchment response to rainfall’ (p1758). In this way the structural patterns within a landscape (of 122 

hillslopes, soils, vegetation) produce different hydrological responses with varying amounts of 123 

hydrological runoff and resulting connectivity for different rainfall events or for different time 124 

periods. 125 

 126 

Turnbull et al. (2008) refined the terms to structural and functional connectivity. Structural was used 127 

to refer to the spatial patterns in the landscape, such as the spatial distribution of landscape units 128 

which influence water transfer patterns and flow paths.  Functional aspects of connectivity refer to 129 

how these spatial patterns interact with catchment processes to produce runoff, connected flow and 130 

hence water transfer in catchments  (Turnbull et al., 2008).  The key refinement by using the term 131 

functional is the inclusion of the idea that the spatial patterns in the landscape themselves change 132 

over long periods of time, not implied by the term static, but the term structural also captures the 133 

notion that the processes operating can modify the structural elements and characteristics of a 134 

catchment to produce connected runoff differently. Bracken and Croke (2007), Turnbull et al. (2008) 135 

and Wainwright et al. (2011) all emphasise the importance of the interaction between topographic 136 

controls and catchment processes as the key to understanding dynamics of hydrological  137 

connectivity.  138 

 139 

Research to date has been successful at describing the elements defining structural connectivity  140 

(Kirkby et al., 2002; Bull et al., 2003; Lexartza-Artza and Wainwright, 2009); however, the elements 141 

defining functional aspects of hydrological connectivity are more difficult to measure and quantify 142 

(Bracken and Croke, 2007; Lexartza-Artza and Wainwright, 2009; Birkel et al, 2010). This difficulty 143 
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may be due to the term ‘functional’ not being well defined.  Some definitions of connectivity may be 144 

popular because of their close association with an experimental methodology  (see section 5). 145 

Indeed, this association is how connectivity moved from being an abstract concept to a “hands on” 146 

approach. It therefore follows that because the definition of functional connectivity lacks a practical 147 

aspect in that it is not associated with key variables to measure, it has not been taken forward.  In 148 

contrast the term ‘structural connectivity’ is readily understandable (and measureable) and seems to 149 

have a common understanding to reflect the different states of catchment response glean ed by 150 

measuring/recording ‘snapshots’ of catchment characteristics and the existence (or not) of 151 

connections/pathways.   152 

 153 

One issue is how many snapshots do we need, and how close in time do they need to be before we 154 

can be confident to capture the “dynamic or functional” aspect of connectivity? Functional 155 

connectivity is more than just inferring what is happening between snap-shots, but trying to 156 

determine the actual processes operating to produce fluxes of water, sediment and nutrients.  The 157 

key word ripe for confusion is ‘functional’, since this has many uses/interpretations in hydrology 158 

already, especially around discussions of the function of catchment processes in ecology. We 159 

therefore propose that the term ‘process based connectivity’ may be more readily understandable 160 

and more useful to capture the evolutionary dynamics of how systems operate and how different 161 

processes link in space and time to develop flow connections. For the remainder of this paper, we 162 

use structural connectivity to refer to the physical adjacency of landscape elements and functional 163 

connectivity to illustrate how that physical adjacency translates to fluxes of water, sediments and 164 

solutes (e.g. Larsen et al, accepted).  165 

What is meant by process connectivity and how can we develop sampling approaches to capture 166 

process based understandings? Processes are the sequences of actions within a catchment that 167 

result in changes in the form of an area (Ahnert, 1998). We propose the term process connectivity to 168 

capture the evolutionary dynamics of how systems operate. Following the fundamental principles of 169 

the philosophy of science, processes are observable and the dynamics of a system can be 170 

characterised by measureable attributes and characteristics. However, recognition of processes is 171 

arbitrary and subjective and depends on circumstance, such as; location, observer’s goal, perception, 172 

conceptualisation and methods used (Schumm, 1991). In hydrology and geomorphology we tend to 173 

measure catchment characteristics and attributes which we then extrapolate, interpolate and 174 

accumulate to infer process. For example, at Panola USA, there are 135 crest stage piezometers used 175 

to measure the piezometric head of groundwater at a specific point and 29 continuous/recording wells 176 

recording 15-minute observations of depth of water; it is one of the most densely instrumented sites 177 

http://en.wikipedia.org/wiki/Piezometric_head
http://en.wikipedia.org/wiki/Groundwater
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in which to conduct hydrological research (Tromp van Meerveld and McDonnell, 2006; McGuire and 178 

McDonnell, 2007).By analysing the piezometer data from all wells the direction of flowing water in 179 

the subsurface can be inferred, but is still not actually measuring process (see Richards, 1990;1994).  180 

These snap-shots at many different points can also be analysed to determine spatial and temporal 181 

change in fluxes of water, sediment and nutrients from which the processes responsible for 182 

producing hydrological connectivity can once again be inferred. In this way approaches based on 183 

soil-moisture and/or water-table data continue to demand interpretation of repeated snap-shots, 184 

but they provide more and new types of information which are an improvement over solely 185 

topography-based approaches. With purely structural approaches (e.g. terrain connectivity), we can 186 

only infer potential runoff sources and infer potential hydrological connectivity.  187 

 188 

 189 

How we understand and interpret catchment processes may help us unde rstand whether we should 190 

develop indices of connectivity, how indices vary between environments and why. More 191 

fundamentally we need to understand how different approaches and definitions of hydrological 192 

connectivity can be linked, especially in different environments where processes will operate in 193 

different ways to produce connected flow in catchments. Since it is impossible to observe processes 194 

directly (Richards, 1990;1994) there is usually a conceptual model (which is rarely outlined) linking 195 

patterns observed at different timescales to processes about which we strive to know more. It is 196 

easy to think that more frequent observation is related to more closely measuring process es; 197 

however, this is not the case.  For instance it does not matter whether soil moisture is measured at 198 

time intervals of 1 day, 15 minutes or 5 nanoseconds, it is still not a measure of process (Richards, 199 

1990;1994).  So how we can bring the different approaches and resulting definitions together 200 

around measuring process differently to develop understanding of hydrological connectivity?  201 

 202 

Figure 1 summarizes how existing approaches come together to further understandings of hydrological 203 

connectivity. What is strongly evident is that most studies have tended to focus on the structural  elements of 204 

hydrological connectivity.  The ‘lots of points’ approach has led to a ‘lots of states’ understanding about the 205 

complex variation of rainfall, infi ltration, flow routing and feedbacks between them that produce hydro logical 206 

connectivity over even a single hil lslope and within one runoff event. This type of empirical research has 207 

proved a fruitful approach and has furthered investigation of hydrological connectivity (and hydrological 208 

processes more generally), but has only enabled us to infer water pathways and processes, rather than 209 

actually measuring and monitoring processes. Thus we propose that to advance understandings of 210 

hydrological connectivity further we should focus research on process connectivity by evaluating the 211 
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conceptualisation of the concept and approach taken to try to measure process as closely as 212 

possible. 213 

 214 

 215 

4 Does location matter? 216 

 217 

Table 2 presents characteristics of the study sites that have been dominant locations for research 218 

around hydrological connectivity. Figure 2 illustrates site location and in which type of biome they 219 

fall whilst Figure 3 demonstrates the characteristics of the study sites used to derive empirical data. 220 

Concentration of empirical data collection in small , temperate, forested catchments with steep 221 

slopes and relatively deep soils (Figure 3) has resulted in exciting developments using the ‘lots of 222 

points’ approach to collect and analyse empirical field evidence to determine how different areas of 223 

river catchments connect to produce runoff. These data have led to interesting insights, especially 224 

the ‘fill and spill’ concept for how bedrock topography can control source areas of subsurface runoff 225 

which then connect to produce flow at the catchment outlet (Tromp van Meerveld and McDonnell 226 

2006).  227 

 228 

The fill and spill hypothesis asserts that significant subsurface stormflow (>1 mm) occurs only when 229 

the subsurface saturated area becomes connected to the river channels. This occurs when bedrock 230 

depressions are filled and the water level in these depressions rises high enough for water to start 231 

spilling over the bedrock microtopography. Once spilling occurs, water flows over the bedrock, 232 

through (and mixes with soil water in) the connected lows in the bedrock topography toward the 233 

channel. When the flux of water reaches the channel and the subsurface saturated area becomes 234 

connected to it, there is an immediate increase in subsurface storm flow rate (Tromp van Meerveld 235 

and McDonnell 2006). If the storm is large enough for the water level to rise high enough that  236 

spilling and connectivity can occur, total subsurface stormflow can be up to 75 times larger than 237 

when spilling and connectivity do not occur (Tromp van Meerveld and McDonnell 2006). Tromp van 238 

Meerveld and McDonnell (2006) thus conclude that the bedrock micro topography is responsible for 239 

the observed precipitation threshold for significant subsurface stormflow to occur. Similar 240 

mechanisms have been found in the Hermine catchment, but this time controlled by an impervious 241 

soil layer (Ali et al., 2011). But what can be taken from these studies and transposed to how 242 

hydrological connectivity operates in other environments? For instance ‘fill and spill’ does not apply 243 

to all catchments, nor across all environments for instance in lowland, loam catchments (McNamara 244 

et al. (2011).  245 
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 246 

5 The relationship between definition, conceptualization and research undertaken 247 

 248 

Table 3 presents the major groupings of both researchers and approaches to exploring hydrological 249 

connectivity found in the literature and their main contributions to understandings.  There are 250 

around 20 groups of researchers actively investigating hydrological connectivity. Different groups 251 

tend to work in certain areas and environments and research hydrological connectivity using a 252 

favoured suite of approaches which tends to reflect the dominant controls in runoff in these 253 

different environments, but also their conceptualisation of hydrological connectivity. In this way 254 

there is a relationship between group, approach, geographic setting and the interpretation of 255 

hydrological connectivity. Groups continually evolve and whilst we have tried to be as inclusive as 256 

possible, we realise we may have inadvertently missed some emerging groups and research. 257 

Research can be categorised into five different approaches to investigating hydrological connectivity: 258 

i) evaluating soil-moisture patterns (soil-moisture connectivity); ii) understanding runoff patterns 259 

and processes on hillslopes (flow-process connectivity); iii) investigating topographic controls 260 

(terrain-connectivity) (including the impact of road networks on hydrological connectivity and 261 

catchment runoff); iv) developing models to explore and predict hydrological connectivity; and v) 262 

developing indices of hydrological connectivity.  Each of these approaches is evaluated in turn.  263 

 264 

5.1 Soil-moisture connectivity and water- table connectivity 265 

This approach is based on the premise that the soil-moisture patterns that emerge during storm 266 

events reflect how water is moving through the catchment, in particular linking how stores of water 267 

fill up to produce hydrological connections (Tetzlaff et al., 2011); using implicit conceptualization of 268 

catchment behaviour developed according to systems concepts.  Extensive soil-moisture-monitoring 269 

campaigns have been conducted in a variety of environments (e.g. Western et al., 1998; 1999; 270 

Grayson et al., 1997; Western and Grayson, 1998; Tromp van Meerveld and McDonnell, 2006; James 271 

and Roulet, 2007; Ali and Roy, 2010a), with measurements being conducted at a range of depths, 272 

and results have provided a distributed perspective of catchment response. These valuable datasets 273 

opened up the opportunity to observe and quantify the spatial patterns that are responsible for 274 

runoff generation at the catchment outlet and have provided an appropriate focus for connectivity 275 

metrics (see section 5.5). Research in rangeland catchments in SE Australia and New Zealand 276 

characterised by siltstones (Table 2) demonstrated that patterns in shallow soil moisture can be used 277 

as an indication of saturation excess processes which control the fluxes of water in their catchments  278 

(Western et al., 2004). However, studies conducted in bedrock-controlled catchments with deep 279 
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freely draining soils in the USA demonstrate different controls and suggest that soil depth and 280 

bedrock topography direct the pattern of active flow generated during storm events  (Tromp van 281 

Meerveld and McDonnell, 2005;2006).  At an intermediate point on the continuum between these 282 

two environments, research conducted in temperate forest watersheds dominated by podsols and 283 

underlain by glacial till, suggested a non-linear response in runoff for small variations in antecedent 284 

moisture, but did not observe a significant change in geostatistical hydrologic connectivity with 285 

variations in antecedent conditions (James and Roulet, 2007).   286 

 287 

At this juncture it is important to consider the details of the methodology employed by different 288 

researchers, which has implications for their results. James and Roulet (2007) did not find significant 289 

changes because the sampling undertaken was based on time variable indicator thresholds (spatial 290 

surveys of shallow soil moisture over a sequence of storms) to compute connectivity functions. 291 

When Ali and Roy (2010a) did the same for the Hermine catchment, they did not find any significant 292 

change either, but when they used fixed indicator thresholds (e.g. when they focused on the 293 

connectivity of locations with a moisture content exceeding 30%) then the change was significant. 294 

Hence it matters how connectivity is defined and how it is assessed. With the Western et al. 295 

approach, connectivity is assessed after partitioning the catchment into “wet” and “dry” areas based 296 

on a time-variable statistical criterion (i.e. a percentile). Connectivity is thus presumed to be a 297 

statistical property and not a process-induced one. With the Ali and Roy (2010a) approach, however, 298 

the definition of “wet” and “dry” is made from a experimental criterion (e.g. 30% moisture content) 299 

and therefore the assessment is less of a statistical one and more of a “process -based” one. 300 

 301 

Research into spatial patterns of soil moisture has resulted in exciting developments using the ‘lots 302 

of points’ approach to collect and analyze empirical field evidence (Table 3). This research has led to 303 

novel ways of thinking about hydrology, especially the ‘fill and spill’ concept (Tromp van Meerveld 304 

and McDonnell, 2006).   Despite suggestions that Panola may be an ‘outlier’ in terms of processes of 305 

runoff production (McNamara et al. 2011) , similar runoff-production mechanisms have been found 306 

in the Hermine catchment, Canada, but this time controlled by an impervious soil layer (Ali  et al., 307 

2011).  However, we wish to question the assumption that spatial patterns of soil moisture reflect 308 

the hydrological connections being made in all catchments.  This assumption may be appropriate for 309 

some areas and environments – particularly regions where vertical flow is dominating due to more 310 

freely draining soils (such as podsols) with some kind of impervious layer in combination with a 311 

strong seasonal pattern in precipitation input, but not for all. 312 

 313 
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 314 

The soil-moisture approach to investigating hydrological connectivity led to the development of 315 

definitions of hydrological connectivity numbered 8 and 9 (Table 1), proposed by Western et al., 316 

(2001) and Knudby and Carrera (2005) respectively.  These definitions are focused on spatial 317 

patterns at the watershed and hillslope scale. They propose that hydrologically spatial patterns of 318 

catchment characteristics facilitate flow and transport in a hydrological system (Western et al., 319 

2001) and that spatially connected features concentrate flow and reduce travel times (Knudby and 320 

Carrera, 2005). The definitions therefore are explicitly linked to the type of data collected and have 321 

then formed the basis for other key studies which employed the ‘lots of points’ approach of 322 

measurement of spatial variation in soil moisture as an attempt to understand fluxes and routes of 323 

transmission of water (e.g. Spence and Woo, 2003; Western and Grayson, 1998; Tromp van 324 

Meerveld and McDonnell, 2006; James and Roulet, 2007; Ali and Roy, 2010a).  We suggest that 325 

whilst the methods employed attempt to infer routes of water transfer, what they actually record 326 

are changes at many points in a catchment and hence are in fact a static interpretation of catchment 327 

scale soil water redistribution processes along with evapotranspiration.  328 

 329 

The research which developed and then applied the ‘fill and spill’ hypothesis of stream-flow 330 

generation (e.g. Tromp van Meerveld and McDonnell, 2006; Spence, 2006; Shaw et al., 2011) maps 331 

on to definition number 10, classified as flow processes at the hillslope scale: ‘the condition by which 332 

disparate regions on a hillslope are linked via lateral subsurface water flow’ (Creed and Band, 1998). 333 

Whilst at a similar scale to definitions 8 and 9, this definition of hydrological connectivity is focused 334 

on flow processes, including the transfer of water, rather than the emergence of spatial patterns 335 

from which transfer can then be derived. 336 

 337 

5.2 Flow-process connectivity 338 

Intense data collection has been used at the plot scale in semi -arid areas to explore the interaction 339 

been rainfall and runoff, including the role of surface roughness, and how hydrological connections 340 

develop (Abrahams et al., 1986; Smith et al., 2010). Cammeraat (2002) demonstrated that 341 

hydrologic connectivity is an important factor in runoff-contributing and runoff-absorbing areas from 342 

the micro-plot to the catchment scale by monitoring surface runoff at all scales. In this study runoff 343 

of open plots, micro-catchments and sub-catchments was continuously measured over V-notches, 344 

equipped with pressure transducers. Cammeraat’s findings provided the foundation for later 345 

research which demonstrated that rainfall-runoff relationships in semi-arid areas emphasise the 346 

influence of antecedent moisture and temporal storm structure on hillslope -scale flood generation 347 

http://onlinelibrary.wiley.com/doi/10.1111/j.1749-8198.2008.00180.x/full#b45
http://onlinelibrary.wiley.com/doi/10.1111/j.1749-8198.2008.00180.x/full#b45
http://onlinelibrary.wiley.com/doi/10.1111/j.1749-8198.2008.00180.x/full#b45
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(Wainwright and Parsons, 2002; Bracken et al., 2008). Research has also shown that patterns of 348 

infiltration and resistance across entire flow paths and their variability throughout a storm event are 349 

the key to understanding dynamic hydrological connectivity at the hillslope scale ( Yair, 2002; 2004; 350 

Wainwright et al. 2002; Reaney, 2008; Smith et al., 2010; Kidron, 2011).  351 

 352 

Research into connectivity of flow processes in temperate forested environments has also examined 353 

scaling effects and connectivity of overland flow, but on steep, vegetated hillslopes as in the Mie 354 

catchment, Japan(Gomi et al., 2008).  Runoff from large plots was shown to be less than for small 355 

plots, although this relationship was complicated by differences in vegetation. The development of 356 

hydrological connectivity was shown to be more closely related to hourly rainfall intensity rather 357 

than total storm rainfall (Gomi et al., 2008).  In the Hermine catchment,  which receives much less 358 

rainfall and is on average 10oC cooler than the Mie catchment (Table 2),  Ali et al. (2010b) identified 359 

a switch between different types of catchment response (connected and disconnected flow) 360 

produced by different hydro-meteorological variables leading to a change in catchment behaviour. 361 

Sen et al. (2010) demonstrated that runoff at the outlet of a 0.12 ha pasture plot was mainly 362 

observed when runoff-contributing areas at the downslope section of the hillslope showed runoff 363 

generation and were connected to areas in the middle section of the hillslope. Sen et al. results 364 

support and build on the body of research by McGlynn and co-workers which has demonstrated that 365 

the size and spatial arrangement of hillslope and riparian zones along a stream network and the 366 

timing and duration of groundwater connectivity between them controls the magnitude and timing 367 

of water and solutes observed at the catchment outlet (e.g. McGlynn and McDonnell , 2003; 368 

McGlynn and Seibert, 2003; Jensco et al., 2009; Jensco and McGlynn, 2011). Research has been 369 

mainly conducted in the Tenderfoot catchment, USA, which is dominated by steep slopes with 370 

hydrological connectivity mainly occurring during a short snowmelt period in spring. In contrast, the 371 

Sand Mountain Research and Extension Centre in Alabama is an area of low slopes underlain by 372 

moderately deep, well drained, sandstone derived soils, without much snow, but most rainfall 373 

occurs in the winter and spring (Sen et al., 2010). Hence despite different catchment characteristics 374 

there are some similarities in generation of runoff and hydrological connectivity.  375 

 376 

The research exploring flow-process aspects of hydrological connectivity maps onto many different 377 

definitions of the concept of hydrological connectivity and does not explicitly relate to the 378 

methodological approach as with soil-moisture connectivity. The research by Cammeraat (2002) 379 

maps on to definition 8, concerned with spatial patterns of properties which facilitate flow and 380 

transport in a hydrological system at the hillslope scale. The approach taken by Reaney (2008) and 381 
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Smith et al., (2010) maps more directly onto definition 2: ‘all the former and subsequent positions, 382 

and times, associated with the movement of water or sediment passing through a point in the 383 

landscape’ (Bracken and Croke, 2007). The approaches taken by Gomi et al., (2008) and Ali et al., 384 

(2010b) also map onto definition 2, but also definition 3: ‘Flows of matter and energy (water, 385 

nutrients, sediments, heat, etc.) between different landscape components’ (Tetzlaff et al., 2007a). 386 

Research by Tetzlaff et al. (2007b) and Sen et al. (2010) also maps on to definition 3.  Finally the 387 

approach to exploring flow processes used by McGlynn, McDonne ll and Jensco directly relates to 388 

definition 11: ‘Connection, via the subsurface flow system, between the riparian (near stream) zone 389 

and the upland zone (also known as the hillslope) occurs when the water table at the upland-riparian 390 

zone interface is above the confining layer’ (Vidon and Hill, 2004; Ocampo et al., 2006). Thus, 391 

research exploring flow-processes of hydrological connectivity bridges a range of definitions at a 392 

range of scales and is not clearly linked to only one perspective of hydrological connectivity. There is 393 

not such an explicit relationship between methodology and definition as  with soil-moisture and 394 

water-table based approaches.  395 

 396 

5.3 Terrain Connectivity 397 

This approach investigates topographic controls on runoff and flood production. We have included 398 

the impact of road networks on hydrological connectivity and catchment runoff in this category. 399 

Research focused on forest roads in Australia established conceptual and modelling frameworks that 400 

that underlined that roads and tracks are key components of catchment hydrological connectivity  401 

(Wemple et al. 1996; Tague and Band, 2001). Hairsine et al. (2002) proposed a probabilistic model of 402 

diffuse overland flow that predicted the hillslope lengths required to infiltrate road discharge, based 403 

on the concept of volume to breakthrough (Vbt).  Croke et al. (2005) developed this work and 404 

identified two types of connectivity: direct connectivity via established and/or new channels or 405 

gullies, and diffuse connectivity such as surface runoff which reaches the stream network via 406 

overland-flow pathways. Research around hydrological connectivity caused by roads and tracks led 407 

to the development of a comprehensive account of how best to manage timber harvesting for both 408 

on-site sustainability and off-site water resource protection (e.g. Croke and Hairsine, 2006). The 409 

application of this research highlights the explicit link between pure research and application for 410 

catchment management.  411 

 412 

More recently, research into terrain connectivity has tried to assess other components of system 413 

coupling and landscape connectivity that control the flow of water. Callow and Smette m (2009) 414 

proposed that hillslope water capture and diversion infrastructure  (e.g. terraces, check dams and 415 
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canals) need to be included into simulation models, especially in dryland regi ons, since changes in 416 

areas retaining water can make large differences to potential runoff pathways. Similarly, Meerkerk 417 

et al. (2009) examined the effect of terrace removal and failure on hydrological connectivity and 418 

peak discharge in an agricultural catchment.  Connectivity was quantified using connectivity 419 

functions, specifically a contributing area function, and related to storm characteristics, land use and 420 

topography.  Results demonstrated that a decrease in intact terraces can lead to a strong incre ase in 421 

hydrological connectivity and catchment discharge. 422 

 423 

Lexartza-Artza and Wainwright (2011) developed understanding of terrain connectivity further by 424 

investigating changing patterns of connectivity over longer timescales in the UK using a multiple 425 

methodology approach combining the analysis of reservoir-sediment records with knowledge of 426 

recent land-use history, high resolution rainfall records, catchment characteristics and management 427 

aspects. Sedimentation rates inferred from reservoir-sediment cores showed sedimentation peaks 428 

which coincided with periods of significant changes in the catchment, such as the introduction of 429 

arable crops, the establishment of land drainage and the widespread intensification and 430 

mechanization of agriculture. Rainfall patterns contributed to increased sediment transfer under 431 

catchment conditions in which more sediment and/or new pathways are made available due to 432 

catchment changes. However, the research suggested that sedimentation rates were related to the 433 

establishment of different pathways increasing sediment connectivity (Lexartza-Artza and 434 

Wainwright, 2011). In this example, ‘terrain’ is represented through land use (especially the impact 435 

of roads and field boundaries) rather than topography and the term ‘landscape connectivity’ may be 436 

more appropriate. 437 

 438 

Although topography is usually significant for routing runoff, it is not the exclusive driver for 439 

catchment response and it does not represent the only important structural feature  (Buttle, 2006).  440 

For instance, in semi-arid areas and steep, snow-dominated watersheds knowledge of soil-surface 441 

structure has been shown to be paramount over topography in understanding the potential for 442 

runoff response and connection (e.g. Puigdefabregas et al., 1998). The focus laid by Callow and 443 

Smettem (2009) and Meerkerk et al. (2009) on topographic connectivity focuses on the 444 

interventions for controlling fluxes of water and sediment rather than understanding how processes 445 

promote and route flux. 446 

 447 

As with soil-moisture approaches to investigating hydrological connectivity, terrain approaches also 448 

have a direct link between approach and definition. Research falls into Ali and Roy’s (2009) category 449 
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of definitions around landscape features at the hillslope scale. The work on connectivity provided by 450 

roads and tracks supports definition 7 developed by Croke et al. (2005); research by Callow and 451 

Smettem (2009) and Meerkerk et al. (2009) both link through to definition 6 by Stieglitz et al. (2003) 452 

(Table 1).  However, the link between approach and definition is not a product of the methods 453 

employed, as with soil-moisture approaches, but has rather to do with the conception of research.  454 

In all instances research on terrain connectivity is framed around the impact of a particular 455 

infrastructural element, or its removal, (be it roads, terraces or check dams) on flow processes.  This 456 

framing necessitates a certain perspective, although different methods (different types of modelling 457 

or fieldwork) are then used to explore the change in flow routing with or without the infrastructure 458 

in question.  Terrain-based approaches tend to explore structural aspects of hydrological 459 

connectivity (Figure 1). 460 

 461 

5.4 Models of hydrological connectivity 462 

The earliest modelling attempts using the Soil Conservation Service Curve Number method (Beasley 463 

et al., 1980; Savard, 2000; Brocca et al., 2009) did not address connectivity itself, but instead 464 

estimated the continuity of runoff through statistical estimations of hillslope interactions. Simple 465 

weighted delivery approaches of water and sediment subsequently developed as a function of slope 466 

distance which led to the beginning of physical estimation of connectivity within modelling (Johnes 467 

and Heathwaite, 1997; Munafo et al., 2005). With the development of fully distributed, physically 468 

based models, equations are solved for vertical and lateral water flows across the landscape (e.g. De 469 

Roo and Jetten, 1999). At these larger scales, detailed information about topography, soil 470 

characteristics, antecedent conditions and vegetation elements like density and type are lacking 471 

(McGuire and McDonnell, 2007) with some models using resolutions of as much as 1 km2 despite 472 

typical control structures for connectivity in the landscape being less than 0.0025 km2 (Blackwell et 473 

al., 1999; Lane et al., 2009; Meerkerk et al., 2009; Callow and Smettem, 2009). Model accuracy is 474 

further undermined by using physical models at greater spatial scales than they can adequately 475 

represent, given the spatial difference at that resolution (Lane et al., 2009), unless processes are 476 

parameterized at the sub-grid-cell resolution (e.g. Muller et al., 2007). 477 

 478 

More recently, models have been developed using the concept of hydrological connectivity to 479 

explore factors affecting the development of flow connections with changing topographic features 480 

(e.g. Callow and Smettem, 2009; Meerkerk et al., 2009).  Whilst spatially distributed hydrological 481 

models that allow lateral flow to shut off under certain conditions do already exist,  few models have 482 

been explicitly designed to enable hydrological connectivity to develop as an emergent property and 483 
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hence enable prediction or exploration of changes in connectivity as the catchment and climate 484 

evolve. Lane et al. (2009) assessed the extent to which a topographically defined description of  the 485 

spatial arrangement of catchment wetness can be used to represent the hydrological connectivity in 486 

temperate catchments.  They found that a static descriptor based on topography can be successfully 487 

used to generalize spatial variability in hydrological connectivity.  Birkel et al. (2010) developed a 488 

catchment scale, parsimonious rainfall-runoff model for upland catchments in Scotland using a 489 

dynamic conceptualization of the hydrologic characteristics of the saturation zones in the 490 

catchment. Their function representing the dynamic expansion and contraction of saturation zones 491 

is an integrated measure of hydrological connectivity. Again, they showed that this dynamic process-492 

representation improved model performance. Lesschen et al. (2009) used the LAPSUS model to 493 

simulate runoff and sediment dynamics at the catchment scale in SE Spain; the spatial distribution of 494 

vegetation patches and agricultural terraces were found to determine hydrological connectivity at 495 

the catchment scale.   496 

 497 

Lane et al. (2004;2009) propose that modelling can be used to represent temporal variation in 498 

connectivity presuming the limits of modelling are recognised and understood. We propose that to 499 

do this well, modelling should enable hydrological connectivity to emerge due to the operation of 500 

process laws, rather than be defined as a concept that is put into the model in the first place. Lane et 501 

al. (2004;2009) proposed that the strength of their modelling approach is through topographic 502 

estimation because this is the easiest parameter to be measured at any resolution and used the 503 

Topographic Wetness Index (TWI) in order to characterise connectivity. TWI is a function of 504 

contributing area and slope creating a cumulative index deriving a topographically based method of 505 

estimating areas of high soil moisture (Beven and Kirkby, 1979). The Network Index identifies the 506 

lowest value for the flow paths across the catchment using the theory that the lowest value 507 

determines the potential for connectivity. This representation of the likelihood of physical 508 

connection indicates not only a probability of structural connection but also the probability that flow  509 

paths with lower potential to connect are likely to be less frequent and for a shorter period of time 510 

(Lane et al., 2009). However, the modelling approach of Lane et al. (2004) does not allow the 511 

hydrological connections to emerge during the course of a model run since it is founded on static 512 

catchment characteristics, namely topography. In contrast, the agent-based modelling undertaken 513 

by Reaney (2008) enables the agents to trace the path taken by water through the catchment and is 514 

hence capable of giving a novel picture of the temporal and spatial dynamics of flow generation and 515 

transmission during a storm event. In this way hydrological connections emerge during the model 516 

run. 517 
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 518 

We note that the topographic wetness index (as originally defined in TOPMODEL: Beven and Kirkby, 519 

1979) is widely used to represent areas susceptible to accumulate soil moisture and hence identify 520 

potential flowpaths. However, this approach ignores the importance of transient saturation and so is 521 

only relevant to systems in which it is not important.  The topographic wetness index approach also 522 

presumes that there are no other forms of driver on soil -moisture creation and connectivity other 523 

than topographic forcing, which has been identified as an unsatisfactory approach to understand ing 524 

hydrological connectivity in all environments (Bracken and Croke, 2007). For example, generation of 525 

connected flow may not always follow the network of topographic lows, and ‘fill and spill’ may be 526 

dominated by either hummocky surface topography, bedrock or an impermeable confining layer 527 

(Spence, 2006; Tromp van Meerveld and McDonnell, 2006; Ali et al., 2011).  528 

 529 

Research based on modelling hydrological connectivity maps onto Ali and Roy’s (2009) category of 530 

landscape features at the watershed scale, and in particular definition 4 proposed by Lane et al. 531 

(2004) ‘the extent to which water and matter that move across the catchments can be stored within 532 

or exported out of the catchment’.  This definition underpins the SCIMAP model developed by Lane 533 

et al. (2004) so understandably there is a direct link between definition and approach.  Research in 534 

this category maps onto both structural and process-based aspects of connectivity.  535 

 536 

5.5 Indices of hydrological connectivity 537 

There is some debate around developing indices of hydrological connectivity  (Troch et al., 2009; 538 

Antoine et al., 2009) and investigating how they vary between catchments.  Research to date has 539 

been poor at trying to understand the variation of both hydrological connectivity and indices 540 

between catchments. The common indices used are presented in Table 4. Studies can be divided 541 

into those deriving pathways from topography  (e.g. Lane et al., 2009; Lesschen et al., 2009; Tetzlaff 542 

et al., 2009), those developing understandings informed by water infiltration and transfer at the plot 543 

or catchment scale  (Gomi et al., 2008; Buda et al., 2009) and those that occasionally bring these two 544 

approaches together (Jensco et al., 2009; Meerkerk et al., 2009).  However, no one index of 545 

hydrological connectivity has emerged to be better than any other and there is no consensus 546 

amongst researchers that this is indeed even a desirable outcome of research. 547 

 548 

Knudby and Carrerra (2005) evaluated nine indicators of connectivity: three account for the 549 

presence of flow connectivity (preferential flow paths); two account for the presence of transport 550 

connectivity (the existence of fast paths allowing early solute arrival); and four are based on 551 
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statistical indicators. The indicators were tested on heterogeneous hydraulic conductivity fields with 552 

different visual connectivity (Table 4). The indicators of flow connectivity and one of the transport-553 

connectivity indicators succeeded in identifying the increased presence of connected high saturated 554 

hydraulic conductivity features through a geologic media. Using indicators of flow connectivity 555 

improved on the use of traditional statistical methods which failed to identify preferential flow 556 

paths. None of the statistical indicators were found to correlate with the flow and transport 557 

indicators. Hence Knudby and Carrerra (2005) suggested that transport connectivity is much less 558 

sensitive to barriers which may control flow connectivity. Instead, transport connectivity appears to 559 

be controlled by the existence of narrow, possibly discontinuous high saturated conductivity paths. 560 

This proposal suggests that connectivity needs the continuity of features to be represented, not just 561 

the variability which is supported by existing modelling approaches to understanding hydrological 562 

connectivity (Muller et al., 2007). 563 

 564 

Borselli et al. (2008) developed two indices of connectivity: the Index of Connectivity (IC) defined 565 

from GIS and based on landscape information and a Field Index of Connectivity (FIC) defined though 566 

field assessment.  IC can be used to express the general properties of the catchment under 567 

evaluation, especially the potential connectivity between different parts of a catchment; FIC is 568 

developed from actual field measurements (terrain mapping) of connected flow paths taken as soon 569 

as possible after an event (Borselli et al., 2008). FIC is thus a measure of the cumulative effect of 570 

processes occurring over a certain time period. Indices were designed to complement each other 571 

and combined use was shown to improve accuracy.  Birkel et al. (2010) described an integrated 572 

measure of hydrological connectivity as a function of antecedent precipitation index, 573 

evapotranspiration and dominant soil coverage, converting a spatially static parameter into a 574 

dynamic conceptualization of the hydrologic characteristics of the saturation zones in the 575 

catchment. 576 

 577 

Different quantitative indicators of hydrological connectivity have also been evaluated and tested on 578 

microtopography (Antoine et al. 2009).  The results of the investigation of Antoine et al. (2009) 579 

proposed a functional connectivity indicator by adapting the volume to breakthrough: the degree of 580 

surface connection as a function of the surface-storage filling.  This indicator was capable of 581 

discriminating between micro-topographic types and it was suggested that it could become an 582 

effective characteristic of an elementary representative  area in large scale hydrologic models 583 

(Antoine et al., 2009; Smith et al. 2010). 584 

   585 
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In an in-depth study of hydrologically representative connectivity metrics in a humid temperate 586 

forested catchment (the Hermine), Ali and Roy (2010a) argued that capturing critical spatial 587 

organization in soil-moisture patterns depends on the way the chosen connectivity metric is built 588 

and so tested a large selection of 2-D and 3-D connectivity measures based on quasi-continuous soil-589 

moisture patterns. The results of assessments of connectivity were variable depending on the 590 

computed metric. In particular, topography-based connectivity metrics reflected changes in 591 

catchment macrostate and stormflow response better than omnidirectional methods. Also, source -592 

to-stream connectivity metrics were more hydrologically sensitive than metrics that did not consider 593 

the spatial linkage to the stream channel. 594 

 595 

As with flow-process approaches to understanding hydrological connectivity, approaches based 596 

around developing indices map on to the full range of definitions summarised by Ali and Roy (2009), 597 

which is to be expected since researchers have attempted to capture differing perspectives of 598 

hydrological connectivity at different scales. In this way specific indices tend to be a product of the 599 

working definition used of hydrological connectivity. More interesting, perhaps, is that the research 600 

attempting to develop indices has not converged on a preferred foundation for an index of 601 

hydrological connectivity.  602 

 603 

6 Is a unified understanding of hydrological connectivity possible? 604 

 605 

Many factors influence connectivity; some of them are well understood such as the impact of 606 

surface properties, slope and vegetation on runoff production (Poesen, 1984; Van Oost et al., 2000; 607 

Ludwig et al., 2005), how runoff coefficients scale with slope (Parsons et al., 2006) and rainfall 608 

(Wainwright and Parsons, 2002) and ways and implications of classifying runoff units (Bull et al., 609 

2003). Less well understood are the ways in which patterns and processes at the hillslope scale 610 

determine water transfer at the catchment scale, especially how changing storm characteristics and 611 

antecedent moisture interact with mosaics of catchment properties such as patterns of land use, 612 

slope and lithology to produce connected flow through drainage basins.  For example , a catchment 613 

can be characterized by classifying the mosaic of land use, slope, lithology and channel patterns to 614 

understand potential runoff units and potential hydrological connectivity .  However, empirical 615 

evidence of the impact of changing rainfall intensity, storm duration, areal distributions of rainfall  616 

and antecedent soil moisture on producing hydrological connectivity in a catchment and the 617 

difference it makes to water transfer is sparse, despite the recent advances in tracer techniques 618 

(Tetzlaff et al., 2007b). Storm dynamics will interact with the range of hillslope lengths within a 619 
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catchment, which will either enable or disable connected flow for a particular storm event; a 620 

comprehensive understanding of this interaction has yet to emerge.  These gaps in our knowledge 621 

prevent accurate and precise prediction of changing water transfers under climate and land-use 622 

change. 623 

 624 

A second key issue with the concept of hydrological connectivity is how it can be applied across and 625 

between environments. For the concept to be useful and a way forward to further our 626 

understanding of flow transfer and pathways at a range of scales, it must be relevant and/or flexible 627 

to be applicable across all environments. Some of the initial fundamental building blocks 628 

underpinning the concept were developed for both dryland and temperate areas (Western et al., 629 

2005; Bracken and Croke, 2007), but many of the recent developments have arisen from research 630 

focused on small-scale, forested, humid-temperate environments (James and Roulet 2007, Tromp 631 

van Meerveld and McDonnell 2005, Ali and Roy 2010a).  How do new developments in 632 

understanding apply to dramatically different environments such as dry lands, colder regions or 633 

formally glaciated landscapes characterised by subdued topography? One initial assumption would 634 

be that since most flow is generated from surface runoff rather than subsurface mechanisms, it 635 

would be difficult to utilise the idea of ‘fill and spill’ in dryland basins.  However, some dryland areas 636 

have perched aquifers and underlying confined layers which may operate in a similar manner to that 637 

identified in humid temperate catchments and will combine with surface runoff generation to 638 

produce connected areas of flow.  Dryland researchers have also used the overtopping buck et 639 

analogy for spatially isolated soil patches for many years (Kirkby et al., 2002). The idea of storage 640 

and how it operates is one key way of linking the mechanism and processes responsible for 641 

producing connections in flow in all environments (Ali et al., 2011). However, in drylands stores tend 642 

to fill from the top down, rather than the bottom up, so what appears to be a potential similarity 643 

between mechanism and processes between environments may lead to confusion because of 644 

underlying differences. The fill and spill hypothesis is however easily transferable to lake-dominated 645 

catchments and to the US and Canadian Prairie Pothole Region where topographic depressions can 646 

act as closed basins while filling up and then as stormflow transition zones when overs pilling 647 

(Spence, 2007; Spence and Hosler 2007; Shaw et al 2012). 648 

 649 

In ancient glaciated landscapes, such as large parts in Canada, Fennoscandia and the Scottish 650 

Highlands, the combination of complex drift distributions and topography determines soil hydrology 651 

which plays a key role in controlling catchment rainfall-runoff responses reflecting the interactions 652 

between climate, topography, parent material and land use (Soulsby et al., 2006). Field and 653 
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modelling studies in such environments have shown that flatter, poorly drained areas on glacial drift 654 

deposits often result in the development of histosols where runoff is dominated by overland flow 655 

(Seibert et al., 2003; Soulsby et al., 2006). In such environments, dynamically expanding and 656 

contracting riparian saturation zones reflect catchment connectivity and control the generation of 657 

quick, near-surface runoff processes (Tetzlaff et al., 2007b; Birkel et al. 2010). These runoff 658 

mechanisms are dependent on the connections between the saturated areas and their surrounding 659 

hillslopes which can result in a highly non-linear hydrological response in relation to antecedent 660 

conditions. In regions with both limited topographic variations and relatively uniform soils it is the 661 

topology of landscape features adjacent to the channel network that is a strong driver for 662 

hydrological connectivity and response (Buttle, 2006). For example, Devito et al. (2005) advocate 663 

that topography be one of the last aspects considered when classifying runoff pathways in the 664 

boreal plain of Alberta, Canada. In this environment, precipitation is only slightly greater than 665 

evaporation, moisture deficits are seasonally prevalent, and the regional water table does not 666 

directly reflect the land surface as is common in wet environments.  667 

Similar rainfall inputs in similar antecedent conditions do not always yield the same outputs (Bracken 668 

et al., 2008; Ali et al., 2010;2011). Hence, characterising antecedent soil-moisture is not a sufficient 669 

characterisation of the antecedent conditions. This complexity highlights several points, among 670 

which is the possibility that our approaches to hydrological mechanisms are too simple with respect 671 

to the variety and complexity of the processes involved in different environments and that we 672 

impose known mechanisms as a framework to our understanding of catchment hydrology. In that 673 

respect, we have to diversify our approaches. Not only do we need research into hydrological 674 

connectivity across different environments but investigations have to be conducted in various basin 675 

types with different geology, soils and vegetation covers, as long as these data can be interpreted in 676 

light of a conceptual underpinning (Carey et al., 2010; McNamara et al., 2011). Vegetation is 677 

probably the most responsive element of catchment structure and forms an important interface 678 

with catchment function. Vegetation has a complex relationship with runoff production and is a 679 

major influence on hydrological connectivity at all scales (Bracken and Croke, 2007). Vegetation can 680 

influence water inputs and runoff through interception, formation of leaf litter and transpiration. 681 

Within ecology there has been a lot of research based on spatial variations in vegetation and how 682 

this is related to hydrological processes (Cammeraat and Imeson, 1999; Ludwig et al., 2000;2005). 683 

Currently, most active research into understanding relevant processes and patterns is being 684 

undertaken in forested catchments with flow generation dominated by bedrock ( Panola and St 685 

Hilaire, Canada) or a confining layer (Hermine), although a notable exception is the Tarawarra 686 

catchment, Australia (Table 2). Some differences will be captured by working in catchments with 687 
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different environmental characteristics, but we also need to establish whether mechanisms are 688 

similar for grassland catchments and other types of land covers.  Several researchers have 689 

attempted to do this using numerical techniques to explore rainfall and catchment characteristics 690 

that influence the development of hydrological connections (e.g. Wainwright and Parsons 2002; 691 

Reaney et al., 2007; Muller et al., 2007; Hopp and McDonnell, 2009).  692 

A third issue is how the concept of hydrological connectivity works at different scales. Little research 693 

explicitly acknowledges the different scales over which hydrological connections are made and 694 

investigated (except, for example, Wainwright et al., 2011). Scale is directly linked to the 695 

methodological approach taken to collect empirical data (Table 3), which in turn is related to the 696 

questions being investigated. The studies producing the most exciting developments in thinking 697 

about the concept tend to be focused at the relatively small scale (<10 ha) (Table 2; Figure 1), 698 

especially in the use of soil moisture as a way in to understanding the production of connected flow 699 

(e.g. Grayson et al., 1997; Western et al., 1998; James and Roulet 2007; Tromp Van Meerveld and 700 

McDonnell 2006; Ali and Roy 2010b). Intense data collection has also been used at the plot scale in 701 

semi-arid areas to explore the interaction been rainfall and runoff, including the role of surface 702 

roughness, and how hydrological connections develop (Smith et al., 2010;2011).   However, we need 703 

to initiate investigations to interrogate how overarching themes can be useful at a range of scales.  704 

Which aspects will work at different scales? For example i t would be difficult to apply the lots of 705 

points approach to large catchments without significant technical developments and we do not yet 706 

understand the key drivers to connections, although we have some understanding of the factors 707 

influencing discharge production (e.g. Bull et al., 2000; Bracken and Croke, 2007). It may be better to 708 

attempt to determine an appropriate number of points using a considered sampling strategy  as has 709 

been done with the characteristic soil-moisture-modelling (CASMM) sites methodology. 710 

 711 

The challenge of working across different environments and at a range of scales dictates that we 712 

need to find new ways of thinking and working in hydrology.  If we remain bounded by established 713 

practices and existing ways of approaching runoff generation and flow production we may not be 714 

able to exploit the full potential of the concept of hydrological connectivity.  It follows that we 715 

should evaluate current methodologies and practices in data collection.  If we are able to capitalize 716 

on the excitement and momentum that currently exist around the concept of hydrological 717 

connectivity we need to develop new approaches to data collection and combine methods in new 718 

ways. We have been successful at using soil moisture as a surrogate for hydrological connectivity, 719 

but research has demonstrated that changes in the catchment hydrographs are not always explained 720 

by the patterns of increasing soil moisture (Tromp van Meerveld and McDonnell , 2006). Research 721 
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has also questioned the appropriateness of using topography to determine flow paths and runoff 722 

connections for all catchments (Ambroise, 2004; Buttle, 2006). Thus two of most used conceptual 723 

foundations for interpreting landscape processes contributing to catchment runoff and connected 724 

flow may not be the most useful to further develop the concept of hydrological connectivity.  We 725 

should further explore the synergies with other disciplines more fully , such as ecology, and also 726 

investigate the potential of remotely sensed data for understanding patterns and processes of 727 

hydrological connectivity at intermediate spatial scales. 728 

 729 

The fourth issue is that we still do not have a good understanding of the role of spatial and temporal 730 

variability in input rainfall and how this influences functional controls on hydrological connectivity.  731 

Numerical experiments have been used to test whether the temporal variability of rainfall intensity 732 

during a storm can cause a decrease in runoff coefficients with increasing slope length. Wainwright 733 

and Parsons (2002) demonstrated significant effects over even relatively short slope lengths with the 734 

scale dependency of measured runoff coefficients most sensitive to the rainfall variability . In semi-735 

arid areas temporal fragmentation of high-intensity rainfall is important for determining the travel 736 

distances of overland flow and, hence, the amount of runoff that leaves the slope as discharge 737 

(Reaney et al., 2007). This research demonstrated that storms with similar amounts of high-intensity 738 

rainfall can produce very different amounts of discharge depending on the storm characteristics. It 739 

has also been shown that interactions between slope angle, soil depth and storm size can cause 740 

unexpected behaviour of hydrograph peak times as a result of the interplay between subsurface 741 

topography and the overlying soil mantle with its spatially varying soil-depth distribution (Hopp and 742 

McDonnell 2009).  Ali et al. (2011) also underline the importance of understanding the role of 743 

rainfall by their recent paper on the River Dee in Scotland with results suggesting that the temporal 744 

variability in dominant flow paths is predominantly controlled by hydro-climatic conditions.  745 

 746 

However, we need more research into the role and influence of rainfall  events on hydrological 747 

connectivity, especially the interaction between input of water to the system and emerging 748 

hydrological properties. Investigating the response to different hydrological events could be 749 

conceived as variance within storm versus variance of hydrological characteristics. This work needs 750 

to factor in the role of antecedent moisture conditions; a subject that benefits from a systematic 751 

approach to identify surrogate measures for soil water content. As surrogate measures are derived 752 

from rainfall data, we need to clarify the relevant temporal scales over which we cumulate rainfall 753 

for an adequate prediction of connectivity patterns and of hydrological responses to a given rainfall 754 

event.  As shown by Ali and Roy (2010b) in the Hermine watershed, there is a wide range of 755 
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potential models describing the relations between various surrogate measures of AMC and 756 

discharges at the outlet and an even more variable set of relationships between soil -moisture 757 

content at discrete locations within the watershed and AMC surrogates.  758 

 759 

7 Suggestions for future research 760 

It is difficult to know the most suitable sampling strategy to capture the signals of hydrological 761 

connection, especially between basins and between environments, but also at larger spatial scales. 762 

Similar connectivity patterns in soil moisture do not necessarily lead to a similar hydrological 763 

response at the watershed outlet. This difference may be due to: i) variability in the permeability 764 

and saturation of the subsurface soil layers due to antecedent moisture conditions; or ii)  different 765 

stream-flow generating processes that are not captured in the spatial sampling network; or iii) the 766 

combination of saturation with variation in ampunt and intensity of rainfall.  We firmly believe that 767 

researchers working on hydrological connectivity should thus evaluate what, where and how we 768 

have developed our existing research approaches so that we can now come together to develop new 769 

ways of capturing process understandings of runoff production and water transfer. We should no 770 

longer rely on statistical criterion to determine when and where we sample, but be better guided by 771 

experimental criterion. 772 

 773 

One suggestion for future research is to move away from the use of topographic and soil -moisture 774 

indices to determine hydrological connections. One possible way to do so is to investigate how 775 

storage of water occurs in different catchments and how these stores fill up (or down) and link (or  776 

not) to produce  (dis)connected flow.  One empirical approach is to monitor changes in water-table 777 

level along a spatially dense network of wells or piezometers (e.g. Ali et al., 2011). If the depth to an 778 

impervious sublayer is known throughout the watershed, the simultaneous monitoring of the water-779 

table levels at several points through a rainstorm is particularly instructive to identify the patterns of 780 

connectivity and to infer the zones of water storage in some environments. We should push for a 781 

concerted effort to initiate comparative experimental research across different environments and 782 

different sizes of basin (Tetzlaff et al., 2009; McNamara et al., 2011).  We need to be imaginative and 783 

find a common thread that links the production of connected flow in these study areas and then 784 

develop appropriate methodologies so results and understandings can be compared across 785 

environments and basins of different size.  For instance, monitoring spatial variations in the water 786 

table during the course of a rainfall event is suitable in small-scale, humid-temperate watersheds, 787 

but this methodology would not be suitable in drylands, permafrost regions or very large basins.  We 788 

propose that approaches need to be comparable across environments and study basins to find a 789 
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common thread to understanding, exploring and using hydrological connectivity across a range of 790 

environments and at different scales to develop a workable and useful concept to further hydrology.   791 

 792 

Investigations into hydrological connectivity should take advantage of technical developments in 793 

monitoring equipment. For example, recent advances in sensor design offer an opportunity for 794 

affordable yet distributed datasets of surface water. Simple, cheap devices could be used to monitor 795 

ephemeral stream network expansion (Bhamjee and Lindsay, 2011) or the development and 796 

expansion of areas of disconnected surface flows over small catchments. Blash et al. (2002), 797 

Goulsbra et al. (2009) and Bhamjee and Lindsay (2011) document the design of cheap electrical 798 

resistance sensors suitable for distributed field deployment. These devices are capable of detecting 799 

water at the soil surface. Where deployed at different levels they could be used to constrain water 800 

height; alternatively, they could be deployed alongside simple crest-stage measurement devices 801 

(Bracken and Kirkby, 2005). Electrical resistance sensors could provide distributed data for indicator 802 

metrics of connectivity (using a simple wet/dry threshold) analogous to those developed for soil -803 

moisture measurements although this may encourage a technology rather than process led course 804 

of research. An advantage of obtaining surface flow datasets is that they facilitate comparison 805 

between observed patterns of surface water and topographic signatures of such flow development 806 

(e.g. the Morphological Runoff Zones of Bracken and Kirkby, 2005) which, alongside simple 807 

laboratory erosion experiments and field mapping, could yield still further insight into the spatial 808 

patterns of catchment response and emerging patterns and similarity at the catchment scale.  809 

 810 

In conjunction with technological developments, environmental and isotopic tracers are a powerful 811 

tool to enhance our understanding of hydrological connectivity as an important means of separating 812 

stream flow into different temporal sources of flow contribution within catchments (Soulsby et al., 813 

2003; Tetzlaff et al., 2007b). They can reveal the integration of smaller-scale hydrological processes 814 

that underpin signatures of catchment response at larger spatial scales (Soulsby et al. 2006). 815 

Generally, tracers are useful tools for characterizing and understanding complex flow through 816 

catchments, soils, channels, over land surfaces, and through hillslopes and aquifers (Buttle et al., 817 

1998). Using  environmental tracers to assess hydrological characteristics has the advantage that less 818 

a priori information is required (e.g. head gradients, hydraulic conductivity fields and porosities) and 819 

the results integrate physical heterogeneity providing a useful tool for calibrating more detailed 820 

conceptual or numerical models (e.g. Maloszewski and Zuber, 1993; Fenicia et al., 2008; Birkel et al. 821 

2011).  One common technique employing tracers is the use of input-output dynamics of 822 

conservative isotopic tracers for estimating the travel time of water through catchments which is the 823 
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time it takes from when water enters a catchment to when it exits a catchment as stream discharge 824 

at an outlet of a catchment (Etcheverry and Perrochet, 2000; Soulsby et al., 2004; McGuire and 825 

McDonnell, 2006; Kirchner et al., 2010). Transit times provide information on flow paths, storage, 826 

release and chemical quality of water and integrate various catchment functions and processes  827 

(McDonnell et al., 2010; Soulsby et al., 2011).  828 

Developments in remote sensing technology should also be harnessed and may be particularly 829 

useful to aid with scaling up process capture. For instance LIDAR could be used to track fine -scale 830 

detention storage or to monitor vegetation patterns and understand the interplay with processes 831 

responsible for producing hydrological connectivity (e.g. Hwang et al. 2012). An exciting possibilityis 832 

the potential to develop hybrid approaches utilising developments in a range of technolgoes 833 

together to achieve a better approximation of process. 834 

8 Conclusions 835 

It is timely for researchers studying hydrological connectivity to reflect on the way in which we 836 

approach, conceptualise and implement our research design. For instance spatial soil moisture 837 

patterns not dot always reflect the hydrological connections bei ng made, highlighting that 838 

sometimes our assumptions are not always correct, nor applicable across all catchments and 839 

environments. In this paper we have classified the research around hydrological connectivity into 840 

five broad themes based on: i) soil moisture; ii) flow processes; iii) terrain; iv) models and; v) indices. 841 

These divisions reflect both the definition used of hydrological connectivity, which in turn tends to 842 

dictate the researcher’s conceptualisation and methodology. The key and novel outcome of the 843 

analysis presented in this paper is that we need to focus future  research much strongly on 844 

attempting to capture the processes responsible for and controlling hydrological connectivity. This 845 

notion cuts across all themes. Process is a widely used term and process capture is the fundamental 846 

aspiration of most researchers, but we do not think that we are always doing this to the best of our 847 

abilities, which is often exacerbated by need for practical and achievable sampling (e.g. 848 

measurement approach and scale). This paper highlights that flow process hydrological connectivity 849 

lends itself most closely to capture the process. Yet we need to evaluate how the characteristic and 850 

attributes of the catchment that we measure, or model, lend themselves to inference and 851 

extrapolation about process. We should ensure at a minimum that we capture data from which we 852 

can infer process, rather than potential process and make sure that criterions we use in our research 853 

are experimental rather than statistical.  854 

 855 
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To conclude, we need to develop our knowledge of hydrological connectivity using a range of 856 

techniques with a common understanding between researchers with varying perspectives, and to 857 

communicate effectively with those responsible for land management. The analysis of research and 858 

new thinking presented in this paper has led to the identification of a number of key suggestions as 859 

follows: 860 

1) Research around hydrological connectivity can be linked to the researchers themselves and 861 

the approach and techniques that they employ to investigate the concept. 862 

2) There is some interlinkage between groups undertaking research into hydrological 863 

connectivity, but often in terms of location and methods; conceptual approaches remain 864 

separate. 865 

3) There is little overlap between methods used to gather empirical data on hydrological 866 

connectivity which has led to implicit relationships between the definitions used, 867 

perspective of the researcher and measurement techniques employed. 868 

4) There is confusion about the terms used to classify approaches such as structural and 869 

functional hydrological connectivity. 870 

5) To ascertain the future usefulness of the concept comparative research using multiple 871 

methods and definitions needs to be developed. 872 

6) We propose the term ‘process-based’ hydrological connectivity as a more readily 873 

understandable phrase than functional connectivity to convey how spatial patterns of 874 

catchment characteristics interact with processes to produce connected flow and hence 875 

water transfer.  876 

7) Comparative inter-site research across different environments, vegetation and scales of 877 

basins is also necessary to study a range of mechanisms and processes of runoff production 878 

to inform our understandings. 879 

8) The research community should focus on developing research around better understanding 880 

‘process-based’ measurements to enable comparisons approaches and indices in different 881 

locations. In striving to capture the evolutionary dynamics of runoff production and the 882 

development of connected pathways of flow we need to move away from solely terrain 883 

based characteristics and move towards flow based studies and hybrid studies, reflecting on 884 

trying to capture the process as best as possible. 885 

9) New sensors and field techniques provide excellent opportunities to understand processes 886 

of hydrological connectivity in new ways.  887 

 888 



28 
 

We hope that these suggestions can form the bases for further discussion and a foundation to 889 

develop the concept of hydrological connectivity still further.  Environmental management is one 890 

area of policy implementation that is both complex and dynamic requiring the engagement of a 891 

range of practitioners with overlapping and multiple objectives (Fish et al. 2010). A better 892 

understanding of process-based connectivity at multiple timescales will support more holistic and 893 

joined-up thinking about how and when to intervene in catchment processes to encourage (dis -) 894 

connectivity.  895 
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Figure 1: Relationships between approaches investigating hydrological connectivity  1235 

 1236 

Figure 2: Location of sites used to investigate hydrological connectivity. 1237 
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 1244 

 1245 

Figure 3: Characteristics of sites used to explore hydrological connectivity. A) Morphology and B) 1246 

hydro-meteorological conditions.  The dotted circle highlights the very steep forested catchments of 1247 

Maimai, Mie and HJ Andrews. The dark triangle denotes the two existing process based studies.  1248 

  1249 

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000

Te
m

p
e

ra
tu

re
 (

o
C

) 

Rainfall (mm a-1) 

Mie 

Andrews 

Maimai 

Panola 

Hermine 

Susannah Bk 

Sevilleta 

Nogalte 

Don 

Hilaire 

Tarrawarra 

Girnock 

Torrealvilla 

Caravaco 

Tenderfoot 



41 
 

Water cycle – Watershed scale 1250 
1. An ecological context to refer to water-mediated transfer of matter, energy and/or 1251 

organisms within or between elements of the hydrologic cycle (Pringle, 2003) 1252 
 1253 
Landscape Features – Watershed scale 1254 

2. All the former and subsequent positions, and times, associated with the movement of water 1255 
or sediment passing through a point in the landscape (Bracken and Croke , 2007) 1256 

3. Flows of matter and energy (water, nutrients, sediments, heat, etc.) between different 1257 
landscape components (Tetzlaff et al., 2007a) 1258 

4. The extent to which water and matter that move across the catchments can be stored within 1259 
or exported out of the catchment (Lane et al., 2004) 1260 

 1261 
Landscape Features – Hillslope scale 1262 

5. Physical linkage of sediment through the channel system, which is the transfer of sediment 1263 
from one zone or location to another and the potential for a specific particle to move 1264 
through the system (Hooke, 2003) 1265 

6. The physical coupling between discrete units of the landscape, notably, upland and riparian 1266 
zones, and its implication for runoff generation and chemical transport (Stieglitz et al., 2003) 1267 

7. The internal linkages between runoff and sediment generation in upper parts of catchments 1268 
and the receiving waters [ . . . ] two types of connectivity: direct connectivity via new 1269 
channels or gullies, and diffuse connectivity as surface runoff reaches the stream network 1270 
via overland flow pathways (Croke et al., 2005) 1271 

 1272 
Spatial Patterns – Watershed and hillslope scale 1273 

8. Hydrologically relevant spatial patterns of properties (e.g. high permeability) or state 1274 
variables (e.g. soil moisture) that facilitate flow and transport in a hydrologic system (e.g. an 1275 
aquifer or watershed) (Western et al., 2001) 1276 

9. Spatially connected features which concentrate flow and reduce travel times ( Knudby and 1277 
Carrera, 2005) 1278 

 1279 
Flow Processes – Hillslope scale 1280 

10. The condition by which disparate regions on a hillslope are linked via lateral subsurface 1281 
water flow (Hornberger et al., 1994; Creed and Band, 1998) 1282 

11. Connection, via the subsurface flow system, between the riparian (near stream) zone and 1283 
the upland zone (also known as the hillslope) occurs when the water table at the upland-1284 
riparian zone interface is above the confining layer (Vidon and Hill, 2004; Ocampo et al., 1285 
2006) 1286 

 1287 
Table 1: Definitions of hydrological connectivity from Ali and Roy (2009). 1288 

  1289 
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Table 2: Study Site Details 1290 

Site Coordinate
s 

Area 
(km2) 

Elevation 
(m) 

Relief 
(m) 

Av 
slope 
(o) 

Land use Geology Soil depth 
(m) 

Rainfall (mm a-

1) 
Temp (oC) Geographic setting 

HJ Andrews, USA 44 o02’N 
122O25’W 

0.102 576 207 30-45 Forest Tuffs and 
breccias 

1.3 
Clay loam 

2220 (1 Jan – 18 July) Mediterranean 

Don, England 
(Ingbirchworth 

53°33’N 
01°40’W 

9 280   Agriculture Carbonifero
us coal 
measures 

Sandstones and 
clays 

960 12 (2 Jan – 22 July) Humid temperate 

Girnock Burn, 
Scotland 

57° 02' N 
03° 06' W 

31 400 632 6-11 Heather 
moorland and 
grazing 

Granite, 
schist and 
metamorph
ic 

Glacial drift, 
gleys and peat, 
0.3-0.8 

1100 11 (0 Jan – 16 July) Humid temperate 

Guadelentin, Spain 
– Nogalte 

37° 61’N 
01°95’W 

171 
 

800 755 8  
(2-35) 

Bare, 
mattoral, tree 
crops 

 Schists 
 

0.10-0.5 300 16.4 (9 Jan – 36 July) Semi-arid 
Ephemeral flow 

Guadelentin, Spain 
–Torrelavilla 

37°40′N  
01° 41′W 

200 370 200 3 Bare, shrubs, 
tree crops 

Marls 0.10-0.5 300 16.4 (9 Jan – 36 July) Semi-arid 
Ephemeral flow 

Guadelentin, Spain 
–Carcavo 

37°40′N  
01° 41′W 

4.74 380 150 3 Bare, 
mattoral, tree 
crops 

Marls 0.10-0.5 300 16.4 (9 Jan – 36 July) Semi-arid 
Ephemeral flow 

Hermine, Canada 45o59’N 
74O01’W 

0.051 400 31  Forest Podsols 
over glacial 
till 

1-2 
podzols 

1150 (30% as 
snow) 

3.93 (-13.6 Jan – 18.9 July) Humid temperate 

Maimai, New 
Zealand 

42°09'S 
171°45'E 

0.03-
2.80 

306 150 32 Forest Pleistocene 
conglomera
te 

0.6 
Silt loams 

2600 (22 Jan 0 2 July) Humid temperate 

Mie, Japan 34°21′ N 
136°25′ E 

0.05 180 160 35-45 Forest  0.6-1.8 
Brown forest  

2000 14 Moist temperate with typhoons 

Mont St Hilaire, 
Canada 

45°32′N 
73°10′W 

0.07-
1.47 

250   Woodland  0-1.5 940 (22% as 
snow) 

(-10.3 Jan – 20.8 July) Humid temperate 

Panola, USA 84o10’W 
33o37’N 

0.41 200 56 10 Forest Granite 1.6 
ultisols 

1220 (<1% as 
snow) 

15.2 (5.5 Jan – 25.2 July) Humid continental to sub tropical 

Sevilleta, USA 34 o 19’N 
106 o 42’W 

    Grassland 
and creosote 
bush 

  256 21 (8 Jan – 33 July) semi-arid 

Susannah Brook, 
Australia 

31°50′ S  
116°8′ E 

12.3 291 118  Native 
pasture and 
grazing 

Granite 2-3.3 
Sandy gravel / 
kaolinitic clays 

841 13-23 (17-30 Jan – 9-18 
July) 

Mediterranean, ephemeral flow 

Tarrawarra, 
Australia 

37o39’S 
145o26’E 

0.105  30 9 Improved 
pasture 

Lower 
Devonian 
siltstone 

0.9-1.4 
Clay loam over 
loam 

820 (18 Jan – 7 July) Temperate sub-humid 

Tenderfoot Creek, 
USA 

46°55' N 
110°53' W  
 

22.8 2169  8 Forest Flathead 
sandstone, 
Wolsey 
shale  

0.5–2.0 
Loams and clays 

840 (75% as 
snow) 
 

(-6.0 Jan – 20.1 July) Continental 

 1291 

  1292 
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Table 3: Groups researching hydrological connectivity 1293 

 1294 

Grouping Authors Catchment 
(see Table 3 for 
more details) 

Methods Key findings Classification and Approach 

Australia 

Melbourne/Canberra/ 
CSIRO 

Hairsine P 
Croke J 
Takken I 
Lane P 

Upper Tyers 
Cuttagee Creek 

Runoff plots 
Volume to breakthrough 
experiments. 

Established roads and tracks as key 
components of hydrological connectivity. 
Determined hillslope lengths required to 
infiltrate road discharge in variety of 
catchments. 

Terrain connectivity  
 
Structural 
 

Melbourne Western AW 
Grayson RB 

Tarrawarra High resolution 
spatial patterns of soil 
moisture; moisture 
profiles; remotely sensed 
images (airborne- and 
satellite); weather station; 
hillslope runoff plots. 

Spatial soil moisture  useful to understand 
HC and runoff thresholds. 
Distribution and controls on soil moisture 
fluxes 
changed dynamically between seasons. 
Connectivity functions are able to 
distinguish between connected and 
disconnected patterns. 

Soil moisture connectivity  
 
Structural 
 

Brisbane/Western 
Australia 

Callow KN 
Smettem KRJ 

Upper Kent River, 
Western Australia 

Topographic data and 
modelling. 

Hydrologic descriptors of runoff indicate 
that hillslope processes are significantly 
altered by farm dams and banks. 

Terrain connectivity  
 
Structural 

Western 
Australia/Illinnois 

Ocampo CJ 
Sivapalan 

Susannah Brook  Two transects of six 
shallow-partially 
penetrating wells, across 
riparian, mid-slope, and 
upland zones. 

Riparian zones control the catchment 
storm response while upland zones can be 
considered as storage units, controlling 
the base flow component of streamflow 
Associated with the establishment of 
connectivity is a sharp increase in the 
hydraulic gradient that drives shallow 
subsurface flow to the stream. 

Flow –process connectivity 
 
Structural/ Process based elements 
 

Belgium 

Louvain Meerkerk AL 
Van Wesemael B 
Bellin  N 

Carcavo, Murcia, 
Spain  

Topographic analysis. Removal and/or degradation of 
agricultural terraces and dams can 
significantly increase hydrological 
connectivity and hence influence runoff 
and flood generation. 
 

Terrain connectivity  
 
Structural 
 

Louvain Antoine, M Virtual Modelling, quantitative 
analysis. 

Proposed a functional connectivity 
indicator by adapting the 'volume to 
breakthrough' concept: the degree of 
surface connection as a function of the 
surface storage filling. This indicator was 
capable of discriminating between micro-
topographical types. 

Flow –process connectivity 
 
Structural/ Process based elements 
 

Canada 

Montreal Roy A 
Ali G 

Hermine Soil moisture analysis; 
tracers; hydrograph 
analysis; shallow water 
table measurements, 
metrics,’ lots of points’ 
approach; soil water wells; 
subsurface topography.  

No convergence on processes from 
different approaches. 
Humid temperate systems do not comply 
with the traditional single threshold-
driven theory of catchment connectivity. 

Soil moisture connectivity  
 
Structural/ Process based elements. 
 

 James Al 
Roulet N 

St-Hilaire Soil moisture analysis; 
tracers; metrics; ‘lots of 
points’.  

Non-linear response in runoff response 
over small changes in soil moisture. 
Spatial patterns in soil moisture not 
always good predictor of connectivity that 
leads to threshold change in runoff 
generation. 
Spatial organization of shallow soil 
moisture did not exhibit strong 
seasonality in a humid temperate 
watershed despite seasonal changes in 
the total catchment wetness.  

Soil moisture connectivity  
 
Structural/ Process based elements. 

Japan 
Tokyo Gomi T Mie  Saturated areas, soil 

characteristics, surface 

topography, runoff plots. 

Hydrologic connectivity of runoff 
generation areas depends on rainfall 

intensity and soil conditions on a hillslope. 

Soil moisture connectivity  
 

Structural/ Process based elements. 
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Netherlands 
Amsterdam Camaraat E SE Spain - Torealvilla Field measurement; runoff 

troughs, crest stage 
gauges, mapping. 

Hydrologic connectivity is an important 
factor 
in runoff-contributing and -absorbing 
areas from the 
microplot to the catchment scales. 

Flow –process connectivity 
 
Process based 

Wagininen Lesschen JP  Carcavo, Spain Terrain analysis, 
modelling. 
 

Spatial distribution of vegetation patches 
and agricultural terraces largely 
determined hydrological connectivity at 
the catchment scale.  

Terrain connectivity 
 
Structural 

Wagininen Appels WM  Virtual Modelling of functional 
connectivity. 

Connectivity behaviour determined by 
large depressions and organisation of 
micro-topography. Topographic effects 
suppress effect of spatial variation in 
infiltration capacity. 

Modelling connectivity 
 
Process based 

United Kingdom 
Durham/Leeds Bracken LJ 

Kirkby MJ 
Smith M 
Reaney S 

Guadelentin Micro topography, 
overland flow, rainfall and 
runoff simulation, 
modelling, virtual 
experiments, GIS analysis 
(geol, luse, slope), flow 
peak data 

Rainfall-runoff analysis emphasizes the 
influence of antecedent moisture and 
temporal storm structure on hillslope-
scale flood generation.  
Patterns of infiltration and resistance 
across entire flow paths and their 
variability throughout a storm event are 
the key to understanding dynamic 

hydrological connectivity at the hillslope 
scale. 

Flow –process connectivity 
 
Structural/ Process based elements. 

Durham/ 
Lancaster 

Lane SN 
Reaney S 
Heathwaite L 

Upper Rye 
 

Modelling; terrain analysis; 
GIS analysis of land use, 
modelling, biological data 

Network Index – ratio of effective 
contributing area to tangent of local 
slope. 
 

Modelling connectivity 
 
Structural/ Process based elements.  

Sheffield Wainwirght J 
Turnbull L 
Lexa Arta I 

New Mexico and 
River Don 

Soil moisture;  hydrograph 
analysis; lots of points; 
nesting of measurements; 
vegetation structure; soil 
characteristics; overland 
flow measurements; 
modelling. 

A refinement which distinguishes 
structural connectivity from functional 
connectivity can be used to explain 
patterns observed in very different 
environmental systems. 
Even in cases where connectivity cannot 
be directly quantified (at least at present), 
this limitation does not prevent the 
concept from being a useful heuristic 
device for exploring responses of complex 
systems. 
The relation between catchment changes 
and climatic inputs has subsequent effect 
on catchment conditions, transfer 
networks and hence connectivity. 

Flow process and modelling connectivity. 
 
Structural/ Process based elements. 

Aberdeen Tetzlaff D 
Soulsby C 
Birkel C 

Scottish Highlands: 
Girnock catchment 
and Bruntland Burn 
subcatchment  

GIS modelling; 
hydrological (tracer-aided) 
modelling; 
extensive mapping of 
saturation areas and their 
dynamics 

Dominant fast near-surface runoff 
generation processes are directly related 
to the dynamic expansion and contraction 
of riparian saturation zones. Geographic 
source and time-domain tracers support 
this, but also show a much more complex 
behaviour in terms of water and solute 
mixing indicating that the saturation area 
functions as a distinct storage. 

Soil moisture and flow process connectivity.  
 
Process based connectivity 

United States of America 
Auburn University Sen S  Sand Mountains  surface runoff and 

subsurface sensors at 31 
points, rain gauge, and a 
0.3-m HS-flume,  in situ 
hydraulic conductivity 

Runoff at the outlet was mainly observed 

when runoff-contributing areas at the 
downslope section of the hillslope 
showed runoff generation and were 
connected to areas in the middle section 
of the hillslope. 

Flow process connectivity. 

 
Structural/ Process based elements. 

Montana McGlynn B 
Jencso K  
Nippgen F 
Pacific V 

Tenderfoot Creek Surface topography; soil 
water wells; vegetation 
characteristics; surface-
subsurface interactions. 

The size and spatial arrangement of 
hillslope and riparian zones along a 
stream network and the timing and 
duration of groundwater connectivity 
between them is a first-order control on 
the magnitude and timing of water and 
solutes observed at the catchment outlet. 

Flow process connectivity. 
 
Structural/ Process based elements. 

Oregon/ Simon Fraser 
(Canada) 

McDonnell J 
Tromp van 

Panola Sub-surface topography; 
soil water wells; outflow 

Fill and spill hypothesis: soil depth and 
bedrock topography determine HC and 

Soil moisture connectivity. 
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Meerveld I monitoring. active flow. 
Patterns of transient water table on the 
slope are related to thresholds in rainfall 
amounts necessary to initiate lateral sub-
surface flow at the hillslope scale. 

Structural/ Process based elements. 

Virginia/Oregon McGuire KJ 
McDonnell J 
Detty JM 

Andrews 
Hubbard Brook 

Groundwater wells and 
stream stage recorders; 
electronic soil moisture 

sensors installed at depth. 

Hysteretic effects dominate hillslope-
stream connectivity.  
Threshold response exists between 

precipitation and stormflow. Transit times 
in the soil vary only with depth vertically 
in the profile. Transit times for flow at 
hillslope and at the catchment outlet 
were on the order of 1–2 years. 
Hydrologic connectivity between riparian 
and hillslope 
areas displayed a strong seasonal 
signature reflecting the effects of climate 
and evapotranspiration on soil moisture 
storages and shallow groundwater 
development. 

Soil moisture connectivity. 
 
Structural/ Process based elements. 

Montana/Oregon/ 
Stockholm 

McGlynn B 
McDonnell J 
Seibert J 
 

Maimai, NZ Hydrometric and tracer 
data. 

Analysis of landscape-scale organization 
and the distribution of dominant 
landscape features provide a structure for 
investigation of runoff production and 

solute transport, especially as catchment-
scale increases from headwaters to the 
mesoscale. 

Flow process connectivity. 
 
Structural/ Process based elements. 
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Table 4: Indices of hydrological connectivity       1298 

Index Description Data requirements Source 
Integral connectivity scale lengths (ICSL) The average distance over which wet locations are connected 

using :(1) Euclidean distances; (2) topographically-defined 
hydrologic distances. 

Soil moisture data, topography. Western et al. 2001 

Subsurface ICSL As above but for subsurface macro-topography. Considers 
both Euclidean and hydrologic distances.  

Soil moisture at multiple depths, 
topography, subsurface topography. 

Ali and Roy 2010a 

Outlet ICSL ICSL where connected saturated paths must reach catchment 
outlet. Both Euclidean and hydrologic distances using surface 
and subsurface marcotopography. 

Soil moisture at multiple depths, 
topography, subsurface topography. 

Ali and Roy 2010a 

Variation of conductivity in a geological 
medium  

(1) Exponent of relationship between effective conductivity 
and average of point values. (2) Ratio of effective conductivity 
to the geometric mean of point values. 

Geologic structure on which to base 
the distribution of connectivity 
values. 

Knudby and Carrerra 2005 

Critical path conductivity Ratio of the critical path conductivity (conductivity at which a 
connected path is found) to the geometric mean of 
conductivity values. Related to percolation theory. 

Geologic structure on which to base 
the distribution of connectivity 
values. 

Knudby and Carrerra 2005 

Breakthrough-curve related approaches (1) Ratio between mean and early arrival times of runoff. (2) 
Skewness of distribution of arrival times of runoff. 

Solute travel times. Knudby and Carrerra 2005 

Integral scales  (1) Variogram; (2) Indicator variogram and (3) Bivariate 
entropy integral scales 

Soil moisture data, topography. Knudby and Carrerra 2005 

Semivariogram-derived metrics Range of (1) omni-directional; (2) north-south and (3) east-
west experimental variograms 

Soil moisture. Ali and Roy 2010a 

Index of connectivity Potential connectivity from weighted topographic analysis Topography. Borselli et al. 2008 

Field index of connectivity The actual connectivity in an event between the different 
parts of a watershed. Evidence of erosion used as the basis 
for a scoring method. 

Field maps, topography. Borselli et al. 2008 
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