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Abstract

Suppose that under the action of gravity, liquid drains through the unit d-cube
via a minimal-length network of channels constrained to pass through random sites
and to flow with nonnegative component in one of the canonical orthogonal basis
directions of Rd, d ≥ 2. The resulting network is a version of the so-called mi-
nimal directed spanning tree. We give laws of large numbers and convergence in
distribution results on the large-sample asymptotic behaviour of the total power-
weighted edge-length of the network on uniform random points in (0, 1)d. The
distributional results exhibit a weight-dependent phase transition between Gaus-
sian and boundary-effect-derived distributions. These boundary contributions are
characterized in terms of limits of the so-called on-line nearest-neighbour graph,
a natural model of spatial network evolution, for which we also present some new
results. Also, we give a convergence in distribution result for the length of the
longest edge in the drainage network; when d = 2, the limit is expressed in terms
of Dickman-type variables.

Keywords: Random spatial graphs; spanning tree; weak convergence; phase transition;
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1 Introduction

We consider a continuum model of drainage through a porous medium in Rd (d ∈ N :=
{1, 2, 3, . . .}), which we first describe informally. Let {e1, . . . , ed} be the canonical ortho-
normal basis of Rd. We distinguish the ed direction and suppose that ‘gravity’ acts in
direction −ed; in free space, liquid would fall in exactly the −ed direction.

Informally, consider a unit d-cube, representing a block of porous material. We scatter
a certain finite set X of points in this cube, representing special sites in the medium. We
constrain liquid to drain in channels that visit every site and travel in straight lines
from site to site. The vectors of each channel must have a non-positive component in

1



the ed direction; that is, they must respect gravity. The collection of channels spanning
X satisfying these conditions we call a drainage network on X . A natural question is
to find the most efficient arrangement of channels satisfying the above constraints, i.e.,
a drainage network that is in some sense optimal. As we shall see, an answer to this
question is a version of the so-called minimal directed spanning tree (MDST for short) on
the vertices X .

More mathematically, let X be a finite point set in (0, 1)d whose points have distinct
d-th coordinates. We construct a directed graph on vertex set X as follows. Join each
vertex x ∈ X by a directed edge to a Euclidean nearest neighbour (if one exists, and
arbitrarily breaking any ties) amongst those points y ∈ X \ {x} such that y 4∗ x. Here
4∗ is the order on X induced by the order on d-th coordinates: (x1, . . . , xd) 4∗ (y1, . . . , yd)
if and only if xd ≤ yd. We call the directed graph so constructed the MDST on (X ;4∗):
it is a mathematical solution to the problem of constructing a minimal-length drainage
network on X as informally described above.

The subject of this paper is the MDST on (Pn;4∗) where Pn is a homogeneous Poisson
point process of intensity n > 0 on (0, 1)d. Then (with probability 1), Pn is indeed a finite
point set with distinct d-th coordinates so that the MDST is almost surely well-defined.
We study the total power-weighted edge-length of the MDST on (Pn;4∗) as n→∞, and
also the length of the longest edge.

The MDST on (Pn;4∗) is an example of a random spatial graph, that is, a graph
generated by scattering points randomly into a region of space and connecting them
according to some prescribed rule. Motivated in part by real-world networks with spatial
content, such as communications networks (including the Internet), social networks, and
physical networks, a substantial body of recent research has dealt with the large-sample
asymptotic theory of such graphs. Examples include the geometric graph, the nearest-
neighbour graph, and the minimal-length spanning tree. See, for example, [3, 12, 18,
19, 21, 22, 28, 29, 33, 36]. A feature that distinguishes the MDST considered here from
other random spatial graphs is that the constraint on direction of the edges can lead
to significant (indeed, sometimes dominating) boundary effects due to the possibility of
long edges occurring near the lower boundary cube (0, 1)d−1 orthogonal to ed. Another
difference is the fact that there is no uniform upper bound on vertex degrees in the MDST.

In general, the MDST can be defined on any finite partially ordered set in Rd, as
described in [23]; a survey of results on the random MDST is given in [27]. Examples
considered previously are the ‘cooridnate-wise’ (or ‘South-West’) partial ordering on point
sets in (0, 1)2 [7, 23, 24] or in (0, 1)d [5], and the radial spanning tree [4] on point sets in
R2. Also, laws of large numbers for the MDST on a class of partial orders of R2 were
given in [34].

In this paper we are concerned with the ‘South’ partial order 4∗, which is even a total
order, on point sets in Rd with distinct d-coordinates. Our main results, Theorems 1 and
2, give laws of large numbers, convergence of expectation, and distributional convergence
results for the total power-weighted edge-length of the MDST on (Pn;4∗) for d ≥ 2. We
also give a convergence result for the maximum edge-length in the MDST (Theorem 3).
Our main distributional limit result, Theorem 2, reveals two regimes of limit behaviour
for the total power-weighted edge-length depending on the power-weighting, in which
the limit law is either purely normal or given in terms of boundary effects characterized
as distributional limits of certain on-line nearest-neighbour graphs. At a critical point
between these two regimes, there is a phase transition at which both effects contribute
significantly to the limit law. In order to understand the boundary effects in the MDST,
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and its longest edge, we make use of the fact that near to the boundary, the MDST is
well-approximated by a certain on-line nearest-neighbour graph.

In the on-line nearest-neighbour graph (ONG), each point after the first in a sequence
of points arriving sequentially in Rd is joined to its nearest neighbour amongst those
points already present. The ONG itself is of separate interest as a simple growth model
for random networks, such as the world wide web graph (see [6]). The total power-
weighted length of the ONG has been studied in [19, 25, 34, 35]. In the present paper,
the ONG arises as a natural tool for studying the structure of the MDST near to the
boundary; we also prove a new result (Theorem 4) on the length of the longest edge in
the ONG on uniform random points in (0, 1)d.

In the particular case of the total weight of the MDST on (Pn;4∗) when d = 2, which
is one of the most natural cases, the boundary contributions to the total power-weighted
edge-length limit laws can be characterized in terms of the limiting distribution of the
total weight of the one-dimensional ONG (centred as necessary). Results from [25] say
that such a distribution is characterized by a distributional fixed-point equation. Such
fixed-point equations, and the ‘divide and conquer’ algorithms from which they often
arise, are also a subject of considerable recent interest; see, for example, [2, 17,31].

Mathematically, much of the motivating interest comes from the desire to further
understand the interplay between stochastic geometry and distributional fixed points
previously more commonly seen in the analysis of algorithms (see e.g. [17]). This rela-
tionship was first seen in our previous work [24,34] on limit theorems for the length of the
‘South-West’ MDST in the unit square. The present work adds to this by considering the
‘South’ MDST, for which the fixed-point distributions that arise are different. We remain
some way from having a full description of the limits for all possible partial orders, other
shapes of domain and non-uniform densities.

We now comment on the technical content of the present paper in relation to previous
work. In [24, 34], only the case d = 2 of the ‘South-West’ MDST was studied. In the
present paper, for the ‘South’ MDST, we deal not only with d = 2 but also with higher
dimensions. With fairly straightforward modifications, the method used in [24] could be
adapted to prove the d = 2 case of our Theorem 2 below. However, at several points the
proofs used in [24] are not easily adapted to higher dimensions, and thus we have adopted
different proofs; sometimes these improve or extend ideas from [24] and sometimes we
use entirely different techniques. Another difference is that [24, 34] made use of general
results of Penrose and Yukich [28, 29] while in the present paper we instead use the
results of Penrose [21, 22] (see also [20]) which are in several ways more convenient for
the current application. In [24] the boundary effects there were described in terms of
a one-dimensional process (the so-called ‘directed linear tree’). In the multidimensional
setting of the present paper, the boundary effects themselves are richer in character, being
related to the multidimensional ONG. Our analysis of the boundary effects in the ‘South’
MDST thus relies in part upon analysis of the ONG undertaken previously, particularly
in [35] and also in [25]. In summary, the results of the present paper are of a similar
(albeit general-dimensional) flavour to those in [24, 34], but the proofs are different. We
give more detail on how our methods relate to previous work during the course of the
proofs.

Before describing our results in detail, we return to the question of motivation. Gene-
ral motivation for the MDST is as a model for a constrained optimal transport network
(see e.g. [27]). As has been mentioned elsewhere (e.g. [7]), the MDST can be motivated
by communications networks. However, in the present case the primary motivation is
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from drainage networks. From this point of view, our choice of ‘South’ partial ordering
seems the most natural, and the two most natural choices of d are d = 2 and d = 3.
For further references on the mathematical modelling of drainage networks, and a related
infinite lattice version of this model, for which rather different properties were studied,
see [10]; for background on modelling of drainage networks in general, see also [30].

With regards to motivation of our model, it should also be noted that random spatial
networks similar to those studied here have appeared in the physics literature, with several
different sources of motivation: see e.g. [14–16]. Specifically, the ONG appears as the
‘α = −∞’ case of a model in [15], an on-line relative of the ‘South’ MDST appears as a
‘directed minimal growing network’ in [14], and a variant on the ONG in which each new
edge joins to a randomly chosen endpoint of the nearest edge already present is studied
in [16]. The focus in most of these studies is on degree distributions, although there is
some (non-rigorous) discussion of ‘typical edge lengths’ which is more closely related to
our problems of interest. Unfortunately, the present authors were unaware of the work
in the physics literature when the survey article [27] was written.

2 Statement of results

In this section we give formal definitions of our model and state our main results. Let
d ∈ N. Let X be a finite subset of Rd endowed with the binary relation 4∗, for which
(x1, . . . , xd) 4∗ (y1, . . . , yd) if and only if xd ≤ yd. Assume that all the elements of X
have distinct xd-coordinates. Under this assumption, 4∗ is a partial order on X (in fact,
a total order), and so the MDST that we shall construct fits into the theory of the MDST
on partially ordered sets given in [23,27]. Let card(X ) denote the cardinality (number of
elements) of the set X .

A minimal element, or sink, is a vertex x ∈ X for which there exists no y ∈ X \ {x}
such that y 4∗ x. Thus under our definition of 4∗ and our assumption on X , there is a
unique sink having strictly minimal xd-coordinate and which we shall denote m(X ).

For a vertex x ∈ X \{m(X )}, we say that y ∈ X \{x} is a directed nearest neighbour
(in the 4∗-sense) of x with respect to X if y 4∗ x and

‖y − x‖d = min
z∈X\{x}:z4∗x

‖z− x‖d;

here and subsequently ‖ · ‖d denotes the Euclidean norm on Rd. For each x ∈ X \
{m(X )} let nx := n(x;X ) denote a directed nearest neighbour of x with respect to X ,
chosen arbitrarily if x has more than one directed nearest neighbour. A minimal directed
spanning tree (MDST) on (X ;4∗), or simply ‘on X ’ from now on, is a directed graph
with vertex set X and edge set {(x,nx) : x ∈ X \ {m(X )}}. That is, there is an edge
from each point other than the sink to a directed nearest neighbour. Hence, ignoring the
directedness of the edges, an MDST on X is a tree rooted at the sink m(X ). Note that
an MDST is also a solution to a global optimization problem (see [7,23]) — that is, find a
minimal-length spanning tree (ignoring directedness of the edges) such that each vertex
is connected to the sink by a unique directed path, where directed edges must respect
4∗.

For X ⊂ Rd with card(X ) ≥ 2, let d∗(x;X ) denote the Euclidean distance from a non-
minimal x ∈ X to a directed nearest neighbour n(x;X ) under 4∗ and set d∗(m(X );X ) =
0. For d ∈ N and α > 0, define the total power-weighted edge-length of the MDST on X
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Figure 1: Realizations of the MDST under 4∗ on 50 simulated uniform random points in
(0, 1)2 (left) and (0, 1)3 (right).

by

Ld,α(X ) :=
∑
x∈X

(d∗(x;X ))α =
∑

x∈X\{m(X )}

‖x− n(x;X )‖αd ,

where an empty sum is 0. In particular, Ld,1(X ) is the total Euclidean length of the
MDST on X . Also, define the centred version L̃d,α(X ) := Ld,α(X )− E[Ld,α(X )].

From now on we will take X to be a random point set in (0, 1)d. In particular, we
will take a homogeneous Poisson point process Pn of intensity n on (0, 1)d. Note that in
this random setting, each point of Pn almost surely has a unique xd-coordinate and at
most one directed nearest neighbour under 4∗, so that Pn has a unique MDST, which is
rooted at m(Pn).

We state and prove all of our main results in the present paper for the Poisson pro-
cess Pn. In all cases, the authors believe that analogous results hold for the binomial
point process consisting of n independent uniform random points on (0, 1)d instead; it
should be possible to use standard de-Poissonization arguments (such as applied in similar
circumstances in [23,24]) to verify this.

In the present paper we are concerned with d ≥ 2. When d = 1, 4∗ coincides with
the coordinatewise partial order 4∗ (and indeed the total order ≤ on R) and so our
‘South’ MDST is the same as the ‘South-West’ MDST here. Moreover, L1,α(Pn) is a sum
of powers of spacings of uniform points, and it can be studied using standard Dirichlet
spacings results (see e.g. [8]). For instance, Darling (see [8], p. 245) essentially gives a
central limit theorem for the binomial point process analogue of L1,α(Pn). From now on
we fix d ∈ {2, 3, . . .}.

Our first result describes the first-order behaviour of Ld,α(Pn) as n → ∞. In parti-
cular, we have a law of large numbers for α ∈ (0, d), and also asymptotic results for the
expectation when α ≥ d. In d = 2, the binomial point process analogue of Theorem 1(i)
is contained in the φ = π case of Theorem 5 of [34]. For d ∈ N, let

vd := πd/2 [Γ (1 + (d/2))]−1 , (2.1)

the volume of the unit d-ball (see e.g. [11] equation (6.50)); here Γ(·) denotes the Euler
Gamma function.
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Theorem 1 Suppose d ∈ {2, 3, 4, . . .}.

(i) Suppose α ∈ (0, d). Then as n→∞,

n(α/d)−1Ld,α(Pn)→ 2α/dΓ(1 + (α/d))v
−α/d
d , in L1. (2.2)

(ii) Suppose α ≥ d. Then there exists µ′(d, α) ∈ (0,∞) such that, as n→∞,

E[Ld,α(Pn)]→ µ′(d, α). (2.3)

Moreover, we can express

µ′(d, α) = µ(d− 1, α) + 1{α=d}2v
−1
d ,

where the constants µ(d − 1, α) ∈ (0,∞) can be characterized in terms of limits
of certain on-line nearest-neighbour graphs: µ(·, ·) is as given in Proposition 2.1
of [35]; see (8.8) below. In particular, for α ≥ 2,

µ(1, α) =
2

α(α + 1)

(
1 +

2−α

α− 1

)
.

Our second main result (Theorem 2, below) presents convergence in distribution re-
sults for Ld,α(Pn); the distributional limits contain Gaussian random variables and also
random variables defined as distributional limits of the ONG (see Section 3). In general
we do not give an explicit description of the latter distributions. However, in the case of
d = 2, the limits in question can be characterized as solutions to distributional fixed-point
equations, which we describe at the end of this section.

We now state our main convergence in distribution result. Let N (0, s2) denote the
normal distribution with mean zero and variance s2 ≥ 0; included is the degenerate case

N (0, 0). By ‘
d−→’ we denote convergence in distribution.

Theorem 2 Suppose d ∈ {2, 3, 4, . . .} and α > 0. Then there exists a constant s2
α < ∞

which satisfies s2
α > 0 for α ≤ d/2 and s2

α = 0 for α > d/2, such that, for a normal
random variable Wα ∼ N (0, s2

α), as n→∞:

n(α/d)−(1/2)L̃d,α(Pn)
d−→ Wα (0 < α < d/2);

L̃d,α(Pn)
d−→ Wα +Q(d− 1, α) (α ≥ d/2).

Here the Q(d− 1, α) are mean-zero random variables as given in Lemma 2 below and in-
dependent of the Wα; in particular Q(1, α) = G̃α for α ≥ 1, where G̃α has the distribution
given by (2.7) below for α = 1 and by (2.8) below for α > 1.

Remarks. (a) One can generalize the statement of Theorem 1(i) to more general point
processes under certain conditions; see [20,21] for a general framework.
(b) It seems likely that a version of Theorem 1(i) holds with almost sure convergence. One
possible approach to proving this would be based on the inherent subadditivity, using for
instance the well-developed theory of [36] (see in particular Theorem 4.1 of [36]). This
approach seems to require verification of certain other conditions, such as ‘smoothness’
and superadditivity [36, Chapter 3]. It is not clear to us whether such conditions hold.
We have instead adopted an approach to the law of large numbers in Theorem 1(i), via
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general stabilization results of [21], which mirrors our approach to obtaining the Gaus-
sian part of our distributional result in Theorem 2 via results of [22]. This approach
to Theorem 1 provides explicit evaluation of the limiting constants, which are usually
inaccessible to methods based on subadditivity.
(c) The normal random variables Wα arise from the edges away from the lower boundary
of the d-cube (see Section 4.2). The variables Q(d− 1, α) arise from the edges very close
to the boundary, where the MDST is asymptotically close to a (d−1)-dimensional ONG:
this is formalized in Section 5 below.
(d) Theorem 2 indicates a phase transition in the limit law as α increases. The normal
contribution dominates for α ∈ (0, d/2), while the boundary contribution dominates for
α > d/2 (when the normal component degenerates). In the critical case α = d/2 (such as
the natural case d = 2 and α = 1) both terms contribute significantly to the asymptotic
behaviour. The intuition here is that increasing α increases the relative importance of
long edges, such as, typically, those near to the boundary.
(e) As will be demonstrated below (see Lemma 2), the random variables Q(d − 1, α)
can be characterized as distributional limits of the ONG. It is known (see [25]) that the
Q(d− 1, α) are non-Gaussian for α > d− 1. When d = 2 much more is known (see [25]);
Q(1, α) can be characterized in terms of a distributional fixed-point equation (see (2.7)
and (2.8) below). In particular, Q(1, α) is non-Gaussian for α ≥ 1. The authors suspect
that for general d, Q(d− 1, α) is in fact non-Gaussian for all α ≥ d/2.

Theorem 3 below gives a convergence in distribution result on the length of the longest
edge in the MDST on (Pn;4∗). A similar result (in d = 2 only) for the longest edge in
the ‘South-West’ MDST was given in [23]. Let Ldmax(X ) denote the length of the longest
edge in the MDST (under 4∗) on point set X ⊂ (0, 1)d:

Ldmax(X ) := max
x∈X

d∗(x;X ) = max
x∈X\{m(X )}

‖x− n(x;X )‖d.

In the particular case d = 2, the distributional limit arising in Theorem 3 below is
expressed in terms of the max-Dickman distribution, which can be characterized as the
distribution of a random variable M satisfying the fixed-point equation

M
d
= max{1− U,UM}, (2.4)

where U is uniform on (0, 1) and independent of the M on the right. (Here and subse-

quently ‘
d
=’ denotes equality in distribution.) See [23, Section 3.5], [27, Section 7.3.2] and

references therein for more information on the max-Dickman distribution.

Theorem 3 Let d ∈ {2, 3, . . .}. There exists a random variable Qmax(d− 1) such that

Ldmax(Pn)
d−→ Qmax(d− 1),

as n→∞. Moreover, Qmax(d− 1) is characterized in terms of the ONG (see Theorem 4
below); in particular

Qmax(1)
d
= max{UM{1}, (1− U)M{2}},

where U , M{1} and M{2} are independent random variables, U is uniform on (0, 1), and
M{1} and M{2} have the max-Dickman distribution as given by (2.4).
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We will derive Theorem 3 from a new result on the limiting distribution of the length
of the longest edge in the ONG on uniform random points in (0, 1)d, which is of some
independent interest: see Theorem 4 below.

As promised, we now give a characterization of the limits Q(1, α), α ≥ 1, arising in the
d = 2 case of Theorem 2. First we define random variables J̃α, α > 1/2, with E[J̃α] = 0
and E[J̃2

α] <∞. Define J̃1 by the fixed-point equation

J̃1
d
= min{U, 1− U}+ UJ̃

{1}
1 + (1− U)J̃

{2}
1 +

1

2
U logU +

1

2
(1− U) log(1− U), (2.5)

and for α ∈ (1/2,∞) \ {1}, define J̃α by the fixed-point equation

J̃α
d
= min{U, (1− U)}α + UαJ̃{1}α + (1− U)αJ̃{2}α +

2−α

α− 1
(Uα + (1− U)α − 1) . (2.6)

In each of these two equations (and subsequently), Y {1} and Y {2} denote independent
copies of the random variable Y , and U denotes a uniform random variable on (0, 1)
independent of the other random variables on the right-hand side of the equation.

Note that (2.5) and (2.6) define unique square-integrable mean-zero solutions (see
e.g. Theorem 3 of Rösler [31]), and hence the distributions of J̃1 and J̃α are uniquely
defined. Moments of J̃α can be calculated recursively from (2.5) and (2.6); see [25, Table
2, p. 136] for some information on the first few moments of J̃1, for example. From these
moments one can deduce that J̃α, α > 1/2 is not Gaussian.

Now we can define random variables H̃α, G̃α, again with zero mean and finite variance.
Define H̃1 by

H̃1
d
= UJ̃1 + (1− U)H̃1 +

U

2
+

1

2
U logU +

1

2
(1− U) log(1− U).

For α ∈ (1/2,∞) \ {1}, define H̃α by

H̃α
d
= UαJ̃α + (1− U)αH̃α + Uα

(
1 +

2−α

α− 1

)
+ ((1− U)α − 1)

(
1

α
+

2−α

α(α− 1)

)
.

Define G̃1 by

G̃1
d
= UH̃

{1}
1 + (1− U)H̃

{2}
1 +

1

4
+

1

2
U logU +

1

2
(1− U) log(1− U). (2.7)

Finally, for α ∈ (1/2,∞) \ {1}, define G̃α by

G̃α
d
= UαH̃{1}α + (1− U)αH̃{2}α + (Uα + (1− U)α)

(
1

α
+

2−α

α(α− 1)

)
− 2

α(α + 1)

(
1 +

2−α

α− 1

)
. (2.8)

Again, the distributions of H̃α and G̃α are uniquely defined. It is the distribution of G̃α

(α ≥ 1) as defined by (2.7) or (2.8) that appears in the d = 2 case of Theorem 2.
In the remainder of this paper, we prove Theorems 1, 2 and 3. First, in Section 3 we

discuss the ONG, which we use to deal with the boundary effects in the MDST, and prove
some new results, which are of some independent interest. In Section 4, we apply general
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results of Penrose [21,22] (see also [20]) to prove a law of large numbers and central limit
theorem for the total weight of the MDST away from the boundary. In Section 5 we deal
with the boundary effects themselves. Then in Section 6 we prove Theorem 3. Finally,
we complete the proofs of Theorem 2 in Section 7 and Theorem 1 in Section 8.

Throughout the sequel we make repeated use of Slutsky’s theorem (see, e.g., Durrett

[9], p. 72), which says that for sequences of random variables (Xn), (Yn) such that Xn
d−→

X and Yn
P−→ 0 as n→∞, we have Xn + Yn

d−→ X as n→∞. (Here and subsequently

‘
P−→’ denotes convergence in probability.)

3 The on-line nearest-neighbour graph

In this section we describe the on-line nearest-neighbour graph (ONG) that we use to
analyse the boundary effects in the total weight of the MDST under 4∗. Some of the
results that we will require are present in [25] and [35], but we prove in this section some
new results on the longest edge of the ONG that we will need.

Let (Y1,Y2, . . .) be a sequence of vectors in Rd. For m ∈ N set Ym := (Y1, . . . ,Ym).
The ONG on sequence Ym is constructed by joining each point after the first of Ym by
a directed edge to its (Euclidean) nearest neighbour amongst those points that precede
it in the sequence. That is, for i = 2, . . . ,m we include the edge (Yi,Yj) where j ∈
{1, . . . , i− 1} is such that

‖Yj −Yi‖d = min
1≤k<i

‖Yk −Yi‖d,

arbitrarily breaking any ties.
In this way we obtain the ONG on Ym, denoted ONG(Ym) and which, ignoring di-

rectedness of edges, is a tree rooted at Y1. Denote the total power-weighted edge-length
with exponent α > 0 of ONG(Ym) by Od,α(Ym), that is

Od,α(Ym) :=
m∑
i=2

min
1≤j<i

‖Yi −Yj‖αd ;

when Ym is random, we denote the centred version by Õd,α(Ym) := Od,α(Ym)−E[Od,α(Ym)].
Let d ∈ N. Let (U1,U2, . . .) be a sequence of independent uniform random vectors in

(0, 1)d. For m ∈ N, set Um := (U1, . . . ,Um). We consider ONG(Um). We also consider
the ONG defined on a Poisson number of points. Let (N(t))t≥0 be the counting process
of a homogeneous Poisson process of unit rate in (0,∞), independent of (U1,U2, . . .).
Thus N(n) is a Poisson random variable with mean n. With Um as defined above set
Πn = UN(n); we then consider ONG(Πn). Note that the points of the sequence Πn then
constitute a homogeneous Poisson point process of intensity n on (0, 1)d.

We need the following result, which is contained in Theorem 2.1 of [35].

Lemma 1 Suppose d ∈ N.

(i) For α ∈ (0, d/2), there exists a constant C ∈ (0,∞) such that for all n ≥ 1,

Var[Õd,α(Πn)] ≤ Cn1−(2α/d).
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(ii) For α = d/2, there exists a constant C ∈ (0,∞) such that for all n ≥ 1,

Var[Õd,d/2(Πn)] ≤ C log(1 + n).

The following result is contained in Theorem 2.2 of [35], with Theorem 2.2 of [25] used
to deduce the final statement about the d = 1 case.

Lemma 2 Suppose d ∈ N and α > d/2. Then there exists a mean-zero random variable
Q(d, α) such that as n→∞,

Õd,α(Πn)
d−→ Q(d, α).

Also, Q(1, α) = G̃α for α ≥ 1, where G̃α has distribution given by (2.7) for α = 1 and by
(2.8) for α > 1.

In order to deduce Theorem 3, we use the following result on the length of longest
edge of the ONG on uniform random points in (0, 1)d, which adds to the analysis of the
ONG given in [6, 19, 25, 34, 35]. The proof below of Theorem 4 is self-contained, and
similar in part to the proof of Theorem 2 in [23]. For a sequence Ym = (Y1, . . . ,Ym) of
points in Rd, write Odmax(Ym) for the length of the longest edge in the ONG on Ym:

Odmax(Ym) := max
2≤i≤m

min
1≤j<i

‖Yi −Yj‖d.

For d = 1, where Un = (U1, . . . , Un) and Πn = (U1, . . . , UN(n)) for U1, U2, . . . independent
uniform random variables on (0, 1), we set U0

n := (0, U1, . . . , Un), i.e. U0
n is Un but with

an initial point placed at the origin, and similarly Π0
n := (0, U1, . . . , UN(n)).

Theorem 4 Let d ∈ N.

(i) There exists a random variable Qmax(d) such that as n→∞,

Odmax(Un)
d−→ Qmax(d); Odmax(Πn)

d−→ Qmax(d).

(ii) When d = 1, we have in particular that

Qmax(1)
d
= max{UM{1}, (1− U)M{2}}, (3.1)

where U , M{1}, M{2} are independent, U is uniform on (0, 1) and M{1}, M{2} are
max-Dickman random variables as given by (2.4). Also as n→∞,

O1
max(U0

n)
d−→M ; O1

max(Π0
n)

d−→M, (3.2)

where M is a max-Dickman random variable as given by (2.4).

Proof. First we prove part (i). With probability 1, for all n, 0 ≤ Odmax(Un) ≤ d1/2 and
Odmax(Un+1) ≥ Odmax(Un). Hence Odmax(Un)→ Qmax(d) a.s., as n→∞, for some Qmax(d).
Then by the coupling of Πn and Un and the fact that N(n) → ∞ a.s., we have that
with this coupling Odmax(Πn) converges to the same Qmax a.s. and hence in distribution
(regardless of the coupling), completing the proof of part (i).
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We now prove part (ii) of the theorem, and so take d = 1. First we prove (3.2). Again
by the coupling of Πn and Un, it suffices to prove that O1

max(U0
n) → M a.s. as n → ∞.

The following argument is related to the proof of Theorem 2 of [23].
An upper record value in the sequenceX1, X2, . . . is a valueXi which exceeds max{X1, . . . , Xi−1}

(the first value X1 is also included as a record value). Let j(1), j(2), . . . be the values of
i ∈ N such that Ui is an upper record in the sequence (U1, U2, . . .), arranged in increasing
order so that 1 = j(1) < j(2) < · · · . Let Rn := max{k : j(k) ≤ n} be the number of
record values in the sequence Un = (U1, . . . , Un).

A record Ui has by definition no preceding point in the sequence Un to its right in
the unit interval, and hence (in the ONG on U0

n) must be joined to its nearest neighbour
to the left amongst those points already present, which is necessarily the previous record
value when i > 1, or 0 in the case of U1. Then each non-record Ui lies in an interval
between two successive record values (here we are including 0 as a record value), and
hence gives rise to a shorter edge than that from some record value. Thus

O1
max(U0

n) = max
1≤i≤Rn

{
Uj(i) − Uj(i−1)

}
, (3.3)

where we set j(0) := 0 and U0 := 0. For i ∈ N set

Vi :=
1− Uj(i)

1− Uj(i−1)

.

It is not hard to see that V1, V2, . . . are mutually independent and each is uniformly
distributed over (0, 1). Therefore, setting

M := max{1− V1, V1(1− V2), V1V2(1− V3), V1V2V3(1− V4), . . .},

we obtain

M = max{1− V1, V1 max{1− V2, V2(1− V3), V2V3(1− V4), . . .}}
= max{1− V1, V1M

′}, (3.4)

where M ′ := max{1 − V2, V2(1 − V3), V2V3(1 − V4), . . .} has the same distribution as M
and is independent of V1. Hence M has the max-Dickman distribution as given by (2.4).
Furthermore, with the convention that an empty product is 1,

(1− Vi)
i−1∏
k=1

Vk =
Uj(i) − Uj(i−1)

1− Uj(i−1)

i−1∏
k=1

(
1− Uj(k)

1− Uj(k−1)

)
= Uj(i) − Uj(i−1), (3.5)

for k ∈ N. Also, Rn →∞ almost surely as n→∞. Hence by (3.3), (3.4) and (3.5),

O1
max(U0

n) = max
1≤i≤Rn

{
(1− Vi)

i−1∏
k=1

Vk

}
→ max

i≥1

{
(1− Vi)

i−1∏
k=1

Vk

}
= M,

where the convergence is almost sure. This proves (3.2).
To complete the proof of part (ii) of the theorem, we need to prove (3.1). Conditioning

on U = U1 and the number of points of (U2, U3, . . . , Un) that fall in each of the two
intervals (0, U), (U, 1), we obtain by scaling that

O1
max(Un)

d
= max{UO1

max(U0
L), (1− U)O1

max(Ũ0
n−1−L)}, (3.6)
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where in the right-hand expression Ũ0
m = (0, Ũ1, Ũ2, . . . , Ũm), L ∼ Bin(n − 1, U), and

U,U1, U2, . . . , Ũ1, Ũ2, . . . are independent uniform random variables on (0, 1). Here L and
n − 1 − L both tend to infinity a.s. as n → ∞, and O1

max(U0
L) and O1

max(Ũ0
n−1−L) are

independent given L. Thus by (3.2) we have that O1
max(U0

L) and O1
max(Ũ0

n−1−L) converge
in distribution to independent copies of the max-Dickman variable M . Then (3.6) and
the fact that Qmax(1) is the distributional limit of O1

max(Un) yields (3.1). �

4 Limit theorems away from the boundary

In this section we prove a law of large numbers and central limit theorem for the total
power-weighted length of the MDST edges from points that are not too close to the base
of the unit d-cube. To do this, we employ some general results of Penrose [20–22].

Recently, notions of stabilizing functionals of point sets have proved to be a useful basis
for a general methodology for establishing limit theorems for functionals of random point
sets in Rd. See for example [19,21,22,28,29]. To prove the law of large numbers (Lemma
3) and central limit theorem (Lemma 6) in this section, we make use of the general results
on convergence of random measures in geometric probability given in [20–22]. These two
lemmas will then form two of the ingredients for two of our main results, Theorems 1 and
2.

We use the following notation. Let d ∈ N. Let X ⊂ Rd be finite. For constant a > 0,
and y ∈ Rd, let y + aX denote the transformed set {y + ax : x ∈ X}. For x ∈ Rd and
r > 0, let B(x; r) be the closed Euclidean d-ball with centre x and radius r. For bounded
measurable R ⊂ Rd let |R| denote the d-dimensional Lebesgue measure of R. Write 0 for
the origin of Rd.

For α > 0, define the [0,∞)-valued function on finite non-empty X ⊂ Rd and x ∈ X :

ξ(x;X ) := d∗(x;X )α, (4.1)

and set ξ(x; ∅) := 0 for any x. Then ξ is translation invariant (that is ξ(y + x; y +X ) =
ξ(x;X ) for all y ∈ Rd, all finite X ⊂ Rd and x ∈ X ) and homogeneous of order α (that is
for any r > 0, ξ(rx; rX ) = rαξ(x;X ) for all finite X ⊂ Rd and x ∈ X ). For X ⊂ Rd and
x ∈ Rd, write X x for X ∪ {x}. If x /∈ X , we abbreviate notation to ξ(x;X ) = ξ(x;X x).
The above definitions extend naturally to infinite but locally finite sets X (as in [21]).

Let

Ld,α(X ;R) :=
∑

x∈X∩R

ξ(x;X ) (4.2)

be the translation invariant functional, defined on all finite point sets X ⊂ Rd and all Borel
sets R ⊆ Rd, induced by the function ξ. Then Ld,α(X ;R) is the total power-weighted
length of the edges of the MDST on X originating from points in the region R. It is this
functional that interests us here. When X is random, set L̃d,α(X ;R) := Ld,α(X ;R) −
E[Ld,α(X ;R)]. Note that with our previous notation, Ld,α(X ) = Ld,α(X ; (0, 1)d) for
X ⊂ (0, 1)d.

Fix ε ∈ (0, 1/d) (small). Let (gn)n>0 be such that gn ∈ (0, 1) and gn = Θ(nε−(1/d)) as
n→∞, where by a(n) = Θ(b(n)) as n→∞ we mean

0 < lim inf
n→∞

a(n)

b(n)
≤ lim sup

n→∞

a(n)

b(n)
<∞.
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Given gn, we introduce the family (Γn)n≥1 of Borel subsets of Rd given by

Γn := (0, 1)d−1 × (gn, 1), (4.3)

i.e. Γn is the unit d-cube without a thin strip at the base (in the ed sense). Note that the
limiting set ∪n≥1Γn = (0, 1)d. Later on, in Section 7, we will make a more specific choice
for gn. For n ≥ 1, locally finite X ⊂ Rd and x ∈ X we define the scaled-up version of ξ
restricted to Γn by

ξn(x;X ) := ξ(n1/dx;n1/dX )1Γn(x).

Then, from (4.2),

Ld,α(X ; Γn) =
∑
x∈X

ξ(x;X )1Γn(x) = n−α/d
∑
x∈X

ξn(x;X ), (4.4)

using the fact that ξ as given by (4.1) is homogeneous of order α. We employ the following
notion of stabilization (see [21,22]).

Definition 1 For any locally finite X ⊂ Rd and Borel region A ⊆ Rd, define Rξ(0;X , A)
(called the radius of stabilization for ξ at 0 with respect to X and A) to be the smallest
integer r ≥ 0 such that

ξ(0; (X ∩B(0; r)) ∪ Y) = ξ(0;X ∩B(0; r)),

for all finite Y ⊂ A \B(0; r). If no such r exists, set Rξ(0;X , A) =∞.

When A is all of Rd, we write Rξ(0;X ) for Rξ(0;X ,Rd).

4.1 Law of large numbers

We will apply a Poisson point process analogue of the law of large numbers Theorem 2.1
of [21]. As mentioned on p. 1130 of [21], such a Poisson-sample result follows by similar
arguments to the proofs in [21]; in fact such a result is stated and proved as Theorem 2.1
in [20]. It is this latter result that we will use in this section.

Let H1 denote a homogeneous Poisson point process of unit intensity on Rd. Our law
of large numbers result for this section is the following.

Lemma 3 Suppose d ∈ {2, 3, . . .} and α > 0. As n→∞ we have

n(α/d)−1Ld,α(Pn; Γn)→ E[ξ(0;H1)] = 2α/dv
−α/d
d Γ(1 + (α/d)), (4.5)

where the convergence is in L2, and vd is given by (2.1).

The statement (4.5) will follow from Theorem 2.1 of [20] applied to our functional ξ
as defined at (4.1), using (4.4). Thus we need to verify the conditions of Theorem 2.1
of [20]: (a) that Rξ(0;H1) is almost surely finite; and (b) that there exists some p > 2
such that the following two moments conditions hold:

sup
n≥1; x∈(0,1)d

E[ξn(x;Pn)p] <∞, and (4.6)

sup
n≥1; x,y∈(0,1)d

E[ξn(x;Py
n )p] <∞. (4.7)

The next two lemmas take care of this.
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Lemma 4 For ξ given by (4.1), the radius of stabilization Rξ(0;H1) as defined in Defi-
nition 1 is almost surely finite.

Proof. Let R = d∗(0;H1). Then R is finite almost surely. For any ` > R we have that
ξ(0; (H1 ∩B(0; `)) ∪ Y) = Rα, for any finite Y ⊂ Rd \B(0; `). Thus taking Rξ(0;H1) to
be the smallest integer greater than R, Rξ(0;H1) is almost surely finite. �

Lemma 5 Suppose d ∈ {2, 3, . . .} and α > 0. Then for (Γn)n≥1 as given at (4.3) and ξ
as given by (4.1) the moments conditions (4.6) and (4.7) hold for any p > 0.

Proof. We have from the definition of ξn and (4.1) that

sup
x∈(0,1)d

E[ξn(x;Pn)p] = sup
x∈Γn

E[ξ(n1/dx;n1/dPn)p] = sup
x∈Γn

E[d∗(n
1/dx;n1/dPn)αp]. (4.8)

For d ∈ {2, 3, . . .}, x ∈ Γn and r > 0, define the region, in the scaled-up space (0, n1/d)d,

Adn(x, r) := B(n1/dx; r) ∩ (0, n1/d)d ∩ {y ∈ Rd : y 4∗ n
1/dx}. (4.9)

For x ∈ Γn, define the variables

ζ(1)
n (x) := d∗(n

1/dx;n1/dPn)1{d∗(x;Pn)≤gn},

ζ(2)
n (x) := d∗(n

1/dx;n1/dPn)1{d∗(x;Pn)>gn}.

For t ≥ 0, we have that

P(ζ(1)
n (x) > t) = P({d∗(n1/dx;n1/dPn) > t} ∩ {d∗(n1/dx;n1/dPn) ≤ n1/dgn}).

This probability is clearly zero unless t < n1/dgn, in which case, by the definition of Γn
the region Adn(x, t) does not touch the hyperplane {xd = 0}, so that |Adn(x, t)| ≥ 2−dvdt

d,
where vd is the volume of the unit d-ball given by (2.1). Hence for all t ≥ 0,

P(ζ(1)
n (x) > t) ≤ exp(−2−dvdt

d),

for all n and all x ∈ Γn. Hence for any p > 0 the (αp)-th moment of ζ
(1)
n (x) is uniformly

bounded in n and x ∈ Γn.
Also, for all n and all x ∈ Γn, the random variable ζ

(2)
n (x) is bounded by the random

variable d1/2n1/d1{d∗(n1/dx;n1/dPn)>n1/dgn}, so that

E[(ζ(2)
n (x))αp] ≤ dαp/2nαp/dP(d∗(n

1/dx;n1/dPn) > n1/dgn)

≤ dαp/2nαp/d exp(−|Adn(x, n1/dgn)|) ≤ dαp/2nαp/d exp(−2−dvd(n
1/dgn)d)

and since n1/dgn = Θ(nε), this upper bound is bounded in n. Thus the (αp)-th moment

of ζ
(2)
n (x) is bounded uniformly over all n and all x ∈ Γn. Combined with the earlier

uniform moment bound for ζ
(1)
n (x) and (4.8), this yields (4.6).

For (4.7), note that for any x ∈ Γn,y ∈ (0, 1)d,

ξn(x;Py
n ) = d∗(n

1/dx;n1/d(Pn ∪ {y}))α ≤ d∗(n
1/dx;n1/dPn)α + 1{Pn⊂Γn}n

α/ddα/2.

Moreover, ξn(x;Py
n ) is zero for x ∈ (0, 1)d \ Γn. Thus

sup
x,y∈(0,1)d

E [ξn(x;Py
n )p] ≤ sup

x∈(0,1)d
E [ξn(x;Pn)p] + P(Pn ⊂ Γn)nαp/ddαp/2,
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so that (4.6) implies (4.7) since P(Pn ⊂ Γn) = exp(−ngn). �

Proof of Lemma 3. From Theorem 2.1 of [20], with (4.4) and Lemmas 4 and 5, we
obtain the convergence statement in (4.5). It remains to prove the final equality (4.5).
We have, for s ≥ 0,

P (ξ(0;H1) > s) = P
(
H1 ∩ {x ∈ Rd : x 4∗ 0} ∩B(0; s1/α) = ∅

)
= exp (−(vd/2)sd/α).

Hence,

E [ξ(0;H1)] =

∫ ∞
0

P (ξ(0;H1) > s) ds =

∫ ∞
0

exp(−(vd/2)sd/α)ds,

which by the change of variables y = (vd/2)sd/α is the same as

α

d
2α/dv

−α/d
d

∫ ∞
0

y(α/d)−1 exp(−y)dy =
α

d
2α/dv

−α/d
d Γ(α/d),

by Euler’s Gamma integral (see e.g. 6.1.1 in [1]). The desired equality now follows from
the functional relation xΓ(x) = Γ(1 + x) (see 6.1.15 in [1]). �

4.2 Central limit theorem

We again consider Ld,α(Pn; Γn) as given by (4.4). In this section we aim to prove a central
limit theorem complementing the law of large numbers of Section 4.1. This time, we will
apply Theorems 2.1 and 2.2 of [22] to give the following result.

Lemma 6 Let d ∈ {2, 3, . . .} and α > 0. There exists a constant sα ∈ (0,∞), not
depending on the choice of ε or the sequence gn, such that,

lim
n→∞

(
n(2α/d)−1Var

[
Ld,α(Pn; Γn)

])
= lim

n→∞

(
n−1Var

[∑
x∈Pn

ξn(x;Pn)

])
= s2

α,

and, as n→∞,

n(α/d)−(1/2)L̃d,α(Pn; Γn)
d−→ N (0, s2

α).

Proof. First we prove that the statement of the lemma holds for some sα ∈ [0,∞).
To do this, we need to verify the conditions of Theorems 2.1 and 2.2 of [22] (see also
Theorem 2.2 and 2.3 of [20]) for our function ξ as given by (4.1). In addition to the
moments conditions (4.6), (4.7) (as shown to hold in Lemma 5), we need to demonstrate
the following additional stabilization conditions:

P(Rξ(0;Hz
1) <∞) = 1, (4.10)

for all z ∈ Rd; and

lim sup
s→∞

s−1 log

(
sup

n≥1; x∈Γn

P(Rξ(n
1/dx;n1/dPn, n1/d(0, 1)d) > s)

)
< 0. (4.11)

Condition (4.10) requires that the radius of stabilization is almost surely finite on the
addition of an arbitrary extra point to H1, and condition (4.11) requires exponential
decay of the tail of the radius of stabilization.
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Given Lemma 4, (4.10) is clear, since with probability 1 the addition of any extra
point z ∈ Rd to H1 can only decrease the radius of stabilization at 0.

We need to prove (4.11). Let |Adn(x, r)| be defined by (4.9), and for z = (z1, z2, . . . , zd) ∈
n1/dΓn, let m(z) := zd, the last component of z. For d ≥ 2, we claim that there are finite
constants Cd > 0 and n0 ≥ 1 such that

|Adn(x, r)| ≥ Cdr
d−1 if r ∈ (1, d1/2n1/d], (4.12)

for all n ∈ N with n ≥ n0, and any x ∈ Γn.
We verify the claim (4.12). Take n0 such that for all n ≥ n0 we have n1/dgn ≥ 1. Then

for n ≥ n0, suppose r ∈ (1, d1/2n1/d]. For a lower bound on the volume of Adn(x, r), consi-
der x = (0, 0, . . . , 0,m(x)), the ‘worst case’. Let hx denote the hyperplane {y ∈ n1/dΓn :
m(y) = m(n1/dx)}. Let r′ := d−1/2r, so r′ ≤ n1/d. Then let w1,w2, . . . ,wd−1 denote the
d−1 points of hx (r′, 0, 0, . . . , 0,m(n1/dx)), (0, r′, 0, . . . , 0,m(n1/dx)), . . . (0, 0, . . . , 0, r′,m(n1/dx)),
and let w0 denote the point (0, 0, . . . , 0,m(n1/dx) − 1). Then since x ∈ Γn, the d-
dimensional ‘right pyramid’ defined by vertices w0, n

1/dx,w1, . . . ,wd−1 is contained wi-
thin both (0, n1/d)d and the half-ball B(n1/dx; r) ∩ {y ∈ Rd : y 4∗ n1/dx}. The volume
of this ‘pyramid’ is d!−1(r′)d−1. This gives a lower bound for |Adn(x, r)|, and (4.12) holds
as claimed.

To prove (4.11), note that n1/dPn is a homogeneous Poisson point process of unit
intensity on (0, n1/d)d. Then for s > 1, arguing as in the proof of Lemma 4 yields

P
(
Rξ(n

1/dx;n1/dPn, n1/d(0, 1)d) > s
)
≤ P

(
d∗(n

1/dx;n1/dPn) > s− 1
)

≤ exp
(
−
∣∣Adn(x, s− 1)

∣∣) .
So by (4.12), for n ≥ n0 and 2 < s ≤ d1/2n1/d + 1, we obtain,

sup
x∈Γn

P
(
Rξ(n

1/dx;n1/dPn, n1/d(0, 1)d) > s
)
≤ exp

(
−Cd(s− 1)d−1

)
.

Also, this probability is zero for s > d1/2n1/d + 1. Thus for any s > d1/2n
1/d
0 + 1,

sup
n≥1; x∈Γn

P
(
Rξ(n

1/dx;n1/dPn, n1/d(0, 1)d) > s
)
≤ exp

(
−Cd(s− 1)d−1

)
,

and (4.11) follows. This completes the proof of the lemma but for admitting the possibility
that sα = 0.

Thus it remains to show that sα > 0. This can be done using techniques that are
now fairly standard in the literature, such as those in [3, 26, 28]; see Lemma 6.2 of the
extended version of [24] for an example of such a result for a different MDST model.
Thus we only sketch the idea. In the general frameworks in [3, 26, 28], the key extra
ingredient, in addition to stabilization and moment conditions which can be verified
in the same way as those that we proved earlier in Section 4, is demonstrating some
‘nondegeneracy’ of the add-one cost, that is, some quantification of the change in the
functional of interest (here, the total weight of edges from the region Γn) on insertion
of a new point. Let ∆(H1) = limr→∞ Ld,α((H1 ∪ {0}) ∩ B(0; r)) − Ld,α(H1 ∩ B(0; r)).
∆(H1) is the appropriate add-one cost in our setting. In fact to apply known results the
version of stabilization that we need is external stabilization, which we do not cover in
Section 4, but can be verified by an appropriate modification of the arguments in Section
4 (compare Lemma 6.1 of the extended version of [24]).
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To prove sα > 0, we will follow an argument based on Theorem 2.2 of [26] that requires
that P(∆(H1) 6= 0) > 0. This is not hard to show by considering configurations in which
no Poisson point falls in an appropriate cuboid around the origin, but at least one point
falls in each of a set of small disjoint cubes that surround the boundary of the cuboid:
see Figure 2 for an example in d = 2.

Figure 2: Configuration for demonstrating P(∆(H1) 6= 0) > 0. If an additional point is
inserted at 0, then no other edge is affected (since no other point can have the inserted
point as a directed nearest neighbour), but a new edge (whose length is uniformly bounded
below) is added from the inserted point to its directed nearest neighbour.

A difficulty in applying Theorem 2.2 of [26] is that we cannot apply it to Ld,α(Pn; Γn)
directly since the statement in [26] does not cover regions that, like Γn, can vary with n.
To overcome this, let A1 := (0, 1)d−1 × (gn, 1/2] and A2 := (0, 1)d−1 × (1/2, 1) denote the
‘bottom half’ and ‘top half’ of the unit cube. Then setting Xn := nα/dLd,α(Pn;A1) and
Yn := nα/dLd,α(Pn;A2) we need to show that

lim inf
n→∞

n−1Var(Xn + Yn) > 0. (4.13)

Applying Theorem 2.2 of [26] we obtain lim infn→∞ n
−1Yn > 0. Also by Theorem 2.1

of [22] we have that the limits of n−1Var(Xn) and n−1Var(Yn) both exist (as does the
limit of n−1(Xn + Yn), by the first part of this proof). Then by polarization (see most
explicitly the second paragraph of Theorem 2.3 of [20]) the limit of n−1Cov(Xn, Yn) is 0.
Then (4.13) follows, so that sα > 0. �
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Remark. It should be possible to give an alternative proof that sα > 0 by adapting
Section 4 of the extended version of [24] (in particular Lemma 6.2 there); this approach
would have the advantage of applying in the de-Poissonized setting.

5 Boundary effects in the MDST

In this section, we consider the contribution to the total power-weighted length of the
MDST under 4∗ due to boundary effects near the ‘bottom face’ of the d-cube. Here
the possibility of long edges leads to special behaviour. We shall see that the ONG, as
described in Section 3, will be a useful tool here.

Fix ε > 0 small. Let (tn)n>0 be such that tn ∈ (0, 1) and tn = Θ(n−(1/2)−ε) as n→∞
(we make a specific choice for tn in Section 7). Let Bn denote the boundary region
(0, 1)d−1× (0, tn], i.e. we look in a thin slice at the base (in the sense of 4∗) of the unit d-
cube. Recall from (4.2) that Ld,α(X ;R) denotes the contribution to the total weight of the
MDST on X from those points of X ∩R, and L̃d,α(X ;R) := Ld,α(X ;R)− E[Ld,α(X ;R)].
Also recall that Pn denotes a homogeneous Poisson point process of intensity n on (0, 1)d.
Our main result of this section is the following.

Theorem 5 Suppose d ∈ {2, 3, . . .}. Let ε > 0 and tn = Θ(n−(1/2)−ε) specify Bn.

(i) Suppose α ≥ d/2. With Q(d− 1, α) as in Lemma 2, we have that as n→∞,

L̃d,α(Pn;Bn)
d−→ Q(d− 1, α). (5.1)

(ii) Suppose α ∈ (0, d/2). As n→∞,

n(α/d)−(1/2)L̃d,α(Pn;Bn)
P−→ 0. (5.2)

The idea behind the proof of Theorem 5 is to show that the MDST under 4∗ near
to the boundary is close to an ONG defined on a sequence of uniform random vectors in
(0, 1)d−1 coupled to the points of the MDST in Bn. To do this, we produce an explicit
sequence of random variables on which we construct the ONG coupled to Pn on which
the MDST is constructed. Define the point process

Wn := Pn ∩Bn. (5.3)

Let βn := card(Wn). List Wn in order of increasing xd-coordinate as U(i), 1 ≤ i ≤ βn. In
coordinates, set U(i) = (U1

i , U
2
i , . . . , U

d
i ) for each i. Let Vi = (U1

i , . . . , U
d−1
i ) ∈ (0, 1)d−1

be the projection of U(i) down onto the base of the unit d-cube. Set

Vn := (V1, . . . ,Vβn). (5.4)

Then Vn is a sequence of independent uniform random vectors in (0, 1)d−1 (the base
of the unit d-cube), on which we may construct an ONG. Note that the points of Vn
in fact constitute a homogeneous Poisson point process of intensity ntn = Θ(n(1/2)−ε)
on (0, 1)d−1 (this follows from the Mapping Theorem, see [13]). With the ONG weight
functional Od,α(·) defined in Section 3, the ONG weight Od−1,α(Vn) is coupled in a natural
way to Ld,α(Wn) = Ld,α(Pn;Bn).

Our first step towards Theorem 5 is the following result, which shows that, near the
boundary, the MDST is close to the coupled ONG. The idea of the proof is similar to the
proof (covering d = 2 only) of Lemma 6.1 in [24], although the estimates in that result
were in the L2-sense, rather than L1.
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Lemma 7 Suppose d ∈ {2, 3, . . .}. Let ε > 0 and tn = Θ(n−(1/2)−ε) specify Bn. Let
Wn,Vn be as defined at (5.3), (5.4) respectively. For α ≥ 1, as n→∞,

Ld,α(Wn)−Od−1,α(Vn)→ 0, in L1, (5.5)

and, for α ∈ (0, 1), as n→∞,

E
∣∣Ld,α(Wn)−Od−1,α(Vn)

∣∣ = O
(
n(1/2)−ε−α((1/2)+ε)

)
. (5.6)

Proof. We construct the MDST on the point set Wn, and the ONG on Vn. Since
U(j) 4∗ U(i) if and only if j ≤ i, either an edge exists from U(i) in the MDST and also
from Vi in the ONG, or from neither. For the difference between the total weights of the
two graphs, it suffices to consider the case in which both edges exist. Then Vi is joined
to a point VD(i), D(i) < i in the ONG, and U(i) to a point U(J(i)), J(i) < i in the MDST.
Since J(i) < i, the rule for construction of the ONG implies that

‖Vi −VD(i)‖αd−1 ≤ ‖Vi −VJ(i)‖αd−1 ≤ ‖(Vi, U
d
i )− (VJ(i), U

d
J(i))‖αd , (5.7)

and so we have that, for all α > 0,

Od−1,α(Vn) ≤ Ld,α(Wn). (5.8)

Also (VD(i), U
d
D(i)) 4∗ (Vi, U

d
i ), so the rule for construction of the MDST implies that

‖(Vi, U
d
i )− (VJ(i), U

d
J(i))‖d ≤ ‖(Vi, U

d
i )− (VD(i), U

d
D(i))‖d. (5.9)

By a similar argument to (6.12) of [24], for d ≥ 2 and α ≥ 1 we have that, a.s.,

‖(Vi, U
d
i )− (VD(i), U

d
D(i))‖αd − ‖Vi −VD(i)‖αd−1 ≤ C(Ud

i − Ud
D(i)), (5.10)

for some C ∈ (0,∞). Then (5.9) and (5.10) yield, for α ≥ 1, a.s.,

‖(Vi, U
d
i )− (VJ(i), U

d
J(i))‖αd − ‖Vi −VD(i)‖αd−1 ≤ C(Ud

i − Ud
D(i)) ≤ Ctn, (5.11)

which implies that there exist C,C ′ ∈ (0,∞) such that for all n ≥ 1,

Ld,α(Wn)−Od−1,α(Vn) ≤ Cβntn ≤ C ′βnn
−(1/2)−ε. (5.12)

Combining (5.8) and (5.12) we have that, for α ≥ 1, some C ∈ (0,∞) and all n ≥ 1,∣∣Ld,α(Wn)−Od−1,α(Vn)
∣∣ ≤ Cβnn

−(1/2)−ε, a.s..

Taking expectations, using the facts that βn is Poisson with mean ntn = Θ(n(1/2)−ε) and
ε > 0, we obtain (5.5).

Now we consider the case α ∈ (0, 1). By the concavity of the function t 7→ tα for
α ∈ (0, 1), we have for (x, y) ∈ (0, 1)d−1 × (0, 1) that

‖(x, y)‖αd − ‖x‖αd−1 ≤ (‖x‖d−1 + y)α − ‖x‖αd−1 ≤ yα (0 < α < 1).

Then, by a similar argument to the α ≥ 1 case, we obtain∣∣Ld,α(Wn)−Od−1,α(Vn)
∣∣ ≤ Cβnn

−α((1/2)+ε),

so taking expectations yields (5.6). �
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Lemma 8 Suppose d ∈ {2, 3, . . .} and α ≥ d/2. Let Wn be as defined at (5.3) and
suppose that Q(d − 1, α) is the mean-zero random variable given in Lemma 2, so in
particular Q(1, α) = G̃α for α ≥ 1, where G̃α has the distribution given by (2.7) if α = 1
and by (2.8) if α > 1. Then as n→∞,

L̃d,α(Wn)
d−→ Q(d− 1, α). (5.13)

Proof. For α ≥ d/2 ≥ 1, (5.5) holds, and hence the corresponding centred version
also holds. Also, since Vn is a homogeneous Poisson point process of intensity ntn =
Θ(n(1/2)−ε) on (0, 1)d−1, and α ≥ d/2 > (d− 1)/2, Lemma 2 implies that as n→∞,

Õd−1,α(Vn)
d−→ Q(d− 1, α). (5.14)

Thus (5.5), (5.14) and Slutsky’s theorem complete the proof of (5.13). �

Proof of Theorem 5. For α ≥ d/2, (5.1) follows from (5.13). Now suppose α ∈ (0, d/2).
Since d ≥ 2 and ε > 0, (5.6) implies that for α ∈ (0, 1) we have

n(α/d)−(1/2)
(
L̃d,α(Pn;Bn)− Õd−1,α(Vn)

)
→ 0, in L1, (5.15)

as n → ∞. Also, (5.5) implies that (5.15) also holds for α ∈ [1, d/2) when d ≥ 3. Thus
(5.15) holds for all α ∈ (0, d/2). Recall that Vn is a homogeneous Poisson point process
in (0, 1)d−1 with intensity ntn = Θ(n(1/2)−ε). If α ≤ (d − 1)/2, then by Lemma 1(i) and
(ii) we have that for some C ∈ (0,∞),

Var
[
n(α/d)−(1/2)Õd−1,α(Vn)

]
≤ Cn(2α/d)−1(n(1/2)−ε)1−(2α/(d−1)) log n

≤ Cnα((2/d)−1/(d−1))−(1/2) log n ≤ Cn−1/d log n→ 0,

as n→∞. If α ∈ ((d− 1)/2, d/2), then by Lemma 2, as n→∞,

n(α/d)−(1/2)Õd−1,α(Vn)
P−→ 0.

So by Slutsky’s theorem with (5.15) we obtain (5.2). �

6 Proof of Theorem 3

In this section we are interested in the longest edge in the MDST under4∗ on Pn ⊂ (0, 1)d.
The intuition behind Theorem 3 is that this edge is likely to be near the lower (d − 1)-
dimensional boundary. Thus we again make use of the fact that the MDST near the
boundary is well-approximated by the appropriate ONG. Then we deduce Theorem 3
from Theorem 4 using the set-up of Section 5.

From Section 5 recall that for fixed ε > 0, Bn denotes the boundary region (0, 1)d−1×
(0, tn] (where tn = Θ(n−(1/2)−ε)), and from (5.3) that Wn = Pn ∩ Bn. Also, recall from
(5.4) that Vn is the sequence of (d− 1)-dimensional projections of Wn in order of increa-
sing xd-coordinate.

Proof of Theorem 3. From (5.7), every edge in the ONG on Vn has length bounded
above by the length of some edge in the MDST onWn. On the other hand, we have from
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(5.11) that an edge from U(i) ∈ Wn in the MDST is at most O(tn) longer than the edge
in the ONG from the corresponding Vi ∈ Vn. Thus, for some C ∈ (0,∞),

0 ≤ Ldmax(Wn)−Od−1
max(Vn) ≤ Cn−(1/2)−ε, a.s.,

for all n ≥ 1. Hence Ldmax(Wn)−Od−1
max(Vn) tends to 0, a.s., as n→∞. By Theorem 4(i)

and the fact that Vn is a homogeneous Poisson point process of intensity ntn → ∞ (for
ε small), we have Od−1

max(Vn) → Qmax(d − 1) in distribution, as n → ∞. Hence Slutsky’s
theorem implies that

Ldmax(Wn)
d−→ Qmax(d− 1), (6.1)

as n→∞. Set
Mn := max

x∈Pn\Wn

d∗(x;Pn),

the length of the longest edge in the MDST from points of Pn in the region (0, 1)d−1 ×
(tn, 1). Then for any n ≥ 1, Ldmax(Pn) = max{Ldmax(Wn),Mn}; thus

Ldmax(Wn) ≤ Ldmax(Pn) ≤ Ldmax(Wn) +Mn. (6.2)

Hence by (6.2), (6.1), and Slutsky’s theorem, to complete the proof of the theorem it
suffices to show that as n→∞,

Mn
P−→ 0. (6.3)

We prove (6.3). For ε > 0 as before and (i1, . . . , id) ∈ Nd, define the cuboid

C(i1, . . . , id) := ((i1 − 1)bnεc−1, i1bnεc−1]× · · · × ((id−1 − 1)bnεc−1, id−1bnεc−1]

× ((id − 1)bt−1
n c−1, idbt−1

n c−1].

Let En denote the event ⋃
(i1,...,id)∈Nd∩[(0,bnεc]d−1×(0,bt−1

n c]]

{Pn ∩ C(i1, . . . , id) = ∅} .

The number of points of Pn in each cuboid C(i1, . . . , id) in the union is Poisson distributed
with mean

n · bnεc−(d−1) · bt−1
n c−1 = Θ(n(1/2)−dε),

and the total number of cuboids in the union is bnεcd−1bt−1
n c = O(n(1/2)+dε). Thus Boole’s

inequality implies that there exist C,C ′ ∈ (0,∞) for which, for all n ≥ 1,

P(En) ≤ Cn(1/2)+dε exp(−C ′n(1/2)−dε),

and hence P(En)→ 0 as n→∞, for ε small enough. However, if En does not occur then
each cuboid contains at least one point of Pn and Mn is bounded by a constant times
n−ε. Thus (6.3) follows and the proof is complete. �
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7 Proof of Theorem 2

In this section we complete the proof of our convergence in distribution result for Ld,α(Pn),
Theorem 2. Recall from Section 4 that ε > 0 is fixed (small) and Γn denotes the region
(0, 1)d−1 × (gn, 1), where gn = Θ(nε−(1/d)) as n→∞. As in Section 5, denote by Bn the
region (0, 1)d−1× (0, tn], where tn = Θ(n−(1/2)−ε). We will make a particular choice for gn
and tn shortly. Denote by In the intermediate region (0, 1)d\(Bn∪Γn) = (0, 1)d−1×(tn, gn].

In order to prove Theorem 2, we need to collect results from the preceding sections
on the limiting behaviour of the MDST in the regions Γn and Bn, and also deal with the
region In. In Sections 4.2 and 5 we saw that, for large n, the weight (suitably centred and
scaled) of edges starting in Γn satisfies a central limit theorem, and the weight of edges
starting in Bn can be approximated by the ONG. To complete the proof of Theorem 2,
we shall show that (with a suitable scaling factor for α < d/2) the contribution to the
total weight from points in In has variance converging to zero, and that the lengths from
Bn and Γn are asymptotically independent by virtue of the fact that the configuration of
points in In ensures (with probability approaching one) that the configuration of points
in Bn has no effect on the edges from points in Γn.

Recall from (4.2) that for a point set X ⊂ Rd and a region R ⊆ Rd, Ld,α(X ;R) denotes
the total weight of edges of the MDST on X which originate in the region R. The next
result is the main result of this section: it gives asymptotic control of the variance of
Ld,α(Pn; In), and will allow us to complete the proof of Theorem 2.

Lemma 9 Suppose d ∈ {2, 3, 4, . . .} and α > 0. Then for small enough ε > 0 there exist
gn = Θ(nε−(1/d)) and tn = Θ(n−(1/2)−ε) specifying In for which, as n→∞,

Var[Ld,α(Pn; In)]→ 0, (α > (d− 1)/2), (7.1)

and Var[n(α/d)−(1/2)Ld,α(Pn; In)]→ 0, (0 < α < d/2). (7.2)

Before embarking on the proof of Lemma 9, we prove the following preliminary result
which, for our purposes, will control the dependency structure of the MDST. Let X be
a set of points in (0, 1)d. For non-empty X and x ∈ X , let D∗(x;X ) denote the total
degree of x (i.e. the total number of directed edges that have x as one endpoint) in the
MDST on X ; set sup(∅) := −∞.

Lemma 10 Let d ≥ 2. For any ε ∈ (0, 1) there exist C,C ′ ∈ (0,∞) such that for all
n ≥ 1,

P
(

sup
x∈Pn

D∗(x;Pn) > nε
)
≤ C exp(−C ′nε).

Proof. Suppose d ≥ 2. Fix n ∈ N. Let Xn := {U1, . . . ,Un} be a binomial point process
of n independent uniform random vectors on (0, 1)d. We list the points of Xn in order of
increasing xd-coordinate as U(1) 4∗ U(2) 4∗ · · · 4∗ U(n).

We now consider our usual coupling of the MDST to the ONG. In coordinates, write
U(i) = (U1

i , . . . , U
d
i ). Set Vi = (U1

i , . . . , U
d−1
i ), the projection of U(i) down (in the

ed-sense) onto (0, 1)d−1. With probability one, the U(j), Vj have distinct d-, (d − 1)-
dimensional inter-point distances, so there are no ties to break in constructing the MDST
or ONG. Consider a point U(j) with j ∈ {1, . . . , n − 1}. Suppose that U(k), j < k ≤ n
is joined to U(j) in the MDST on Xn. Then ‖U(k) − U(j)‖d ≤ ‖U(k) − U(i)‖d for i ∈
{j + 1, . . . , k − 1}. Also

‖Vk −Vi‖2
d−1 = ‖U(k) −U(i)‖2

d − (Ud
k − Ud

i )2.
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Then since Ud
i is increasing in i, ‖Vk −Vi‖d−1 is minimized over i ∈ {j, . . . , k − 1} by

i = j. In other words, a necessary condition for U(k), j < k ≤ n, to be joined to U(j) in
the MDST on Xn is that the corresponding edge from Vk to Vj exists in the ONG on
sequence of points (Vj,Vj+1, . . . ,Vn) in (0, 1)d−1.

Hence the in-degree of U(j) in the MDST on Xn is bounded above by the in-degree of
Vj in the ONG on (Vj,Vj+1, . . . ,Vn). This latter quantity has the same distribution as
the degree of V1 in the ONG on (V1,V2, . . . ,Vn−j+1). Hence D∗(U(j);Xn) is stochasti-
cally dominated by the degree of V1 in the ONG on (V1,V2, . . . ,Vn), which we denote
DONG(n). Hence

sup
1≤j≤n

P(D∗(U(j);Xn) > s) ≤ P(DONG(n) > s).

Then by Boole’s inequality, we have that

P
(

sup
1≤j≤n

D∗(U(j);Xn) > s

)
≤

n∑
j=1

sup
1≤i≤n

P(D∗(U(i);Xn) > s) ≤ nP(DONG(n) > s).

Let N(n) = card(Pn). We have

P

(
sup

1≤j≤N(n)

D∗(U(j);XN(n)) > s

)

≤ P(N(n) ≥ 2n) + sup
m<2n

P
(

sup
1≤j≤m

D∗(U(j);Xm) > s

)
≤ P(N(n) ≥ 2n) + 2nP(DONG(2n) > s).

Following the argument in Section 3.1 of [6], we have that for any ε > 0, P(DONG(2n) >
nε) = O(exp(−Cnε)). Also, P(N(n) ≥ 2n) = O(exp(−Cn)) by standard Poisson tail
bounds (e.g. Lemma 1.2 in [18]). This completes the proof. �

To prove Lemma 9 we first derive an upper bound ((7.7) below) for Var[Ld,α(Pn; In)]
in terms of the mean-square changes in Ld,α(Pn; In) on re-sampling Poisson points over
a certain partition of Bn ∪ In into boxes, in a similar way to a technique in [28]. Unlike
in [28], where the boxes are the same shape and size, we need to use boxes of different
shapes to take account of the structure of the MDST near the boundary.

For each n ≥ 1, we will divide (0, 1)d into layers of rectangular d-cells. To begin we
will divide (0, 1)d−1 × (0,∞) into layers starting at the base (in the ed sense). The k-th
layer (k ∈ N) will have height hn(k) given by

hn(k) := n−1+ε2(k−1)(d−1).

We will let Hn(k) denote the starting height (in the ed sense) of layer k; define Hn(1) := 0
and for k ≥ 2 define

Hn(k) :=
k−1∑
i=1

hn(i) =
k−2∑
i=0

n−1+ε2(d−1)i

= cdn
−1+ε

(
2(d−1)(k−1) − 1

)
= cdhn(k)− cdn−1+ε,

where cd = (2d−1 − 1)−1 depends only on d. We then define the box

Ln(k) := (0, 1)d−1 × (Hn(k), Hn(k + 1)] (k ∈ N);
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we will refer to Ln(k) as the k-th layer. For n ≥ 1 define Mn ∈ N such that

Mn := min{m ∈ N : Hn(m+ 1) ≥ n−(1/2)−ε}.

Then Mn satisfies

Mn = Θ(log n), 2Mn = Θ(n(1−4ε)/(2(d−1))). (7.3)

We then define for n ≥ 1 the region

Bn :=
Mn⋃
k=1

Ln(k) = (0, 1)d−1 × (0, Hn(Mn + 1)].

Then with our previous notation as Bn = (0, 1)d−1 × (0, tn), we have tn = Hn(Mn + 1) =
Θ(n−(1/2)−ε). Also for n ≥ 1 define Kn ∈ N such that

Kn := min{k ∈ N : Hn(k + 1) ≥ nε−(1/d)}.

Thus

Kn := Θ(log n), 2Kn = Θ(n1/d). (7.4)

Define for n ≥ 1 the region

In :=
Kn⋃

k=Mn+1

Ln(k) = (0, 1)d−1 × (Hn(Mn + 1), Hn(Kn + 1)], (7.5)

so that, with our previous notation for In, gn = Hn(Kn+ 1) = Θ(nε−(1/d)). These specific
choices for tn and gn then fit with our previous usage.

We now subdivide each layer into cells. For k = 1, 2, . . . , Kn, divide layer k into
rectangular cells of height hn(k) by forming a grid by dividing each of the d − 1 sides
of the layer into 2k−1 equal intervals. Layer k then consists of 2(k−1)(d−1) cells of height
hn(k) and (d− 1)-widths 21−k. Each such cell has volume 2(1−k)(d−1)hn(k) = n−1+ε. The
total number of cells in all the layers up to layer Kn is `(n) given by

`(n) :=
Kn∑
k=1

2(k−1)(d−1) = Θ(2(d−1)Kn) = Θ(n1−(1/d)), (7.6)

by (7.4). Label the cells in layers 1 to Kn lexicographically as Sni , 1 ≤ i ≤ `(n).
Note that for ε small enough, cells in layer k ≤ Mn are always wider than they are

tall, while for Mn ≤ k ≤ Kn cells in layer k have height at most a constant times nε times
their width.

Let P̃n denote an independent copy of the homogeneous Poisson point process Pn,
and for i = 1, 2, . . . , `(n) set

P in := (Pn \ Sni ) ∪ (P̃n ∩ Sni ),

so that P in is Pn but with the Poisson points in Sni independently re-sampled. For ease
of notation during this proof, for n > 0 set Yn = L̃d,α(Pn; In). Define

∆n
i := L̃d,α(P in; In)− L̃d,α(Pn; In) = Ld,α(P in; In)− Ld,α(Pn; In),
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the change in Yn on re-sampling the Poisson points in Sni . By Steele’s [32] version of the
Efron–Stein inequality, or by a martingale difference argument, for n > 0,

Var[Ld,α(Pn; In)] = E[Y 2
n ] ≤

`(n)∑
i=1

E[(∆n
i )2]. (7.7)

For i = 1, 2, . . . , `(n), let G(i) be the integer k ∈ {1, . . . , Kn} such that Si ⊆ L(k), so
that G(i) is the layer to which Si belongs. Formally,

G(i) :=
⌈
(d− 1)−1 log2

[(
2d−1 − 1

)
i+ 1

]⌉
. (7.8)

The next result gives bounds on E[(∆n
i )2].

Lemma 11 Let d ∈ {2, 3, . . .} and α > 0. There exists C ∈ (0,∞) such that for all
n > 0 and all i ∈ {1, 2, . . . , `(n)},

E[(∆n
i )2] ≤

{
Cn(6+4α)εn−α/(d−1) if G(i) ≤Mn,

Cn(6+2α)ε2−2αG(i) if Mn < G(i) ≤ Kn.
(7.9)

Note that 2−2αG(i) = Θ(i−2α/(d−1)) as i → ∞, and for G(i) ≤ Mn or G(i) ≤ Kn,
i = O(n(1−4ε)/2) or i = O(n1−(1/d)) respectively.

Proof of Lemma 11. Let E ′n denote the event that every cell Snj ⊂ (Bn ∪ In) contains

at least one and not more than n2ε points of Pn, and also P̃n. That is,

E ′n :=
⋂

1≤j≤`(n)

{
1 ≤ card(Pn ∩ Snj ) ≤ n2ε, 1 ≤ card(P̃n ∩ Snj ) ≤ n2ε

}
.

We have, from Boole’s inequality and the fact that card(Pn∩Snj ) has the same distribution

as card(P̃n ∩ Snj ), that

P((E ′n)c) ≤ 2
∑

1≤j≤`(n)

P
({

1 ≤ card(Pn ∩ Snj ) ≤ n2ε
}c)

= 2`(n)
[
P(card(Pn ∩ Snj ) > n2ε) + P(card(Pn ∩ Snj ) = 0)

]
. (7.10)

Now card(Pn ∩ Snj ), j = 1, . . . , `(n) are Poisson distributed with mean nε (since |Sj| =
n−1+ε). By standard Chernoff bounds on Poisson tails (see e.g. Lemma 1.2 of [18]),
P(card(Pn ∩ Snj ) > n2ε) = O(exp(−Cn2ε log n)), whereas P(card(Pn ∩ Snj ) = 0) =
exp(−nε). Thus from (7.10), using (7.6), there exists C ∈ (0,∞) such that as n→∞,

P((E ′n)c) = O
(
n1−(1/d) exp(−nε)

)
= O(exp(−Cnε)). (7.11)

Now for ε > 0 and n > 0 let E ′′n denote the event that the maximum vertex degree in
the MDST on Pn and on P in for each i is bounded by nε; i.e.

E ′′n :=

{
sup

X∈{Pn,P1
n,...,P

`(n)
n }

sup
x∈X

D∗(x;X ) ≤ nε

}
.

Then by Lemma 10 we have that for some C ∈ (0,∞),

P((E ′′n)c) = O(exp(−Cnε)). (7.12)
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Let

En := E ′n ∩ E ′′n. (7.13)

Then P(Ec
n) ≤ P((E ′n)c) +P((E ′′n)c) so that by (7.11) and (7.12) we have that there exists

C ∈ (0,∞) such that as n→∞,

P(Ec
n) = O(exp(−Cnε)). (7.14)

We bound E[(∆n
i )2] by partitioning over {En, Ec

n} and using the fact that

E[(∆n
i )2] ≤ E[(∆n

i )2 | En] + E[(∆n
i )21Ecn ]. (7.15)

First note that by the Cauchy–Schwarz inequality and the trivial bound |∆n
i | ≤ C(card(Pn)+

card(P̃n)), we have that

E[(∆n
i )21Ecn ] ≤ (E[(∆n

i )4])1/2(P(Ec
n))1/2 ≤ C(E[(N(n) +N ′(n))4])1/2(P(Ec

n))1/2,

where N(n), N ′(n) are independent Poisson random variables with mean n. Hence from
(7.14) we have for some C ∈ (0,∞) that

E[(∆n
i )21Ecn ] = O(exp(−Cnε)). (7.16)

Next we treat the case where En occurs. First suppose G(i) ≤ Mn, where G(i) was
defined at (7.8), so that Sni ⊆ Bn. Contributions to ∆n

i are from directed edges from
Poisson points in In to Poisson points in Sni : specifically, such edges that are added
or deleted on the re-sampling of the Poisson points in Sni . The number of such edges
is bounded by the sums of the vertex degrees in the MDST of points of Pn ∩ Sni and
P̃n ∩ Sni . Given En, the number of points of Pn ∩ Sni is bounded by n2ε, similarly with
P̃n, and each point has degree bounded by nε. It follows that the number of edges that
can contribute to ∆n

i is bounded by 2n3ε under En. Further, given En, the length of an
edge contributing to ∆n

i is bounded by a constant times the width of cells in L(Mn + 1)
the first layer in In, which for d ≥ 2 is O(2−Mn) = O(n2ε−(1/(2(d−1)))) by (7.3). Each
edge therefore gives a contribution to ∆n

i at most O(n2αε−(α/(2(d−1)))) in absolute value.
It follows that there exists C ∈ (0,∞) such that for all n > 0 and all i with G(i) ≤Mn,

E[(∆n
i )2 | En] ≤ Cn(6+4α)εn−α/(d−1). (7.17)

Thus from (7.15) with (7.16) and (7.17) we obtain the G(i) ≤Mn case of (7.9).
Finally suppose Mn < G(i) ≤ Kn, so that Sni ⊆ In. Given En, the number of points of

Pn∩Sni is bounded by n2ε; similarly for P̃n. Further, given En, edge lengths contributing
to ∆n

i are bounded by a constant times nε times the width of cell Sni in layer G(i), which
is O(2−G(i)), and each point has degree bounded by nε. Thus for Mn < G(i) ≤ Kn,

E[(∆n
i )2 | En] = O(n(6+2α)ε · 2−2αG(i)). (7.18)

Then (7.15) with (7.16) and (7.18) yields the Mn < G(i) ≤ Kn case of (7.9). �

We can now complete the proof of Lemma 9.
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Proof of Lemma 9. Fix d ≥ 2 and α > 0. Take In as defined by (7.5) so that
gn = Hn(Kn + 1) and tn = Hn(Mn + 1) are as in the statement of Lemma 9. Again
writing Yn = L̃d,α(Pn; In), we obtain from (7.7) with (7.9) that for all n > 0,

E[Y 2
n ] =

∑
1≤i≤`(n)

E[(Dn
i )2] ≤

Mn∑
k=1

∑
i:Sni ⊆L(k)

E[(∆n
i )2] +

Kn∑
k=Mn+1

∑
i:Sni ⊆L(k)

E[(∆n
i )2]

≤ C
Mn∑
k=1

2k(d−1)n(6+4α)εn−α/(d−1) + C
Kn∑

k=Mn+1

2k(d−1)n(6+2α)ε2−2αk

≤ C2Mn(d−1)n(6+4α)εn−α/(d−1) + C2Kn(d−1−2α)n(7+2α)ε + C2Mn(d−1−2α)n(7+2α)ε,

where the additional nε factor in the last two terms takes care of the extra logarithmic
factor when α = (d− 1)/2. Using (7.3) and (7.4) we thus have that for any ε > 0 there
exists C ∈ (0,∞) such that for all n > 0,

E[Y 2
n ] ≤ Cn(1/2)−(α/(d−1))+(4+4α)ε(1 + n(1+2α)ε) + Cn1−((1+2α)/d)+(7+2α)ε. (7.19)

For d ≥ 2, this tends to zero as n → ∞ for α > (d − 1)/2 and ε sufficiently small,
which gives (7.1). On the other hand, for α < d/2, we have from (7.19), noting that
(2α/d)− (α/(d− 1)) = (α/d)(d− 2)/(d− 1), that

E[n(2α/d)−1Y 2
n ] ≤ Cn(α/d)(d−2)/(d−1)−(1/2)+(4+4α)ε(1 + n(1+2α)ε) + Cn−(1/d)+(7+2α)ε,

which also tends to zero as n→∞ for ε small enough and d ≥ 2. This gives (7.2). �

Proof of Theorem 2. Again we use the construction of Lemma 9. For the duration
of this proof, to ease notation, set Xn = L̃d,α(Pn; Γn), Yn = L̃d,α(Pn; In) and Zn =
L̃d,α(Pn;Bn). Thus L̃d,α(Pn) = Xn + Yn + Zn.

First suppose α ∈ (0, d/2). Then from (5.2) and (7.2) we have that n(α/d)−(1/2)(Yn +

Zn)
P−→ 0 as n→∞. With Lemma 6 and Slutsky’s theorem, we obtain the α ∈ (0, d/2)

case of Theorem 2.
Now suppose α > d/2. Then Lemma 6 and (7.1) imply that Xn+Yn

P−→ 0 as n→∞.
So (5.1) with Slutsky’s theorem gives the α > d/2 case of Theorem 2.

Finally suppose α = d/2. Again (7.1) implies that Yn
P−→ 0. We have from (5.1) that

Zn
d−→ Q(d−1, d/2) and from Lemma 6 that Xn

d−→ W1 where W1 is Gaussian. We need
to show that the limits W1 and Q(d − 1, d/2) are independent. Set kn := dn(1/d)−(ε/2)e.
For z ∈ Zd−1 ∩ [0, kn]d−1 define the cube C(z) ⊂ In by

C(z) := (k−1
n z, 0) + (0, k−1

n ]d−1 × (gn − k−1
n , gn].

Thus there are kd−1
n = Θ(n1−(1/d)−ε(d−1)/2) such cubes, and each cube has volume k−dn =

Θ(n−1+(dε/2)). Let An denote the event

An :=
⋂{

card(Pn ∩ C(z)) > 0 : z ∈ Zd−1 ∩ [0, kn]d−1
}
.

The number of points of Pn in each cube C(z) is Poisson with mean Θ(ndε/2), and so

P(Acn) ≤
∑
z

P(card(Pn ∩ C(z)) = 0) = O(n1−(1/d)−ε(d−1)/2 · exp(−Cndε/2))→ 0,

as n → ∞. Given a configuration of Pn satisfying An, for n sufficiently large, Xn and
Zn are (conditionally) independent, since no point of Pn ∩ Γn can be joined to a point of
Pn∩Bn in the MDST. Now following the argument for Equation (7.25) in [24] completes
the proof of Theorem 2. �
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8 Proof of Theorem 1

In order to complete the proof of Theorem 1, we need to add to the law of large numbers
away from the boundary (in region Γn), Lemma 3, by dealing with the edges near to
the boundary. We proceed in a similar fashion to Sections 5 and 7, dealing with the
contributions from the region Bn in Lemma 13 below (using the coupling to the ONG as
in Section 5), and with the contributions from the region In in Lemma 12 below (using
the construction of Section 7).

Lemma 12 Suppose d ∈ {2, 3, . . .} and α > 0. Then for small enough ε > 0 there exist
gn = Θ(nε−(1/d)) and tn = Θ(n−(1/2)−ε) specifying In for which, as n→∞,

n(α/d)−1Ld,α(Pn; In)→ 0, in L1, (α ∈ (0, d)), (8.1)

and Ld,α(Pn; In)→ 0, in L1, (α > d− 1). (8.2)

Proof. Recall the construction of the partition of In described in Section 7, and the
definition of the event En from (7.13). Then

E[Ld,α(Pn; In)] = E[Ld,α(Pn; In)1En ] + E[Ld,α(Pn; In)1Ecn ], (8.3)

where by Cauchy–Schwarz

E[Ld,α(Pn; In)1Ecn ] ≤ (E[(Ld,α(Pn; In))2])1/2(P(Ec
n))1/2 ≤ C(E[N(n)2])1/2(P(Ec

n))1/2,

where N(n) = card(Pn) is Poisson distributed with mean n. Thus by (7.14) there exists
C ∈ (0,∞) such that

E[Ld,α(Pn; In)1Ecn ] = O(exp(−Cnε)). (8.4)

Also, using the construction of Section 7,

E[Ld,α(Pn; In)1En ] ≤
Kn∑

k=Mn+1

∑
i:Sni ⊆L(k)

E[Ld,α(Pn;Sni ) | En].

Given En, as in the proof of Lemma 11, the number of points in each Sni is bounded by
n2ε, the degree of each point is bounded by nε, and each edge has length bounded by a
constant times nε2−G(i). Thus

E[Ld,α(Pn; In) | En] ≤ C
Kn∑

k=Mn+1

2k(d−1) · n(3+α)ε · 2−αk. (8.5)

Thus from (8.3) with (8.4) and (8.5) we obtain

E[Ld,α(Pn; In)] = O(2(d−1−α)Knn(3+α)ε) +O(2(d−1−α)Mnn(4+α)ε),

where the additional nε factor in the second term takes care of the extra logarithmic
factor when α = d− 1. Using (7.3) and (7.4) we have for d ≥ 2,

E[Ld,α(Pn; In)] = O(n1−(α/d)−(1/d)+(3+α)ε) +O(n(1/2)−(α/(2(d−1)))+(2+6α)ε). (8.6)
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For α > d − 1 this tends to zero as n → ∞ for ε small enough, and so we obtain (8.2).
On the other hand, for α ∈ (0, d), we have from (8.6) that

E[n(α/d)−1Ld,α(Pn; In)] = O(n(3+α)ε−(1/d)) +O(n(α(d−2)/(2d(d−1)))−(1/2)+(2+6α)ε),

which again tends to zero for ε small enough, giving (8.1). �

Recall the definition of the point process Vn ⊂ (0, 1)d−1 from (5.4).

Lemma 13 Suppose d ∈ {2, 3, . . .}. For α ∈ (0, d) we have that as n→∞,

n(α/d)−1Od−1,α(Vn)→ 0, in L1. (8.7)

Also, for α ≥ d, there exist finite positive constants µ(d− 1, α) such that as n→∞,

E[Od−1,α(Vn)]→ µ(d− 1, α). (8.8)

Also, µ(1, α) = 2
α(α+1)

(1 + 2−α

α−1
) for α ≥ 2.

Proof. Suppose α ∈ (0, d). Recall that βn = card(Vn) is Poisson with mean Θ(n(1/2)−ε).
Let U1,U2, . . . be a sequence of independent uniform random vectors on (0, 1)d. Let
Um denote the sequence of uniform random vectors in (0, 1)d−1 formed by the sequence
orthogonal projections down onto (0, 1)d−1 of the points of {U1, . . . ,Um} ∩ Bn listed
in order of increasing xd-coordinate. Then, without loss of generality, we can assume
that Pn = {U1, . . . ,UN(n)} with N(n) Poisson with mean n, βn = card(Pn ∩ Bn), and
Vn = Uβn in this notation.

Let An denote the event {βn > ntn + n1/4}. Then by standard Chernoff bounds on
Poisson tails (see, e.g., Lemma 1.2 of [18]), P(An) = O(e−Cn

ε
) for some C ∈ (0,∞). With

the coupling described above,

n(α/d)−1Od−1,α(Vn) ≤ n(α/d)−1Od−1,α(Udntn+n1/4e) + n(α/d)−11AnC
′N(n), (8.9)

for some C ′ ∈ (0,∞) and N(n) = card(Pn) is Poisson with mean n. By Theorem 2.1
of [25], for α < d− 1 we have that as m→∞,

E[Od−1,α(Um)] = O(m(d−1−α)/(d−1)), (8.10)

and also

E[Od−1,d−1(Um)] = O(logm), E[Od−1,α(Um)]→ µ(d− 1, α) (α > d− 1), (8.11)

for some positive constant µ(d−1, α): this notation coincides with Proposition 2.1 of [35].
The particular values µ(1, α) = 2

α(α+1)
(1 + 2−α

α−1
) for α > 1 were given in Proposition 2.1

of [25]. Thus by (8.10), if α < d− 1,

E[n(α/d)−1Od−1,α(Udntn+n1/4e)] = O
(
n−(1/2)−ε+α((d−2+εd)/(2d(d−1)))

)
→ 0,

as n→∞, for ε small. Also, for α ∈ [d− 1, d),

E[n(α/d)−1Od−1,α(Udntn+n1/4e)]→ 0,
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as n→∞, by (8.11). Also by Cauchy–Schwarz

E[n(α/d)−11AnN(n)] ≤ n(α/d)−1(E[N(n)2])1/2(P(An))1/2 → 0, (8.12)

as n→∞. So from (8.9) this completes the proof of (8.7).
For the proof of (8.8), let A′n denote the event that {βn < ntn − n1/4}. Then by

Chernoff tail bounds again, P(A′n) = O(e−Cn
ε
). We have that there is a constant C ′ ∈

(0,∞) such that for all n,

Od−1,α(Udntn−n1/4e)− 1A′nC
′n ≤ Od−1,α(Vn) ≤ Od−1,α(Udntn+n1/4e) + 1AnC

′N(n). (8.13)

Suppose α ≥ d > d − 1. Then by (8.11) and (8.12) we have that the expectations of
both the lower and upper bounds in (8.13) converge to µ(d−1, α). Thus we have (8.8). �

Proof of Theorem 1. Consider

Ld,α(Pn) = Ld,α(Pn; Γn) + Ld,α(Pn;Bn) + Ld,α(Pn; In). (8.14)

First suppose α ∈ (0, d). We have

E[n(α/d)−1Ld,α(Pn;Bn)]

= E[n(α/d)−1Od−1,α(Vn)] + n(α/d)−1E
[
Ld,α(Pn;Bn)−Od−1,α(Vn)

]
. (8.15)

From (8.7) we have that the first term on the right-hand side of (8.15) tends to zero as
n → ∞ for α ∈ (0, d). By (5.6), for α ∈ (0, 1) the second term on the right-hand side
of (8.15) is O(nα((1/d)−(1/2)−ε)−(1/2)−ε) which tends to zero for d ≥ 2, and (5.5) yields the
same result for α ≥ 1. Thus for any α ∈ (0, d), we have that n(α/d)−1Ld,α(Pn;Bn) tends
to zero in L1. Then multiplying both sides of (8.14) by n(α/d)−1 and applying Lemma 3
and (8.1) we obtain (2.2).

Now suppose α ≥ d. We have

E[Ld,α(Pn;Bn)] = E[Od−1,α(Vn)] + E
[
Ld,α(Pn;Bn)−Od−1,α(Vn)

]
. (8.16)

By (5.5) the last term on the right of (8.16) tends to zero as n → ∞, since α ≥ d > 1.
Also, (8.8) says that the first term on the right of (8.16) tends to µ(d− 1, α). Thus

E[Ld,α(Pn;Bn)]→ µ(d− 1, α),

for α ≥ d. Also, Lemma 3 implies that, for α > d, E[Ld,α(Pn; Γn)]→ 0, while for α = d,
E[Ld,d(Pn; Γn)] → 2v−1

d , as n → ∞. Then taking expectations in (8.14) and using (8.2)
gives (2.3). This completes the proof of Theorem 1. �

Acknowledgements

MP was partially supported by the Alexander von Humboldt Foundation through a Frie-
drich Wilhelm Bessel Research Award. Some of this work was done while AW was at the
University of Bristol, supported by the Heilbronn Institute for Mathematical Research.
The authors are grateful to Jonathan Jordan for pointing out some of the relevant physics
literature on random spatial networks, and to an anonymous referee for helpful sugges-
tions, particularly with regards to (b) of Remarks 2.1.

30



References

[1] Abramowitz, M. and Stegun, I.A. (Eds.) (1965) Handbook of Mathematical Functions, Na-
tional Bureau of Standards, Applied Mathematics Series 55. U.S. Government Printing Office,
Washington D.C.

[2] Aldous, D.J. and Bandyopadhyay, A. (2005) A survey of max-type recursive distributional
equations, Ann. Appl. Probab. 15, 1047–1110.

[3] Avram, F. and Bertsimas, D. (1993) On central limit theorems in geometrical probability, Ann.
Appl. Probab. 3, 1033–1046.

[4] Baccelli, F. and Bordenave, C. (2007) The radial spanning tree of a Poisson point process,
Ann. Appl. Probab. 17, 305–359.

[5] Bai, Z.-D., Lee, S. and Penrose, M.D. (2006) Rooted edges in a minimal directed spanning
tree, Adv. Appl. Probab. 38, 1–30.

[6] Berger, N., Bollobás, B., Borgs, C., Chayes, J. and Riordan, O. (2003) Degree distribu-
tion of the FKP network model. In: Automata, Languages and Programming, eds. J.C.M. Baeten,
J.K. Lenstra, J. Parrow, & G.J. Woeginger, Lecture Notes in Computer Science 2719, Springer,
Heidelberg, pp. 725–738.

[7] Bhatt, A.G. and Roy, R. (2004) On a random directed spanning tree, Adv. Appl. Probab. 36,
19–42.

[8] Darling, D.A. (1953) On a class of problems related to the random division of an interval, Ann.
Math. Statist. 24, 239–253.

[9] Durrett, R. (1991) Probability: Theory and Examples, Wadsworth & Brooks/Cole, Pacific
Grove, CA.

[10] Gangopadhyay, S., Roy, R. and Sarkar, A. (2004) Random oriented trees: a model of
drainage networks, Ann. Appl. Probab. 14, 1241–1266.

[11] Huang, K. (1987) Statistical Mechanics, 2nd edn., Wiley, New York.

[12] Kesten, H. and Lee, S. (1996) The central limit theorem for weighted minimal spanning trees
on random points, Ann. Appl. Probab. 6, 495–527.

[13] Kingman, J.F.C. (1993) Poisson Processes, Oxford Studies in Probability 3, Oxford University
Press, Oxford.

[14] Manna, S.S., Mukherjee, G. and Sen, P. (2004) Scale-free network on a vertical plane, Phys.
Rev. E 69, 017102.

[15] Manna, S.S. and Sen, P. (2002) Modulated scale-free network in Euclidean space, Phys. Rev. E
66, 066114.

[16] Mukherjee, G. and Manna, S.S. (2006) Weighted scale-free networks in Euclidean space using
local selection rule, Phys. Rev. E 74, 036111.
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