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Embryonic and adult isoforms of XLAP2 form
microdomains associated with chromatin and the nuclear
envelope
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Abstract Laminin-associated polypeptide 2 (LAP2) pro-
teins are alternatively spliced products of a single gene;
they belong to the LEM domain family and, in mammals,
locate to the nuclear envelope (NE) and nuclear lamina.
Isoforms lacking the transmembrane domain also locate
to the nucleoplasm. We used new specific antibodies
against the N-terminal domain of Xenopus LAP2 to
perform immunoprecipitation, identification and localiza-
tion studies during Xenopus development. By immuno-
precipitation and mass spectrometry (LC/MS/MS), we
identified the embryonic isoform XLAP2γ, which was
downregulated during development similarly to XLAP2ω.
Embryonic isoforms XLAP2ω and XLAP2γ were located
in close association with chromatin up to the blastula
stage. Later in development, both embryonic isoforms and

the adult isoform XLAP2β were localized in a similar way at
the NE. All isoforms colocalized with lamin B2/B3 during
development, whereas XLAP2β was colocalized with lamin
B2 and apparently with the F/G repeat nucleoporins through-
out the cell cycle in adult tissues and culture cells. XLAP2β
was localized in clusters on chromatin, both at the NE and
inside the nucleus. Embryonic isoforms were also localized in
clusters at the NE of oocytes. Our results suggest that XLAP2
isoforms participate in the maintenance and anchoring of
chromatin domains to the NE and in the formation of lamin B
microdomains.
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Introduction

Lamin-associated polypeptide 2 (LAP2) proteins belong to
the family of LEM domain proteins associated with the
inner nuclear envelope (NE) and nuclear lamina (Dorner et
al. 2007; Schirmer and Foisner 2007; Wagner and Krohne
2007; Zaremba-Czogalla et al. 2011). They are alternatively
spliced products of a single gene and act as integral
membrane or nucleoplasmic proteins (Harris et al. 1994).
Six LAP2 isoforms have been identified in mammals (α, β,
γ, δ, ε, ζ). The LAP2 proteins are widely expressed and
evolutionarily conserved in vertebrates with up to 90%
sequence identity in the regions responsible for the function of
the protein. The N-terminal part (187 amino acids [aa]), which
is common to all LAP2 isoforms, contains the LEM domain
(aa 111-152), a structural motif responsible for interaction
with BAF (barrier to autointegration factor; (Furukawa 1999;
Shumaker et al. 2001), and the LEM-like domain (aa 1-50)
interacting directly with chromatin (Cai et al. 2001). The
binding sites for lamin B (aa 298-373), the germ-cell-less
(GCL) protein (Nili et al. 2001) and HA95 protein (Martins
et al. 2003) lie in the variable region of LAP2. Depending on
the splicing pattern and presence of the transmembrane
domain in the C-terminus, LAP2 proteins are integral
membrane (β, γ, δ, ε) or intra-nuclear proteins (α, ζ) and
play diverse roles in the cell nucleus (Shaklai et al. 2008).
LAP2 expression differs in different cell types: LAP2β and
γ are found in somatic cells, whereas LAP2α is intensively
produced in proliferating cells and is the only form present in
mature sperm (Alsheimer et al. 1998).

LAP2 proteins play an important role in mammals, in
the attachment of chromatin to the NE and nuclear
lamina filaments during interphase and in nuclear
reassembly after mitosis. LAP2 proteins interact with A
and B type lamins and, through the LEM domain, also
with BAF by interconnecting lamin filaments with
chromatin inside the nucleus (LAP2α, LAP2ζ; Shaklai
et al. 2008) and at the NE (LAP2β, LAP2γ, LAP2ε,
LAP2δ). LAP2α-lamin A/C protein complexes are impor-
tant for the retention of retinoblastoma protein in the cell
nucleus (Gant et al. 1999; Markiewicz et al. 2002; Pekovic
et al. 2007; Yang et al. 1997).

LAP2β interacts directly with mouse transcriptional
repressor protein, GCL (Nili et al. 2001), and together with
its binding partners is able to repress the activity of the
E2F5-DP3 transcription factor. LAP2β directly interacts,
through the same region as GCL, with histone deacetylase 3
(HDAC3) and thus might be involved in the regulation of
chromatin organization (Somech et al. 2005). The N-
terminal part of human LAP2β, comprising the LEM
domain and lamin-binding region (aa 1-408) and the
common domain only (aa 1-187) are able to block in vitro
the formation of pronuclei (Gant et al. 1999).

In Xenopus, five cDNA sequences have been identified
coding for LAP2 proteins and have been translated in silico
to several isoforms. Two LAP2 isoforms of 557 and 518/
519 aa contain a transmembrane domain, whereas the
isoform of 409 aa lacks this domain (Gant et al. 1999; Lang
et al. 1999). Three different polypeptides have also been
recognized in immunoblots with anti-human MAN serum
and antibodies generated against aa 255-429 of the cDNA
clone named XLAP2β (see Fig. 1c for details of the
domain/exon structure of cloned XLAP2 cDNAs; note that
isolated cDNA clone 3 neither possess a typical lamin
binding domain nor a transmembrane domain). The in vitro
expression of XLAP2β cDNA results in the synthesis of a
66-kDa polypeptide confirming that this protein is indeed
XLAP2β (Lang and Krohne 2003; Lang et al. 1999). The
somatic XLAP2β polypeptide is the only one found in
adult animals, whereas polypeptides of 86 kDa and 40 kDa
are present in oocytes and eggs (Lang and Krohne 2003;
Lang et al. 1999) but no data for the expression of the 40-
kDa polypeptide during embryogenesis have ever been
shown. The N-terminal common fragment of XLAP2, when
added to an in vitro nuclear assembly, inhibits chromatin
decondensation and nuclear growth similar to the human N-
terminal fragment (Gant et al. 1999). A later report has also
demonstrated the coprecipitation of XLAP2 β protein with
lamins B1, B2 and A from A6 Xenopus cells (Lang and
Krohne 2003). The common N-terminal domain of XLAP2
(aa 1-165) interacts with BAF and BAF-DNA complexes.
Moreover, bacterially expressed Xenopus LAP2 cDNA
clones 2 (ω), 4 (β) and 3 bind to BAF with different
affinities (Shumaker et al. 2001). Embryonic XLAP2ω
and/or XLAP2γ proteins interact in vitro with a spindle
assembly factor, TPX2 protein, and participate through this
protein in the proper assembly of postmitotic nuclei in the
Xenopus in vitro nuclear assembly system (O′Brien and
Wiese 2006). Little or no data on the subcellular localiza-
tion and developmental regulation of the expression and
distribution of particular XLAP2 isoforms have been
reported so far. Moreover, no precise data are available on
the identification of particular XLAP2 isoforms and
relationships between isolated cDNA clones and identified
peptides. In addition, the exact location of XLAP2 proteins
in the cell nucleus and at the NE during development and in
adult cells is unknown.

In this study, we have taken advantage of newly
prepared, affinity-purified antibodies raised against the
common N-terminal fragment (1-165 aa) of XLAP2
proteins in our laboratory (Salpingidou et al. 2008). By
mass spectrometry, we have identified the presence of two
early-development-specific isoforms: XLAP2ω (86 kDa)
and XLAP2-40 kDa. We have demonstrated that the
subcellular localization of embryonic XLAP2 proteins is
similar to the location of the adult isoform (XLAP2β) and
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that all isoforms associate similarly with anaphase chromatin.
We have also demonstrated that XLAP2β is present at the NE
and at chromatin inside the nucleus in the form of clusters and
microdomains. Similarly, both embryonic isoforms, viz.
XLAP2ω and XLAP2γ, locate at the NE in clusters forming
microdomains. All three isoforms colocalize with lamin B2,
lamin B3 and, apparently, Nup62 (F/G repeat nucleoporin) in
development and throughout the cell cycle.

Materials and methods

Plasmids and cDNAs

Plasmid pET23a coding for the 165 N-terminal amino acids
of XLAP2 as a His-tag fusion protein was the kind gift of
Prof. K. Wilson, Baltimore, USA. Sequence comparison
was performed on the following XLAP2 cDNAs: β

Fig. 1 Identification of XLAP2ω and XLAP2γ polypeptides immu-
no-isolated from Xenopus egg extract. a Immunoblot from the
immuno-isolation experiment with control and anti-XLAP2 Igs;
staining with XLAP2-specific antibodies. Of the total material, 10%
was loaded onto each lane (arrowheads positions of the 86-kDa
XLAP2ω and 40-kDa XLAP2γ bands in control egg extract in the
C lane and of isolated XLAP2ω polypeptide in the IP lane, C control
egg extract, Ig-H heavy immunoglobulin chain, Ig-L light immuno-
globulin chain, L loaded egg extract, W wash, FT flow through, IP
immunoprecipitated proteins, M molecular-weight markers). b Frag-
ments of silver-stained gel containing protein samples from the pull-
down reaction (90% of the material was loaded). Gel pieces from
boxes were excised and subjected to mass spectrometry analysis (LC/
MS/MS). Molecular masses of reference proteins (in kDa) are shown.
c Representations of XLAP2 protein isoforms translated in vitro from

cDNA sequences found in Xenopus: XLAP2 clone 2 (AN:
AF048815); XLAP2 clone 3 (AN: AF048816); XLAP2 clone 4
(AN: AF048817, Gant et al. 1999); XLAP2β (AN: Y17861, Lang et
al. 1999); XLAP2ω (AN: AJ514937, Schoft et al. 2003). Identical
regions are shaded similarly. Numbers above each representation
indicate the amino-acid positions of domains. Sequences marked with
letters are putative Xenopus-specific exons (Gant et al. 1999), which
are absent from mammals and are positioned between exons 5 and 6
(A) or 8 and 9 of mouse cDNA (Berger et al. 1996). The lamin-
binding domain is according to (Lang and Krohne 2003). Tryptic
peptides identified by using LC/MS/MS are given below each
representation. The 86-kDa polypeptide was identified as the
translation product of two cDNAs: XLAP2 clone 2 (AF048815) and
XLAP2ω (AJ514937). The 40-kDa polypeptide was determined as a
member of XLAP2 family
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(Y17861), clone 2 (AF048815), clone 3 (AF048816), clone
4 (AF048817) and ω (AJ514937).

Cells, tissues and embryos

Xenopus XTC cells were grown in 54% L-15 Leibovitz
medium containing 10% fetal bovine serum, 2 mM L-
glutamine, 10 I.U./ml penicillin, 10 μg/ml streptomycin,
0.025 μg/ml amphotericin B at 22-26°C under normal air
conditions. Tissue samples (3 mm in diameter) were dissected
out from male frogs and either snap-frozen in liquid nitrogen
and stored at -70°C (for biochemical studies) or fixed for
microscopy. Tissue extracts were prepared from samples
powdered in a RetschMill homogenizer in liquid nitrogen,
boiled in extraction buffer and recovered by centrifugation.
Embryos were directly homogenized in SDS-sample buffer
and boiled. Embryonic stages were classified according to
Nieuwkoop and Faber (1994).

Antibodies and antibody purification

The anti-XLAP2 serum was produced in rabbit by
immunization with the bacterially expressed, affinity-
purified N-terminal (1-165 aa) fragment of the XLAP2
protein. The specific immunoglobulins were purified from
full serum on antigen covalently bound to resin (Rzepecki
et al. 1998).

The following antibodies were used: rabbit anti-XLAP2
serum (1:250 for immunoblotting [WB], 1:100 for immu-
nofluorescence and immunohistochemistry [IF]), affinity-
purified rabbit anti-XLAP2 IgGs (1:100 WB, 1:60 IF),
mouse monoclonal antibodies against Xenopus lamins B2/
B3, L6-5D5 (Meier et al. 1991; 1:25 IF), and against B2,
L7-8 C6 (Ralle et al. 2004; 1:60 IF; kindly supplied by
Prof. Reimer Stick), antibody (Ab) 414 (anti-p62; 1:30 IF;
Covance), anti-phosphorylated-histone H3 RR002 (1:400;
Upstate Biotechnology), Ac-40 actin Ab (1:800 WB;
Sigma, USA), anti-β-actin ab8224 (1:4000 WB; Abcam)
and rat monoclonal anti-alpha-tubulin YL1/2 (1:60 IF;
Serotec). Biotinylated goat anti-rabbit immunoglobulins
for immunohistochemistry were from Oncogen Research.
Secondary antibodies for immunoblotting and fluorescence
were from Jacksons Immunoresearch.

Gel electrophoresis and immunoblotting

Proteins were separated on 10% or 12% SDS-gels by
polyacrylamide gel electrophoresis (PAGE) and electro-
transferred onto nitrocellulose filters. Optical density
measurements of the protein bands in immunoblots were
performed with the BIO-PROFIL Bio-1D Windows Appli-
cation V99.01. Protein content in XLAP2 bands was
normalized according to the actin content in each lane.

Isolation of Xenopus egg extract

Egg collection and extract preparation were carried out
according to Salpingidou et al. (2008).

Extraction of XLAP2 from cell nuclei isolated from XTC
cells

XTC cells that had been cultured for 72 h were trypsinized,
pelleted at 800g and washed briefly with ice-cold
phosphate-buffered saline (PBS). All preparation steps
were performed at 4°C. The cell pellet was homogenized
in 2 ml isotonic buffer consisting of 10 mM TRIS-HCl pH
7.5, 5 mM MgCl2, 50 mM NaCl, 250 mM sucrose, 0.1 mM
phenylmethane sulphonylfluoride (PMSF) and 10 μl/ml
inhibitor cocktail (Sigma) in a glass Potter homogenizer
with a tight pestle and the nuclei were recovered at 2000g.
Equivalents of 6.6×x106 nuclei were extracted for 20 min
with 200 μl of a solution consisting of 10 mM TRIS-HCl
buffer pH 7.5 or of 10 mM TRIS-HCl buffer pH 7.5
containing 1% (vol/vol) Triton X-100, 1 M NaCl, 1% (vol/
vol) Triton X-100 plus 1 M NaCl, or 6 M Urea. Samples
were fractionated by centrifugation at 10,000g for 10 min
into supernatant and pellet. Supernatants were supple-
mented with 50 μl SDS sample buffer, whereas pellets
were homogenized in 150 μl SDS sample buffer and
analysed by Western blotting. Of the supernatants and
pellets, 10% were resolved on SDS-PAGE gel, transferred
onto nitrocellulose filter and probed for XLAP2 protein.

Immuno-isolation of XLAP2 isoforms from Xenopus XTC
cells and tissues

Frozen Xenopus liver pieces were powdered at liquid-
nitrogen temperature and incubated on ice with a lysis
buffer consisting of PBS pH 7.4 containing 0.05%
Tween 20, 1 mM dithiothreitole (DTT), 0.5 mM MgCl2,
0.2 mM PMSF and 10 μl/ml inhibitor cocktail (Sigma).
After sonication, the lysate was cleared of cell debris by
centrifugation at 12,000g. The resulting supernatant was
supplemented with 5% SDS and 20 mM DTT and heat-
denatured. Proteins were precipitated with 10% trichloro-
acetic acid. The precipitate was then resuspended in
immunoprecipitation buffer (Rzepecki and Fisher 2000)
and used for protein isolation. Xenopus XTC tissue-cultured
cells, 1.5×07 per test, were pelleted at 800g, washed,
resuspended in lysis buffer and treated as above. The low-
speed supernatant fraction from Xenopus eggs was incu-
bated on ice with gentle inversion after addition of 1%
Triton X-100, 0.02% SDS, 0.3 M NaCl, 0.2 mM PMSF and
10 μl/ml inhibitor cocktail. Centrifugation at 17,000g, 4°C,
was carried out to produce a supernatant for immunopre-
cipitation. Immuno-isolation with specific affinity-purified
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anti-XLAP2 immunoglobulins, immobilized on Protein A
Agarose (Sigma), was as described previously (Rzepecki
and Fisher 2000).

For mass spectrometry, proteins immuno-isolated from
eggs were resolved by “clean” SDS-PAGE and the gels
were silver-stained. Gel fragments were excised from the
gels in the region containing the protein band of interest
and the samples were subjected to LC/MS/MS analysis.

Microscopic procedures

XTC cells were grown on coverslips, fixed with 4%
paraformaldehyde in PBS and permeabilized with 0.5%
Triton X-100 in PBS or 40 μg/ml digitonin in PBS. Small
pieces of Xenopus tissues and staged embryos were fixed
with 4% paraformaldehyde in PBS containing 0.5% Triton
X-100 and paraffin-embedded. Tissue sections were pre-
pared for immunohistochemistry and immunofluorescence.
For imaging, two fluorescence microscopes were used: a
confocal microscope LSM510 META with an FCS system
(Zeiss) and an Olympus IX70 fluorescence microscope with
a two-channel confocal laser scanning unit (FV500). Any
brightness and contrast adjustments were performed in
Adobe Photoshop or Zen 2007 (Zeiss).

Electron microscopy

Transmission electron microscopy (TEM) and immunogold
labelling was as described previously (Salpingidou et al.
2008). Affinity-purified anti-XLAP2 IgGs were used for the
immunogold staining of tissues, cultured cells and NEs.
Images of somatic tissues were taken via a Jeol B 100
transmission electron microscope at magnifications of
×20,000 and ×40,000. XTC cells were either embedded in
Araldite (Agar Sciences) for TEM or prepared for cryo-
sectioning and immunogold labelling. XTC samples were
examined under a Hitachi H7600 transmission electron
microscope.

For scanning electron microscopy (SEM), oocytes were
dissected out from hormone-stimulated female frogs. The
nuclei were manually isolated, placed on silicone chips and
processed for immunogold labelling as described by Allen
et al. (2007). SEM was performed on Hitachi S-5200.

Statistical analyses of clusters immunogold-labelled NEs
of Xenopus oocytes examined by SEM

From each micrograph, immunogold label coordinates were
digitalized by using Scion Image software and saved as
data files with two variables (X and Y coordinates). The
left, right, top and bottom boundaries were subsequently
determined (maximum and minimum of coordinate variables)
and another data set with the same number of observations

was created with the X and Y coordinates being
randomly assigned values from the uniform distribution
and within the same boundaries as in the original file.
The basic logic behind this methodology can be
described as follows. If the tendency of empirical
(observed) points to form clusters is more likely than
that of points with randomly assigned coordinates
(theoretical points), then we can say that a general
clustering tendency exists in the observed data. The
major obstacle in statistical analyses is that the LAP2
signal is excluded from the nuclear pore complex (NPC)
area, narrowing the space for LAP2. We overcame this
problem by introducing the same distance values between
labels in the control as in the original micrograph. Data
were analysed with SPSS 17 software by three methods:
hierarchical clustering, K-means method and Bacher’s
method. The statistical significance of the cluster analyses was
calculated by using the following tests: the one-sided
two-sample t-test for means, the non-parametric Z-test
(Kolmogorov-Smirnov test) and the U-test (Mann-Whitney).
Statistical significance was assumed at values of P<0.05.

Statistical analyses of immunogold labelling of Xenopus
XTC cells examined by TEM

The calculated relative labelling intensity for XLAP2β in
four different regions inside the cell nucleus of XTC cells
was based on cryosectioned and immunogold-labelled XTC
cells according to the method described in Mayhew (2005).
XTC cells were cryosectioned and immunogold-labelled;
517 immunogold labels were counted from eight micro-
graphs at the same magnification. The standard deviation
error for the relative labelling intensity (RLI) was calculated
by Student's t-test and was P<0.05 for all regions. The areas
of the entire nucleus, the NE and the nuclear invagination
were calculated from the middle Z-section of confocal
microscope images. The areas of the remaining two regions
were calculated proportionally also from the middle Z-
section of the confocal microscope image by assigning
them the remaining nucleus area after the subtraction of the
NE and invaginations areas. For the calculations of areas
from confocal images, we used Zen 2008 software for the
Zeiss LSM 510 confocal microscope.

Results

Characterization of antibodies and identification of 40-kDa
polypeptide as XLAP2γ isoform by using LC/MS/MS
method

We generated rabbit antibodies against the common N-
terminal 1-165-aa fragment of XLAP2 protein. The specific
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immunoglobulins were affinity-purified by using the
XLAP2 N-terminal fragment (Salpingidou et al. 2008;
Supplemental Fig. 1). With this antibody, the previously
described XLAP2β protein (66 kDa) was immunoprecipi-
tated from Xenopus liver and XTC cultured cells, as
confirmed by Western blot (not shown).

In order to identify additional XLAP2 polypeptides and
link them to known cDNAs, we employed immunoprecip-
itation and mass spectrometry (LC/MS/MS). Proteins were
first immunoprecipitated from Xenopus egg extracts by
using the XLAP2 antibody. These proteins were immuno-
blotted with anti-XLAP2 (Fig. 1 a) to detect possible LAP2
isoforms. Two polypeptides of 86 kDa and 40 kDa were
consistently detected. Gel fragments containing these two
proteins (Fig. 1b) were further analysed by LC/MS/MS.
Our mass spectrometry data identified an 86-kDa polypep-
tide as clone 2/ω and the 40-kDa polypeptide as a
translation product of a previously uncharacterized cDNA
(see Discussion, Fig. 1c). According to the existing LAP2
nomenclature, the 40-kDa isoform should be named
LAP2γ. The identified LAP2γ peptide is not a degradation
product of XLAP2ω, since solubility assays have con-
firmed that this protein contains the transmembrane
domain, which is located on the C-terminal end of XLAP2γ
(and of XLAP2ω). Our antibodies are N-terminus-specific
and so the potential degradation product of that size would
not be recognized by our antibodies because of the cleaved
off N-terminal part of the protein with all epitopes.
Moreover, the 40-kDa protein possesses a transmembrane
domain and reacts with LEM-domain antibodies, as has
been described previously (Lang et al. 1999) in Xenopus
oocytes and unfertilized eggs.

Notably, the clone 3 cDNA, which is the only known
candidate for coding the XLAP2γ protein, lacks the TM
domain, exon C and the lamin-binding region characteristic
for major human LAP2 proteins. This confirms that it
cannot be translated into XLAP2γ protein.

XLAP2ω and XLAP2γ are expressed during early stages
of development, whereas XLAP2β is expressed late
in development and in adult tissues

The Western blot analysis of XLAP2 protein levels
during development demonstrated the presence of at
least three differentially expressed isoforms (Fig. 2a).
XLAP2ω and XLAP2γ occur in eggs and are expressed
during development up to stage 41 with the maximum
around stage 20. The continuous presence of XLAP2γ
along with XLAP2ω is notable. Expression of the 66-kDa
XLAP2β isoform is only observed from the neurula stage
onwards and its expression levels reach a maximum from
stage 34. In order to confirm an earlier observation that
XLAP2β is the sole isoform after stage 41, we analysed

stages 42 up to 52 by using a chemiluminescent method
to increase the sensitivity of Western blot detection
(Fig. 2a, black and white section). This experiment
confirmed that XLAP2ω and XLAP2γ were not present
in later developmental stages.

Subcellular localization of XLAP2 proteins
during development and in adult tissues

Immunofluorescence analyses indicated that embryonic
XLAP2 proteins (ω and γ) localized to the chromatin
throughout the cell cycle during early development (up to
the gastrula stage). At the morula stage, a significant

Fig. 2 Developmentally regulated expression and subcellular locali-
zation of XLAP2 isoforms in Xenopus. a Immunoblot analysis of
XLAP2 proteins during development. Positions of three major protein
bands representing XLAP2 isoforms are marked together with an actin
band used as a loading control. The embryonic XLAP2 proteins, viz.
XLAP2ω and XLAP2γ, are the only two isoforms present up to
gastrula stage, showing an accumulation of the amount of protein until
stage 22 followed by a steady decrease up to stage 41 and its
disappearance from stage 44 (a, right). Expression of the somatic
XLAP2β isoform is first detected at the gastrula stage and increases
significantly from the 28th stage. The additional protein band of
76 kDa may be a degradation product of the 86-kDa isoform.
Molecular masses of reference proteins (in kDa) are marked. b–f
Subcellular localization of XLAP2 protein isoforms during Xenopus
development and in XTC cells. The paraffin sections from Xenopus
embryos and adult tissues were probed for XLAP2 (b, c) or costained
for XLAP2 (red) and either lamin B2/B3 (d) or lamin B2 (e, f; green).
DNA was stained with 4,6-diamidino-2-phenylindole (DAPI; blue).
Images were via a fluorescent (b) or confocal laser scanning (c-f)
microscope. Images represent the Z-stack (c) or single Z-section (b’,
d-f; 0.25 μm thick). b During early development, XLAP2 proteins
colocalize with mitotic chromosomes in the morula and blastula in
which XLAP-86 and XLAP2-40 are expressed and with the interphase
nuclei of the gastrula and stage-20 embryos in which XLAP-86,
XLAP2-66 and XLAP2-40 are present (arrowheads positions of cell
nuclei, arrow position of XLAP2). Inset top right of morula merged
image in b Higher magnification of the boxed nucleus. The
localization of XLAP2 in the nuclear envelope (NE) is rare in blastula
embryos (note the fragments of NE in b’) but becomes a common
feature at the gastrula stage (see well-organized membranes in b’).
Embryonic samples show autofluorescence (mostly from the yolk
platelets) that reveals the shape and size of each cell (e.g. easily seen
in red and blue channels from morula to gastrula stage). c In the
morula stage embryos, XLAP2-containing fractions are associated
with mitotic chromosomes (c.1) and karyomere formation is seen
around individual chromosomes (c.2). Note the position of embryonic
XLAP2 in membrane-like structures on the morula chromatin (arrow),
the typical cluster-like location on the chromatin (arrowhead) and the
XLAP2 cluster outside the chromatin (double arrowhead). In somatic
cells, XLAP2β aggregates in between separating chromatids at early
anaphase (c.3) and then associates with peripheral regions of
chromatin in late anaphase (c.4; arrows peripheral regions of
chromatids with associated XLAP2, arrowheads chromosome core
regions not yet associated with XLAP2). d–f The XLAP2 proteins
colocalize with B-type lamins in stage 26-28 (d) and stage 44 (e)
Xenopus embryos and in adult tissues (f). Images represent brain
tissue. Bars 100 μm (b, morula), 20 μm (b, blastula – stage 20), 5 μm
(c), 20 μm (d), 10 μm (b’, e, f)
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amount of XLAP2 was located around the chromatin,
frequently forming cloud-like structures inside the cell
nucleus (Fig. 2b, arrow). XLAP2 was distributed irregu-
larly but in an NE–like fashion in the cell nucleus (Fig. 2b,
inset). At later stages of development, both embryonic
XLAP2 isoforms were located typically at the NE, as
easily visible at stage 20 (Fig. 2b) and through later

stages (Fig. 2d, e). Irregular but complete NEs were
noticeable at the blastula stage, with regular NEs at the
gastrula stage (Fig. 2b’). Detailed immunofluorescence
studies revealed that both embryonic XLAP2 isoforms
were associated with karyomers in interphase nuclei at
the morula stage. Mitotic chromatin was also associated
with embryonic XLAP2 proteins (Fig. 2c, 1st anaphase
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and 2nd interphase respectively). From the blastula stage,
both embryonic XLAP2 proteins were localized to the
NEs that had formed around the interphase chromatin.
The amounts of embryonic XLAP2 proteins diminished
during development but they still associated with mitotic
chromatin. From stage 20, XLAP2ω and XLAP2γ
localized generally to the NEs and colocalized with
lamins B2/B3 and lamin B2 in all tissues tested (e.g.
brain, ectoderm and somites; not shown). As demonstrat-
ed in Fig. 2d–f, XLAP2 proteins occurred in the brains of
stage-26 and stage-44 embryos (Fig. 2d, e, respectively)
and in adult Xenopus (Fig. 2f). During early anaphase in
XTC tissue-cultured cells, XLAP2βwas localized in between
the chromatids and, in late anaphase, associated with the
chromatin (Figs. 2c, 3, 4). The association of XLAP2β with
peripheral chromatin was readily visible (Figs. 2c, arrows),
whereas internal regions were still weakly bound by
XLAP2β (Figs. 2c, arrowheads). Detailed immunofluores-
cence analyses of the cell-cycle-dependent distribution of the
XLAP2β isoform in XTC cells also revealed complete
colocalization with lamin B2 (Supplemental Fig. 2). Punc-
tate labelling of NPCs with m414 antibodies (anti-Nup62
and other F/G repeat nucleoporins) overlapped with the
smooth continuous LAP2 labelling of NE at interphase
(Supplemental Fig. 2).

XLAP2β is localized to the inner nuclear membrane of NE
but also to chromatin inside the cell nucleus and to NE
invaginations

XLAP2β was ubiquitously expressed in all adult tissues
tested but was absent from oocytes and eggs in which theω
and γ isoforms were expressed (see Supplemental Fig. 1b).
The location of the XLAP2β protein was demonstrated in
the brain and in muscle cells by TEM after immunogold
labelling in Fig. 3a, b. XLAP2β was located mostly in
heterochromatin regions next to the NE. Nevertheless, a
small fraction of the protein (typically between 10% and
30% of the total label) was detected within chromatin
microdomains inside the nucleus. This interpretation was
supported by the immunofluorescence confocal micros-
copy data from brain tissue (Fig 2f) in which XLAP2β
was located predominantly in the NE of eppendymocytes
and glial cells (see also Supplemental Fig. 1e). As
illustrated in Fig. 3b, immunogold labelling of muscle
and muscle satellite cells nuclei demonstrated the labelling
of the heterochromatin regions next to the NE and at some
distance from the NE. Solubility assays on XTC cells
(Fig. 3e) and on liver and brain tissues (not shown)
indicated that the only protein detected (66 kDa) behaved
as an integral membrane protein suggesting that the
fraction of XLAP2β inside the nucleus possessed a
transmembrane domain.

In order to solve the question of the XLAP2β presence
in the nuclear interior, we performed immunogold labelling
on tissue-cultured XTC cells serving as a model of somatic
tissues. Immunogold labelling indicated that XLAP2β was
associated with heterochromatin adjacent to the NE
(Fig. 3f-j, arrowheads), although some clusters of XLAP2
protein were also present in the heterochromatin inside the
nucleus (Fig. 3f-j, double arrowheads). Only a few of them
were accompanied by membranes of NE invaginations in
osmium-stained cryosections from XTC cells (see also
Supplemental Fig. 3f demonstrating a cluster of XLAP2
protein on chromatin inside the nucleus and its location in
relation to NE membranes). In parallel, we performed
confocal microscopy on XTC cells; this confirmed that the
predominant fraction of XLAP2 was associated with the
NE but that a small fraction of the protein was also detected
inside the nucleus (see the three strong signals in central Z-
sections of Fig. 3d). These particular intra-nuclear signals
probably represented long invaginations of the NE, because
the signal was present in consecutive Z sections beginning
from the NE and nuclear periphery to the centre of the
nucleus. Thus, at least part of intra-nuclear XLAP2 protein
was associated with NE invaginations. A small fraction of
XLAP2β protein, presumably associated with intra-nuclear
chromatin, seemed to be also dispersed throughout the
interior of the cell nucleus. This particular fraction, which
could be visualized at early prophase, was located between
the condensing chromatids (see Fig. 3c, arrowheads).

We further investigated XLAP2β locations by using
statistical analyses. We analysed the distribution of
immunogold-labelled XLAP2β protein in cryosections
from XTC cells by using TEM. We examined the
distribution of immunogold label (n=517 spots) from eight
micrographs, divided them into four groups and calculated
the RLI compared with the control, i.e. the randomly
generated labelling of the entire cell nucleus (see Materials
and methods). The chosen regions were: chromatin at the
NE, chromatin inside the nucleus associated with the NE,
chromatin inside the nucleus not associated with NE, and
the nuclear interior with no chromatin and no NE. Table 1
reveals that the XLAP2β distribution is not random and is
always associated with chromatin. However, a significant
portion of protein is associated with chromatin but is distant
from the NE, inconsistent with a location in the membrane.
Moreover, 72% of the calculated label in the first three
groups is found in clusters of four or more labels suggesting
a microdomain-like distribution of XLAP2β both at the
NE and at the intra-nuclear chromatin. In order to
support this finding, we used confocal microscopy. We
measured the intensity of the fluorescent XLAP2-specific
signal in 0.5-μm-thick optical sections through the centre
of five nuclei. The calculated relative intensities of the
fluorescent signal from NE, from NE invaginations and
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from the nuclear interior were 165± 11, 159±16, 45±14,
respectively. This correlated with the calculated RLI
values from TEM micrographs.

Two types of structures containing XLAP2β and lamin
B2 were present inside the cell nuclei of XTC cells: a

typical invagination with a visible lumen (Fig. 4a, arrow)
and other structures without a visible lumen (Fig. 4a,
arrowheads). XLAP2β in the NE, at the upper and the
lower part of cell nucleus, was not homogeneously
distributed (Fig. 4b). This could represent a cluster-like

Fig. 3 Subcellular localization of somatic XLAP2 protein in adult
tissues and XTC cultured cells. a, b Immuno-gold staining of ultra-
thin sections of embedded tissues with antibodies against XLAP2,
followed by incubation with protein A conjugated to 8-nm gold
particles (Cyt cytoplasm, NE nuclear envelope, Nuc nucleus). In brain
(a) and muscle (b) tissues, XLAP2 (black dots) localizes mostly at the
inner nuclear membrane (arrows) and peripheral heterochromatin
(arrowheads) but is also present in intra-nuclear regions (double
arrowheads). b Note that XLAP2 occurs both in the nucleus of the
myotube (top) and in the muscle satellite cell (bottom). Bar 500 nm. c
In early prophase of XTC cells, costaining for XLAP2 (green) and
phospho-histone H3 (red) reveals that XLAP2β is located not only at
the NE, but also in intra-nuclear loci (arrows). Bar 5 μm. d Confocal
studies of interphase XTC tissue cultured cells stained for XLAP2
demonstrate that XLAP2β is present in NE and in invaginations of the
nuclear membrane (strong dots inside the nucleus). Note that the
region lying on the upper left side of the nucleus corresponds to the
nucleolus area (see merge). Bar 10 μm. e Biochemical properties of
XLAP2β protein from XTC tissue-cultured cells. Analysis of the

XLAP2β polypeptide solubility in isolated cell nuclei, extracted with
10 mM TRIS buffer alone or containing Triton X-100 (TX), NaCl,
Triton X-100 plus NaCl (TX+NaCl), or urea (6M Urea). Equivalent
amounts of the supernatants and pellets were resolved in SDS-PAGE
gel, transferred onto nitrocellulose filter and probed for XLAP2
protein. XLAP2-66 displayed the properties of an integral membrane
protein involved in interactions with other protein components of the
nuclear lamina, because it was solubilized in the presence of Triton X-
100 together with NaCl. f–j Transmission electron microscopy (TEM)
studies of XTC tissue-cultured cells confirm the NE localization for
XLAP2 proteins. XTC cells were grown in culture, embedded in
gelatin and cryo-sectioned for immuno-gold TEM. XLAP2 was
detected with antibodies against XLAP2 followed by Protein A
coupled with 5-nm gold particles. Gold-labelled XLAP2 was mostly
localized at the nuclear periphery and inner nuclear membrane (INM,
arrowheads) but intra-nuclear clusters (double arrowheads) were also
present (f, j). g Higher magnification of the boxed area in f (Cyt
cytosol, ONM outer nuclear membranes, Nuc nucleus). Bars 100 nm
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structure containing XLAP2 at the NE. Some of such
structures spanned throughout the cell nucleus (e.g. typical
invagination and “non-lumenal” structures, Fig. 4b, arrows
and arrowheads, respectively). In all invaginations with a
visible lumen, XLAP2 colocalized with lamin B2 (Fig. 4d);
the lumenal part was free of DNA (Fig. 4d, e) and stained
with dihydrocholecalciferol (Fig. 4e) indicating the
endoplasmic-reticulum-like structures present inside.

Three-dimensional reconstructions of series of confocal
images of a single nucleus (Fig. 4f, g) confirmed that such
lumenal structures connected opposite sides of the cell
nucleus membrane, that they were free of DNA (Fig. 4g)
but that they contained F/G-repeat nucleoporins (Fig. 4f)
suggesting the presence of NPCs on such structures. Only a
few out of the many internal non-lumenal structures
containing XLAP2 also contained lamin B2 (Fig. 4c, d).
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This could represent the internal chromatin-bound clusters
of XLAP2 detected in TEM experiments.

Embryonic XLAP2 isoforms locate at microdomains
at the inner nuclear membrane of oocyte NE

Analyses of the distribution of embryonic XLAP2 isoforms
were performed by examining manually isolated oocyte
nuclei with SEM following immunogold labelling.
XLAP2ω and XLAP2γ were located at the inner NE
membrane outside of the NPCs (Fig. 5a, b, yellow dots).
This was in agreement with the detailed analyses of TEM
immunogold data from adult tissues and XTC cells in
which XLAP2β location was not associated with NPCs
(see Fig. 3a,b, f-j). The distribution of embryonic XLAP2
isoforms was not uniform (see Fig. 5c, d) and could reflect
the distribution of nuclear lamina filaments underlying the
inner nuclear membrane of the NE.

We performed hierarchical analyses of clusters based on
the Euklidean distance between the label and single linkage
method followed by a calculation of the potential cluster
number by using the dendrogram method, on the basis of at
least three labels as a potential cluster (see Materials and
methods; see also Supplemental Fig. 2). Statistical analyses
of 356 immunogold labels from six micrographs revealed
the non-random distribution of the label with the
Student’s t-test value of P<0.05. Our statistical approach
allowed us to identify the most probable number of
clusters in each micrograph. The example presented in
Supplemental Fig. 3a contains five clusters.

Discussion

The presence of several (up to five) isoforms of XLAP2
protein has long been proposed in Xenopus. Since the
discovery of the first XLAP2 cDNA clones, several reports
have suggested the existence of XLAP2 proteins β and ω
(Lang and Krohne 2003; Lang et al. 1999), and clones 2, 3
and 4 (Gant et al. 1999). Our mass spectrometry data (Fig. 1)
have confirmed the identity of the XLAP2-86 polypeptide as
XLAP2ω/clone 2 and of the 40-kDa polypeptide as
XLAP2γ but without answering the question of its original
cDNA. In addition to the mass spectrometry results, we have
found that our IgG precipitates XLAP2γ from egg extract.
XLAP2γ also fractionates with the MP2/NEP-B (NE
vescicle population B) fraction of membranes from the
low-speed supernatant from eggs (Salpingidou et al. 2008)
and its solubility when it is extracted from eggs and from the
membrane fraction of eggs is identical to the solubility of
XLAP2ω and XLAP2β from XTC cells (Fig. 3).

The expression pattern of XLAP2 isoforms during
Xenopus development as demonstrated in our experiments
differs slightly from previous data (Lang et al. 1999). First
of all, we demonstrate the presence of two (instead of one)
early development-specific isoforms: XLAP2ω and
XLAP2γ (Fig. 2). In zebrafish, ZLAP2ω, the largest
LAP2 isoform (84 kDa), is the only previous embryonic
isoform discovered (Schoft et al. 2003) and is also replaced
late in development by the adult ZLAP2β isoform. Another
difference is that, in Xenopus and zebrafish, all identified
LAP2 proteins are integral membrane proteins, whereas in
mammals, at least two LAP2 proteins are “soluble” nucleo-
cytoplasmic proteins.

The embryonic XLAP2 isoforms (ω and γ) are
associated with chromatin and separated karyomers at the
morula and blastula stage (Fig. 2c.1, c.2). This resembles
the intra-cellular localization of zebrafish ZLAP2ω protein
observed in early embryos up to the late gastrula stage
(Schoft et al. 2003) and suggests similar roles for
embryonic LAP2 isoforms in lower vertebrates. The
association of XLAP2ω and γ with mitotic chromatin
decreases gradually during development up to late gastrula
stage. Notably, XLAP2β appears at this particular stage
of development and is mostly associated with the NE and
NE-associated chromatin. This confirms the in vitro data
from the native-gel shift assays, that bacterially expressed
LAP2 cDNA clones 2 (ω), 3 and 4 (β) bind to BAF and
chromatin with different affinities (Shumaker et al.
2001). Xenopus LAP2 isoforms have additional exons,
designated A, B and C (Fig. 1c), compared with
mammalian LAP2s. XLAP2β cDNA lacks exon A. This
may contribute to the different properties of the particular
XLAP2 proteins in binding to chromatin (Shumaker et al.
2001).

Fig. 4 Intra-nuclear localization of XLAP2 as correlated to nuclear
antigens and lipid membranes. XTC tissue-cultured cells were fixed
with paraformaldehyde and probed for XLAP2 (green in b, red in e)
or costained for XLAP2 (red in a, c, d) and lamin B2 (LAM B2, green
in a, yellow in c, d) or costained for XLAP2 (green, f, g) and either
p62-F/G nucleoporins (p62-Nup F/G, Ab 414, red, f) or phosphory-
lated histone H3 (red, g). Cellular membranes were visualized with
dihydrocholecalciferol (DHCC) and DNA was counterstained with
DAPI. a Various phenotypes of cultured cells presenting large nuclear
channels (arrow) or nuclear dots (arrowheads) in which XLAP2
colocalizes with lamin B2. b Large channels (arrows) and smaller
invaginations (arrowheads) are present on consecutive Z-sections of
the cell nucleus from the bottom to the top. c, d XLAP2 staining
correlates with lamin B2 and lipid membranes in NE. The nuclear
territory contains nuclear dots/invaginations that colocalize with lamin
B2 (arrowheads) or show a single XLAP2 signal (double arrow-
heads), forming channels (arrow) concomitant with the membrane
signal (DHCC). e Cell with a large nuclear channel lacking DNA but
possessing membrane signal (arrow). f, g Large nuclear invaginations
or channels running from the bottom to the top of a nucleus. Images
represent single Z-section (0.25 μm thick) from the nucleus, with
the lines marking the surface of the Z-axis cross section through the
nucleus. The cross sections from seven consecutive Z-stacks
are shown bottom and right. Note that XLAP2 signal colocalizes
with p62-F/G repeats containing nucleoporins (f) or with branches
of the DNA-free tunnel in the nucleus (g). Bars 10 μm (a, b, e),
5 μm (c, d)

�

Cell Tissue Res (2011) 344:97–110 107



Taken together, the XLAP2ω/clone 2 andXLAP2γ isoform
are expressed in early embryos and associate with interphase
and mitotic chromatin, with the XLAP2ω/clone 2 possessing
the highest binding activity with BAF and chromatin compared
with all isoforms examined; this might reflect the evolutionary

adaptation to extremely rapid cell divisions at this stage of
development. In contrast, XLAP2β expression starts when the
cell divisions are slower and interphase is more pronounced,
concomitant with the nine-fold lower affinity of binding with
BAF (Shumaker et al. 2001).

Fig. 5 Analyses of the distribution of XLAP2ω and XLAP2γ
proteins on the inner surface of the nuclear envelope (NE) of Xenopus
oocyte by using immunogold labelling and scanning electron
microscopy (SEM). Manually isolated nuclei from frog oocytes were
transferred onto silicone chips. The inner side of the NE was manually
exposed by gently removing the nuclear content and processing for
SEM immunogold procedures. XLAP2 was detected with antibodies
against XLAP2 followed by Protein A coupled with 10-nm gold

particles (yellow dots gold particles associated with immunocomplex
bound to XLAP2 protein, NPC nuclear pore complexes). a, b
Embryonic XLAP2 proteins localize non-randomly and show a
tendency to form clusters and microdomains at the inner nuclear
membrane. They also show a tendency to locate longitudinally; this
might reflect the shape of the nuclear lamina filaments to which they
are initially attached. c Typical cluster of XLAP2 proteins. d Typical
region lacking XLAP2 protein. Bars 100 nm (a, b), 50 nm (c, d)

Table 1 Calculated relative labelling intensity (RLI) for XLAP2β in
XTC cells of four different regions inside the cell nucleus. XTC cells
were cryosectioned and labelled as in Fig. 3f-j. Immunogold label
(n=517) was counted from eight micrographs at the same magnifica-
tion. The standard deviation error for RLI was P<0.05 for all regions
(Student’s t-test). The area of the entire nucleus, nuclear envelope

(NE) and nuclear invagination was calculated from the middle Z-
section of the confocal microscope image from Fig.3c. The area of the
remaining two regions was calculated proportionally also from the
middle Z-section of the confocal microscope image after subtraction
of the NE and invaginations (n/d not determined)

Region of the nucleus RLI Number of clusters detected (with 4 or more label)

Chromatin at the NE 19.33 18

Chromatin inside nucleus with NE 12.42 9

Chromatin inside nucleus without NE 7.96 12

Nuclear interior with no chromatin and no NE 0.086 2

Random, statistical labelling of entire nuclear region 1.00 n/d
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In adult tissues and in XTC cells, a fraction of XLAP2β
has also been detected inside the nucleus, usually in clusters
on heterochromatin, but also with no visible traces of NE
invaginations being detected (Figs. 3, 4, Table 1). Immu-
nogold labelling of XTC cells (Fig. 3f-j) suggests that this
intra-nuclear fraction is much greater than the possible
amount of proteolytic degradation products detected in
XTC cells. This suggests the presence of a hydrophobic
(lipid) fraction associated with the surface of chromatin as
reported for the first time some time ago (Maraldi et al.
1992) or might reflect tubular NE invaginations (Ellenberg
et al. 1997; Fricker et al. 1997; Gehrig et al. 2007) or both.
The last-mentioned seems to be the most probable, since
our confocal microscopy data indicate the presence of the
XLAP2β fraction inside the cell nucleus. This is especially
visible during prophase when the chromatin is condensing
and relocating some chromatin components or adjacent
proteins (Fig. 3c). Based on the TEM immunogold results
(Table 1) and three-dimensional analyses of confocal
sections through XTC cell nuclei (Fig. 4), this intra-
nuclear fraction of XLAP2 can be divided into membrane-
fraction-associated with NE invaginations (and chromatin)
and non-membrane-fraction-associated with chromatin.

The calculated RLI data confirm that only some of the
clusters of intra-nuclear XLAP2β are connected with NE
invaginations (Table 1). The difference in labelling intensity
between chromatin at the NE and at the invaginations might
be the result of incorrect assumptions of the number of
invaginations in single nuclei (three per nucleus, as in
Fig. 3d). If we take into account only those invaginations
with a visible lumen, make appropriate corrections for this
in the calculations of RLI and assume one invagination per
cell nucleus, we will obtain an RLI value for chromatin at
the invaginations similar to the value for NE-associated
XLAP2. This correlates with the same intensity of the
signal from XLAP2β-stained NE and from XLAP2β-
stained NE invaginations detected by confocal microscopy
(Fig. 4b, f). The association of all isoforms of XLAP2 in
clusters on chromatin and/or NE is of great interest. It
confirms that XLAP2 proteins are involved in the organi-
zation of chromatin structure by anchoring large protein
complexes and thereby modifying chromatin structure on a
domain-like scale rather than a single transcription unit.

The second implication is the possible involvement of
LAP2 protein clusters in forming discrete microdomains at
the NE composed of either lamin A or lamin B. Newly
imported into the nucleus, lamin A and B molecules are not
incorporated uniformly into the nuclear lamina but form
separate microdomains (Furukawa et al. 2009) reflecting
separate microdomains of lamin A and B present in the
nuclear lamina (Haraguchi et al. 2008). Our data indicate
that these lamin A and lamin B microdomains are formed
and stabilized by interactions with LEM domain proteins of

the inner nuclear membrane, such as XLAP2. Since we
have observed the full colocalization between XLAP2
isoforms and B-type lamins (Supplemental Fig. 2), we
suggest that part of the lamin B microdomains in Xenopus
NE might be formed and maintained by LAP2 proteins (e.g.
Fig. 4c, d). XLAP2 proteins have been found to co-
precipitate with A- and B-type lamins in multiprotein
complexes (Lang and Krohne 2003) and so the specificity
of particular microdomain formed by XLAP2 might be
determined by other proteins of the complex specific either
for A- or B-type lamins. Our data also suggest that XLAP2
proteins are similarly involved in linking epigenetically
marked chromatin as other integral membrane proteins of
the NE inner membrane, e.g lamin-B-receptor protein
(Makatsori et al. 2004).
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