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Abstract. A framework for understanding the geometry of con-
tinuous actions of Zd was developed by Boyle and Lind using the
notion of expansive behavior along lower-dimensional subspaces.
For algebraic Zd-actions of entropy rank one, the expansive subdy-
namics is readily described in terms of Lyapunov exponents. Here
we show that periodic point counts for elements of an entropy rank
one action determine the expansive subdynamics. Moreover, the
finer structure of the non-expansive set is visible in the topolog-
ical and smooth structure of a set of functions associated to the
periodic point data.

1. Introduction

Let β be an action of Zd by homeomorphisms of a compact metric
space (X, ρ); thus for each n ∈ Zd there is an associated homeomor-
phism βn, and βm ◦ βn = βm+n for all m,n ∈ Zd. Such an action is
called expansive if there is some δ > 0 with the property that if x, y are
distinct points in X then there is some n for which ρ(βnx, βny) > δ.
Any such δ is called an expansive constant for the action. Boyle and
Lind [1] introduced the following notion, which reveals a rich geomet-
rical structure inside an expansive action. A subset A ⊂ Rd is called
expansive for β, or β is expansive along A, if there exist constants δ > 0
and t > 0 with the property that

sup
n,d(n,A)<t

ρ(βnx, βny) ≤ δ =⇒ x = y for all x, y ∈ X

where d(n, A) denotes the distance from the point n to the set A in the
Euclidean metric on Rd. Of particular importance is the behavior along
subspaces. Write Gk for the Grassmannian of k-dimensional subspaces
of Rd; this is a compact k(d − k)-dimensional manifold in the usual
topology (subspaces are close if their intersections with the unit (d−1)-
sphere Sd−1 are close in the Hausdorff topology). Following Boyle and
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Lind, write

Nk(β) = {V ∈ Gk | V is not expansive for β}.

The main structural result from [1] is that if X is infinite, then Nd−1(β)
is a non-empty compact set, and the set Nd−1(β) governs all of the
non-expansive behavior in the sense that any element of Nk(β) must
be a subspace of some element of Nd−1(β). For algebraic systems, in
which X is a compact metric group and each map βn is a continuous
group automorphism, the subdynamical structure was determined by
Einsiedler, Lind, Miles and Ward [6], where a finer structure was found
inside the set Nd−1(β) reflecting the two different ways in which an
algebraic dynamical system can fail to be expansive.
A different insight into a topological Zd action is a combinatorial one

coming from periodic points. Write F
n
(β) = {x ∈ X | βnx = x} for

the set of points fixed by the homeomorphism βn. The combinatorial
data of all these numbers may be thought of as a map

n 7→ |F
n
(β)| ∈ N ∪ {∞},

where ∞ denotes the cardinality of an infinite compact group.
Our purpose here is to show that the combinatorial data contained

in this map determines the expansive subdynamics for a certain class of
systems (Theorem 4.8). These systems are the expansive algebraic sys-
tems of entropy rank one. In particular, for these systems the set F

n
(β)

is finite for n 6= 0 except in degenerate situations.

2. Ranks and Subdynamics

The following notions come from [6, Sect. 7]. Let β be an action
of Zd by homeomorphisms of a compact metric space (X, ρ) as before.
The expansive rank of β is

exprk(β) = min{k | Nk(β) 6= Gk},

that is the smallest dimension in which some expansive subspaces are
seen. The entropy rank of β is

entrk(β) = max{k | there is a rational k-plane V with h(β, V ) > 0},

where h(β, V ) denotes the topological entropy of the Zdim(V )-action
given by restricting β to V ∩ Zd. By [6, Prop. 7.2],

entrk(β) ≤ exprk(β).

Algebraic Zd-actions have a convenient description in terms of com-
mutative algebra due to Kitchens and Schmidt [10] which we will need.
Let Rd = Z[u±1

1 , . . . , u±1
d ] be the ring of Laurent polynomials in com-

muting variables u1, . . . , ud with integer coefficients. If X is a compact
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metrizable abelian group and α is a Zd-action by continuous automor-

phisms αn of X , then the Pontryagin dual group M = X̂ has the
structure of a discrete countable Rd-module, obtained by first iden-
tifying the dual automorphism α̂n with multiplication by the mono-
mial un = un1

1 . . . und

d , and then extending additively to multiplication
by polynomials. Conversely, for any countable Rd-module M , there
is an associated Zd-action on a compact group obtained by dualiz-
ing the action induced by multiplying by monomials on M . A full
account of this correspondence and the resulting theory is given in
Schmidt’s monograph [19]. An important aspect of this approach is
the interpretation of dynamical properties as algebraic properties of M ,
particularly in terms of the set of associated prime ideals of M , writ-
ten Asc(M). We will describe systems as Noetherian if they correspond
to Noetherian modules, and in the reverse direction will describe mod-
ules as having various dynamical properties if the corresponding system
has those properties.
The simplest algebraic systems are those corresponding to cyclic

modules Rd/p for a prime ideal p ⊂ Rd, and these will be called prime

actions. This gives a third natural notion of ‘rank’ to an algebraic Zd-
action. Recall that the Krull dimension kdim(S) of a commutative
ring S is the maximum of the lengths r taken over all strictly decreas-
ing chains p0 ⊃ p1 ⊃ · · · ⊃ pr of prime ideals in S (see Matsumura [14,
Chap. 1§5]). Boyle and Lind [1, Th. 7.5] show that if p is a prime ideal
generated by g elements, then

exprk(αRd/p) ≥ kdim(Rd/p) ≥ d− g

and

exprk(αRd/p) ≥ d− g + 1.

Moreover, [6, Prop. 7.3] shows that

entrk(αRd/p) = kdim(Rd/p) ≤ exprk(αRd/p)

if p is non-principal. The height ht(p) of a prime ideal p ⊂ Rd is equal
to the Krull dimension of Rd localized at p, equivalently the maximal
length r of a strictly decreasing chain of prime ideals

p = p0 ⊃ p1 ⊃ · · · ⊃ pr = (0).

The co-height coht(p) of p is equal to the Krull dimension of the do-
main Rd/p, equivalently it is the maximal length r of a strictly increas-
ing chain of prime ideals

p = p0 ⊂ p1 ⊂ · · · ⊂ pr.
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The domain Rd is universally catenary [7, Prop. 18.9, Cor. 18.10] and
hence [7, Th. 13.8] shows that for each p ∈ Rd,

ht(p) + coht(p) = kdim(Rd) = d+ 1.

Using associated primes, Einsiedler and Lind [5] provide the following
classification of entropy rank one actions for which the associated mod-
ule M is Noetherian (see Proposition 2.1). When M is not Noetherian,
problems arise in relation to finding the set of possible entropy val-
ues for general algebraic Zd-actions; this is closely related to Lehmer’s
problem and is discussed more fully in [5].

Proposition 2.1. Let αM be a Noetherian algebraic Zd-action. Then

(1) αM has entropy rank one if and only if each of the associated

prime actions αRd/p has entropy rank one. Equivalently, for

each prime p ∈ Asc(M), coht(p) ≤ 1;
(2) αM has expansive rank one if and only if each of the associated

prime actions αRd/p has expansive rank one; and

(3) if αM is expansive then αM has expansive rank one if and only

if αM has entropy rank one.

Proof. See [5, Prop. 4.4 and 6.1, Th. 7.1 and 7.2]. �

In particular, an expansive rank one action may also be thought of
as an expansive entropy rank one action. Further properties of entropy
rank one actions are discussed in [5] and [15]. Of particular importance
is the observation that if coht(p) = 1 then the field of fractionsK of the
domain Rd/p is a global field by [5, Prop. 6.1]. Moreover, the places
of K, denoted by P(K), are determined by the ideal p. From this
infinite set of places, we isolate

Sp = {w ∈ P(K) | w is unbounded on Rd/p}.

Here w being unbounded means that |Rd/p|w is an unbounded subset
of R. Note that Sp contains all the infinite places ofK. Furthermore, Sp

is finite because Rd/p is finitely generated.
The description of expansive subdynamics for algebraic Zd-actions

is further refined in [6, Sect. 8] to reflect the two ways in which an
algebraic dynamical system can fail to be expansive. It can fail in a
way which relates to the Noetherian condition for modules, and this
failure will result in a set of directions denoted Nn. It can also fail to
be expansive in the way a quasihyperbolic toral automorphisms fails to
be expansive, by having the higher-rank analogue of an eigenvalue with
unit modulus; this failure arising from the varieties of the associated
prime ideals results in a set of directions denoted Nv.



PERIODIC POINT DATA DETECTS SUBDYNAMICS 5

The Noetherian condition is described as follows. Each n ∈ Zd

defines a half-space

H = {x ∈ Rd | x · n ≤ 0} ⊂ Rd,

which has an associated ring RH = Z[um | m ∈ H ∩ Zd] ⊂ Rd. A
module over Rd is also a module over RH .

Definition 2.2. Let M be a Noetherian Rd-module and let V ⊂ Rd be
a k-dimensional subspace. Then M is said to be Noetherian along V
if M is a Noetherian RH-module for every half-space H containining V .
The collection of all k-dimensional subspaces along which M is not
Noetherian is denoted Nn

k(αM).

For the variety condition, let a ⊂ Rd be any ideal. Write

V(a) = {z ∈ (C \ {0})d | f(z) = 0 for all f ∈ a}

and define the amoeba associated to a to be

log |V(a)| = {(log |z1|, . . . , log |zd|) | z ∈ V(a)}.

Now let M be a Noetherian Rd module. Then define

Nv

k(αM) =
⋃

p∈Asc(M)

{V ∈ Gk | V
⊥ ∩ log |V (p)| 6= ∅}

where V ⊥ denotes the orthogonal complement of V in Rd. The main
result in [6, Th. 8.4] says that

Nk(αM) = Nn

k(αM) ∪ Nv

k(αM)

for any Noetherian Rd-module M .

3. Periodic points

Recall that the dynamical zeta function of a map T is defined for-
mally as

ζT (z) = exp

∞∑

n=1

zn

n
|Fn(T )|. (3.1)

If |Fn(T )| is finite for all n ≥ 1 and grows at most exponentially,
then (3.1) defines a complex function in some disc. In our setting there
is a fixed Zd-action α, so write ζ

n
for the zeta function of the map αn.

Define Q(α) to be the set of n ∈ Zd for which ζ
n
is a rational function.

Notice that any n ∈ Zd with the property that Fj(α
n) is infinite for

some j ≥ 1 is not a member of Q(α).
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The simplest non-trivial Z2-action is the ‘×2,×3’ system, and the
idea behind what follows is already visible in this example. In non-
expansive directions, the periodic orbits for this system exhibit very
complex growth properties (see [8] and [9]).

Example 3.1. Consider the Z2-action α dual to the Z2-action gener-
ated by the commuting maps ×2 and ×3 on Z[1

6
]. This is the dynamical

system corresponding to the cyclic R2-module M = R2/(u1−2, u2−3).
The set N1(α) for this example is shown in Figure 1; it consists of three
lines with Nn

1(α) comprising 2n1 = 1 and 3n2 = 1 and Nv

1(α) being the
single irrational line 2n13n2 = 1.

N
n

1(α)

Nn

1(α)

Nv

1(α)

Q
Q
Q
Q
QQ

Q
Q

Q
Q

QQ

p p p p p p p

p p p p p

p p p p p

p p p p p p p

p p p p p p p

Figure 1. The three non-expansive lines for ×2,×3.

The map n 7→ |F
n
(α)| ∈ N for the same system is given by

|F
n
(α)| = |2n13n2 − 1||2n13n2 − 1|2|2

n13n2 − 1|3. (3.2)

Thus, for example, in an expansive direction like (1, 1) the formula
reduces to |Fj(1,1)| = 6j −1. In a non-expansive direction like (1, 0) the
ultrametric terms cause more exotic behaviour.
It may be shown (see [9] and [15, Th. 4.7]) that

Q(α) = {n ∈ Zd | n1n2 6= 0}

(the issue here is to show that the zeta functions ζ(1,0) and ζ(0,1) in the
two rational non-expansive lines are not rational). The question ad-
dressed in this paper is the following: does the formula (3.2) determine
the subdynamical portrait in Figure 1? As this example shows, the ra-
tionality set Q(α) certainly does not determine N1(α), so in particular
we are asking if the periodic point data seen along the rational direc-
tions can detect the presence of an irrational non-expansive direction.

Example 3.2. The zero-dimensional analog of the ×2,×3 system is
Ledrappier’s example [11], which is the action α corresponding to the
module M = R2/(2, 1 + u1 + u2). Using the local structure of XM in
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terms of completions of the function field F2(t) and the periodic point
formula from [2] we have

|F(n1,n2)(α)| = |tn1(1 + t)n2 − 1|∞|tn1(1 + t)n2 − 1|t|t
n1(1 + t)n2 − 1|1+t,

the three absolute values being given by

|r(t)|t = 2− ordt(r(t)), |r(t)|∞ = |r(t−1)|t and |r(t)|1+t = 2− ord1+t(r(t))

where r(t) ∈ F2(t) (see [2], [5] or [20] for the details). The set N1(α)
for this example is shown in Figure 2; Nn

1(α) comprises the lines

n1 = 0, n2 = 0 and n1 + n2 = 0,

while Nv

1(α) is automatically empty since the associated prime ideal
has an empty variety.

N
n

1(α)

Nn

1(α)

N
n

1(α)

@
@

@
@

@@

@
@
@
@
@
@

p p p p p p p

p p p p p

p p p p p

p p p p p p p

p p p p p p p

Figure 2. The three non-expansive lines for Ledrap-
pier’s example.

Once again the zeta function is known to be irrational in the non-
expansive directions, and in this example Q(α) does indeed detect all
the non-expansive behavior. In each of the expansive regions, the peri-
odic point formula simplifies significantly. For example, in the expan-
sive region n1 < 0, n2 > 0, n1 + n2 > 0 we have

|tn1(1 + t)n2 − 1|t = 2−n1, |tn1(1 + t)n2 − 1|∞ = 2n1+n2

and

|tn1(1 + t)n2 − 1|t = 1,

giving |F(n1,n2)(α)| = 2n2 .
The formula in non-expansive directions may be found similarly,

though the resulting expression is a little more involved. For exam-

ple, in [2, Ex. 8.5] it is shown that |F(n,0)(α)| = 2n−2ord2(n)
.

An alternative way to compute the number of periodic points, better
adapted to more complicated situations, may be found in [15, Lem. 4.8].
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To convert the periodic point data into a form which exposes the
expansive subdynamics, we introduce a normalized encoding of the
rational zeta functions arising from elements of the action.

Definition 3.3. Given a rational function h ∈ C(z), denote the set of
poles and zeros of h by Ψ(h) ⊂ C. Let α be an algebraic Zd-action of
entropy rank one, and define

Ωα =
{
(n̂, |z|1/‖n‖) | z ∈ Ψ(ζ

n
),n ∈ Q(α)

}
⊂ Sd−1 × R

where n̂ denotes the unit vector in the direction of n.

In order to exhibit the relationship between Ωα and N(α) we need a
‘formula’ for |F

n
(α)|, and this has been found by Miles [15] using the

structure of entropy rank one systems from [5].
A character is a continuous homomorphism from an abelian group

into C×. We will be particularly interested in characters of the form
χ : Zd → C×. A real character is one with real image. By a list we
mean a finite sequence of the form L = 〈χ1, . . . , χn〉 which allows for
multiplicities. The notation

χL = χ1χ2 . . . χn

is used to denote the product over all elements of L, with the under-
standing that χ∅ ≡ 1.
Let p ⊂ Rd be a prime ideal with coht(p) = 1 and let K be the field

of fractions of Rd/p. Assume that char(Rd/p) = 0, so all the infinite
places are archimedean. These infinite places are uniquely determined
by the embeddings of Rd/p into C. A point z ∈ VC(p) determines a ring
homomorphism into C via the substitution map f + p 7→ f(z). The
map is injective because Rd/p has Krull dimension 1. Each z ∈ VC(p)
induces a character on Zd in an obvious way; there are finitely many
such characters and the coordinates of these are all algebraic numbers.
More generally, any place w of a domain of the form Rd/p induces a
real character on Zd via the map

(n1, . . . , nd) 7→ (|ui|
n1
w , . . . , |ud|

nd

w ),

where ui denotes the image of ui in Rd/p, i = 1 . . . d. This will always be
our method of constructing characters using non-archimedean places.
Using the construction of characters given above, for a prime Zd-

action αRd/p with coht(p) = 1, let W(Rd/p) be the list of characters
induced by the non-archimedean v ∈ Sp and let V(Rd/p) be the list of
characters induced by the distinct complex embeddings of Rd/p. Note
that V(Rd/p) = ∅ when char(Rd/p) > 0.
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Now suppose that αM is a Noetherian entropy rank one action. The
module M admits a prime filtration

{0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M (3.3)

where for each k, 1 ≤ k ≤ n we have Mk/Mk−1
∼= Rd/qk for a prime

ideal qk ⊂ Rd which is either an associated prime of M or which con-
tains an associated prime of M . Lemma 8.2 of [5] shows that each
minimal element of Asc(M) always appears in such a filtration with
a fixed multiplicity m(p), so m(p) is well-defined for all p ∈ Asc(M)
with coht(p) = 1. Set

W(M) =
⊔

W(Rd/p),

V(M) =
⊔

V(Rd/p),

where the union of lists is taken over all p ∈ Asc(M) with coht(p) = 1,
ensuring that each prime p appears with the appropriate multiplic-
ity m(p).
If M has torsion-free rank one, then V(M) has a particularly simple

form.

Lemma 3.4. Let M be a Noetherian Rd-module of torsion-free rank

one, and suppose αM has entropy rank one. Then V(M) contains one

element.

Proof. Consider a prime filtration of M of the form (3.3). Since M
has torsion-free rank one, there is at least one associated prime p

such that char(Rd/p) = 0. Let k ≤ n be the least integer such
that char(Rd/qk) = 0. Then coht(qk) = 1 and qk ∈ Asc(M). Sup-
pose k < n. Since Mk+1/Mk

∼= Rd/qk+1, there exists a ∈ Mk+1 \ Mk

such that any element of Mk+1 can be written in the form x + fa for
some x ∈ Mk and f ∈ Rd with fa ∈ Mk if and only if f ∈ qk+1. How-
ever, both Mk and M have torsion-free rank one so there exists c ∈ Z

such that ca ∈ Mk. Therefore, c ∈ qk+1 and char(Rd/qk+1) > 0. In a
similar way, it follows that char(Rd/qj) > 0 for all j > k. Hence qk is
the only prime with char(Rd/qk) = 0; moreover m(qk) = 1. So

V(M) = V(Rd/qk).

If k = n then again V(M) = V(Rd/qk). Finally, Rd/qk is isomorphic to
a subring of Q, so V(M) contains one character induced by the single
infinite place of Q. �

Any character χ : Zd → C× induces a real character χ∗ on Rd, by
setting

χ∗(κei) = |χ(ei)|
κ
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where κ ∈ R and ei is the standard i-th basis vector in Zd, i = 1 . . . d.
Applying this construction to an element of W(M) yields a genuine
extension, but the same is not necessarily true for elements of V(M).

Proposition 3.5. Suppose αM is an algebraic Zd-action of expansive

rank one. Then Nd−1(αM) consists precisely of the finite set of hyper-

planes defined by the equations

χ∗(n) = 1

where χ ∈ V(M) ∪ W(M). Furthermore, Nv

d−1(αM) is determined by

those characters in V(M) and Nn

d−1(αM) by those characters in W(M).

Proof. This is a combination of [16, Th. 4.3.10] and [6, Th. 8.4]. �

By expressing N1(αM) in terms of the intersection of non-expansive
lines with Sd−1 and referring to [1, Th. 3.6], we also find the following
description of the expansive subdynamics.

Corollary 3.6. If αM is an algebraic Zd-action of expansive rank one

then

Nv

1(α) =
⋃

χ∈V(M)

{v ∈ Sd−1 | χ
∗(v) = 1},

Nn

1(α) =
⋃

χ∈W(M)

{v ∈ Sd−1 | χ
∗(v) = 1}

and the set of expansive directions is dense in Sd−1.

4. Main Results

To begin this section, we return to the examples in Section 3

Example 4.1. Let α be the Z2-action corresponding to the R2-module

M = R2/(u1 − 2, u2 − 3)

discussed in Example 3.1. Recall that

Q(α) = {n ∈ Zd | n1n2 6= 0}.

Here, Q(α) consists precisely of those n ∈ Z2 for which αn

M is expansive,
but this need not always be the case (see [15, Ex. 4.3] for an example).
Notice that expansiveness of the elements αn

M of the action can only
ever detect non-expansiveness in rational directions, so the irrational
line in N1(α) will be missed. For n = (n1, n2) ∈ Q(α), using the
periodic point formula from [15],

|Fj(α
n

M)| = |2jn13jn2 − 1|∞|2jn13jn2 − 1|2|2
jn13jn2 − 1|3.
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It follows that

ζ
n
(z) = (1− g(n)z)λ1(1− g(n)2n13n2z)λ1 ,

where λ1, λ2 ∈ {−1, 1} and

g(n) = |2n1 − 1|2|3
n2 − 1|3.

0 1 2 3 4 5 6

1

0.8

0.6

0.4

0.2

0

Figure 3. Ωα for the ×2,×3 system in Example 4.1.

The resulting directional pole and zero data Ωα, realized as a subset
of [0, 2π) × R, is shown in Figure 3. Non-expansive directions are
marked with a dashed line.

Example 4.2. Let α be the Z2-action corresponding to the R2-module

M = R2/(2, 1 + u1 + u2)

discussed in Example 3.2 Recall that

Q(α) = {n ∈ Zd | n1n2 6= 0 and n1 + n2 6= 0}.

For n = (n1, n2) ∈ Q(α), using the periodic point formula from [15],

ζ
n
(z) = (1− g(n)z)−1

where

g(n) = |tn1(1 + t)n2 − 1|1+t|t
n1(1 + t)n2 − 1|t|t

n1(1 + t)n2 − 1|∞.

The resulting directional pole and zero data Ωα, realized as a subset
of [0, 2π) × R, is shown in Figure 4. Non-expansive directions are
marked with a dashed line.


