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Abstract4

Epidemiological models have been applied to human health-related behaviors that are affected by social5

interaction. Typically these models have not considered conformity bias, that is the exaggerated propensity6

to adopt commonly observed behaviors or opinions, or content biases, where the content of the learned trait7

affects the probability of adoption. Here we consider an interaction of these two effects, presenting an SIS-8

type model for the spread and persistence of a behavior which is transmitted via social learning. Uptake9

is controlled by a nonlinear dependence on the proportion of individuals demonstrating the behavior in a10

population. Three equilibrium solutions are found, their linear stability analyzed and the results compared11

with a model for unbiased social learning. Our analysis focuses on the effects of the strength of conformity12

bias and the effects of content biases which alter a conformity threshold frequency of the behavior, above which13

there is an exaggerated propensity for adoption. The strength of the conformity bias is found to qualitatively14

alter the predictions regarding whether the trait becomes endemic within the population, and the proportion15

of individuals who display the trait when it is endemic. As the conformity strength increases, the number of16

feasible equilibrium solutions increases from two to three, leading to a situation where the stable equilibrium17

attained is dependent upon the initial state. Varying the conformity threshold frequency directionally alters18

the behavior invasion threshold. Finally we discuss the possible application of this model to binge drinking19

behavior.20
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1 Introduction22

Epidemiological models for the spread of infectious diseases, known as SIR models, have been widely researched23

since the work of Kermack and McKendrick (1927). The name derives from the assumed model structure, classifying24

individuals as either susceptible, infected or recovered. Many variations of SIR models exist (Murray, 1993;25

Hethcote, 2000; McCallum et al., 2001; Keeling and Rohani, 2008), including SIS models where individuals can26

be either susceptible or infected. An SIS model for infectious disease spread considers how the subpopulations27

of susceptible and infected individuals change in time, represented mathematically by two ordinary differential28

equations (ODEs). It is assumed that all individuals entering the population are susceptible. They may become29

infected through contact with infected individuals at a rate proportional to the frequency of infected individuals30

in the population. Infected individuals recover to the susceptible state at a constant rate.31

The assumption that infection is spread through contact has led to the application of SIS and similar models to32

be applied to a range of human health-related behaviors where social interaction affects the spread of the behavior.33

Examples include models of addictive behaviors, such as smoking (Sharomi and Gumel, 2008), drug use (Song34

et al., 2006; White and Comiskey, 2007; Mulone and Straughan, 2009), drinking (Sanchez et al., 2007; Mubayi35

et al., 2010; Mulone and Straughan, 2011; Walters et al., 2012), the spread of happiness (Hill et al., 2010a) and the36

development of eating disorders (Gonzalez et al., 2003) or obesity (Hill et al., 2010b). Such models assume that37

the rate at which susceptible individuals adopt a behavior is proportional to the prevalence of the behavior in the38

population. However, we see from cultural evolutionary theory that this assumption may be oversimplifying the39

mechanisms involved in behavior transmission, and that biases in transmission can result in qualitatively distinct40

model predictions.41

Cultural evolutionary theory considers the spread and persistence of socially transmitted traits, including ideas,42

beliefs, behaviors and material culture (Cavalli-Sforza and Feldman, 1981; Boyd and Richerson, 1985; Mesoudi,43

2011). A cultural trait is typically acquired by some form of social learning. If social learning is unbiased (random44

copying) then the probability that an individual adopts a cultural trait is equal to the trait’s frequency in the45

population. The assumption that transmission is linearly frequency-dependent, i.e. unbiased, is commonly applied46

in the SIS model literature; cultural trait transmission, however, may be subject to a variety of content or contextual47

biases (Henrich and McElreath, 2003) which affect the transmission rate. Content dependent biases arise from48

some intrinsic property of the cultural trait. Such biases make it, for example, easier to remember or intrinsically49

more attractive than other competing traits (Richerson and Boyd, 2005; Mesoudi, 2011). Context dependent50

biases can be split into model-based and frequency-dependent biases (Henrich and McElreath, 2003; Richerson and51

Boyd, 2005; Mesoudi, 2011). The former is where the choice of a trait is affected by observable attributes of the52
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cultural parent, for example copying individuals that are perceived to be successful. The latter is typically where53

the frequency of the trait in the population affects its uptake in a nonlinear fashion, such as a disproportionate54

tendency to adopt the most common trait. This is termed as a conformist bias whereas a disproportionate tendency55

to follow the minority is often known as anticonformist bias (Efferson et al., 2008; Eriksson and Coultas, 2009;56

Kendal et al., 2009; Morgan et al., 2011).57

A variety of empirical studies examining the extent of conformist bias have been conducted, with one of the58

earliest finding that participants would conform to the majority viewpoint expressed by confederates (Asch, 1956).59

This has since been criticized as the results do not demonstrate a disproportionate inclination to follow the majority60

and hence may reflect random copying (Efferson et al., 2008). By defining conformity as an exaggerated tendency61

to follow the majority, modeled by a sigmodial curve, Efferson et al. (2008) conducted an experiment where players62

repeatedly chose between two technologies with different expected, but randomly distributed, payoffs. A subset63

of participants that indicated a conformist bias in their answers to questionnaires copied the technology choice of64

asocial learners with an S-shaped probability distribution, indicating conformist behavior.65

Later work by Eriksson and Coultas (2009) offers an alternative theoretical model of conformity. The authors66

argue that the S-shaped probability curve originally used by Boyd and Richerson (1985) is unrealistic. Particularly,67

the endpoints of the curve mean that a näıve individual cannot acquire a trait which is not being displayed in68

the population, nor can they reject a trait which is universally expressed by the population. Furthermore, the69

conformity threshold frequency, which we define to be the intermediate point where the nonlinear frequency70

dependence curve meets the linear curve, need not occur when exactly half of the population display the trait.71

Allowing the endpoints and the conformity threshold frequency to vary produces a model which can account for72

content-dependent biases, such that the attraction of the trait itself may interact with a nonlinear frequency-73

dependent probability of adoption. In applying their model to an experiment testing frequency-dependent effects74

on opinion formation, they found evidence for anticonformist bias, suggesting that any expression of conformity75

bias may be conditional (also see Morgan et al. (2011)). Results from a series of experiments conducted by Morgan76

et al. (2011) suggest that subjects used conformist biased social learning. This, however, required a large number77

of demonstrators and for the individuals to have low confidence in their ability to complete the task independently.78

By contrast, a high magnitude of asocial influence resulted in a conformity bias where the conformity threshold79

frequency was greater than a half.80

In light of these findings, we present a mathematical model to examine the dynamics of a cultural trait under81

conformist biased transmission. Results are compared against the case of unbiased social transmission, before82

considering the effect of a variable conformity threshold parameter. Our analysis focuses on the effect of the83
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strength of conformity on the existence and stability of equilibria. The formulation is equivalent to that of an SIS84

model, including a frequency-dependent rate of trait adoption and a constant rate of abandonment. The latter85

may reflect individual forgetting or the result of population-wide influences, such as mass media, or economic and86

environmental change. The formulation also approximates cases of frequency-dependent abandonment if this rate87

is very small. By way of an example, we discuss how the model may apply to the case of binge drinking within a88

population of young adults (see section 4).89

2 Models for unbiased and conformist cultural trait transmission90

We begin by assuming the existence of a cultural trait A within a population of N individuals where trait transmis-91

sion is frequency-dependent and abandonment of the trait is (approximately) frequency-independent. Individuals92

within the population can be categorized as type S, who do not display trait A, or type A, who do. The time-93

dependent variables S(t) and A(t) represent the number of type S and type A individuals respectively. We assume94

that all individuals enter the population as type S at a rate µ, however they may leave as either type at the same95

rate. Type S individuals can only acquire trait A through interactions with type A individuals, and we assume96

that the transmission rate is affected by the frequency of type A individuals in the population. We consider the97

transmission rate to be βc(A/N) where β is the rate at which contact sufficient for transmission occurs. In the98

unbiased social learning model the function c(A/N) represents the probability that contact is made with a type99

A individual. However, in the case of biased social learning, the function also includes a weighting which repre-100

sents the conformist influence. Type A individuals revert to type S at a constant rate, although this term also101

approximates the effect of a social influence when γ is very small. For a mathematical justification see appendix102

B.103

From this we formulate the following equations104

Ṡ(t) = µN − βSc(A/N) + γA− µS,

Ȧ(t) = βSc(A/N)− (γ + µ)A,

(1)

where the total population N = S +A is constant. Figure 1 represents these dynamics with arrows indicating the105

direction of flow through the system. The constant total population results from the entering and leaving rates (µ)106

being the same. This simplifying assumption is made so that the system may be reduced to one equation, which107

is non-dimensionalized by introducing the variables s = S/N and a = A/N to give108

ȧ(t) = β(1− a)c(a)− ρa (2)

where ρ = γ + µ has been introduced to simplify the mathematical analysis.109
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Figure 1 here110

We must now consider the function c(a). This determines the frequency-dependent relationship between the

probability that type S individuals convert to type A and the frequency of type A individuals in the population.

First we introduce a linear frequency-dependent function

cL : [0, 1]→ [0, 1]

cL(a) = a,

which gives us a model for unbiased trait transmission, resulting in the standard SIS model form. We then introduce111

a nonlinear frequency-dependent function112

c1 : [0, 1]→ [0, 1]

c1(a) = a[1 +D(2a− 1)(1− a)],

(3)

which is the conformity function first proposed by Boyd and Richerson (1985). The conformity coefficient D ∈ (0, 1]113

controls the strength of the bias. The valueD = 0 is not considered as this would result in the linear function cL. We114

see from figure 2 that c1 is an appropriate function to represent a conformity bias as its sigmodial shape ensures that115

all individuals have a disproportionate tendency to follow the majority. When the frequency of type A individuals116

in the population is less than a half, so a < 1/2, the probability of type S adopting trait A is P (adopting A) < a.117

When the frequency of type A individuals is greater than a half then a > 1/2 and P (adopting A) > a. We refer118

to ae = 1/2 as the conformity threshold frequency as this is where P (adopting A) = a, i.e. where the linear and119

nonlinear frequency-dependent curves meet.120

The criteria for an appropriate conformity function are that exactly one saddle point and no local extrema121

must exist in the region (0, 1) and, initially, symmetry about the point (1/2, 1/2). More complex real functions,122

such as higher order polynomials or trigonometric functions, can also satisfy these criteria, however they may then123

be locally approximated to a cubic polynomial function. As a result, the behavior of such systems pertaining to124

existence and stability of equilibria will be qualitatively similar to the results presented here. Precise relationships125

between the parameters and the conformity coefficient will, however, vary depending on the behavior of the chosen126

conformity function with respect to the coefficient D.127

Figure 2 here128

We begin by analyzing the linear frequency-dependent SIS model which is constructed from equation (2) using129

the linear function cL to give130

ȧ(t) = βa(1− a)− ρa. (4)
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As equation (4) is not analytically solvable we look for equilibrium solutions, which are values of a which satisfy131

ȧ(t) = 0, and analyze their stability. Once a stable equilibrium is reached, the proportion of type A individuals132

in the population remains constant in time and hence we can determine the prevalence of trait A within the133

population. To ensure that the model provides realistic predictions we seek feasible solutions, characterized as134

those which are unique and and lie in the interval [0, 1]. As we are interested in solutions for a we rewrite equation135

(4) as a function of this variable giving136

fL(a) = a[β(1− a)− ρ]. (5)

Solving fL = 0 results in two equilibrium solutions: āL0 = 0 which is feasible for all parameter values, and137

āL1 = (β − ρ)/β which is feasible for ρ < β.138

We now look at equation (2) with conformity function c1 which gives139

ȧ(t) = βa(1− a)[1 +D(2a− 1)(1− a)]− ρa. (6)

This can be written as ȧ = af1(a) where we see that ā10 = 0 is an equilibrium solution which always exists,140

independent of the values of β, ρ and D. The remaining equilibrium solutions are the roots of141

f1(a) = β(1− a)[1 +D(2a− 1)(1− a)]− ρ (7)

which can be found explicitly, but their complexity makes further analysis difficult. By using properties of the

function f1 it is possible to determine the number and nature of equilibrium points under certain conditions. The

cubic polynomial f1 has leading coefficient 2βD > 0, so it always has one real root, and f1(a)→ ±∞ as a→ ±∞.

The roots of f ′1(a) = β(6Da2 − 10Da+ 4D − 1) give the local maximum and local minimum of f1 which are

a1− =
5

6
− 1

6

√
D + 6

D
and a1+ =

5

6
+

1

6

√
D + 6

D

respectively. The vertical intercept occurs at f1(0) = β(1−D)− ρ.142

The parameter ρ only occurs in the constant term of equation (7) so serves to shift the graph of f1 down the143

vertical axis as it increases, thus we know that the limiting case of ρ = 0 maximizes the function. This observation144

leads us to introduce145

g1(a) = β(1− a)[1 +D(2a− 1)(1− a)] (8)

which is equal to the function f1 in the limiting case of ρ = 0 and hence has the same turning points as f1. Direct

calculation of the turning points reveals g1(a1−) > 0 and g1(a1+) < 0, where a1− < 1 < a1+, so g1 has three real

roots which are a = 1, a ∈ (−∞, a1−] and a ∈ [a1+,∞). Consequently f1(a1+) < 0 and f1 has three real roots for

sufficiently small ρ, however the root lying in [a1+,∞) is never feasible as a1+ > 1 and is therefore disregarded. For
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the remaining two roots to exist and be unique we require ρ < g1(a1−), shown by the shaded region in figure 3a,

where

g1(a1−) =
β

54

[
9 +D + (6 +D)

√
6 +D

D

]
.

This existence condition allows us to determine the form of the actual solutions, which are shown in appendix A.146

The feasibility of the remaining solutions, defined as ā11 ∈ (−∞, a1−) and ā12 ∈ (a1−, 1), must be determined147

when they exist. As we already have the equilibrium solution ā10 = 0 we require ā11 and ā12 to lie in (0, 1] for148

the equilibrium points to be unique. By considering the sign of a1−, which determines the location of the local149

maximum of f1, we construct two cases: D ∈ (0, 1/4] and D ∈ (1/4, 1], corresponding to a1− ≤ 0 and a1− > 0150

respectively. In the first case ā12 can be feasible, which occurs when the vertical intercept is positive. This provides151

the condition ρ < β(1 − D). For the second case, ā12 is feasible for ρ < g1(a1−) (i.e. for when it exists), and ā11152

is feasible for β(1 − D) < ρ < g1(a1−) which is where the vertical intercept is negative and the turning point is153

positive. These cases are shown in figure 3.154

Figure 3 here155

2.1 Stability Analysis156

To determine the local stability of an equilibrium solution we consider the system close to the equilibrium point

and linearize around this point. For a function F (a) and equilibrium point ā we consider F (ā+a) where a is small.

Linearizing around the point ā gives

F (a) = aF ′(ā) +O(a2)

as F (ā) = 0, so close to the equilibrium point we have F (a) = ka for k ∈ R constant. In our system linearizing157

results in an ODE of the form ȧ = ka which has solutions a(t) = Kekt for K ∈ R constant. For asymptotic158

stability we require k < 0 as this ensures that the solution decays with time.159

For the unbiased social learning model, equation (5), linearizing gives

fL = (β − ρ− 2βā)a

so āL0 and āL1 are asymptotically stable for ρ > β and ρ < β respectively. For the conformist biased model, equation

(6), the condition for asymptotic stability is f1(ā) + āf ′1(ā) < 0 where f1(ā) = 0 for ā 6= 0 and

āf ′1(ā) = βā(6Dā2 − 10Dā+ 4D − 1).

From this we know that ā10 is asymptotically stable for ρ > β(1 − D). Asymptotic stability of the remaining160
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feasible solutions requires f ′1(ā) < 0 which is true provided ā ∈ (a1−, a
1
+), so ā11 is never stable and ā12 is always161

asymptotically stable. These results are summarized in table 1.162

Table 1 here163

2.1.1 Model comparison164

We now identify how a conformity bias affects the persistence of trait A in the population compared with the165

linear case. Recall that ρ = µ + γ was introduced to simplify the analysis, so any interpretation of ρ requires166

an understanding of how µ and γ behave. As we are interested in the proportion of type A individuals in the167

population we consider the flow to and from this subpopulation, shown in figure 1.168

Flow into A is only affected by the parameter β and flow out of A happens at rate µ + γ, so ρ is the rate169

that individuals leave A. By considering ρ fixed across both the linear and nonlinear frequency-dependent models170

we can define threshold values of β required for type A individuals to persist in the population. In the linear171

frequency-dependent model the threshold value is βL = ρ. In the nonlinear model the threshold is different as it172

depends upon the strength of the conformist tendency. The threshold value is β1
N = ρ/(1−D) so, for very small173

D, the linear and nonlinear threshold values are approximately equal. As the strength of conformity increases174

so does the threshold value, thus β1
N > βL. This indicates that when there is a conformity bias acting within a175

population, the contact rate β must be greater than in the linear case for trait A to become endemic within the176

population. This is demonstrated by simulation results, summarized in table 2 (section A), where increasing the177

value of β results in the endemic equilibrium solution becoming feasible and stable for a linear frequency-dependent178

relationship, but not with a nonlinear one. Section B of table 2 shows that, as the conformity strength increases,179

a larger value of β is required for the endemic equilibrium solution to become feasible.180

When D > 1/4, there exists a second threshold value. For trait A to persist in the population without any

dependence on the initial frequency of type A individuals then the threshold value remains as β1
N > βL. This

corresponds to when the equilibrium solution ā12 is feasible and stable whereas ā11 is not feasible. As D increases so

does the threshold value, though it is undefined at D = 1. This indicates that when conformity strength is at its

maximum, it is not possible to have a contact rate which is sufficiently large to overcome the propensity to conform.

Trait A, therefore, cannot become endemic in this scenario. By introducing a second threshold, β1
M = ρ/k1(D)

where

k1(D) =
1

54

[
9 +D + (6 +D)

√
6 +D

D

]
,

trait A may become endemic. Using the extreme values of D we can bound k1(D) from above by k1(D) < 45/54 < 1181
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and therefore β1
M > βL, so again the threshold value for the conformity model is greater than that of the unbiased182

social learning model. We also see from figure 3a that β(1 − D) < g1(a1−) = βk1(D) and therefore 1/k1(D) <183

1/(1 − D) so β1
M < β1

N . This lower nonlinear threshold value means that trait A can become endemic in the184

population even when D = 1, dependent upon the initial state. We know from our stability analysis (section 2.1)185

that the system can have two asymptotically stable solutions, ā10 and ā12, so the solution that is reached depends186

on the initial frequency of type A individuals in the population. By defining t0 = 0 then for a(t0) < ā11 trait A187

cannot persist in the population and for a(t0) > ā11 it becomes endemic. This shows that beginning with very few188

type A individuals means it is likely that trait A will die out in the population. If at t0 there was, for example,189

some major environmental change leading to a sufficiently large number of individuals becoming type A, then trait190

A would persist in the population. Table 2, section C, gives an example of where the two equilibrium solutions191

are feasible and stable for sufficiently large conformity strength, compared to the model with a weaker conformity192

strength.193

Table 2 here194

3 Model for conformist cultural trait transmission with varying con-195

formity threshold196

We now generalize our model further by allowing the threshold value ae to vary away from 1/2, which could197

indicate a content bias acting in the population. We use the conformity function198

c2(a) = a[1 +D(2a− η)(1− a)] (9)

which produces an asymmetric sigmodial curve. The threshold value is ae = η/2 where η ∈ (0, 2), but restrictions

must be placed on the conformity coefficient D to ensure that c2 is monotone increasing on [0, 1]. This is achieved

by considering the local minimum and local maximum of c2,

ã− =
2 + η

6
−

√
D2η2 − 2D2η + 4D2 + 6D

6D
and ã+ =

2 + η

6
+

√
D2η2 − 2D2η + 4D2 + 6D

6D

respectively, where we require ã− ≤ 0 and ã+ ≥ 1. This gives conditions D ≤ 1/η and D ≤ 1/(2 − η). As199

Max{D} = 1, the first condition does not always hold for η ∈ (1, 2) and the second for η ∈ (0, 1). For example,200

when η = 1/2 then D ≤ 2/3 which is a stricter condition on D than we desire. To eliminate this problem we201

restrict D so that D ∈ (0, 1/(2− η)) for η ∈ (0, 1] and D ∈ (0, 1/η) for η ∈ (1, 2).202
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Figure 4a shows the function for η ∈ (0, 1] where the intersection point ae lies in the interval (0, 1/2]. This203

represents a situation where less than half of the population displaying trait A is sufficient for a näıve individual204

to be more likely to take up trait A than in the linear case. Figure 4b shows the function for η ∈ (1, 2) and205

ae ∈ (1/2, 1). Here, more than half the population must display trait A in order for the probability of behavior206

uptake to be greater than in the linear case. An increase in the value of η represents an increased aversion to207

adopting trait A. As with the previous conformity function c1, an increase in the conformity strength D increases208

the concavity of conformity function c2.209

The nonlinear frequency-dependent SIS model with variable threshold point η is210

ȧ(t) = βa(1− a) [1 +D(2a− η)(1− a)]− ρa, (10)

formed from equation (2) and the conformity function c2. We analyze this model by proceeding as in section 2,

beginning by defining f2(a), where ȧ = af2(a), so that the equilibrium solutions are ā20 = 0 and the roots of

f2(a) = β(1− a) [1 +D(2a− η)(1− a)]− ρ.

The function f2 has distinct turning points

a2− =
4 + η

6
− 1

6

√
(2− η)2 +

6

D
and a2+ =

4 + η

6
+

1

6

√
(2− η)2 +

6

D

and vertical intercept f2(0) = β(1− ηD)− ρ. Taking the limiting case of ρ = 0 we introduce the function

g2(a) = β(1− a) [1 +D(2a− η)(1− a)]

and direct calculation reveals that g2(a2−) > 0 and g2(a2+) < 0 where a2− < 1 and a2+ > 1. Hence g2 has roots

a ∈ (−∞, a2−), a = 1 and a ∈ (a2+,∞) so f2 has three roots for sufficiently small ρ. One of the roots is never

feasible so we ignore it. For the three solutions to exist the condition ρ < g2(a2−) must hold where

g2(a2−) =
β

54

[
9(2− η) +D(2− η)3 + (6 +D(2− η)2)

√
6 +D(2− η)2

D

]
.

As before, we can now determine the form of the exact solutions, shown in appendix A.211

To determine the feasibility of the two roots ā21 ∈ (−∞, a2−) and ā22 ∈ (a2−, 1), the sign of a2− must be considered,212

where a2− ≤ 0 gives the case D ≤ 1/(2+2η). Only ā22 is ever feasible given ρ < g2(0), where g2(0) = β(1−ηD) is the213

vertical intercept. When D > 1/(2+2η) both solutions can be feasible if ρ < g2(a2−) for ā22 and g2(0) < ρ < g2(a2−)214

for ā21.215

Figure 4 here216
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3.0.2 Stability Analysis217

Following the method of linearization from section 2.1 we find that the condition for asymptotic stability of an218

equilibrium solution of equation (10) is f2(ā) + āf ′2(ā) < 0. The equilibrium solution ā20 is asymptotically stable219

for ρ < g2(0) and the stability of the remaining two solutions requires f ′2(ā) < 0, which corresponds to solutions220

lying in the interval (a2−, a
2
+). Hence we find that a feasible ā22 is always asymptotically stable and a feasible ā21 is221

never stable. The feasibility and stability conditions for the equilibrium solutions are summarized in table 3.222

Table 3 here223

3.0.3 Model comparison224

As in section 2.1.1, we can define threshold values of β for which the stable equilibrium changes from being trait-

A-free to the trait persisting in the population. We first consider D ≤ 1/(2 + 2η) and define the threshold value

to be β2
N = ρ/(1− ηD) so β2

N > βL. For η < 1 we have β2
N < β1

N , which is an intuitive result when comparing the

curves c1 and c2. Defining the distance between these two curves as

d(a) = c1 − c2 = D(η − 1)a(1− a)

then d < 0 for η < 1 which signifies that P( adopting A |c2) > P( adopting A |c1). Hence, for some fixed a value,225

the probability of adopting trait A is greater when we take conformity function c2. The threshold value β2
N is226

lower than β1
N as, for each individual contact, the probability of transmission is greater than with c1 and hence227

fewer contacts are required for trait A to become endemic. For η > 1 the converse is true, whereby d > 0 and228

hence P( adopting A |c2) < P( adopting A |c1). The effect of η is shown in table 2, section D, where the other229

parameter values are fixed. When η = 0.7 the endemic solution is feasible so type A individuals will persist in the230

population. Comparing this with the previous model (which is equivalent to η = 1) we see that the persistence of231

type A individuals is not certain but depends on the initial state. A further increase to eta = 1.2 results in trait232

A dying out within the population, owing to the change in the conformity bias effect.233

When D > 1/(2 + 2η) the threshold β2
N is defined for ηD 6= 1. As with the previous conformity model, a

second threshold exists where trait A persisting in the population is dependent upon initial state. This threshold

is β2
M = ρ/k2(D) where

k2(D) =
1

54

[
9(2− η) +D(2− η)3 + (6 +D(2− η)2)

√
6 +D(2− η)2

D

]

and β2
M < β2

N . Again this threshold value increases with η so β2
M < β1

M when η < 1 and β2
M > β1

M for η > 1.234
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4 Discussion235

Our analysis reveals that varying the conformity threshold frequency ae affects the β value required for cultural trait236

A to become endemic in the population, where β represents the average rate of contacts sufficient for transmission237

of cultural trait A. Lowering ae results in an increased probability of adopting trait A for some fixed a value, and238

hence lowers the threshold value of β which is required for the trait to persist. By contrast, β must be large for239

this to occur when ae is high.240

Morgan et al. (2011) found that an increased conformity threshold frequency was consistent with strong con-241

fidence in information acquired asocially. Here we have a similar asymmetric conformity function, but without242

requiring asocial learning. Instead, the value of the conformity threshold frequency coefficient η may capture the243

interaction of a content bias with conformity bias. For instance, the conformity threshold frequency for an attrac-244

tive cultural trait may be smaller than that of a trait that does not hold the same intrinsic appeal. Our analysis245

shows that the value of η can affect the conditions for trait A extinction.246

The effect of a content bias on social transmission may, however, be more complex than simply altering the247

conformity threshold. A content bias may also affect the value of the adoption and abandonment rates, β and γ.248

For example, a trait that is highly attractive or salient would have a high rate β at which contact sufficient for249

transmission occurs. From the results of our conformity model, we can see that content bias affecting β will alter250

the feasibility of an endemic equilibrium for a given conformity bias strength D.251

Evidence from Efferson et al. (2008) and Morgan et al. (2011) suggests that some individuals will exhibit252

conformist bias under certain circumstances whereas others will not. An extension to the work here would be to253

consider the spontaneous uptake of trait A to account for some of this variation. This development would remove254

the trait-free equilibrium and affect the initial trait frequency which, we have shown in our current model, can255

have important consequences, such as when conformity bias is strong and the system is bistable.256

The general models presented here can be applied to health-related behaviors and thus provide an extension257

to the existing epidemiological literature, some of which was discussed in section 1. One possible application258

could be to model the drinking habits of young people in the U.K. Alcohol consumption within this age group259

is predominantly binge drinking (Institute of Alcohol Studies, 2010, 2013), which is defined as drinking 8+ units260

for men and 6+ units for women in one drinking session (Deacon et al., 2007). Evidence suggests that peer group261

influence is a major contributor to an individual choosing to binge drink (French and Cooke, 2012; Institute of262

Alcohol Studies, 2013), so such behavior could be considered to be driven by social learning with a likely conformist263

bias. Our model does not assume differential mortality as the long term health effects of alcohol misuse are unlikely264

to develop within the modeled timescale. Instead, young adults are likely to leave the modeled population at rate265

12



µ as a result of lifestyle changes such as movement out of a student community, or starting a family. For example,266

Seaman and Ikegwuonu (2010) found that young adults in the U.K. were more likely to moderate their drinking267

when becoming parents.268

The frequency-independent term γ may represent reversion resulting from exposure to governmental or mass269

media campaigns to abstain from binge drinking, while assuming any frequency-dependent influence of susceptible270

individuals on binge drinkers is small by comparison. The effect of top-down impositions, such as alcohol minimum271

pricing or the reduction of sweet or otherwise attractive- tasting alcoholic drinks, on binge drinking may be272

predicted. Such scenarios may be modeled by altering the reversion rate γ and the value of the conformity273

threshold through η to introduce a content bias into the system. This may provide an initial indicator as to274

the potential success of proposed strategies to reduce the prevalence of binge drinking within the young adult275

population.276

In conclusion, we have developed a model for cultural trait transmission within an SIS framework by introducing277

a nonlinear frequency-dependent relationship with a variable conformity threshold frequency, which could account278

for the interaction of conformity and content biases acting within the population. Hence, the analysis of the279

conformity threshold frequency advances cultural evolutionary theory in line with empirical evidence, suggesting280

that individuals may employ multiple non-independent learning biases.281
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A Exact solutions to f1(a) = 0 and f1(a) = 0285

Following the method described by Murray (1993, appendix 2.3), let

x =
D + 6

36D
, y =

β(D + 9)− 54ρ

108βD
, z = −5

6
.

Then, for ρ < g1(a1−), the exact solutions to f1(a) = 0 are286

a = 2x
1
2 sinφ− z, a = −2x

1
2 sin(

π

3
+ φ)− z, a = 2x

1
2 sin(

π

3
− φ)− z, (11)

for φ = 1
3 sin−1[ y

2x
3
2

], |φ| ≤ π
6 . For the model with varying conformity threshold frequency the solutions to

f2(a) = 0, for ρ < g2(a2−), are given by equations (11) with

x =
6 +D(2− η)2

36D
y =

β(9(2− η) +D(2− η)3)− 54ρ

108βD
z = −4 + η

6
.

B Justification of the linear reversion term γA for small γ287

Consider the two functions

r1 = γa,

r2 = γas[1 + D̂(2s− 1)(1− s)],

representing reversion from type A back to type S. The function r1 assumes no social influence, whereas r2 assumes

a conformist influence of the same form as c1 (used in section 2) with conformity coefficient D̂. The difference

between these two functions can be calculated by subtracting r2 from r1, resulting in

dγ(a) = γa2(−2D̂a2 + 3D̂a+ 1− D̂).

The turning points of this function occur at a = 0 and

a =
9

16
± 1

16

√
17 +

64

D̂
.

By considering these points as D̂ → 0 it can be determined that for all values of D̂ the function dγ is strictly288

monotonically increasing on (0, 1), therefore attains its maximum within [0, 1] at a = 1. By direct calculation,289

dγ(1) = γ so the maximum error magnitude which can arise from using the linear function r1 over the conformity290

function r2 is γ. As stated in section 2 we assume γ to be very small, and much smaller than β, therefore using r1291

is appropriate owing to the small magnitude of the error.292
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C Figures353
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βSc
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µS µA

µN

Figure 1: Pictorial representation of the SAS model for cultural trait transmission, relating to equations (1). The

nodes S and A represent the subpopulations of type S and type A individuals respectively. The labeled arrows

indicate the rate and direction of movement through the system.
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Figure 2: Plot of the functions cL (dot-dashed) and c1, given by equations (2) and (3) respectively, with conformity

strength values D = 0.7 (dashed) and D = 1 (bold). As the strength of the conformist tendency (D) increases, so

does the concavity of the conformity curve c1. Consequently, as D increases, the probability of adopting trait A

decreases for a < 1/2 and increases for a > 1/2.
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(a) (b)

Figure 3: (a) The shaded region is the area bounded above and below by the curves g1(a) (equation (7)) and f1(a)

(equation (8)) respectively, where β = 0.8, D = 0.7 and ρ = g1(a1−) = 0.451. For f1 in the limiting case of ρ = 0

(equivalent to curve g1) only one root is feasible (a = 1, which is independent of β and D). As the value of ρ

increases the two leftmost roots tend towards a = a1− = 0.318. The central curve, with ρ = β(1 − D) = 0.24,

highlights where two equilibria become feasible. Eventually, when ρ = g1(a1−), both of these equilibria cease to

exist.

(b) the shaded region is bounded by the curves g1(a) and f1(a) with β = 0.8, D = 0.13 and ρ = β(1−D) = 0.696.

As the value of ρ increases, the only feasible solution decreases away from a = 1 towards a = 0, at which point it

becomes unfeasible. This situation where only one equilibria is feasible arises for D ∈ (0, 1/4], unlike the scenario

of (a) where two feasible solutions may exist and D ∈ [1/4, 1).
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Feasible Asymptotically Stable Unstable

Linear āL0 Always ρ > β ρ < β

āL1 ρ < β ρ < β —

ā10 Always ρ > β(1−D) ρ < β(1−D)

D ∈ (0, 1/4] ā11 Never — —

ā12 ρ < β(1−D) ρ < β(1−D) —

ā10 Always ρ > β(1−D) ρ < β(1−D)

D ∈ (1/4, 1] ā11 β(1−D) < ρ < g1(a1−) — β(1−D) < ρ < g1(a1−)

ā12 ρ < g1(a1−) ρ < g1(a1−) —

Table 1: For the linear frequency-dependent model the stability of the equilibria switches when the rate of trans-

mission (β) is equal to the rate of leaving the type A class (ρ). When the leaving rate is greater, ρ > β, trait

A dies out. When ρ < β however, trait A persists. For a conformity strength D ∈ (0, 1/4] the stability of the

zero solution and endemic solution switches when ρ = β(1 − D), that is where the rate of leaving A is equal to

the transmission rate, subject to a conformity effect. This threshold is greater than the linear case so a larger

transmission rate β is required for trait A to become endemic. For an increased conformity strength (D > 1/4) a

bistable state exists where the stable equilibria is dependent upon the initial frequency of type A individuals.

21



0.2 0.4 0.6 0.8 1.0
a

0.2

0.4

0.6

0.8

1.0

(a)

0.2 0.4 0.6 0.8 1.0
a

0.2

0.4

0.6

0.8

1.0

(b)

Figure 4: The figures show the functions cL (equation (2), bold) and c2 (equation (9)) with D = 1 and (a) η = 0.5

(dot-dashed), η = 0.85 (dashed) and (b) η = 1.15 (dashed), η = 1.5 (dot-dashed). When more than η/2 of the

population display trait A, the probability of uptake is greater than that of the linear case. As the value of η

increases, the probability of adopting trait A reduces, representing a content bias which dissuades individuals from

adopting the trait. The probability of adopting trait A is (a) greater than for the function c1 (equation (3), figure

2) when η < 1 and (b) less than c1 when η > 1.
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Function β D η Stable solution

cL 0.2 — — 0

A cL 0.27 — — 0.741

c1 0.27 0.1 — 0

cL 0.3 — — 0.167

B c1 0.3 0.1 — 0.103

c1 0.3 0.7 — 0

C c1 0.45 0.1 — 0.441

c1 0.45 0.7 — 0 or 0.380

c2 0.45 0.7 0.6 0.515

D c2 0.45 0.7 1 0 or 0.380

c2 0.45 0.7 0.2 0

Table 2: Table showing simulation results for different parameter values, with ρ = 0.25 fixed. The stable solution

is the frequency of type A individuals in the population once the system has reached equilibrium where all values

are to three significant figures.

A: Comparison between the linear frequency-dependent function cL and the conformity function c1 highlighting

the effect of the transmission rate β on the stability of an endemic equilibrium (a > 0).

B: For a fixed transmission rate β the linear frequency-dependent model results in a higher frequency of type A

individuals in the population than the conformity model. Provided the conformity strength D is large enough, an

endemic equilibrium will not be reached and type A individuals will always die out.

C: For certain parameter values, an increase in the conformity strength will result in a bistable system. In the

example given, a threshold exists at a(0) = 0.258. For an initial frequency of type A individuals greater than 0.258,

trait A will become endemic within the population with approximately 38% displaying the trait at equilibrium.

For an initial frequency of type A individuals less than 0.258 the trait will eventually die out.

D: The effect of a content bias, controlled by η in conformity function c2, is investigated. As the value of η

increases, the persistence of type A individuals first becomes dependent on their initial frequency before becoming

impossible.
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Feasible Asymptotically Stable Unstable

ā20 Always ρ > β(1− ηD) ρ < β(1− ηD)

D ∈ (0, 1/4] ā21 Never — —

ā22 ρ < β(1− ηD) ρ < β(1− ηD) —

ā20 Always ρ > β(1− ηD) ρ < β(1− ηD)

D ∈ (1/4, 1] ā21 β(1− ηD) < ρ < g2(a2−) — β(1− ηD) < ρ < g2(a2−)

ā22 ρ < g2(a2−) ρ < g2(a2−) —

Table 3: For D ∈ (0, 1/4] the stability of the zero and endemic solutions switches at ρ = β(1 − ηD). This is

where the leaving rate is equal to the transmission rate, modified by a combined conformity and content bias term.

The value of η, representing a content bias, affects the magnitude of variation between this threshold and the

threshold associated with conformity function c1 (see table 1 for comparison). As with the previous conformity

model (section 2), increasing the conformity strength (D > 1/4) allows for a bistable solution where the initial

frequency of type A individuals affects their long-term survival.
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