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Abstract 

Autosomal recessive causes of intellectual disability have, until very recently, been under-

researched due to the high degree of genetic heterogeneity. However, now that genome-wide 

approaches can be applied to single multiplex consanguineous families, identification of genes 

harboring disease-causing mutations by autozygosity mapping is expanding rapidly. Here we 

have mapped a disease locus in a consanguineous family from Pakistan with intellectual 

disability (ID) and distal myopathy. We genotyped family members on genome-wide single 

nucleotide polymorphism microarrays, and used the data to determine a single 2.5 Mb 

homozygosity-by-descent (HBD) locus on 5p15.32-p15.31, and identified the missense change 

c.2035G>A; p.Gly679Arg at a conserved residue within NSUN2. This gene encodes a 

methyltransferase that catalyzes formation of 5-methylcytosine at C34 of tRNA-leu(CAA), and 

plays a role in spindle assembly during mitosis as well as chromosome segregation. In mouse 

brain we show that  NSUN2 localizes to the nucleolus of Purkinje cells in the cerebellum. 

Confirmation of the effects of the mutation was performed using transfection of wild-type and 

mutant constructs into cells, followed by immunohistochemistry. We show that mutation to 

arginine at this residue causes the NSUN2 protein to fail to localize within the nucleolus.  The 

intellectual disability combined with a unique profile of comorbid features presented here makes 

this an important genetic discovery, and the involvement of NSUN2 highlights the role of RNA 

methyltransferase in human neurocognitive development. 

 



  Intellectual disability (ID), also called mental retardation (MR), is a neurodevelopmental 

disorder that can have a devastating impact on the affected individuals and their families. It is 

believed to occur at a frequency of ~1-3% within the population
1
, and may often be caused by 

abnormalities at the genetic level
2,3

. ID may present as the sole clinical feature (non-syndromic 

[MIM #249500]), or may be present with additional clinical or dysmorphological features 

(syndromic).  

We ascertained a consanguineous family from a farming community in the Khairpur 

district, within Sindh province in Pakistan, where the first-cousin parents had seven children, 

with 3 of the 5 female siblings affected (Figure 1). A male cousin, offspring of the mother’s 

brother, was also reported to be affected, but was not available for the study. Appropriate 

informed consent was obtained for all participants in the study including unrelated healthy 

Pakistani controls and NSID individuals of European descent, and institutional research ethics 

approval was obtained through Quaid-I-Azam University and through Centre for Addiction and 

Mental Health. The affected family members were assessed by a consultant pediatric 

psychiatrist. The Vinelands II Adaptive Behavior Scale and Diagnostic Interview for Social and 

Communication Disorders (DISCO
4
) were used as a framework to obtain information about early 

development, schooling and academic achievement, current level of social functioning and 

adjustment and support and help required for different activities of daily living. Based on this 

information a consensus diagnosis was reached of moderate ID, with intelligence quotient (IQ) in 

the range of 40 – 50, for all three affected individuals. No features of autism were noted.  

Neurological assessment was performed by a consultant neurologist. The oldest female 

(II:3) had significant delay to her development, walking and talking at five years. Her speech 

was limited to just a few words, and was dysarthric. Sensory examination and fundoscopy were 



not possible as she was not cooperative. The individual had a long face, somewhat long and 

pointed nose and chin. Height and weight were below the 5
th

 centile. Her fingers were tapering, 

but no hyper extensibility noted. Muscle tone was increased in all limbs (power grade 5) and 

reflexes were brisk, and plantars were equivocal. Other features observed are shown in Table 1. 

She is toilet trained, and can feed and dress/undress herself, and can help with household chores. 

  The second girl (II:4) also had significant delay, talking at 4 years, although age of 

walking was less delayed. Her speech is also limited and dysarthric, and is unable to recall her 

name when asked. Like her elder sister, she also had a long and pointed face and was below the 

5
th

 centile for height and weight. Muscle tone was increased in all limbs, reflexes were brisk, and 

plantars were equivocal. Other features observed are shown in Table 1. She is toilet trained, and 

can feed and dress/undress herself, but is unable to perform household chores. Coordination and 

sensory exam was grossly normal. 

The third girl (II:5) walked at 5 years, but had no speech at age of examination (6 years). 

Head and body measures were below the 5
th

 centile. Unlike II:3 and II:4, her gait was normal, 

tone was normal and reflexes were brisk with unsustained clonus. Fundus examination could not 

be performed, but other cranial nerve examination and systemic examination showed as normal. 

Other features observed are shown in Table 1. 

Computed tomography of the brain was performed for two affected individuals, which 

showed normal ventricles and cerebral volume and was generally normal. Gray and white matter 

differentiation was preserved, and posterior fossa was unremarkable. Whole blood count was 

within normal range, however creatine phosphokinase (CPK) and lactose dehydrogenase (LDH) 

levels were measured in two individuals (II:3 and II:4) and indicated elevated LDH levels in both 



(447 and 463 IU/L respectively; ref 122-234 IU/L), but elevated CPK only in the older sister 

(II:3). 

Photographs of all affected individuals were assessed for dysmorphic features by an 

experienced clinical geneticist, and are shown in Supplementary Materials, Figure 1. Clinical 

examination of affected individuals is summarized in Table 1. Overall, the picture is of moderate 

intellectual disability, small head and body size, with signs of distal neuropathy as indicated by 

pes cavus, broad gait, and tight Achilles tendons; however nerve conductance velocities, wave 

latencies and amplitude were apparently normal. Other variable features include  long nose/face, 

hypoplastic nails, partial 4
th

/5
th

 toe syndactyly and hyper-separation between 1
st
/2

nd
 toes, and 

absent or atrophied ovaries. 

Genomic DNA was extracted from peripheral blood leukocytes by standard methods. 

DNA samples of three affected and one unaffected were analyzed using the Affymetrix 

GeneChip Mapping 500K array, using just the NspI chip, allowing us to genotype ~260,000 

SNPs. Microarray analysis was performed at the London Regional Genomics Centre (LRGC, 

University of Western Ontario). Homozygosity mapping, performed using the dChip analyzer
5-7

, 

identified a ~5 Mb homozygosity-by-descent (HBD) region on 5p15.32-p15.31 flanked by SNPs 

rs2259 and rs2914296 (7.657 Mb).  This region overlaps with a locus previously identified in an 

Iranian family as harboring an NS-ARID-associated mutation, and designated MRT5, however 

no gene harboring disease-causing mutations has yet been reported for this locus
8
. The MRT5 

locus was defined by SNP markers rs1824938 (5.092 Mb) and rs60701 (10.734 Mb). Thus, the 

common region shared between our Pakistani family and the Iranian family was from rs1824938 

(5.092 Mb) to rs2914296 (7.657 Mb) - a 2.565 Mb critical region.  



Additional genotype data from microsatellite markers on 5p also verified this, and 

linkage analysis gave maximum lod score of 2.77 for marker D5S406 (see Table 2). All known 

coding genes within this 2.565 Mb critical region were screened for mutations by sequencing. 

We identified a homozygous substitution, NM_017755.5:c.2035G>A (GRCh37/hg19 

chr5:6,600,308C>T), within exon 19 of NSUN2 [MIM 610916], which is one of the 8 known 

genes within this locus. This substitution would result in the missense change, p.Gly679Arg. 

This substitution is neither a known SNP in any SNP databases, nor in the 1000 Genomes 

Project, nor in the NHLBI Exome Sequencing Project, ESP5400 release (5379 subjects). We also 

confirmed this by sequencing over 200 Pakistani control individuals. In addition to c.2035G>A, 

a 250 bp insertion just following exon 9 was also identified in the members of the family. 

However, after genotyping Pakistani controls by polymerase chain reaction amplification across 

exon 19, it was apparent that this is a relatively common polymorphism. All primer sequences 

are available upon request. The 679
Gly

 residue is highly conserved across evolution of the animal 

kingdom (Figure 1E), and in silico analyses using POLYPHEN and SIFT identify the 

substitution as being “possibly damaging” and “not tolerated” respectively. A screening set of 45 

NSID individuals of European descent (negative for mutations at FMR1 and MECP2) did not 

show any mutations in NSUN2.  

NSUN2 encodes a methyltransferase that catalyzes the intron-dependent formation of 5-

methylcytosine at C34 of tRNA-leu(CAA)
9
. It also functions in spindle assembly during mitosis 

as well as chromosome segregation
10

. Previous work on constructs of the mouse homologue 

Nsun2 carrying the missense change Lys190Met have shown ablation of methyltransferase 

catalytic activity
10

. Lys190Met has not been identified in any human subjects. 



Using a cDNA clone for NSUN2 in the pcDNA3.1-Myc vector, site-directed mutagenesis 

was performed to generate the c.2035G>A/p.Gly679Arg mutation. Wild type (WT) and mutant 

constructs were transfected into the human breast cancer cell line HCC1954, and also into COS7 

(monkey kidney) cells. 24 hours later, cells were stained with antibodies to the Myc epitope in 

order to detect transfected proteins. Whilst the WT NSUN2 protein was detected in the nucleus 

and nucleolus of transfected HCC1954 cells (Figure 2A), the p.Gly679Arg mutant fails to 

localize to the nucleoli in most transfected cells (Figure 2B-C). Antibodies to the nucleolar 

marker protein, nucleophosmin (NPM1) were used to confirm co-localization in the nucleoli 

(Figure 2A,B) and co-labelling for endogenous NSUN2 protein confirmed nucleolar localization 

of endogenous NSUN2 (Figure 2C).  

Instead of being localized to the nucleoli, the p.Gly679Arg NSUN2 mutant protein 

accumulated in the nucleoplasm in 80% of transfected cells (Figure 3A,B,D). In less than 10% of 

transfected cells, it was observed that the p.Gly679Arg mutant NSUN2 did localize to the 

nuceoli and at the same time showed intense staining within the cytoplasm (Figure 3A,C,D). 

Also of note was the fact that the mutant protein seemed to be largely excluded from the 

nucleoplasm in these cells (Figure 3C). Similar results were also seen for the COS7 cells, with 

the mutant NSUN2 protein localizing mainly in the cytoplasm. We conclude that the substitution 

of glycine to arginine at position 679 impairs the proper cellular localization of NSUN2.  

In parallel, cDNA constructs for WT and mutant were generated in the pcDNA3.1 vector 

with GFP tag, and transfected into the human endothelial cell line EA.hy 926 (from umbilical 

vein). In EA.hy 926 cells WT NSUN2-GFP colocalizes with the nucleophosmin 1 antibody 

(Santa Cruz) in the nucleoli, whereas the p.Gly679Arg mutant NSUN2-GFP remains in the 

nucleoplasm (data not shown).  



In order to gain some insight into NSUN2 function in the brain we sought to identify 

specific mouse neural cell types that displayed NSUN2 protein localization. To this end we 

dissected whole brain from three month old mice into cortical and cerebellar regions. Tissue was 

fixed for 24 hours in paraformaldehyde, paraffin sections were taken, antigen retreival perfomed 

and sections stained with affinity purified NSUN2 antibody (Covalab). Although we were able to 

observe NSUN2 staining sporadically in some cortical and brain stem neurons (Supplementary 

Materials, Figure 2), by far the most striking localization was observed in Purkinje cells of the 

cerebellum (Figure 4A,B). Higher magnification imaging revealed that NSUN2 localises to the 

nucleoli of Purkinje cells and that these nucleoli were often located between or adjacent to dense 

heterochromatic regions (Figure 4C,D). Interestingly, in addition to intellectual disability, 

NSUN2 individuals in the current study display features such as poor speech/dysarthria and 

broad gait which have previously been associated with cerebellar defects thus making it likely 

that disruption of  Purkinje cell function of NSUN2 contibutes to the phenotype of these 

individuals. Given the developmental phenotype in the Pakistani family, we have also 

demonstrated NSUN2 expression in cerebellum of 3 day old mice, using LacZ staining (see 

Supplementary Material, Figure 2), suggesting that NSUN2 is expressed in these tissues during 

development as well as adulthood. It is also worth noting that, although intellectual disability is 

not usually associated with cerebellar defects, but much more commonly with cortical defects, 

there are several reports that describe intellectual disability in association with cerebellar 

dysfunction
11-14

. Purkinje cells are a class of GABAergic neuron and are at the heart of the 

cerebellar circuitry, receiving more synaptic inputs than any other cell type in the brain. It is 

interesting that the NSUN2 missense variant identified in the ID family fails to localize to the 

nucleolus, as it hints at a mechanism by which proper Purkinje cell function might be inhibited 



due to aberrant exclusion of NSUN2 from the nucleoli of these cells. In more recent years the 

nucleolus has become established as a multifunctional entity rather than simply a ribosomal 

RNA processing center, as previously envisioned
15

. A better understanding of the nucleolar 

functioning of NSUN2 in addition to identification of its methylation substrates will no doubt 

shed light on the cellular mechanisms disrupted in NSUN2 mutation individuals. 

In a recent study of Nsun2 in mice, a knockout was generated that leads to ablation of 

Nsun2 through deletion of exon 8
16

. Heterozygous mice appeared normal, with no visible 

phenotype. Nsun2 -/- mice were also viable, and gross phenotype indicated weight loss (~30% 

reduction at 3 months old) and partial alopecia at ~10 months, suggesting a role for NSUN2 in 

skin homeostasis. Nsun2 -/- males were sterile. The small size of the -/- mice may draw a parallel 

with the reduced growth in the affected individuals from the Khairpur family. Heights of the 

affected girls are below the mean for Pakistani girls (from the United Kingdom
17

) at ~10
th

 centile 

for II:3 and 1
st
 centile for II:4. Weight is strikingly low, below the 1

st
 centile for II:3 and II:4 

(according to standard growth charts
17

). Interestingly, in one of the affected individuals from the 

Khairpur family, ovaries were either atrophied or absent. However no information on sexual 

development or sterility in affected male family members was available. Studies of an Nsun2 

knockout mouse generated by the European Conditional Mouse Mutagenesis program 

(EUCOMM) has been reported by the Wellcome Trust Sanger Institute, and some preliminary 

data are available online from the Mouse Resources group. This mouse has a deletion of exon 6, 

resulting in a frameshift. Neurobehavioral and neurocognitive analysis of heterozygous and 

homozygous mice using hot plate tests, open field tests and a modified SHIRPA test
18

 showed no 

overall difference to control mice, however male homozygotes are reported as hyperactive in 

calorimetric studies. Male homozygous mutant mice showed significantly reduced forepaw grip 



strength, and abnormal humerus morphology is reported for both sexes. Body size was decreased 

for male and female homozygotes, and abnormal skull and teeth morphology was reported. An 

eye phenotype was also present in homozygotes, with abnormality of the cornea present as well 

as increased lens opacity. Fertility/fecundity are also reported as abnormal. These data were 

provided by and can be obtained from the Mouse Resources group at the Wellcome Trust Sanger 

Institute. More in-depth neurocognitive assessments would be particularly useful on this model. 

It may also be important to compare future clinical developments in the family for comparison 

with the mouse knockout, for instance, whether signs of alopecia develop later on.  

NSUN2 is now the third RNA methyltransferase gene to be linked to ID. Previously, 

FTSJ1 was identified in X-linked non-syndromic ID
19,20

, and very recently TRMT1 was 

identified as a cause of ARID
21

. Coexpression data from zebrafish, fruit fly and yeast have linked 

NSUN2 protein to both TRMT1 (STRING; coexpression score = 0.877), and to FTSJ1. Co-

immunoprecipitation assays have also shown protein-protein interaction between NSUN2 and 

FTSJ1 (IntAct interaction database). Although NSUN2 was initially thought to have a very 

narrow range of tRNA targets, this range is broadening and is currently also thought to include 

mRNAs
22

. A role for NSUN2 in DNA methylation has not been excluded, however seems 

unlikely given its nucleolar localization. 

Thus, our findings strongly support a role for mutations in NSUN2 in ARID, for which 

additional clinical symptoms are apparent. A publication on gene mapping in Iranian families has 

also identified this region
8,23

, and in this volume an article from this group also reports the 

identification of truncating mutations in the same gene, NSUN2, in several Iranian and one 

Kurdish consanguineous ARID families
24

. Thus, this is one of the few ARID genes for which 

there is validation in several independent families, and from more than one ethnic group or 



geographic location. Given the similarities in the phenotypes of the families from this study and 

that of Abbasi-Moheb et al
24

, we speculate that the missense mutation reported here has a similar 

effect to the truncation mutations in NSUN2, and that Gly679Arg results mainly in a loss of 

function due to failure of the protein to localize to the correct cellular organelles resulting in 

intellectual disability. We speculate further that the myopathy reported in the Pakistani family 

was not noted in either the Iranian or the Kurdish NSUN2 truncating mutation families, and may 

result from a gain of function due to accumulation of NSUN2 protein in nucleoplasm and 

cytoplasm.   

 

Supplemental Data 

Supplemental Data include two figures and can be found with this article online at 

http://www.cell.com/AJHG/. 
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Table 1. Anthropometric measures and clinical details for affected members of the family. Abbreviations used are: IQ- intelligence 

quotient; OFC- occipitofrontal circumference; LDH – lactose dehyrogenase; CPK – creatine phosphokinase; F - female. Comparison 

of clinical features between this family and the Iranian and Kurdish families described in Abbasi-Moheb et al (submitted) is shown in 

Table 1, Abbasi-Moheb et al. Photographs of affected individuals are shown in Supplementary Materials, Figure 1.  

 

Family ID Sex Age IQ OFC 

(cm) 

Height 

(cm) 

 Weight 

(Kg) 
LDH 

(IU/l) 

CPK (IU/l) Epilepsy Gait 

II:3 F 14 40-50 50 152 32 447
b
 294

c
 

 

- Broad 

II:4 F 13 40-50 49 136 26.3 NKa NKa - Broad 
II:5 F 6 40-50 46 NK

a
 NKa

 463
 b

  60
c
 

 

- Normal 

 

Family ID Feet/toes Eyes Menses Pelvic ultrasound 
II:3 Bilateral pes cavus; left Achilles tight Right eye 

strabismus 

No (Tanner 

stage 3) 

Small midline uterus, thin 

endometrium, ovaries not visible 
II:4 left foot pes cavus; bilateral equinus 

position and tight Achilles; hyper-

separation between 1
st
/2

nd
 toes 

Fundoscopy, eye 

movement & 

pupillary 

response normal 

Yes 

(Tanner 

stage 4) 

NKa 

II:5 Partial, 4
th

/5
th

 toe, bilateral syndactyly Intermittent 

esotropia; fine 

horizontal 

nystagmus 

No NKa 

aNK: not known or not measured 
b
: reference level: 122-234 IU/l 

c
: reference level: 34-145 IU/l 

 



Table 2. A. Two-point linkage analysis for markers across chromosome 5p. The EasyLINKAGE 

program
25

 was used. Physical position according to UCSC Feb 2009 (GRCh37/hg19) assembly. 

For reference, the common HBD locus for the Pakistani family and the Iranian family
8
 extends 

from SNPs rs1824938 (5.092 Mb) to rs2914296 (7.657 Mb), and NSUN2 is located between 

6.599 and 6.633 Mb.  

 

Markers Pos-cM Phy-Pos 

Mb 

LOD Score at Recombination Fraction, θ 

0.00 0.05 0.2 0.4 

D5S1981 1.7200 1.155 0.4327 0.3972 0.2597 0.0585 

D5S406 11.8500 4.994 2.7729 2.4887 1.6231 0.5141 

D5S2505 14.3000 5.817 1.6695 1.4721 0.8628 0.1437 

D5S580 17.8700 8.141 0.4327 0.3972 0.2597 0.0585 

D5S630 19.6710 9.561 0.4327 0.3972 0.2597 0.0585 

 



Figure 1. A. Pedigree of family MR14 from Khairpur district. Filled circles indicate affected 

girls. B. HomozygosityMapper analysis
25 

for microarray SNP data: Genome-wide. Significant 

regions of HBD are seen only on 5p and 14q. The 14q locus was excluded because one of the 

unaffected siblings was also homozygous at this locus, whereas at the 5p locus, unaffected the 

sibling was genotyped as heterozygous. C. Ideogrammatic representation of the critical 

autozygous or HBD locus on 5p15.31, as determined from this study and in relation to the MRT5 

locus identified by Najmabadi et al.
8
. D. c.2035G>A substitution encoding the Gly679Arg 

change in a heterozygous carrier and affected homozygote. E. ClustalW alignment of NSUN2 

across multiple species showing conservation of the Gly679 residue in vertebrates and also in 

non-vertebrate animal species. 

 

Figure 2.  Wild type (WT) (A) and mutant (B) constructs for NSUN2 in the vector pcDNA-Myc 

transfected into the human breast cancer cell line HCC1954. A. WT NSUN2 (A) but not mutant 

NSUN2 (B) protein co-localizes with nucleophosmin, a nucleolar marker. (C) Co-staining for 

endogenous NSUN2 confirms exclusion of mutant NSUN2 (Myc-labelled) from the nucleoli. 

Arrows indicate nucleoli (A-C). Co-staining with DAPI shows nuclear localization. 

 

Figure 3. (A) Immunostaining showing nucleolar localization of wild-type (WT) NSUN2 in 

HCC1954 cells compared to cellular localization of NSUN2 carrying the 679
Arg

 variant 

(Gly679Arg) in the nucleoplasm (B) and cytoplasm (C). Co-staining with DAPI shows nuclear 

localization. (D) Quantification of cellular localizations shown in (A-C). (E) Nucleolar 

localization of GFP-tagged wild type NSUN2 in HeLa cells versus (F) nuclear and cytoplasmic 

localization in 679
Arg

 mutant NSUN2 (Gly679Arg). White arrow heads indicate nucleoli. 



 

Figure 4. Sections of mouse cerebellum, (A) labeled with an antibody to NSUN2. Higher 

magnification of (A; insert) shows NSUN2 protein in Purkinje cells (B). NF: nerve fibers; GCL: 

granule cell layer; ML: molecular layer. (C) Sections of the cerebellum labeled for L7/Pcp-2, as 

a marker for Purkinje cells. (D) Co-localization of NSUN2 with nucleophosmin (Npm1) in 

nucleoli of Purkinje cells. Nuclei are counter stained with DAPI. 

 

  

 

 


