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Abstract—The placement of regenerators in optical
networks has become an active area of research during
the last years. Given a set of lightpaths in a network G
and a positive integer d, regenerators must be placed in
such a way that in any lightpath there are no more than
d hops without meeting a regenerator. The cost function
we consider is given by the total number of regenerators
placed at the nodes, which we believe to be a more
accurate estimation of the real cost of the network
than the number of locations considered in [Flammini
et al., IEEE/ACM Trans. Netw., 2011]. Furthermore, in
our model we assume that we are given a finite set
of p possible traffic patterns (each given by a set of
lightpaths), and our objective is to place the minimum
number of regenerators at the nodes so that each of the
traffic patterns is satisfied. While this problem can be
easily solved when d = 1 or p = 1, we prove that for
any fixed d, p ≥ 2 it does not admit a PTAS, even if G
has maximum degree at most 3 and the lightpaths have
length O(d). We complement this hardness result with
a constant-factor approximation algorithm with ratio
ln(d · p). We then study the case where G is a path,
proving that the problem is polynomial-time solvable
for two particular families of instances. Finally, we
generalize our model in two natural directions, which
allows us to capture the model of [Flammini et al.,
IEEE/ACM Trans. Netw., 2011] as a particular case, and
we settle some questions that were left open therein.
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approximation.
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I. INTRODUCTION

A. Background

In modern optical networks, high-speed signals are
sent through optical fibers using WDM (Wavelength
Division Multiplexing) technology. Networks with
each fiber typically carrying around 80 wavelengths
are operational, whereas networks with a few hun-
dreds wavelengths per fiber are already experimental.
As the energy of the signal decreases with the trav-
eled distance, optical amplifiers are required every
some fixed distance (a typical value being around 100
km). However, optical amplifiers introduce noise into
the signal, so after a certain number of amplifications,
the optical signal needs to be regenerated in order to
keep the SNR (Signal-to-Noise Ratio) above a spec-
ified threshold. In current technology, the signal is
regenerated as follows. An ROADM (Reconfigurable
Optical Add-Drop Multiplexer) has the capability of
inserting/extracting a given number of wavelengths
(typically, around 4) to/from the optical fiber. Then,
for each extracted wavelength, an optical regenerator
is needed to regenerate the signal carried by that
wavelength. That is, at a given optical node, one
needs as many regenerators as wavelengths one wants
to regenerate. See Fig. 1 for a simplified illustration
of the aforementioned devices in the case when the
network is a path and the fiber carries 3 wavelengths.

The problem of placing regenerators in optical
networks has attracted the attention of several recent
research works [1]–[8]. Mostly, these articles propose
heuristics and run simulations in order to reduce the
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Fig. 1. A simplified optical network: amplifiers introduce noise into the signal, which needs to be regenerated after at most d = 3
hops. When the signal is regenerated through an ROADM, a different regenerator is needed for each wavelength.

number of regenerators, but no theoretical analysis is
presented. Recently, the first theoretical study of the
problem has been done by Flammini et al. in [9]. In
the next paragraph we discuss how our model differs
from the one studied in [9].

Nowadays the cost of a regenerator is considerably
higher than the cost of an ROADM (as an example,
$160K vs $50K). Moreover, the regenerator cost is
per wavelength, as opposed to ROADM cost that is
payed once per several wavelengths. Therefore the
total number of regenerators seems to be the right
cost to minimize. Another possible criterion is to
minimize the number of locations (that is, the number
of nodes) in which optical regenerators are placed.
This measure is the one assumed in [9], which makes
sense when the dominant cost is given by the set-
up of new optical nodes, or when the equipment to
be placed at each node is the same for all nodes.
Nevertheless, the total number of regenerators seems
to be a more accurate estimate of the real cost of the
network, and therefore we consider this cost in this
article.

It is worth mentioning here that when all the
connection requests are known a priori, minimizing
the number of regenerators is an easy task. Indeed,
suppose that the maximum number of hops a light-
path can make without meeting a regenerator is an
integer d (in the example of Fig. 1, we have d = 3).
Then, for each lightpath `, we need to place one
regenerator every d consecutive vertices in `, to get
an optimal solution.

Unfortunately, when designing a network, it is usu-
ally the case that the traffic requests are not known in
advance. For instance, the traffic in a given network
may change dramatically depending on whether in
the foreseeable future an Internet supplier or an email
storage server opens or closes a site within the area of
the network. In such a situation of uncertain traffic

forecast, a common approach in order to minimize
capital expenses is to predeploy (or overprovision)
resources [10]–[13]. That is, the network is designed
to satisfy several possible traffic patterns. A similar
setting arises in networks in which there are several
possible traffic configurations that alternate according
to some phenomena, like the weather, the season,
an overflow of the capacity of another network, or
a breakdown. In that case, the network must be
designed so that it can satisfy each of the traffic
configurations independently.

In our model, we assume that we are given a finite
set of p possible traffic patterns (each given by a
set of lightpaths), and our objective is to place the
minimum total number of regenerators at the nodes
so that each of the traffic patterns is satisfied. That is,
the number of regenerators that must be placed at a
node of the network is the maximum of the number
of regenerators needed by any of the traffic patterns
at that node. We aim at minimizing the total number
of regenerators placed at the network. We formally
define the problem in Section I-B.

B. Definitions

Given an undirected underlying graph G = (V,E)
that corresponds to the network topology, a lightpath
is a simple path in G. That is, we assume that
the routing of the requests is given (see [9] for
complexity results when the routing of the requests
is not given). We also assume that lightpaths sharing
an edge use different wavelengths. That is, we deal
with optical networks without traffic grooming [14].

The length of a lightpath is the number of edges
it contains. We consider symmetric lightpaths, that
is, a lightpath with endpoints u and v consists of
a request from u to v and a request from v to u.
The internal vertices (resp. edges) of a lightpath or
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a path ` are the vertices (resp. edges) in ` different
from the first and the last one. Given an integer d, a
lightpath ` is d-satisfied if there are no d consecutive
internal vertices in ` without a regenerator. A set of
lightpaths is d-satisfied if each of its lightpaths is d-
satisfied. Given p sets of lightpaths L1, . . . , Lp, with
Li = {`i,j | 1 ≤ j ≤ xi} (that is, xi is the number of
lightpaths in the set Li), we consider the union of all
lightpaths in the p sets ∪Li = {`i,j | 1 ≤ i ≤ p, 1 ≤
j ≤ xi}. An assignment of regenerators is a function
reg : V × ∪Li → {0, 1}, where reg(v, `) = 1 if and
only if a regenerator is used at vertex v by lightpath
`.

We study the following problem: given p ≥ 1 sets
of lightpaths, and a distance d ≥ 1, determine the
smallest number of regenerators that d-satisfy each
of the p sets. Formally, for two fixed integers d, p ≥
1, the optimization problem we study is defined as
follows.

(d, p)-TOTAL REGENERATORS ((d, p)-TR)

Input: An undirected graph G = (V,E) and p sets
of lightpaths L = {L1, . . . , Lp}.

Output: A function reg : V × ∪Li → {0, 1} s.t.
each lightpath in ∪Li is d-satisfied.

Objective: Minimize
∑
v∈V reg(v), where

reg(v) = max1≤i≤p
∑
`∈Li

reg(v, `).

Note that, as mentioned in Section I-A, in the case
p = 1 (that is, when there is a single set of requests)
the problem is trivially solvable in polynomial time,
as the regenerators can be placed for each lightpath
independently. The case d = 1 is not interesting
either, as for each internal vertex v ∈ V and each
` ∈ ∪Li, reg(v, `) = 1, so there is only one feasible
solution, which is optimal.

C. Our contribution

In this article we provide hardness results and
approximation algorithms for the (d, p)-TOTAL RE-
GENERATORS problem ((d, p)-TR for short). We first
prove in Section III that for any two fixed integers
d, p ≥ 2, (d, p)-TR does not admit a PTAS (see
definition in Section II) unless P = NP, even if
the underlying graph G has maximum degree at
most 3, and the lightpaths have length at most 2d.
In Section IV we complement this hardness result

with a constant-factor approximation algorithm with
ratio min{p,Hd·p − 1/2}, where Hn =

∑n
i=1

1
i is

the n-th harmonic number. Section V is devoted to
the case where the underlying graph is a path: we
prove that (d, p)-TR is polynomial-time solvable in
paths when all the lightpaths share the first (or the
last) edge, as well as when the maximum number of
lightpaths sharing an edge is bounded. In Section VI
we generalize the model presented in Section I-B
in two natural directions. This generalization allows
us to capture the model of [9] as a particular case,
and to settle some complexity issues that were left
open in [9]. (Since we need some further definitions,
we defer the precise statement of these results to
Section VI.) Finally, in Section VII we conclude the
article and present a number of interesting avenues
for further research. We first provide in Section II
some standard preliminaries.

II. PRELIMINARIES

We use standard terminology concerning graphs,
complexity, and algorithms; see for instance [15]–
[17], respectively.

Graphs. All the graphs considered in this article
are simple and undirected. Given a graph G we
denote by V (G) and E(G) the sets of vertices and
edges of G, respectively. If H is a subgraph of G,
we denote it by H ⊆ G. Given a graph G and
F ⊆ E(G), we denote by G[F ] the subgraph of
G induced by the edges in F together with their
endpoints. Given a subset S ⊆ V (G), we define
NG[S] to be the set of vertices of V (G) at distance
at most 1 from at least one vertex of S. If S = {v},
we simply use the notation NG[v]. We also define
NG(v) = NG[v] \ {v}. The degree of a vertex
v ∈ V (G) is defined as degG(v) = |NG(v)|. A
graph is cubic if all its vertices have degree 3.
The maximum degree of G is defined as ∆(G) =
maxv∈V (G) degG(v). A matching in a graph is a
set of disjoint edges, and a vertex cover is a set of
vertices that contains at least one endpoint of every
edge. The girth of a graph is the length of a shortest
cycle. Given an edge e = {u, v}, by subdividing e we
denote the operation of deleting the edge e = {u, v},
adding a new vertex w, and making it adjacent to
both u and v.

Complexity and approximation algorithms.
Given an NP-hard minimization problem Π, we
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say that a polynomial-time algorithm A is an α-
approximation algorithm for Π, with α ≥ 1, if for any
instance of Π, algorithm A finds a feasible solution
with cost at most α times the cost of an optimal
solution. For instance, a maximal matching consti-
tutes a 2-approximation algorithm for the MINIMUM
VERTEX COVER problem. In complexity theory, the
class APX (Approximable) contains all NP-hard op-
timization problems that can be approximated within
a constant factor. The subclass PTAS (Polynomial
Time Approximation Scheme) contains the problems
that can be approximated in polynomial time within
a ratio 1 + ε for any fixed ε > 0. In some sense,
these problems can be considered to be easy NP-
hard problems. Since, assuming P 6= NP, there is
a strict inclusion of PTAS in APX (for instance,
MINIMUM VERTEX COVER ∈ APX \ PTAS), an
APX-hardness result for a problem implies the non-
existence of a PTAS unless P = NP.

III. HARDNESS RESULTS FOR GENERAL GRAPHS

In this section we prove that, unless P = NP,
(d, p)-TR does not admit a PTAS for any d, p ≥ 2,
even if the underlying graph G has maximum degree
at most 3 and the lightpaths have length O(d). Before
this, we need two technical results to be used in the
reductions.

MINIMUM VERTEX COVER is known to be APX-
hard in cubic graphs [18]. By a simple reduction,
we prove in the following lemma that MINIMUM
VERTEX COVER is also APX-hard in a class of
graphs with degree at most 3 and high girth, which
will be used in the proofs of Proposition 1 and
Theorem 1.

Lemma 1: MINIMUM VERTEX COVER is APX-
hard in the class of graphs H obtained from cubic
graphs by subdividing each edge twice.

Proof: Given a cubic graph G, let H the graph
obtained from G by subdividing each edge twice.
That is, each edge {u, v} gets replaced by 3 edges
{u, ue}, {ue, ve}, and {ve, v}, where ue, ve are two
new vertices. We now claim that

OPTVC(H) = OPTVC(G) + |E(G)| , (1)

where OPTVC indicates the size of a minimum vertex
cover. Indeed, let SG ⊆ V (G) be a vertex cover
of G. We proceed to build a vertex cover SH of
H of size |SG| + |E(G)|. First, include in SH all

the vertices in SG. Then, for each 3 edges {u, ue},
{ue, ve}, and {ve, v} of H corresponding to edge
{u, v} ∈ E(G), the edge {ue, ve} is not covered
by SG, and at least one of {u, ue} and {ve, v} is
covered by SG. Therefore, adding either ue or ve
to SH covers the three edges {u, ue}, {ue, ve}, and
{ve, v}. This procedure defines a vertex cover of H
of size |SG| + |E(G)|. Conversely, let SH ⊆ V (H)
be a vertex cover of H , and let us construct a vertex
cover SG of G of size at most |SH | − |E(G)|. We
shall see that we can construct SG from SH by
decreasing the cardinality of SH by at least one for
each edge of G. Indeed, consider the three edges
{u, ue}, {ue, ve}, and {ve, v} of H corresponding to
an edge e = {u, v} ∈ E(G). Note that at least one
of ue and ve belongs to SH . If both ue, ve ∈ SH ,
add either u or v to SG if none of u, v was already
in SG. Otherwise, if exactly one of ue and ve (say,
ue) belongs to SH , then at least one of u and v must
also belong to SH , and do not add any new vertex
to SG.

Note that as G is cubic, each vertex in a so-
lution SG covers exactly 3 edges, so |E(G)| ≤
3 · OPTVC(G).

In order to prove the lemma, assume for contradic-
tion that there exists a PTAS for MINIMUM VERTEX
COVER in H. That is, for any ε > 0, we can find
in polynomial time a solution SH ⊆ V (H) such that
|SH | ≤ (1+ε)·OPTVC(H). By the above discussion,
we can find a solution SG ⊆ V (G) such that

|SG| ≤ |SH | − |E(G)|
≤ (1 + ε) · OPTVC(H)− |E(G)|
= (1 + ε) · (OPTVC(G) + |E(G)|)− |E(G)|
= (1 + ε) · OPTVC(G) + ε · |E(G)|
≤ (1 + ε) · OPTVC(G) + 3ε · OPTVC(G)

= (1 + 4ε) · OPTVC(G) ,

where we have used Equation (1) and the fact that
|E(G)| ≤ 3 · OPTVC(G). That is, the existence of
a PTAS for MINIMUM VERTEX COVER in the class
of graphs H would imply the existence of a PTAS
in the class of cubic graphs, which is a contradiction
by [18] unless P = NP.

It is known that the edges of any cubic graph
can be two-colored such that each monochromatic
connected component is a path (of any length) [19].
In fact, solving a conjecture of Bermond et al. [20],
Thomassen proved [21] a stronger result: the edges



5

d = 2

d = 3

d = 6

d = 7

(a) (b)

Fig. 2. (a) A two-coloring of the edges of the Petersen graph
(grey and black) such that each monochromatic component is a
path of length at most 5. (b) Construction of the lightpaths from a
path of length 2 for several values of d, in the proof of Theorem 1.
Full dots correspond to vertices of the VERTEX COVER instance
(called black in the proof).

of any cubic graph can be two-colored such that each
monochromatic connected component is a path of
length at most 5 (see Fig. 2(a) for an example). In
addition, the aforementioned colorings can be found
in polynomial time [19], [21]. Note that in such a
coloring of a cubic graph, each vertex appears exactly
once as an endpoint of a path, and exactly once as
an internal vertex of another path. We next show that
these results can be easily strengthened for the family
of graphs H defined in Lemma 1.

Lemma 2: Let H be the class of graphs obtained
from cubic graphs by subdividing each edge twice.
The edges of any graph in H can be two-colored
in polynomial time such that each monochromatic
connected component is a path of length at most 2.

Proof: Let H ∈ H be a graph obtained from a
cubic graph G by subdividing each each twice. That
is, edge {u, v} of G gets replaced by 3 edges {u, ue},
{ue, ve}, and {ve, v} in H . Find a two-coloring of the
edges of G such that each monochromatic connected
component is a path, using [19] or [21]. To color the
edges of H , do the following for each edge {u, v}
of G: color {u, ue} and {ve, v} with the same color
as {u, v}, and color {ue, ve} with the other color.
It is then easy to check that each monochromatic
connected component of the obtained two-coloring
of H is a path of length at most 2.

We are now ready to announce the main results
of this section. For the sake of presentation, we first
present in Proposition 1 the result for d = p = 2,
and then we show in Theorem 1 how to extend the
reduction to any fixed d, p ≥ 2.

Proposition 1: (2, 2)-TR does not admit a PTAS
unless P = NP, even if G has maximum degree at

most 3 and the lightpaths have length at most 4.
Proof: The reduction is from MINIMUM VER-

TEX COVER (VC for short) in the class of graphs H
obtained from cubic graphs by subdividing each edge
twice, which does not admit a PTAS by Lemma 1
unless P = NP. Note that by construction any graph
in H has girth at least 9. Given a graph H ∈ H
as instance of VC, we proceed to build an instance
of (2, 2)-TR. We set G = H , so G has maximum
degree at most 3.

To define the two sets of lightpaths L1 and L2,
let {E1, E2} be the partition of E(H) given by the
two-coloring of Lemma 2. Therefore, each connected
component of H[E1] and H[E2] is a path of length at
most 2. Each such path in H[E1] (resp. H[E2]) will
correspond to a lightpath in L1 (resp. L2), which we
proceed to define. A key observation is that, as the
paths of the two-coloring have length at most 2, if
any endpoint v of such a path P had one neighbor in
V (P ), it would create a triangle, a contradiction to
the fact that the girth of H is at least 9. Therefore, as
the vertices of H have degree 2 or 3, any endpoint v
of a path P has at least one neighbor in V (H)\V (P ).

We are now ready to define the lightpaths. Let
P be a path with endpoints u, v, and let u′ (resp.
v′) be a neighbor of u (resp. v) in V (H) \ V (P ),
such that u′ 6= v′ (such distinct vertices u′, v′ exist
because P has length at most 2 and H has girth
at least 9; in fact we only need H to have girth at
least 5). The lightpath associated with P consists
of the concatenation of {u′, u}, P , and {v, v′}.
Therefore, the length of each lightpath is at most 4.
This completes the construction of the instance of
(2, 2)-TR. Observe that since we assume that d = 2,
regenerators must be placed in such a way that all
the internal edges of a lightpath (that is, all the edges
except the first and the last one) have a regenerator
in at least one of their endpoints. We can assume
without loss of generality that no regenerator serves
at the endpoints of a lightpath, as the removal of
such regenerators does not alter the feasibility of a
solution. Note that in our construction, each vertex
of G appears as an internal vertex in at most two
lightpaths, one (possibly) in L1 and the other one
(possibly) in L2, so we can assume that reg(v) ≤ 1
for any v ∈ V (G).

We now claim that OPTVC(H) =
OPT(2,2)−TR(G, {L1, L2}).

Indeed, let first S ⊆ V (H) be a vertex cover of H .
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Placing one regenerator at each vertex belonging to
S defines a feasible solution to (2, 2)-TR in G with
cost |S|, as at least one endpoint of each internal edge
of each lightpath contains a regenerator. Therefore,
OPTVC(H) ≥ OPT(2,2)−TR(G, {L1, L2}).

Conversely, suppose we are given a solution to
(2,2)-TR in G using r regenerators. Since E1 and
E2 are a partition of E(G) = E(H) and the set of
internal edges of the lightpaths in L1 (resp. L2) is
exactly E1 (resp. E2), the regenerators placed at the
endpoints of the internal edges of the lightpaths con-
stitute a vertex cover of H of size at most r. There-
fore, OPTVC(H) ≤ OPT(2,2)−TR(G, {L1, L2}).

Summarizing, since OPTVC(H) =
OPT(2,2)−TR(G, {L1, L2}) and any feasible solution
to OPT(2,2)−TR(G, {L1, L2}) using r regenerators
defines a vertex cover of H of size at most r, the
existence of a PTAS for (2, 2)-TR would imply
the existence of a PTAS for VERTEX COVER in
the class of graphs H, which is a contradiction by
Lemma 1, unless P = NP.

Theorem 1: (d, p)-TR does not admit a PTAS for
any d ≥ 2 and any p ≥ 2 unless P = NP, even if
the underlying graph G satisfies ∆(G) ≤ 3 and the
lightpaths have length at most 2d.

Proof: The case d = p = 2 was proved in
Proposition 1. We next prove the result for p = 2
and arbitrary d ≥ 2. Again, the reduction is from
VERTEX COVER in the class of graphs H defined
in Lemma 1. Given a graph H ∈ H as instance of
VERTEX COVER, we partition E(H) into E1 and E2

according to the two-coloring given by Lemma 2.
In order to build G, we associate a parity to the

edges of H as follows. Recall that the vertices of H
have degree 2 or 3. From the set of paths P given by
Lemma 2, we build a set of paths P ′ as follows. If
a vertex v appears in P as an endpoint of two paths
P1 and P2 (necessarily, of different color), we merge
them to build a new longer path, and add it to P ′. We
orient each path P ∈ P ′ arbitrarily, and define the
parity of the edges of P accordingly (the first edge
being odd, the second even, and so on). This defines
the parity of all the edges in E(H).

We now subdivide the edges of H as follows. We
distinguish two cases depending on the value of d.
For each P ∈ P:
◦ If d ≥ 2 is even, we subdivide d

2 − 1 times
each edge of P (that is, we introduce d

2 −1 new
vertices for each edge of P ).

◦ If d ≥ 3 is odd, we subdivide d−1
2 times each

odd edge of P , and d−3
2 times each even edge

of P .
This completes the construction of G. Note that
∆(G) ≤ 3. We call the vertices of G corresponding
to vertices of H black, the other ones being white. An
example of this construction is illustrated in Fig. 2(b)
for several values of d in a path P with 2 edges. We
now have to define the two sets of lightpaths. Again,
each path of H[E1] (resp. H[E2]) will correspond
to a lightpath in L1 (resp. L2), but now we have to
be more careful with the first and last edges of the
lightpaths. Namely, we will construct the lightpaths
in such a way that the parities of the corresponding
edges of H alternate.

Let P be a path of the two-coloring of E(H)
with endpoints u and v. We will argue about u, and
the same procedure applies to v. We distinguish two
cases according to the degree of u in H . In both
cases, we will associate a vertex u′ ∈ V (H) with u.
First, if u has degree 2 in H , let u′ be the neighbor
of u in V (H)\V (P ) (recall that u′ ∈ V (H)\V (P )
as H has girth at least 9). Note that by the definition
of the parity of the edges of H , the edge {u′, u}
has different parity from the edge of P containing u.
Otherwise, u has degree 3 in H , and let u′ and u′′

be the two neighbors of u in V (H) \ V (P ). By the
properties of the two-coloring given by Lemma 2,
{u′, u} and {u′′, u} are two consecutive edges in a
path of the two-coloring, hence they have different
parity. Let without loss of generality {u′, u} have
different parity from the edge of P containing u.
Equivalently, the same discussion determines another
vertex v′ ∈ V (H) associated with v (note that
u′ 6= v′ due to the high girth of H).

Then the lightpath associated with P consists of
the concatenation of the edges in G correspond-
ing to {u′, u}, P , and {v, v′}. This completes the
construction of the instance of (d, 2)-TR. Note that
for both d even or odd, the length of the lighpaths
is at most 2d. Note also that the case d = 2 is
consistent with the proof of Proposition 1. As in
the case d = 2, we now claim that OPTVC(H) =
OPT(d,2)−TR(G, {L1, L2}).

Let S ⊆ V (H) be a vertex cover of H . Place
one regenerator at each black vertex of G corre-
sponding to a vertex in S; this defines a feasible
solution to (d, 2)-TR with cost |S|. Indeed, at least
one of every 2 consecutive black vertices of each
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lightpath ` hosts a regenerator, so the maximum
distance in a lightpath without meeting a regenerator
is bounded by the distance between the first and
the last black vertex in a sequence of 3 consecutive
black vertices, which is exactly d for both d even
and odd (see Fig. 2(b)). Therefore, OPTVC(H) ≥
OPT(d,2)−TR(G, {L1, L2}).

Conversely, given a solution to (d, 2)-TR in G
using r regenerators, we perform the following trans-
formation to each lightpath `: let v1 and v2 be two
consecutive black vertices in `, and assume that v1
is on the left of v2 in the chosen orientation of the
path corresponding to `. If there are any regenerators
at the white vertices between v1 and v2, we remove
them and put a regenerator at v1, if there was no
regenerator before. We perform this operation for
any two consecutive black vertices of each lightpath,
inductively from right to left. This defines another
feasible solution to (d, 2)-TR in G using at most
r regenerators, since there is no lightpath with two
consecutive black vertices without a regenerator. In-
deed, if there were two consecutive black vertices
without a regenerator after the described transforma-
tion, it would imply that the original solution was not
feasible, a contradiction. The latter property implies
that the regenerators at the black vertices constitute
a vertex cover of H of size at most r. Therefore,
OPTVC(H) ≤ OPT(d,2)−TR(G, {L1, L2}).

That is, the existence of a PTAS for (d, 2)-TR
would imply the existence of a PTAS for VERTEX
COVER in the class of graphs H, which is a contra-
diction by Lemma 1, unless P = NP.

For p ≥ 2, it suffices to further refine in an arbi-
trary way the partition of E(H) given by Lemma 2
into p sets of edges, which correspond to the p sets
of lightpaths. For instance, if p = 5, we can partition
E(H1) (resp. E(H2)) into 2 (resp. 3) sets of paths.
Then, the same proof presented above carries over to
any p ≥ 2.

IV. APPROXIMATION ALGORITHMS FOR GENERAL
GRAPHS

We have seen in Section III that (d, p)-TR does
not admit a PTAS for d, p ≥ 2 unless P = NP.
In this section we complement this result with a
constant-factor approximation algorithm for (d, p)-
TR in general graphs.

Theorem 2: For any fixed d, p ≥ 2, there is
a polynomial-time approximation algorithm for the

(d, p)-TR problem with ratio min{p,Hd·p − 1/2},
where Hd·p =

∑d·p
i=1

1
i .

Proof: As mentioned in Section I, (d, 1)-
TR is trivially solvable in polynomial time
for any d ≥ 1. Note also that any solution to
(d, p)-TR must d-satisfy all the lightpaths in
Li, for 1 ≤ i ≤ p. Therefore, for any instance
(G,L = {L1, ..., Lp}), OPT(d,p)−TR(G,L) ≥
max{OPT(d,1)−TR(G,Li); 1 ≤ i ≤ p}.
That is,

∑p
i=1OPT(d,1)−TR(G,Li) ≤

p · max{OPT(d,1)−TR(G,Li); 1 ≤ i ≤ p} ≤
p · OPT(d,p)−TR(G,L), so the union of the optima
to the p instances defined by the sets Li, 1 ≤ i ≤ p,
constitutes a p-approximation to (d, p)-TR.

A better approximation ratio for most values of
d and p can be obtained by reducing (d, p)-TR to
MINIMUM SET COVER. The algorithm is simple,
so for the sake of intuition we provide a high-level
description rather than a technical one. Indeed, the
universe of objects to be covered is the union of
the edges of the lightpaths in the sets L1, . . . , Lp.
These edges are covered by regenerators placed at
vertices. Since we assume that the traffic requests are
symmetric, each lightpath can be arbitrarily oriented,
and then each regenerator covers edges only on one
side. Namely, each regenerator covers d edges of
at most p lightpaths, each lighpath belonging to a
different set Li. Each set of the MINIMUM SET
COVER instance is made of a vertex v ∈ V (G)
together with a choice of the d covered edges of at
most one lightpath from each Li that goes through
v. The number of possible sets for each v is at most∏p
i=1 |Li|, so the total number of sets is at most
|V (G)| ·

∏p
i=1 |Li|, which is polynomial in the input

size since p is fixed. Each such set has cost 1, which
corresponds to the cost of a regenerator placed at a
vertex and used by these lightpaths. Clearly, a set
cover of minimum cost corresponds to a placement
of the minimum number of regenerators d-satisfying
all the lightpaths. The algorithm of [22] achieves an
approximation ratio of Hk − 1/2, where k is the
maximum size of a set and Hk =

∑k
i=1

1
i . In our

case, each regenerator covers at most d edges of
at most p lightpaths, so the size of the sets is at
most d · p. Therefore, the approximation ratio of the
algorithm is at most Hd·p − 1/2.

Note that for big d, p, Hd·p ≈ ln d+ln p+1/2, so
comparing both approximation ratios, we have that
p < ln d+ ln p when d = Ω(2p).
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V. THE CASE OF THE PATH

While our investigation presented in this paper is
restricted to special cases of traffic on the specific
network topology of a path, they are valuable in
several ways. As always, studying elemental cases
of a problem can give us insights into more general
versions of the problem. It is also true that insight
is obtained by investigating the border of tractability
and intractability in a problem, as we do in this paper.
More practically, solution methods for simple cases
can often be used to obtain good solution methods
for general cases. We

In this section we focus on the case where the
network topology is a path, which is one of the most
studied topologies in theoretical networking (see for
instance [23]–[26]), as well as one of the most
natural and apparently simplest underlying graphs to
study. Our investigations on the path are valuable in
several ways. As always, studying elemental cases
of a problem can give us insights into more general
versions of it. It is also true that studying the border
of tractability and intractability in a problem, as it
seems to be the case of the path in our problem,
usually provides intuition about how to approach it
in a more general setting. More practically, solution
methods for simple cases can often be used to obtain
good solution methods for general cases.

We present polynomial-time optimal algorithms
for two particular families of instances. Namely, we
study in Section V-A the case when all the lightpaths
go through the first or the last edge of the path, and
in Section V-B the case when the load of the path
(that is, the maximum number of lightpaths in any
set Li crossing an edge of the path) is bounded by a
logarithmic function of the input size. We would like
to stress here that it was claimed in the conference
version of this paper that the (d, p)-TR problem is
NP-hard in paths for any d, p ≥ 2; unfortunately,
the proof of this claim contained a flaw, and the
computational complexity of the problem in paths
remains still open.

A. Edge instances

In an edge instance there is an edge e ∈ E(G) that
is used by all the lightpaths.

Proposition 2: For any fixed d, p ≥ 2, there is
a polynomial-time algorithm solving the (d, p)-TR

problem for edge instances in a path where all the
lightpaths share the first edge.

Proof: Let P be the path with V (P ) =
{0, 1, . . . , n} and E(P ) = {{j, j + 1} | 0 ≤ j ≤
n − 1}}. By assumption, all the lightpaths share
the edge {0, 1}. We first claim that there is an
optimal solution using regenerators only at vertices
d, 2d, 3d, . . .. Indeed, consider an optimal solution
in which this property is not satisfied and consider
the first (leftmost) vertex with index not divisible
by d containing a regenerator. We can replace the
regenerators at this vertex with regenerators in the
next vertex with index divisible by d (satisfying
the same lightpaths than the previous regenerators
were satisfying), and get a solution with the same
cost. Therefore, the solution recursively obtained in
this way is also optimal, and satisfies the claimed
property. In the rest of the proof we confine ourselves
to solutions that use regenerators only at vertices that
are multiples of d.

For a vertex j and an index i, let load(j, i) be the
number of lightpaths in Li using edge {j, j+1}, and
let load(j) = max1≤i≤p load(j, i). We shall see that
the following simple algorithm is optimal.

Algorithm 1
procedure

For each vertex j which is a positive multiple
of d do:

Place load(j) regenerators at v.
For each i, 1 ≤ i ≤ p, do:

Associate arbitrarily one of these
regenerators with each lightpath in Li using edge
{j, j + 1}.
end procedure

Algorithm 1 constructs a feasible solution, as by
definition of load(j) there are enough regenerators
to d-satisfy each set of lightpaths. The optimality of
the algorithm follows from the fact that any feasi-
ble solution uses at least

∑
j multiple of d,j>0 load(j)

regenerators, since we can assume that regenerators
are only placed at vertices j which are multiples of d,
and at least load(j) regenerators are needed at such
vertex j.

It is natural to ask whether Algorithm 1 is optimal
for general edge instances, that is, even if the edge
shared by all lightpaths is an internal one. Unfortu-
nately, the answer is negative even for p = 1, as
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shown by the following simple example for d = 2
and a path on six vertices 0, 1, . . . , 5. Let `1 (resp. `2)
be a lightpath from vertex 0 to vertex 4 (resp. vertex
1 to vertex 5), so all lightpaths share, for instance,
the edge {2, 3}. If we place regenerators only at
multiples of d = 2, we need at least 3 regenerators
(recall that p = 1), but we can do better by 2-
satisfying `1 (resp. `2) with a regenerator at vertex 2
(resp. vertex 3), therefore using only 2 regenerators.

B. Bounded load

It turns out that if we impose that the load of the
path is bounded by an appropriate function of the
size of the instance, then the problem is solvable
in polynomial time. Intuitively, this special case of
instances is in the opposite extreme of the edge
instances, where there is an edge with unbounded
load.

Proposition 3: For any fixed d, p ≥ 2, (d, p)-TR
is polynomial-time solvable in paths if the load is
O
(

log |I|−log p
2p·log d

)
= O(log |I|), where |I| is the size

of the instance.
Proof: The algorithm uses standard dynamic

programming techniques. Again, let P be the path
with V (P ) = {0, 1, . . . , n} and E(P ) = {{j, j+1} |
0 ≤ j ≤ n − 1}}. Let Lji ⊆ Li be the subset of Li
consisting of lightpaths crossing the edge {j, j + 1},
and let Lj = ∪iLji be the set of lightpaths crossing
{j, j + 1}. (Note that |Lji | = load(j, i) and that
|Lj | ≥ load(j).) We denote by [d] the set of integers
{1, . . . , d}. We consider the set of all vectors Uj =

[d]L
j

. Namely, a vector U ∈ Uj is an assignment of
an element of [d] to every lightpath crossing edge
{j, j + 1}. In our algorithm, such vectors are used
to denote for each lightpath ` ∈ Lj the distance to
the closest (that is, rightmost) regenerator on the left
of vertex j used by `. If X ⊆ Lj and U ∈ Uj , we
denote by U|X the vector U restricted (or projected)
to the index set X . In particular, if X = {`} is a
single lightpath, then we denote – in the usual way –
by U` the entry at index ` of U , which is a positive
integer.

For each vertex j and each vector U ∈ Uj , we store
two values in the tables, namely costj,U ∈ N and
bestj,U ∈ Uj−1. The value costj,U is the minimum
cost of covering all the edges on the left of j + 1 by
regenerators, such that for each lightpath ` ∈ Lj the

rightmost regenerator of ` is at vertex j−d+U`. The
vector bestj,U ∈ Uj−1 is a vector achieving costj,U .

We visit each vertex 0 ≤ j ≤ n− 1. For j = 0 we
have ∀U ∈ U0, cost0,U = 0, because every lightpath
using edge {0, 1} starts at vertex 0, and therefore it is
covered without any additional regenerators. We set
also ∀U ∈ U0, best0,U = ∅ indicating the same fact.

For each j > 0 and for each U ∈ Uj , we calculate
costj,U and bestj,U as follows:

X = {` ∈ Lj | U` < d}, X = {` ∈ Lj | U` = d}.
(2)

Note that X ∪X = Lj . Then we compute costj,U as

min
U ′∈Uj−1 such that
U ′ |X=U |X+1

(
costj−1,U ′ + max

1≤i≤p
|X ∩ Lji |

)
,

(3)
where 1 is a vector of ones of appropriate size. Then,
bestj,U is set to some vector U ′ ∈ Uj−1 achieving the
minimum in the above expression.

Finally, we construct an optimum solution as
follows:

Set Un−1 = argminU costn−1,U .
For j = n− 2 to 0 do: U j = bestj+1,Uj+1 .
For each vertex j and each lightpath ` ∈ Lj ,

we assign a regenerator at vertex j to lightpath `
if and only if U j` = d, i.e., vector U j has

value d in the entry `.

Correctness. We shall now see that Equation (3)
is correct. Consider a vertex j and a vector U ∈ Uj .
Consider a solution corresponding to U and its cost.
This solution defines some vector U ′ ∈ Uj−1. We
want to express U in terms of U ′. Let X and X be as
in (2), and consider a lightpath ` ∈ Lj . If ` ∈ X , then
by definition U` < d, i.e., the rightmost regenerator
serving lightpath ` is at vertex j − d + U` < j.
Therefore, for U ′ we have U ′` = U` + 1. This is true
for every index ` ∈ X , and thus U ′ |X= U |X +1.
This is exactly the set of values U ′ over which the
expression in parentheses is minimized. Now we
show that for each possible value of U the value of
this expression is actually the cost of the solution
corresponding to U . For any ` /∈ X we have U` = d,
i.e., the rightmost regenerator serving lightpath ` is
at vertex j − d + U` = j. Therefore, the number of
regenerators at vertex j serving lightpaths of Li is
|X ∩ Lji |. The number of regenerators at j is the
maximum of this value over all Li. This is the cost
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incurred by the solution at vertex j. Adding this to
the cost of U ′, we obtain the cost of U . Therefore
the algorithm chooses in Equation (3) the best U ′

for a given U over all possible values of U ′.

Running time. Let β be an upper bound on the
load of the instance. Then we have |Lji | ≤ β, and
thus |Lj | = load(j) ≤ β · p and |Uj | ≤ dβ·p. The
computation of the above minimum takes at most
|Uj−1| ≤ dβ·p steps, each of which takes p steps
in order to compute the maximum, so we have at
most p · dβ·p steps overall. After initialization, we
iterate over j = 1, 2, . . . , n, and then over the at
most dβ·p values of U . The total number of steps
is n · p · d2β·p < |I| · p · d2l·p. If for some integer
c, it holds β ≤ (c−1)·log |I|−log p

2p·log d = O(log |I|), the
running time of the presented algorithm is bounded
by the polynomial |I|c.

VI. MORE GENERAL SETTINGS

In this section we generalize the (d, p)-TR prob-
lem in two natural directions. Namely, in Sec-
tion VI-A we allow the number p of traffic patterns
to be unbounded, and in Section VI-B we introduce a
parameter k that bounds the number of regenerators
that can be placed at a vertex. Technologically, the
latter constraint captures the fact of having a bounded
number of ROADMs per vertex, as the number of
wavelengths (and therefore, the number of regenera-
tors) an ROADM can handle is usually not too big
(see Section I-A).

A. Unbounded number of sets of lightpaths

If p is part of the input, then (d, p)-TR contains
as a particular case the model studied in [9] (the so-
called location problem, denoted RPP/∞/+ in [9]).
Indeed, if each set of lightpaths consists of a single
lightpath (that is, when p is the number of lightpaths),
then the objective is to place the minimum number
of regenerators such that each lightpath is satisfied.
Therefore, the hardness results stated in [9] also
apply to this more general setting, in particular an
approximation lower bound of Ω(log(d · p)) unless
NP can be simulated in subexponential time. Note
that this hardness bound matches the approximation
ratio given by Theorem 2. Nevertheless, note also that
the approximation algorithm presented in Theorem 2
runs in polynomial time only for bounded p.

We now reformulate the problem studied in [9]
using our terminology. Let d ≥ 1 be a fixed integer.

d-REGENERATORS LOCATION (d-RL)

Input: An undirected graph G = (V,E) and a set
of lightpaths L.

Output: A function reg : V × L → {0, 1} s.t.
each lightpath ` ∈ L is d-satisfied.

Objective: Minimize
∑
v∈V reg(v), where

reg(v) = max`∈L reg(v, `).

Note that in the above problem, reg(v) ∈ {0, 1}.
We now focus on the case d = 2 of d-RL.

Remark 1: Given an instance of 2-RL in a graph
G, the problem can be reduced to a MINIMUM
VERTEX COVER problem in a subgraph of G. Indeed,
given a set of lightpaths L, remove the first and the
last edge of each lightpath, and let H be the subgraph
of G defined by the union of the edges in the modified
lightpaths. It is then clear that the minimum number
of regenerators to 2-satisfy all the lightpaths in L
equals the size of a minimum vertex cover of H .

By Remark 1 and König’s theorem [15], it follows
that 2-RL can be solved in polynomial time in
bipartite graphs. This result extends the results of [9]
for d = 2, where it is proved that for any d ≥ 2, d-
RL is polynomial-time solvable in trees and rings.
Finally, it also follows from Remark 1 that 2-RL
admits a PTAS in planar graphs [27] and, more
generally, in any family of minor-free graphs [28].

B. Bounded number of regenerators per vertex

From a technological point of view, it makes sense
to introduce a parameter k that limits the number
of regenerators that can be used at a single vertex.
Adding this restriction to the d-RL problem, we get
the following problem, which is actually the so-called
k-location problem and denoted RPP/k/+ in [9].

Again, we restate the problem using our terminol-
ogy. Let d, k ≥ 1 be two fixed integers.
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(d, k)-REGENERATORS LOCATION ((d, k)-RL)

Input: An undirected graph G = (V,E) and a set
of lightpaths L.

Output: A function reg : V × L→ {0, 1} s.t.
each lightpath ` ∈ L is d-satisfied
and reg(v) ≤ k, where
reg(v) =

∑
`∈L reg(v, `).

Objective: Minimize |{v ∈ V | reg(v) > 0}|.

We now resolve two questions that were left open
in [9]. Namely, it is proved in [9] that given an
instance of (3, 1)-RL, it is NP-complete to decide
whether there exists a feasible solution for it, which
in particular implies that the (3, 1)-RL problem itself
is NP-hard to approximate within any ratio. In the
following we prove that, surprisingly, the situation
changes for d = 2 and k = 1. More precisely, it is in
P to decide whether there exists a feasible solution
for an instance of (2, 1)-RL, while finding an optimal
one is NP-hard.

Proposition 4: Given an instance of (2, 1)-RL, it
can be decided in polynomial time whether there
exists a feasible solution for it.

Proof: Given an instance α = (G,L) of (2, 1)-
RL, we reduce it to an instance of 2-SAT as fol-
lows. We introduce boolean variables Rv,`, for every
v ∈ V (G) and every ` ∈ L, which correspond
to reg(v, `), namely Rv,` is true if and only if
there is a regenerator at vertex v of lightpath `. We
construct the boolean expression φ with the following
clauses (with two literals each) that capture exactly
the constrains of (2, 1)-RL:

∀v ∈ V (G), ∀`i, `j ∈ L (Rv,`i ∨Rv,`j )

∀` ∈ L,∀{u, v} internal edge of ` (Ru,` ∨Rv,`)

The first family of clauses imposes that there is no
vertex v with two lightpaths `i, `j being served by
a regenerator in v (k = 1), and the second family
of clauses imposes that every internal edge of every
lightpath is covered by some regenerator; in other
words, that every lightpath is 2-satisfied. Thus, there
exists a feasible solution for α if and only if φ
is satisfiable, which can be checked in polynomial
time [17].
Finally, we prove the following result by reduction
from MINIMUM VERTEX COVER.

Proposition 5: The (2, 1)-RL problem is NP-
hard.

Proof: We prove it by reduction from the MIN-
IMUM VERTEX COVER (VC for short) problem.
Given an instance G = (V,E) of VC, we construct
an instance (G′ = (V ′, E′), L) of (2, 1)-RL as
follows.

For each vertex v of G, we add 2 · degG(v) +
1 vertices v1, v2, . . . , v2·degG(v)+1 to G′. Note that
there are degG(v) vertices with even indices and
degG(v) + 1 vertices with odd indices. We also
add a lightpath `v of length 2 · degG(v) through
vertices v1, v2, . . . , v2·degG(v)+1, in this order. These
lightpaths are termed long lightpaths.

For each edge e = {u, v} of G, we add a lightpath
of length 1, termed short lightpath. The endpoints of
this lightpath are a vertex vi and a vertex uj with
even indices i, j such that neither vi nor uj is already
an endpoint of a short lightpath. There are always
two such available vertices, since there are degG(v)
vertices with even indices. Finally, we extend both
ends of each lightpath by adding an extra vertex to
G for every endpoint of a lightpath, and an additional
edge connecting the current endpoint of the lightpath
to the new vertex (the reason to do this transformation
is that no regenerator needs to be placed in the end-
points of a lightpath). This construction is depicted
in Fig. 3, where for simplicity the extra vertices and
edges added in the last step are not shown. Square
(resp. circle) nodes correspond to vertices in G (resp.
in the network); the colors in the figure are used in
the sequel.

Note that there is exactly one way to 2-satisfy
a long lightpath `v optimally, namely by placing
degG(v) regenerators at the vertices with even in-
dices, any other solution needing at least degG(v)+1
regenerators to 2-satisfy `v . We claim that there is a
vertex cover of G with cardinality at most t if and
only if there is a solution of (G′, L) with cost at most
3|E|+ t.

Indeed, let first S ⊆ V be a vertex cover of G of
size t. For each vertex v ∈ S, we put regenerators
at all the odd vertices of the long lightpath `v (that
is, degG(v) + 1 regenerators) and one regenerator in
every short lightpath intersecting `v at the vertex in
their intersection (recall that there is exactly one such
lightpath for every even vertex of `v). For each vertex
u /∈ S, we put regenerators at all the even vertices of
the long lightpath `u (that is, degG(u) regenerators).
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Fig. 3. Reduction from VC to (2, 1)-RL in the proof of Proposition 5. (a) Instance G of VC, where the squares indicate a vertex
cover. (b) Instance of (2, 1)-RL constructed from G with |V (G)|+ |E(G)| lightpaths, where for simplicity the first and last edge of
each lightpath are not depicted. Black vertices correspond to regenerators associated with a vertex and a lightpath, defining a feasible
solution for this instance.

If a short lightpath has two regenerators (one at each
endpoint), we remove one of them arbitrarily. It can
be verified that every lightpath is 2-satisfied, and
that at each vertex there is at most one regenerator.
This solution uses |E| regenerators for the short
lightpaths, and

∑
v∈S(degG(v)+1)+

∑
u/∈S degG(u)

regenerators for the long lightpaths. Therefore, its
cost is 3|E|+ |S| = 3|E|+ t regenerators.

Conversely, consider a solution SOL to the in-
stance (G′, L) using at most 3|E| + t regenerators.
Each short lightpath has a regenerator in at least
one endpoint vi. Therefore SOL has at least |E|
regenerators to satisfy the short lightpaths. Let X
be the set of vertices of V containing at least one
of these regenerators. The set X is a vertex cover
of G, since each edge of G corresponds to a short
lightpath in L and one of its endpoints contains a
regenerator. Consider a lightpath `v with v ∈ X . It
cannot be covered with degG(v) regenerators, since
at least one of the even vertices cannot be used,
because this vertex already contains a regenerator
for a short lightpath. Therefore `v needs at least
degG(v) + 1 regenerators. For a lightpath `v with
v /∈ X , we need at least degG(v) regenerators.
Therefore, SOL uses at least 3|E|+|X| regenerators.
It holds 3|E| + |X| ≤ cost(SOL) ≤ 3|E| + t, and
thus |X| ≤ t.

The above proof is illustrated in Fig. 3; in Fig. 3(a)
black squares indicate a vertex cover of G, and in
Fig. 3(b) black vertices correspond to regenerators.

VII. CONCLUSIONS AND FURTHER RESEARCH

In this article we presented a theoretical study
of the problem of placing regenerators in optical
networks, so that on each lightpath we must put a
regenerator every at most d hops. The cost is the
total number of regenerators. We considered the case
when p possible traffic patterns are given (each by
a set of lightpaths), and the objective is to place the
minimum number of regenerators satisfying each of
these patterns. This setting arises naturally when de-
signing real networks under uncertain traffic forecast.
The problem is called (d, p)-TOTAL REGENERATORS
problem, or (d, p)-TR for short. We now summarize
our results and propose a number of lines for further
research.

We proved that for any fixed d, p ≥ 2, (d, p)-TR
does not admit a PTAS unless P = NP, even if
the network topology has maximum degree at most
3 and the lightpaths have length at most 2d, by
reduction from MINIMUM VERTEX COVER in graphs
of maximum degree 3. It would be interesting to
determine which is the explicit approximation lower
bound given by Theorem 1. The recent results of
Austrin et al. [29] about the hardness of MINIMUM
VERTEX COVER in graphs of bounded degree may
shed some light on this question. We provided an
approximation algorithm for (d, p)-TR with constant
ratio ln(d · p), by reducing it to MINIMUM SET
COVER. Finding a polynomial-time approximation
algorithm matching the hardness lower bound given
by Theorem 1 seems to be a challenging task.

We proved that (d, p)-TR is polynomial-time solv-
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able in paths when all lightpaths use the first (or
the last) edge of the path. It remains to settle the
complexity of the case when the edge shared by all
lightpaths is an internal edge of the path, which could
be polynomial or NP-hard. Still in the path, but in
the opposite extreme of the type of instances, we also
proved that (d, p)-TR can be solved in polynomial
time when the maximum number of lightpaths using
an edge is logarithmically bounded by the size of the
instance. It may be possible to extend our dynamic
programming approach to trees with instances hav-
ing this property, and even to graphs with bounded
treewidth.

The computational complexity of (d, p)-TR in
paths (for general instances) is still unknown. Very
recently, it has been proved in [30] that there is
a polynomial-time algorithm to solve (2, p)-TR in
paths for any fixed p ≥ 1; the case d ≥ 3 remains
open.

We generalized our model by allowing the num-
ber of sets of lightpaths to be unbounded, and by
introducing a parameter k that bounds the number of
regenerators that can be placed at a node. This way,
the model studied in [9] becomes a particular case.
We settled several complexity questions that were left
open in [9] concerning the case k = 1 and d = 2.
As future work, it seems to be of high importance to
consider the parameter k in the original statement of
our (d, p)-TR problem.

As mentioned in [9], other interesting avenues for
further research are to consider the online setting
(that is, when the lightpaths are not given in ad-
vance) and the weighted version of the problem (see
also [31]), in the sense that the edges of the network
have an associated weight, and the distance constraint
is replaced with the corresponding weighted distance.

Considering the parameterized complexity of the
(d, p)-TR problem is a promising approach in order
to better understand its complexity. A natural choice
for a parameter could be the number of regenerators
used by a feasible solution. The powerful techniques
of the theory of parameterized complexity [32] could
be very helpful in designing efficient and practical
algorithms for finding optimal solutions in real net-
works, even if (d, p)-TR is NP-hard.

Finally, we assumed that we are given a discrete
(finite or infinite) set of possible traffic patterns.
Even if this model can be applied in a variety
of contexts, in some cases the traffic distribution

may be more complicated. In this spirit, a possible
direction is to consider a probability distribution
(discrete or continuous) over the space defined by
possible sets of lightpaths, the objective being to
satisfy the lightpaths with high probability, or to
satisfy a given fraction of them.
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