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Abstract 
Visual guidance of forwards, sideways, and upwards stepping has been investigated, but 

there is little knowledge about the visuomotor processes underlying stepping down 

actions. In this study we investigated the visual control of a single vertical step. We 

measured which aspects of the stepping down movement scaled with visual information 

about step height, and how this visual control varied with binocular vs monocular vision. 

Subjects stepped down a single step of variable and unpredictable height. Several 

kinematic measures were extracted including a new measure, ‘kneedrop’. This describes 

a transition in the movement of the lower leg, which occurs at a point proportional to step 

height. In a within-subjects design measurements were made with either full vision, 

monocular vision, or no vision. Subjects scaled kneedrop relative to step height with 

vision, but this scaling was significantly impaired in monocular and no vision conditions. 

The study establishes a kinematic marker of visually controlled scaling in single-step 

locomotion which will allow further study of the visuomotor control processes involved 

in stepping down. 

 

Introduction 
Everyday locomotion often involves obstacles or significant changes in the physical 

environment which must be visually registered and accommodated into the walking 

pattern. This kind of visual guidance has been examined in anterior-posterior and medio-

lateral directions (Lyon & Day, 1997), as well as stepping upwards over an obstacle 

(Patla et al, 1991). However much less is known about the control of stepping down. 
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Steps down are encountered frequently in both manmade and natural environments and 

are of applied importance as one of the most frequent causes of falls during walking 

(Startzell et al., 2000). This paper examines the visually driven adjustments to 

locomotion made in response to a single step down. We will concentrate on locomotion 

down a regular step with distinct ‘platforms’ and ‘risers’, though we presume that similar 

principles apply to less regular surface features that require a descending foot placement 

in a natural environment. 

 

What is the role of vision in step descent? Beyond the binary decision to attempt a step or 

not (Warren, 1984), visual information about step height enables aspects of movement to 

be scaled appropriately for the depth of the step. In a series of EMG studies (see Santello, 

2005 for a review) participants stepped, or made controlled falls, down a step whose riser 

height varied between trials. These studies show that there is a burst of calf muscle 

activity just before landing on a step. This activity may increase joint stiffness for 

landing; crucially, the activity occurs later for deep steps. This ability to scale the onset of 

the EMG burst to the step height is likely to depend on visual input about the riser height. 

Craik, Cozzens & Freedman (1982) found that pre-landing EMG activity disappeared 

when participants were blindfolded, and was reduced when the surround of the step 

moved down while the participant stepped. However this method is not very robust for 

quantifying how movement depends on vision condition, since defining the burst onset is 

difficult when it is weak. 
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An alternative approach to quantifying how movement changes with riser height is to 

measure kinematics during step descent. The biomechanics of staircase descent have been 

in some respects well characterised (McFadyen & Winter, 1988; Protopapadaki, 

Drechsler, Cramp, Coutts & Scott, 2007). Furthermore, Riener, Rabufetti, & Frigo (2002) 

showed that during stair descent maximum hip and knee flexion angles depended on stair 

inclination. However, it was unclear whether the dependence was on tread depth or riser 

height. Several studies have divided the step down into phases. ‘Foot placement’ (FP), 

the last phase before foot contact, is associated with extension at lower limb joints, which 

prepares the body for weight acceptance (McFadyen & Winter, 1988; Zachazewski, Riley 

& Krebs, 1993). MacFadyen & Winter simply define FP as beginning halfway through 

the swing phase and ending on foot contact (MacFadyen, personal communication, 

2006). We tried to define phases more stringently and determine if the transition between 

them depended on riser height. 

 

One potential source of visual information to step depth is binocular information. It has 

been claimed that this provides a cue to depth in locomotor tasks. For example 

participants increase toe clearance over an obstacle when stepping over it with monocular 

viewing (Patla, Niechwiej, Racco & Goodale, 2002). Likewise in an obstacle avoidance 

task (Chajka, Vecellio, Hayhoe & Gillam, 2007) monocular viewing causes participants 

to make longer fixations on obstacles and the floor, and to increase total movement time. 

These authors interpret their findings as showing a role of binocular vision in the 

guidance of locomotion. However the role of binocular information in stepping down has 
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not yet been studied. It is likely to be important for perceiving the step’s depth, which 

allows appropriate movement scaling. 

 

This study examined stepping down a single step. In many of the EMG and kinematic 

studies participants had prior experience of descending each step, so non-visual 

information about riser height was also available to them. This makes it difficult to infer 

whether movement scaling to riser height was really visually controlled and predictive. 

We carefully determined that control is visual by varying riser height between trials 

rather than in blocks (so vision must be used on every trial) and by measuring movement 

in a blindfold condition. We present a novel kinematic marker of visual control which 

captures how movements are planned on the basis of visual information about step 

height; and, by removing binocular information, we assess the potential contributions of 

binocular visual cues to the scaling process. 

 

Method 

Participants 

Ten adults with normal or corrected normal vision took part (mean age 22.1, s.d. 3.6 

years, mean height 173.5 cm, s.d. 9.8 cm, five males). All had normal stereo acuity on the 

TNO test (Institute for Perception TNO 1972). Eye dominance was measured by asking 

participants to look through a tube with one eye three times; all participants chose to look 

with same eye for all three trials and this was taken to be their ‘dominant’ eye. 
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Equipment 

Kinematic data were recorded using a 6-camera motion tracking system (SMART, Milan) 

operating at 60 Hz. Cameras fixed at ceiling height surrounded a 13m3 testing area, 

allowing accurate 3-D reconstruction of marker positions. On each leg the participant 

wore a marker on the Lateral Epicondyl (LE), Lateral Malleolus (LM), Heel (H), and 5th 

Metatarsal Head (MH). Participants were barefoot and wore shorts to allow easy camera 

viewing of the kinematic markers. A simple ‘step’ from an ‘upper platform’ to a ‘lower 

platform’ was constructed. The height of its upper platform was constant for all trials and 

step height was varied by changing the lower platform between trials, so the step up at 

the start of each trial was no guide to the height to be descended. 

Procedure 

The task was to take a single step down from the upper platform to the lower platform. 

The participant took one practice step down to familiarise them with the basic task before 

markers were attached. Before each trial the participant waited away from the step, which 

they could not see. On ‘no vision’ trials they were then fitted with a blindfold; on 

monocular trials they were fitted with an eye patch. On all trials they then closed their 

eyes and were led to the upper platform. On vision and monocular trials they were 

instructed “open your eyes and step down when you’re ready”; on no vision trials they 

were instructed “step down when you’re ready”. They were asked to step off the upper 

platform onto the lower platform as normally as possible, leading with one foot. 
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Step dimensions 

Riser heights were scaled to leg length to allow comparison between participants of 

different height. Leg length was measured as the distance from ASIS to medial malleolus. 

The height of the upper platform was 24% leg length + 18mm. The range of riser heights 

(8 – 24 % leg length) was designed to be as extreme as was compatible with safety and 

normal stepping behaviour. For an adult of average leg length (90 cm) shallow, medium, 

and deep steps were ~7cm, 14cm, and 21cm. 

Design 

Within-subjects factors were riser-height (8, 16, 24% leg length) and vision-condition 

(vision (V), monocular (M), no vision (NV)). Each participant completed 3 blocks, 

totalling 27 trials. Trial types were randomised within a block, with each block 

containing all nine riser-height (3) x vision-condition (3) trial types. Half the group (3 

males, 2 females) always had their dominant eye covered, half their nondominant eye (2 

males, 3 females). 

Data Analysis 

Data were analysed using SMART software (BTS, Milan). We extracted several 

measures from each trial. After analysis, we averaged data from the 3 trials at each 

combination of riser height and vision condition for an individual participant. 

 

Since the purpose of this study was to discover how movement is scaled to a vertical 

environmental feature (the step), we developed a new measure, ‘kneedrop’, to capture the 

movements of the leg relative to the vertical. 
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To measure kneedrop (Fig 1a) we first defined the lower leg segment between the Knee 

(LE marker) and Ankle (LM marker), and measured the angle (‘swing’) between this 

segment and the vertical over the course of the stepping movement (Fig 1a). Changes in 

this angle reflect not only flexion at the knee but also the orientation of the body relative 

to vertical. For all participants, swing showed the same characteristic pattern during 

descent – the leg swings outwards to a peak, then swings inwards again. We defined 

swing peak as the point at which the rate of change in swing angle approached zero (was 

1.5 deg/s or less). We then calculated the vertical position of the knee (LE marker) as the 

body descended the step. ‘Kneedrop’ was defined as the knee’s vertical descent from its 

maximum height to the swing peak. In other words it measures how far the knee has 

dropped vertically from its peak, at the time when the leg has ceased to swing outwards 

and is beginning to swing back. 

 

We hypothesised that the location of the swing peak might change with riser height but 

that this would depend on the visual information available. To test this we conducted a 

repeated measures ANOVA on kneedrop with factors riser height (shallow, medium, 

deep) and vision condition (V,NV,M). Significant results were followed up with further 

ANOVAs to determine the source of the difference; finally a repeated measures ANOVA 

on V trials with factor riser height confirmed scaling in the vision condition. We 

excluded from the dataset any trials which failed to show a swing peak. Since any change 

in the kneedrop measure might result from a change in knee peak height, we also 
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measured the correlation between each participant’s knee peak height and kneedrop on V 

trials. 

 

We next examined the possibility of learning during the experiment, using a repeated 

measures analysis at each level of riser height, with factors trial number (1,2,3) and 

vision condition (V,M). As an index of overall movement efficiency we analysed 

movement duration in a repeated measures riser height by vision condition (V,M) 

ANOVA. We defined movement onset when the heel was raised 5 mm above the upper 

platform and movement end when the toe was 5 mm above the lower platform. If 

monocular viewing caused systematic misjudgements of riser height, one might expect a 

greater incidence of high-impact, high-velocity landings on the lower platform in the M 

condition than in the V condition. To test whether this was the case we conducted a 

repeated measures riser height by vision condition (V,M) ANOVA on landing speed (MH 

marker resultant speed in three dimensions at movement end). 

 

We expected any effects of riser height to be monotonic, so in all ANOVAs we report 

linear contrasts for height effects unless otherwise stated. For the same reason we report 

linear contrasts for effects of trial number. Main effects are reported for all other factors 

and interactions. 
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Results 

Kneedrop 

14/270 trials were excluded from analysis of kneedrop because swing showed no peak 

(i.e. kneedrop was not measurable). Figure 1b shows mean kneedrop data from the 

remaining trials, across all participants, riser heights and vision conditions. Figure 1c 

shows ‘swing’ angle unfolding over space in the vision condition, for a sample trial at 

each riser height. Peak swing occurs further down the step for deep than shallow steps 

(kneedrop is larger). 

 

An ANOVA including all riser heights and vision conditions showed a vision-condition 

by riser-height interaction (F[4,36] = 12.0, p < .001) as well as effects of vision-condition 

(F[2,18] = 3.9, p < .04) and riser-height (F[1,9] = 81.9 < .001). Similarly an ANOVA 

including riser-height and vision conditions V, NV showed a vision-condition by riser 

height interaction (F[2,18] = 27.7, p < .001) and effects of vision-condition (F[1,9] = 7.6, 

p < .03) and riser height (F[1,9] = 64.4 < .001). An ANOVA including riser-height and 

vision conditions V, M showed a vision-condition by riser-height interaction (F[2,18] = 

4.2, p < .04), an effect of riser-height (F[1,9] = 138.7 < .001), but no effect of vision 

condition (F[1,9] = 1.2, p > .3). An ANOVA with factor riser-height on V trials showed 

an effect of riser-height (F[1,9] = 82.9, p < .001). Taken together, these results show that 

in the vision condition participants scale their kneedrop to riser height. This scaling is 

significantly reduced either with no vision or with monocular viewing. Nine participants 

showed no significant correlation between knee peak height and kneedrop and one 
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participant showed a negative correlation, so increases in knee peak height could not 

account for the increases in kneedrop we found. 

 

Learning (Fig 1d) was assessed at each value of riser height. For shallow trials, there was 

no effect of vision condition (V,M) on kneedrop (F[1,5] = 1.2, p > 0.3), an effect of trial 

number (F[1,5] = 11.5, p < .02), with kneedrop reducing as the experiment progressed, 

and no interaction (F[2,10] = 0.3, p > 0.7). Only 6 participants were included in this 

analysis, since the other 4 had at least one trial on which swing did not peak. For trials 

with medium step height, there was no effect of vision (F[1,9] = 0.3, p > 0.5), an effect of 

trial number (F[1,9] = 5.2, p < .05), with kneedrop reducing as the experiment 

progressed, and no vision condition by trial number interaction (F[2,18] = 1.9, p > .1). 

For trials with the maximum step height, there was an effect of vision condition (F[1,9] = 

6.4, p < .04), no effect of trial number (F[1,9] = 1.6, p > .2) and no vision condition by 

trial number interaction (F[2,18] = 0.7, p > 0.5). 

Secondary measures 

An ANOVA on total movement duration (Table 1), showed a significant increase with 

riser height (F[1,9] = 54.4, p < 0.001), no effect of vision condition (V,M) (F[1,9] = 2.9, 

p > 0.1) and no interaction (F[2,18] = 2.1, p > 0.1). 

 

Mean landing speed (Table 1) increased with riser height in both V and M conditions. A 

repeated measures ANOVA on V and M trials showed an effect of riser height (F[1,9] = 

35.8, p < .001), no effect of vision condition (F[1,9] = 3.9, p > .08), and no interaction 

(F[1.25,18] = 0.1, p > 0.9, Greenhouse-Geisser corrected) on landing speed. Thus landing 
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speed is not larger on M trials than V trials as one might expect if participants were more 

often making misjudgements on M trials. 

 

Discussion 

We developed a new paradigm to examine the visual control of stepping down a single 

step. Visual control of the leg’s movement during step descent can be captured by the 

kinematic measure ‘kneedrop’, the distance dropped by the knee from its peak height to 

the point where the calf segment reaches its maximum outwards ‘swing’. This parameter 

must be under visual control since (a) its value scales to the riser height of the step, which 

in our paradigm must be gained using visual information since participants have no non-

visual cues to it; (b) scaling does not occur when participants are blindfolded. Scaling is 

impaired under monocular viewing conditions. 

 

This scaling process makes the stepping-down movement an efficient one by combining 

horizontal and vertical translation in stepping down. Like forward stepping (Lyon & Day 

1997), it seems that stepping down can be achieved as a controlled fall when the 

appropriate visual information is present. Kneedrop is not the only measure of visual 

control in step descent. For example future studies should investigate the relation of the 

swing peak to pre-landing EMG activity (e.g. Santello, 2005). However, unlike these 

EMG measures, kneedrop can be reliably extracted in degraded visual conditions, which 

will allow future experiments to investigate the sources of visual information important 

for controlling descent. 
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While one might have expected monocular viewing to have some general effect on the 

duration of the step, this was not affected. In contrast covering one eye impaired scaling 

of kneedrop to step height. One interpretation of this is that binocular information is used 

to perceive the depth of the step and scale movements to riser height. Thus removing 

binocular information should cause misperceptions of target distance, which could be 

responsible for the reduction in scaling we found. An alternative possibility is that with 

monocular viewing, participants correctly perceive the depth of the step, but add some 

margin for error in their movement parameters because visual uncertainty caused by 

reduced field of view leads to cautious movement planning. This kind of effect has been 

shown in reaching studies (Loftus, Murphy, McKenna & Mon-Williams, 2004). In the 

present study informal observations and comments made by participants suggested that 

some depth misperceptions occurred. If depth misjudgments occurred in such a task, 

future studies could use synoptic viewing (Koenderink, van Doorn & Kappers, 1994) to 

selectively remove binocular disparity, or prisms to selectively manipulate vergence 

information, showing which binocular cues were most important for these distance 

estimates. However, our current results are most consistent with a ‘safety strategy’ 

account. Little learning occurred, and when it did it tended towards caution as the 

experiment progressed. Likewise landing speeds were not high as ‘undershooting’ the 

target step would predict. The specific safety strategy used by our participants was to 

tend towards the mean value of the step depths encountered (or the riser height of an 

average step, since this was approximated by our medium step). This kind of ‘contraction 

bias’ strategy has also been reported in open-loop reaching movements (Tresilian et al,

1999). 
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Our findings are consistent with the results of the few other studies on monocular 

walking, which report interruptions to locomotor variables with monocular viewing 

conditions (Patla et al, 2002, Chajka et al, 2007). In these studies it may also be the case 

that monocular viewing caused participants to add a safety margin onto their estimates 

because of a reduced field of view. Indeed Patla et al found that participants walking 

monocularly over an obstacle increased toe clearance over the obstacle, which represents 

a safety margin during obstacle crossing. 

 

In summary, our novel kinematic measure provides a useful tool for assessing the 

sensitivity of stepping actions to environmental parameters during stair descent, 

analogous to measures developed for analysing single steps forward, medially or upward 

over an obstacle. In particular it shows that stepping actions are regulated by visual 

information about riser height, and demonstrates the kind of response that participants 

make when visual information is degraded or removed during a step down. 
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Legends 
 

Fig 1a: ‘Swing’ is the angle between the calf segment and the vertical. Kneedrop is the 

distance that the knee descends from its peak while the leg swings outwards. Fig 1b: 

Mean and standard errors of kneedrop in vision (V), monocular (M) and no vision (NV) 

conditions. Fig 1c: Example trials from one participant. As the leg swings towards 

vertical (x-axis), the knee drops (y-axis). When the leg is closest to vertical, the knee has 

dropped further for deep steps than shallow. Fig 1d: Learning across trials in V and M 

conditions. 

 

Table 1: Mean and standard errors of movement duration and landing speed in V and M 

conditions. 
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Vision (V) trials Monocular (M) trials

shallow medium deep shallow medium deep

Movement duration (sec) .60 (.03) .68 (.03) .74 (.03) .57 (.02) .75 (.06) .85 (.08)

Landing speed (m/sec) .29 (.03) .33 (.03) .49 (.03) .25 (.02) .31 (.02) .48 (.03)
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