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Abstract 

Whilst fertilizing capacity depends upon a K+ conductance (GK) that allows the spermatozoon membrane 

potential (Vm) to be held at a negative value, the characteristics of this conductance in human sperm are 

virtually unknown. We therefore studied the biophysical / pharmacological properties of the K+ 

conductance in spermatozoa from normal donors held under voltage / current clamp in the whole cell 

recording configuration. Our standard recording conditions were designed to maintain quasi-

physiological, Na+, K+ and Cl- gradients. Experiments that explored the effects of ionic substitution / ion 

channel blockers upon membrane current / potential showed that resting Vm was dependent upon a 

hyperpolarizing K+ current that flowed via channels that displayed only weak voltage dependence and 

limited (~7 fold) K+ versus Na+ selectivity. This conductance was blocked by quinidine (0.3 mM), 

bupivacaine (3 mM) and clofilium (50 µM), NNC55-0396 (2 µM) and mibefradil (30 µM), but not by 4-

aminopyridine (2 mM, 4-AP). Progesterone had no effect upon the hyperpolarizing K+ current. 

Repolarization after a test depolarization consistently evoked a transient inward “tail current” (ITail) that 

flowed via a second population of ion channels with poor (~3 fold) K+ versus Na+ selectivity. The activity 

of these channels was increased by quinidine, 4-AP and progesterone. Vm in human sperm is therefore 

dependent upon a hyperpolarizing K+ current that flows via channels that most closely resemble those 

encoded by Slo3. Although 0.5 µM progesterone had no effect upon these channels, this hormone did 

activate the pharmacologically-distinct channels that mediate ITail. In conclusion, this study reveals three 

functionally and pharmacologically distinct cation channels, Ik, ITail, ICatSper   

 

Abbreviations: 4-AP, 4-aminopyridine; ANOVA, analysis of variance; HTF, Artificial tubular fluid; 

[Ca2+]i, intracellular free Ca2+ concentration; CatSper, cation channel of spermatozoa; EL, liquid junction 

potential; GK, membrane K+ conductance; GNa, membrane Na+ conductance; GV, voltage-induced 

conductance; Im membrane current, IV, voltage-induced membrane current; LRCC52, leucine-rich repeat-

containing protein no. 52; Ra, access resistance; s.e.m., standard error of the mean; V50, membrane 

potential required for 50% activity; Vm membrane potential; VL, liquid junction potential; VPip, pipette 

potential. 
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Introduction 

Plasma membrane ion channels are central to the control of sperm function (Darszon, et al., 1999, 

Lishko, et al., 2011b) and, in particular, Ca2+ entry via sperm cation channels (CatSper) is critical for 

several physiologically-important processes including hyperactivation, chemotaxis and the acrosome 

reaction (Brenker, et al., 2012, Lishko, et al., 2011a, Lishko, et al., 2011b, Strünker, et al., 2011). Like 

somatic cells, mouse and human spermatozoa normally display negative resting membrane potentials 

(Vm) that are dependent upon the activity of K+ channels, and the magnitude of this potential exerts a 

strong influence over Ca2+ influx since it determines the gating of CatSper and also sets the driving force 

for Ca2+ entry through these channels. At least in mouse sperm, a negative shift in Vm (hyperpolarisation) 

is essential to capacitation, the acquisition of fertilising ability that occurs within the female reproductive 

tract (De la Vega-Beltran, et al., 2012, Zeng, et al., 1995). Understanding the mechanisms that allow Vm 

to be maintained is therefore central to our understanding of spermatozoon physiology. 

Whilst protein and mRNA encoding several K+ channel subtypes, including voltage-gated K+ 

channels (KCNA5) (Felix, et al., 2002), tandem pore domain K+ channels (KCNK5) (Barfield, et al., 

2005a, Barfield, et al., 2005b) and ATP-gated K+ channels (Acevedo, et al., 2006, Martínez-López, et al., 

2009), is present in mouse and human sperm, the biophysical properties of K+ channels in these cells are 

only just becoming clear. Electrophysiological studies of mouse sperm thus led to the identification of the 

sperm K+ channel (KSper), a K+-permeable conductance whose activity was strongly enhanced by 

intracellular alkalinisation (Navarro, et al., 2007). KSper-dependent K+ currents apparently flow via 

channels encoded by Slo3 (KCNMA3) (Navarro, et al., 2007, Santi, et al., 2010, Zeng, et al., 2011), a gene 

expressed only in male germ cells (Santi, et al., 2010, Schreiber, et al., 1998, Yang, et al., 2011, Zeng, et 

al., 2011). Slo3-encoded channels resemble the endogenous mouse K+ channels in their pharmacology, 

weak voltage sensitivity, low K+ vs. Na+ selectivity and sensitivity to changes in intracellular pH (pHi) 

(Martínez-López, et al., 2009, Schreiber, et al., 1998, Zhang, et al., 2006a, Zhang, et al., 2006b). 

Moreover, Vm in mouse sperm is clearly dependent upon pHi, an observation consistent with a principal 

role for Slo3 in the mature spermatozoon (Martínez-López, et al., 2009, Navarro, et al., 2007). Slo3 gene 

deletion thus abolishes the hyperpolarization seen during capacitation and mimics the effects of K+ 

channel blockade on sperm function (Santi, et al., 2010, Zeng, et al., 2011). Very recent studies of human 

sperm, on the other hand, suggest that the K+ conductance of these cells is insensitive to changes in pHi 

but enhanced by high intracellular Ca2+ (50 M). These authors therefore suggested that the principal K+ 

channel in human sperm is the large conductance, Ca2+-sensitive (BK) K+ channel encoded by the Slo1 

gene (Mannowetz, et al., 2013). In neurons these channels regulate excitability and control [Ca2+]i by 

opening in response to increased [Ca2+]i, causing a negative shift in membrane potential which ‘switches 

off’ voltage sensitive Ca2+ channels (Hoshi, 2012).  
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Whilst the present study also uses the whole cell recording technique to characterise the K+ 

channels in human sperm, our data suggest that K+ currents flow via a population of channels that 

displays relatively poor ionic selectivity, a feature that is not consistent with a central role for Slo1 

encoded channels. In addition, we identify a second, poorly-selective, voltage-sensitive cation 

conductance whose activity is potentiated by progesterone but shows clear pharmacological difference to 

CatSper. 

Materials and methods 

Experimental solutions 

All concentrations are in mM. Synthetic human tubular fluid (HTF): NaCl, 97.8; KCl, 4.69; 

MgSO4; 0.2; CaCl2, 2.04; HEPES, 21; Glucose, 2.78; Lactic acid; 21.4; Na-pyruvate, 0.33; pH adjusted to 

7.4 with NaOH. Capacitating medium: NaCl, 135; KCl, 5, MgSO4, CaCl2, 2; HEPES, 20; Glucose, 5; 

Lactic acid, 10; Na-Pyruvate, 1; NaHCO3, 25; foetal bovine serum, 20 %; pH adjusted to 7.4 with NaOH. 

Standard bath solution: NaCl, 135, KCl, 5, CaCl2, 2; MgSO4, 1; HEPES, 20, Glucose, 5, Na pyruvate, 1; 

Lactic acid, 10; pH adjusted to 7.4 with NaOH which brought [Na+] to 154 mM. The K+-rich bath 

solution ([K+] = 130 mM) was prepared by iso-osmotically replacing most Na+ with K+ whilst the low 

Na+ ([Na+] = 11 mM) solution was prepared by iso-osmotically replacing Na+ with N-methyl-D-

glucammonium (NMDG+). The divalent free bath solution was prepared by omitting CaCl2 and MgCl2 

and adding 1 mM EGTA. Standard pipette solution: NaCl, 10; KCl, 18; K gluconate, 92; MgCl2, 0.5, 

CaCl2, 0.6; EGTA, 1; HEPES, 10; pH adjusted to 7.4 using KOH which brought [K+] to 114 mM and 

[Ca2+] to 0.1 µM. For some experiments the pH of this solution was adjusted to values between 6.2 and 

8.0 and, for these experiments, pH was buffered using 5 mM MES / 5 mM HEPES. Moreover, since the 

ability of EGTA to buffer Ca2+ is pH-dependent, the amount of CaCl2 added to these solutions was 

adjusted in order to maintain [Ca2+]i at 0.1 µM irrespective of pH. K+-free pipette solutions were prepared 

by iso-ismotically replacing K+ with Cs+, Na+ or N-methyl-D-glucammonium (NMDG+). Non-selective 

cation currents flowing via spermatozoon cation channels (CatSper) were quantified using pipette (Cs-

methanesulphonate, 130; HEPES, 40; Tris-HCl, 1; EGTA, 3; EDTA, 2 mM, pH adjusted to 7.4 with 

CsOH) and bath (Cs-methane sulphonate, 140; HEPES, 40; EGTA, 3; pH adjusted to 7.4 with CsOH) 

solutions devoid of Ca2+ and Mg2+ that contained Cs+ as the principal cation; the rationale underlying the 

design of these solutions is presented elsewhere (Kirichok, et al., 2006, Lishko, et al., 2011a).  
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Preparation of spermatozoa 

Semen samples were provided by volunteer donors with no known fertility problems after 48 – 72 

h of sexual abstinence. All donors were shown to produce normal semen (i.e. ≥ 32% progressive motility; 

≥ 40% total motility; ≥15 x 106 cells ml-1) as defined by established criteria (see WHO, 2010). This 

procedure had the approval of the Tayside Committee of Medical Research Ethics (08/S1402/6) and 

written consent was obtained from each donor in accordance with the Human Fertilisation and 

Embryology Authority (HFEA) 8th Code of Practice. Each sample was allowed to liquefy at 37°C for ~30 

min and the semen then added to a 50 ml Falcon tube containing 5 ml of HTF (see above). Since the aim 

was to separate motile spermatozoa from other components of the semen, this addition was undertaken 

gently to ensure that mixing was minimised and that the liquefied semen sample formed a distinct layer at 

the bottom of the tube. The tube was then inclined at 45º and incubated for 1 h at 37°C. The overlying 

HTF was then aspirated carefully and the motile spermatozoa that had swam into the HTF then allowed to 

settle into a loose pellet (1 h at room temperature). The cells were re-suspended in capacitating media and 

maintained at 37°C for 4 h (5% CO2). Capacitated cells were then re-suspended in standard bath solution 

and allowed to adhere to glass coverslips that were transferred to an inverted microscope where they were 

superfused with standard bath solution.  

Electrophysiology 

The electrophysiological properties of individual spermatozoa were investigated using the whole 

cell recording technique (Hamill, et al., 1981, Kirichok, et al., 2006, Lishko, et al., 2011a). The recording 

pipettes (10 – 18 M) were fabricated from borosilicate glass and normally filled with standard pipette 

solution. Gigaohm seals were obtained by bringing the pipette tip into gentle contact with the cytoplasmic 

droplet, which lies just behind the sperm head, and the patch of membrane spanning the pipette tip then 

ruptured by applying suction in conjunction with 1ms voltage pulses (see Lishko, et al., 2010). Our 

standard recording conditions were designed to preserve physiologically-relevant Na+, K+ and Cl- 

gradients and Vm was held (pClamp 10 Software, Axon Instruments) at a hyperpolarized value (-92 mV) 

between test pulses. Initial experiments were undertaken by recording the membrane currents (Im) evoked 

by ramping (250 ms) Vm from -92 mV to 68 mV at 1 Hz. To analyse the results of such experiments, Im 

was first normalised to input capacitance (i.e. expressed as pA pF-1) to ensure that variations between the 

sizes of different spermatozoa did not contribute to the variability in the presented data. All cited values 

of Vm were corrected for the liquid junction potential between the pipette / bath solutions (EL), and for the 

voltage drop across the access resistance (Ra, ±, n = 476 cells from 29 donors). The latter 

correction was applied retrospectively using the expression Vm = VPip – Ra·Im, where VPip is the pipette 
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potential. Since the bath was grounded via a 4% agar / 3 M KCl, bridge, the bath solution changes 

imposed during the present study had negligible effects upon EL. Plots showing the relationship between 

Im – Vm were constructed and, unless otherwise stated, cited values of membrane conductance (Gm, pS 

pF-1) are derived by regression analysis (i.e. Im / Vm) of data recorded at positive potentials. Resting Vm 

was either inferred from the reversal potential (VRev, i.e. the value of Vm at which Im is zero, voltage clamp 

experiments) or measured directly by monitoring (5 KHz, data low pass filtered at 3 KHz) the zero 

current potential (see Hamill, et al., 1981). Experiments that quantified the responses to step changes in 

Vm were undertaken using an experimental design that employed the standard features of pClamp 

software (V/4 protocol) to subtract leak / capacitive currents from all recorded data. The statistical 

significance of differences between control / experimental values were determined tested using Student’s 

paired (repeated measurements on the same cells) or unpaired (comparison between different groups of 

cells) t test. The results of experiments that followed more complex protocols were analysed by one way 

analysis of variance (ANOVA) / Dunnet’s post hoc test. Data are cited as mean ± s.e.m. and values of n 

refer to the number of spermatozoa in each group. All observations were confirmed using spermatozoa 

from at least 3 different donors.  

Results 

Currents evoked by voltage ramps 

Imposing depolarizing voltage ramps upon spermatozoa exposed to physiologically relevant Na+, 

K+ and Cl- gradients (i.e. using standard pipette / baths solutions) consistently evoked noisy outward 

current. To characterize the conductance underlying this response, currents evoked by 10 successive 

voltage ramps were averaged (Fig. 1A) and data derived from different cells pooled and plots showing the 

Im – Vm relationship constructed. This analysis revealed small (1 – 2 pA pF-1) inward currents at 

hyperpolarized potentials whilst 25 – 45 pA pF-1 of outward current became apparent once Vm was 

depolarized past ~-30 mV (Fig. 1B). Membrane conductance quantified at depolarized potentials (634 ± 

85 pS pF-1) was 15.7 ± 2.0 fold greater than at hyperpolarized potentials (Fig. 1B; P < 0.001). Since seal 

resistance was > 20 G, Ohm’s Law predicts that <5 pA of inward current will flow via this resistance at 

-100 mV, and the magnitude of the current recorded at potentials below ~-30 mV (Fig. 1) is therefore 

similar to the predicted magnitude of this ‘leak current’. We therefore conclude that Im is too small to be 

measured when Vm is < -30 mV. Switching to K+-rich bath solution (20 – 30 s) depolarized resting Vm by 

shifting the Im – Vm relationship to the right (Fig. 1C – D) whilst replacing pipette K+ with Cs+ virtually 

abolished the voltage-induced outward current and depolarized resting Vm to -1.2 ± 5.8 mV (P < 0.002) 

(Fig. 1B). The K+-rich bath solution had no effect upon the currents recorded using Cs+-based pipette 
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solution (Fig. 1B, C) and this outward current must therefore be carried by K+. Fig. 1A also shows that the 

recorded current consistently undershoots its basal value when Vm is repolarized after each voltage ramp. 

Such “tail currents” (ITail) imply the presence of voltage-gated channels that become active during the 

depolarization but take a finite time to close when Vm is repolarized.  

Effects of altering internal pH (pHi) 

Fig. 2A shows Im – Vm relationships quantified using internal (i.e. pipette) solutions adjusted to pH 

values between 6.2 and 8.0. These pipette solutions were buffered with 5 mM MES / 5 mM HEPES rather 

than 10 mM HEPES (see Methods) but the data recorded at pHi 7.4 were virtually identical to the control 

data shown above and this modification thus has no effect upon the recorded current. These data therefore 

confirm that depolarization normally evokes outward current. Increasing pHi to 8.0 had no effect upon the 

Im – Vm relationship (Fig. 2A) and thus had no effect upon Gm (Fig. 2B) or Vm (Fig. 2C). Lowering pHi, 

below 6.8 reduced Gm by ~35% (Fig. 2B) but the residual conductance recorded under these conditions 

was still ~10 fold greater than that quantified using Cs+-based pipette solutions (Fig. 1B). Moreover, 

lowering pHi had no statistically significant effect upon the currents recorded at physiologically relevant 

potentials (i.e.–50 to - 10 mV) and thus caused no change in Vm (Fig. 2C). The ion channels underlying 

the voltage-induced K+ current thus display only weak dependence upon pHi and changes in pHi therefore 

cause no change in Vm. 

Effects of K+ channel blockers 

Quinidine (3 mM, Fig. 3A, C) bupivacaine (3 mM, Fig. 3B, C) and clofilium (50 µM, Fig. 3C) all 

caused 80 – 90% block of the voltage-induced outward K+ current, whilst 3 mM lidocaine (Fig. 3C) 

caused ~30% inhibition and 2 mM 4-amino pyridine (4-AP) (Fig. 3C) was ineffective (Fig. 3A – C). 

(Subsequent experiments showed that 0.3 mM quinidine acted as effectively as 3 mM and so this drug 

was used at this lower concentration in all subsequent studies.) Quinidine and bupivacaine also 

depolarized resting Vm (i.e. caused a rightward shift in reversal potential) and, whilst clofilium seemed to 

mimic this action, this effect was not statistically significant (Fig. 3C). Lidocaine and 4-AP, on the other 

hand, had no effect upon Vm (Fig. 3C). Examination of the control data derived from this series of 

experiments showed that resting Vm was normally -36.5 ± 3.3 mV and regression analysis revealed a 

correlation between the magnitude of the experimentally-induced fall in Gm and the shift in Vm 

(correlation coefficient = 0.544, n = 33 spermatozoa, P < 0.001). Since these data suggest that block of 

the hyperpolarizing K+ current causes depolarization, we undertook further experiments in which resting 

Vm was directly monitored under zero current clamp (see Methods). These studies (i) confirmed that high 
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external K+ (Fig. 4A), 0.3 mM quinidine (Fig. 4B) and 3 mM bupivacaine (Fig. 4C), but not 4-AP (Fig. 

4E), depolarized Vm and, (ii) verified the depolarizing effect of clofilium (Fig. 4D). These data therefore 

confirm that block of the human sperm K+ conductance causes depolarization, but it was also clear that 

there were differences amongst the responses to the different agents tested. Clofilium thus depolarized 

resting Vm to ~0 mV (Fig. 4D), whilst quinidine (Fig. 4B) and bupivacaine (Fig. 4C) shifted this potential 

to more positive values. Moreover, whilst the depolarizing effect of quinidine was rapid (Fig. 4B), 

clofilium (Fig. 4D) and bupivacaine acted relatively slowly and the response to bupivacaine was biphasic 

(Fig. 4C). The physiological basis of these discrepancies was not investigated further. 

Currents evoked by step depolarization 

To investigate the biophysical properties of the human sperm conductance further, we 

characterised the currents evoked by step depolarisations using an experimental protocol that allowed us 

to subtract the background ‘leak’ currents that flow passively through voltage-independent ion channels 

or across the seal resistance itself (see Methods). The important point about this experimental design is 

that it enabled us to isolate the voltage-induced component of the membrane current. Fig. 5A thus shows 

voltage-evoked currents induced by stepping Vm to values between -52 mV and 68 mV. Depolarization 

consistently evoked outward current that developed over ~300 ms (Fig. 5A) and analysis of the currents 

evoked by a step to 68 mV showed that the development of this current followed a time course that was 

accurately modeled as the sum of two exponential processes. The time constants associated with the fast 

(Fast) and slow (Slow) components of this response were ~10 ms and ~90 ms respectively (Fig. 5B). Both 

parameters were independent of Vm and the kinetics of current activation are therefore independent of 

voltage (Fig. 5B). The currents evoked by depolarization to -12 mV were too small to be accurately 

modeled in this way and this response was best described by a single exponential with a time constant of 

~70 ms (Fig. 5B). To quantify the effect of depolarization on membrane conductance we measured the 

voltage-evoked currents flowing during the final 100 ms of each voltage pulse and used these data to 

quantify the voltage-induced increase in total membrane conductance (GV, i.e. IV / Vm, Fig. 5C). Analysis 

of a solution to the Boltzmann Equation fitted to these data by nonlinear regression showed that half 

maximal activation occurred at ~25 mV whilst the Boltzmann slope constant (), which describes the 

channels’ sensitivity to changes in voltage, was ~20 mV-1 (Fig. 5C). 

Whilst the control data in Fig. 6A confirm that depolarization evokes outward current, this Fig. 

also includes data recorded using a pipette solution modified by replacing K+ with Na+. Whilst the 

response is smaller than normal, depolarization also induces outward current under these conditions. 

Separate experiments showed that this voltage-induced current was entirely abolished by replacing pipette 
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K+ with NMDG+ (n = 9) and, as the Na+-, K+- and NMDG+-based pipette solutions all contained identical 

concentrations of Cl-, the fact that we observed no voltage-induced current using the NMDG+-based 

solution shows that the voltage-induced currents in Fig. 6A must be carried by cations. Moreover, since 

Vm was stepped to a value identical to the Na+ equilibrium potential (ENa, i.e. 68 mV), the control currents 

in Fig. 6A can only be carried K+, and we could thus quantify the voltage-induced increase in K+ 

conductance (GK) using the equation GK = Im / ΨK, where ΨK is the electrochemical driving force on K+ 

(i.e. Vm – EK). Similarly, the outward currents recorded using the Na+-rich pipette solution must be carried 

by Na+ since this solution was entirely devoid of K+. We could thus quantify the voltage-induced increase 

in GNa using the equation GNa = Im / ΨNa. Although the voltage-induced current recorded using the Na+ 

rich pipette solution was only ~7.5% of that seen under control conditions (Fig. 6A), analysis of these 

data indicated that GNa was ~15% of GK, and the apparent discrepancy between magnitudes of the 

recorded currents and the calculated conductance reflects the fact that ΨNa is smaller than ΨK. These 

experiments therefore show that GK / GNa in depolarized cells was ~7 (Fig. 6B). Fig. 6C shows data 

subsequently recorded from those cells stable enough to allow the recording to be repeated 20 – 30 s after 

external Ca2+ / Mg2+ had been withdrawn (see Methods). It is clear that the currents recorded using either 

K+-based and Na+-based pipette solutions are larger than normal and further analysis showed that GNa / 

GK was now ~1 (Fig. 6D). The modest degree of K+ selectivity described above therefore depends upon 

external Ca2+ / Mg2+. 

Pharmacological profile of the outward current recorded using Na+-based pipette solution 

The data presented in Fig. 7 confirm that depolarization evoked 2 – 5 pA pF-1 of outward current 

when Na+-based pipette solutions are used, whilst analysis of data recorded after 20 – 30 s exposure to 

putative blockers showed that 0.3 mM quinidine (Fig. 7A), 3 mM bupivacaine (Fig. 7B) and 50 µM 

clofilium (Fig. 7C) caused > 80% block of this small Na+ current. 4-AP was ineffective (Fig. 7D).  

CatSper blockers suppress the voltage-induced K+ and Na+ currents and depolarize resting Vm 

NNC55-0396 (2 µM), a substance that blocks CatSper (Kirichok, et al., 2006, Lishko, et al., 

2011a, Strünker, et al., 2011), caused substantial (86.6 ± 3.6 %) inhibition of the voltage-induced K+ 

current (Fig. 8A) and also depolarized resting Vm from –28.2 ± 3.7 mV to –6.9 ± 3.8 mV (P < 0.005, Fig. 

8A). Mibefradil (30 µM, n = 6), a structurally related compound that also blocks CatSper (Kirichok, et al., 

2006, Lishko, et al., 2011a, Strünker, et al., 2011) also suppressed (94.7 ± 1.5%) the hyperpolarizing K+ 

current (P < 0.001) and depolarized resting Vm from –32.2 ± 2.1 mV to –4.2 ± 6.1 mV (Fig. 8B, P < 

0.005). Further experiments in which Vm was monitored under zero current clamp (see Methods) 
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confirmed the depolarizing response to 2 µM NNC55-0396 (n = 4) (Fig. 8C). NNC55-0396 also blocked 

the outward Na+ current that is seen when Na+-based pipette solutions are used (Fig. 8D). 

Quinidine, bupivacaine and clofilium, but not 4-AP, block CatSper 

As anticipated by earlier work (Lishko, et al., 2011a, Strünker, et al., 2011), inward and outward 

currents were recorded using bath and pipette solutions devoid of Ca2+ / Mg2+ that contained Cs+ as the 

principal cation (see Methods), and an initial series of experiments confirmed that brief (2 – 3 min) 

exposure to 0.5 µM progesterone augmented the Cs+ currents flowing at negative (-86 mV; control: -56 ± 

19 pA pF-1; progesterone: -148 ± 34 pA pF-1; P < 0.01) and positive (72 mV: control: 153 ± 33 pA pF-1; 

progesterone: 285 ± 27 pA pF-1; P < 0.001) voltages. It is now clear that the current recorded under these 

ionic conditions flow via CatSper (Kirichok, et al., 2006, Lishko, et al., 2011a, Strünker, et al., 2011), 

hormone-sensitive channels that become freely permeable to monovalent cations (Na+, K+, Cs+) if Ca2+ / 

Mg2+ are withdrawn. The CatSper-dependent Cs+ current was blocked by quinidine (0.3 mM, 92.7 ± 0.7 

% inhibition, n = 8; P < 0.005), bupivacaine (3 mM, 98.0 ± 0.12% inhibition, n = 7, P < 0.001) and 

clofilium (50 µM, 87.7 ± 2.8 % inhibition, n = 5, P < 0.05) whilst 4-AP had no effect (Fig. 9A – D). 

Quindine- and clofilium-induced block of the K+ current and CatSper 

Fig. 10 shows the results of experiments that compared the effects of brief (1 min) exposure to 0.3 

mM quinidine and 50 µM clofilium upon the current induced by repeated ramp depolarizations. Since we 

have shown that the voltage-induced K+ current develops relatively slowly (Fig. 5), the voltage ramps 

used in the present studies were modified so that the cells were depolarized over 5 s. The mean current 

flowing during the final 200 ms of each voltage ramp was then quantified as a measure of the outward 

current (IOut). The magnitude of IOut was normally ~50 pA pF-1 and the data in Fig. 10A clearly show that 

exposure to quinidine rapidly (10 – 15 s) inhibits this current, but that IOut quickly returns to its initial, 

control value once this drug is withdrawn. Fig. 10A also includes pooled data that show Im – Vm 

relationships constructed using the data recorded (i) under control conditions at the onset of the 

experiment; (ii) once the inhibitory effect of quinidine was fully developed, and (iii) 3 min after the drug 

was washed from the bath. Analysis of these data confirmed that quinidine causes virtually complete 

(95.2 ± 0.7%, P < 0.001, one way ANOVA / Dunnet’s post hoc test) block of IOut and, as anticipated, this 

was accompanied by depolarization of Vm (control: -19.3 ± 4.0 mV; Quinidine: -1.0 ± 0.01 mV, P < 

0.001). Analysis of data recorded after this drug had been washed from the bath showed that IOut had 

virtually returned to its control value (97.3 ± 4.1% recovery) and, similarly, Vm had returned to a value 

(-27.8 ± 4.4 mV) that did not differ significantly from that measured at the start of the experiment. Fig. 
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10B shows the results of experiments that used the same method to explore the effects of 50 µM 

clofilium. As anticipated (see above) clofilium suppressed the recorded current although this block 

developed over ~ 1min and thus had a slower onset that the effects of quinidine (Fig. 10B). Analysis of 

data recorded once this effect was fully developed revealed substantial (91.4 ± .3%, P < 0.001) inhibition 

of IOut and a clear depolarization (control: -31.9 ± 4.1 mV, clofilium: -1.0 ± 0.01 mV, P < 0.001). 

However, analysis of data recorded 5 min after this substance had been washed from the bath revealed 

negligible recovery of IOut (4.0 ± 2.5% recovery) and no restoration of Vm (-1.0 ± 0.01 mV). Whilst the 

quinidine-induced block of the voltage-induced outward current is fully reversible, the effects of clofilium 

do not reverse over the time scale of the present experiments. Moreover, an initial series of experiments 

(n = 4) showed that progesterone increased the magnitude of the Cs+ current flowing at both positive (68 

– 73 mV; control: 153 ± 33 pA pF-1; progesterone: 285 ± 33 pA pF-1; P < 0.001) and negative (-83 - -85 

mV; control: -56 ± 19 pA pF-1; progesterone: -148 ± 34 pA pF-1; P < 0.01) potentials. 

Fig. 10 also includes the results of experiments that used a directly analogous protocol to explore 

the effects of quinidine and clofilium upon the CatSper-dependent Cs+ current that can be recorded under 

physiological conditions. These studies confirmed that 0.3 mM quinidine also causes substantial (91.0 ± 

1.6%, P < 0.001) block of CatSper (Fig. 10C). This block had a rapid (10 – 15 s) onset and was almost 

fully (87.1 ± 9.3% recovery) reversible (Fig. 10C). Whilst clofilium (50 µM) blocked CatSper as 

effectively as quinidine (91.9 ± 1.2% inhibition, P < 0.001), full inhibition developed over ~1 min (Fig. 

10D) and, although slight recovery was seen (Fig. 10D), the currents 5 min after the drug had been 

washed from the bath revealed only modest (23.2 ± 4.3%) recovery. Indeed, the current recorded under 

these conditions did not differ significantly from the current measured in the presence of clofilium. This 

drug therefore causes essentially irreversible block of CatSper. 

Biophysical properties of the channels underlying the voltage-induced “tail current” 

To explore the conductive properties of the ion channels that underlie the “tail” current shown in 

Fig. 1A we initially held Vm at a strongly depolarized value in order to to activate the channels, and then 

stepped to a series of test values (VTest, Fig. 11A). Since leak / capacitive currents were subtracted (see 

Methods), the current measured immediately after the transition to VTest (ITail, Fig. 11B) reflects current 

flow through channels opened by depolarization. Experiments undertaken under standard conditions 

showed that the ITail – Vm relationship was essentially linear (Fig. 11C) indicating that the channels do not 

display intrinsic rectification. Moreover, the channels cannot be K+ selective since VRev (-44.9 ± 2.9 mV) 

differed from EK (P < 0.0001, one sample t test). As we do not observe Cl- current under the present 

conditions our subsequent analyses were based upon the assumption that these currents are carried by K+ 
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and Na+. The channels’ fractional permeability to K+ (PK) and Na+ (PNa) were therefore assigned initial, 

arbitrary values that were used to predict VRev from the Goldman – Hodgkin – Huxley (GHK) equation. 

The solution to this equation that best described the observed value of VRev was then identified by 

reiteratively adjusting PK and PNa. This analysis showed that PK / PNa was 3.0 ± 1.1. Fig. 11D shows that 

brief (20 – 30s) exposure to K+-rich bath solution increased the magnitude of ITail and depolarized VRev to 

a value close to zero (P < 0.001). The observed shift in VRev (44.1 ± 1.9 mV) was virtually identical to that 

predicted by the GHK equation (45 mV) for a conductance with the degree of K+ versus Na+ reported 

above. Further experiments (n = 5) used an analogous approach to measure the change in VRev induced by 

lowering bath Na+ to 11 mM by iso osmotically substituting NMDG+, a nominally impermeant ion. This 

response (-15.7 ± 1.5 mV) was also virtually identical to that predicted by the GHK equation (-15 mV). 

The channels that underlie ITail thus display modest (~3 fold) K+ versus Na+ selectivity. 

Whilst repolarization consistently induced ITail (Fig. 11A, B), this current was transient at 

hyperpolarized potentials and thus decayed rapidly to a stable value that was maintained throughout the 

remainder of the test pulse. Analysis of the “steady state” current (ISteady state) recorded during the final few 

ms of each test pulse thus allows us to characterize the sustained voltage-induced outward current, and 

this analysis confirm that maintained depolarisation induced a sustained outward current that is carried by 

K+. 

Effects of K+ channel blockers on the tail current 

The control data in Fig. 12 confirm (i) that stepping Vm to a series of test values (Fig. 12A) evokes 

sustained outward current (Fig. 12B) and (ii) that the subsequent repolarization induces ITail (Fig. 12B). 

Since the protocol used here (Fig. 12A) implies that ITail is always quantified at -92 mV the 

electrochemical driving forces on Na+ and K+ will be constant. The magnitude of ITail will therefore 

depend upon the extent that the channels that underlie this current had become active during the 

preceding depolarization. Analysis of the ITail – VTest relationship (Fig. 12E) therefore shows (i) that these 

channels normally become active at ~0 mV, (ii) that the voltage needed for half maximal activation (V50) 

is ~40 mV and (iii) that full activation occurs at ~75 mV (Fig. 12E). Fig. 12 also includes data recorded 

after 20 – 30 s exposure to 0.3 mM quinidine (Fig. 12C) and, as anticipated (see above), this substance 

abolished the voltage-induced outward current (Fig. 12D). However, despite this clear and consistent 

effect, repolarization did induce ITail in quinidine-treated cells (Fig. 12C, E) and analysis of these data 

showed that this substance augmented this current but had no effect upon V50 (Fig. 12E – G). Fig. 13 

shows data from a series of experiments that used an identical protocol to explore the effects of 2 mM 4-

AP. These data confirm that 4-AP does not suppress the voltage-induced outward current (Fig. 13A – C) 
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but, despite this clear finding, 4-AP did enhance ITail without affecting V50. An additional series of 

experiments (not shown) which followed an identical approach confirmed that 50 µM clofillium 

abolished the voltage-induced outward current but this substance, in contrast to quinidine and 4-AP, also 

inhibited ITail (Control: ITail = -18.7 ± 3.7 pA pF-1; clofilium: ITail =  ± -5.4  ± 0.5 pA pF-1, n = 5, P < 0.02, 

Student’s paired t test). 

Effects of progesterone on the tail current 

Brief exposure to progesterone (0.5 µM, 2 – 3 min) had negligible effect upon the voltage-induced 

outward currents (Fig. 14A – C) but enhanced ITail both by augmenting the current induced by maximally 

effective voltage steps and by causing a leftward shift in the ITail – VTest relationship and so that V50 shifted 

from ~40 mV to ~20 mV (Fig. 14A – C). 

Discussion 

The successful application of the whole cell recording technique (Hamill, et al., 1981) to mouse 

(Kirichok, et al., 2006, Santi, et al., 2009, Santi, et al., 2010, Santi, et al., 2013) and human (Lishko, et al., 

2011a, Lishko, et al., 2011b, Mannowetz, et al., 2013, Orta, et al., 2012, Strünker, et al., 2011) sperm has 

allowed great progress to be made towards identifying and characterising the ionic currents that flow 

across the membranes of these cells. In most instances these studies have used recording conditions 

optimised for isolation and / or enhancement of specific currents, whereas the present experiments were 

undertaken using intracellular and extracellular salines that preserved physiologically-relevant Na+, K+ 

and Cl- gradients. Under these conditions the dominant membrane current was a voltage-gated cation 

conductance with low K+ versus Na+ selectivity (approximately 7:1) that allowed hyperpolarizing K+ 

current to flow at potentials > ~-30 mV. This conductance was clearly important to the maintenance of 

resting Vm since high external K+ caused depolarization. The whole cell currents described here do, 

however, differ slightly from those reported in another recent study of human sperm (Orta, et al., 2012). 

Although the principal aim of this study was to characterise the human sperm Cl- conductance, an initial 

series of experiments were undertaken using a K+-rich pipette solution in which [Ca2+]i was buffered to a 

value that approximates to the normal resting level (~0.1 µM). However, whilst our data consistently 

show an outwardly rectified current which reversed at~-30 mV, this earlier study described an essentially 

linear Im – Vm relationship that reversed at ~-12 mV with ~200 pA of inward current at a potential of -125 

mV (Orta, et al., 2012). However, our standard pipette solution contained only 30 mM Cl- and was 

slightly hypotonic whilst the pipette solution used in the earlier experiments contained 130 mM Cl-. We 

chose to work under these conditions since earlier studies of epithelial cells showed that isotonic pipette 
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solutions containing high [Cl-] promote cell swelling and this, in turn, can activate “volume-sensitive” 

conductances for Cl- and K+ (Macri, et al., 1993, Worrell, et al., 1989). Since such channels are present in 

human sperm (Yeung, et al., 2005), their activation may explain the discrepancy between the two studies. 

Indeed in their subsequent experiments Orta et al. routinely used slightly hypertonic bath solutions to 

prevent the activation of such conductances (Orta, et al., 2012). 

Studies of human sperm using voltage-sensitive dyes suggest that Vm is normally ~-40 mV for 

non-capacitated cells (Blackmore, et al., 1991, Linares-Hernandez, et al., 1998) and ~-50 mV for 

capacitated cells (Patrat, et al., 2002) and, since similar values have been reported in mouse and bull 

(Arnoult, et al., 1999, Zeng, et al., 1995), capacitation seems to be associated with hyperpolarization. 

Although the cells used in the present study were exposed to capacitating medium, our estimates of Vm 

are slightly less negative than those reported in earlier studies. Since it is now clear that several key 

components of the capacitation process are reversible (Bedu-Addo, et al., 2005), it is possible that that the 

effects of incubation in capacitating conditions may not have been maintained during recording. 

Moreover, since low molecular weight substances (e.g. nucleotides, amino acids, sugars) are lost from the 

cytoplasm during whole cell recording (Hamill, et al., 1981), we cannot exclude the possibility that such 

substances may be needed to maintain a fully polarized membrane potential. 

Pharmacological / biophysical properties of the human sperm K+ conductance 

Although the hyperpolarizing K+ current in human sperm was suppressed by acidification of pHi, 

this effect was modest and even at pHi 6.2, the residual K+ conductance was large enough to maintain Vm. 

In contrast, lowering pHi < 7.0 depolarizes Vm of mouse sperm by inducing a profound fall in GK. The K+ 

channels in mouse are thus more sensitive to changes in pHi than their human counterparts (Lishko, et al., 

2011b). The fact that GK displays such strict dependence upon pHi in mouse implies that the cells will 

hyperpolarize in response to cytoplasmic alkalinisation and this provides a physiological basis for at least 

part of the hyperpolarizing shift in Vm that occurs upon capacitation (Martínez-López, et al., 2009, 

Navarro, et al., 2007, Santi, et al., 2010, Zeng, et al., 2011). Whilst capacitation in human sperm also 

seems to involve hyperpolarization (Blackmore, et al., 1991, Linares-Hernandez, et al., 1998, Patrat, et 

al., 2002), the present data show that the mechanisms that explain this process in mouse (Martínez-López, 

et al., 2009, Navarro, et al., 2007, Santi, et al., 2010, Zeng, et al., 2011) cannot necessarily be applied to 

humans. 

Our data show that the human sperm K+ conductance is blocked by quinidine, bupivacaine and, to 

a lesser extent, by lidocaine whilst 4-AP was ineffective. Moreover, experiments in which Vm was directly 

monitored showed that quinidine, bupivacaine and clofilium, but not 4-AP, caused depolarization, and 
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these data clearly confirm that K+ channels are necessary for the maintenance of Vm. These findings 

accord with data from mouse where the hyperpolarizing K+ currents display a similar pharmacological 

profile (Martínez-López, et al., 2009, Navarro, et al., 2007, Santi, et al., 2010, Zeng, et al., 2011). 

However, rather than abolishing Vm, quinidine and bupivacaine shifted this potential to a positive value. It 

is therefore interesting that these two compounds were the most effective blockers of the hyperpolarizing 

K+ current and the fact that Vm becomes positive when GK is blocked must indicate the presence a second 

conductance that mediates depolarizing current, and such current must be be carried by Na+ and / or Ca2+
.. 

Whilst the present data show that GK maintains Vm under the physiological conditions, changes to the 

activity of this second conductance would allow control over this potential. In this context, it is interesting 

that in addition to the Slo3-encoded K+ conductance, mouse sperm do appear to express epithelial Na 

channels (ENaC) that allow depolarizing Na+ currents to influence Vm. Indeed, inhibition of ENaC seems 

to contribute to the hyperpolarizing shift in Vm that is associated with capacitation (Escoffier, et al., 2012, 

Hernandez-Gonzalez, et al., 2007). 

Experiments in which Vm was stepped to a series of test potentials confirmed that depolarization 

evokes hyperpolarizing K+ current in human sperm. However, though human spermatozoa do express 

protein and mRNA encoding ‘classical’ voltage-gated K+ channels (Barfield, et al., 2005a, Yeung, et al., 

2005, Yeung and Cooper, 2001, Yeung and Cooper, 2008), the currents reported here are not consistent 

with activity of these channels. Upon depolarisation the current developed relatively slowly and the 

kinetics of current activation were independent of voltage. Half maximal activation occurred at ~25 mV 

whilst B, which describes the channel’s sensitivity to changes in voltage, was ~20 mV-1. Equivalent 

values for voltage-gated K+ channels are ~-20 mV and ~6 mV-1 respectively (reviewed by Wulff et al., 

2009) and, in comparison, the K+ channels in human spermatozoa thus display only very weak voltage-

dependence. These characteristics resemble those of the K+ conductance found in mouse sperm 

(Martínez-López, et al., 2009, Navarro, et al., 2007, Santi, et al., 2010, Zeng, et al., 2011). Moreover, 

when pipette (cytoplasmic) K+ was replaced by Na+ depolarising steps evoked a small outward current 

that displayed the same pharmacological profile as the K+ current. The simplest explanation of these data 

is that this Na+ current flows via the same population of ion channels as the K+ current. Calculation of 

relative permeability for K+ versus Na+ gave a value for selectivity of ~ 7. Again, this resembles the 

characteristics of the mouse K+ conductance (Martínez-López, et al., 2009, Navarro, et al., 2007, Santi, et 

al., 2010, Zeng, et al., 2011). 
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Identity of the primary K+ channel in mouse and human sperm 

The hyperpolarizing K+ currents in mouse sperm is believed to flow via channels encoded by Slo3 

(KCNMA3) (Navarro, et al., 2007, Santi, et al., 2010, Zeng, et al., 2011). These channels resemble the 

endogenous K+ channels in mouse and human since (i) they are blocked by quinidine and clofilium but 

not by external 4-AP; (ii) are only weakly activated by depolarization, and (iii) display poor K+ / Na+ 

selectivity (Martínez-López, et al., 2009, Schreiber, et al., 1998). Moreover, like the K+ conductance and 

membrane potential of mouse sperm, Slo3-encoded channels are sensitive to changes in pHi, an effect that 

reflects altered channel gating rather than an effect upon the permeability of the channel pore (Zhang, et 

al., 2006a, Zhang, et al., 2006b). Finally, Slo3 gene deletion abolishes the hyperpolarization seen during 

capacitation and mimics the effects of K+ channel blockade (see Barfield, et al., 2005a, Barfield, et al., 

2005b) by impairing progressive motility, suppressing the acrosome reaction and disrupting the control of 

cell volume (Santi, et al., 2010, Zeng, et al., 2011). However, despite these clear findings, heterologous 

expression studies show that Slo3-encoded K+ channels are virtually inactive at potentials <0 mV whilst it 

is abundantly clear that K+ currents can be recorded from mouse (Martínez-López, et al., 2009, Navarro, 

et al., 2007, Santi, et al., 2010, Zeng, et al., 2011) and human at such potentials (see also Lishko, et al., 

2011b). This may reflect a requirement for interaction with the auxiliary subunit LRRC52 (leucine-rich 

repeat-containing protein no. 52) that is also found exclusively in male germ cells. Indeed, co-expression 

with of Slo3 / LRRC52 modifies the behaviour of Slo3-encoded K+ channels such that the current – 

voltage relationship more closely resembles that recorded from sperm themselves (Yan and Aldrich, 

2012, Yang, et al., 2011).  

Whilst these data are consistent with idea that the K+ channels in mouse and human are encoded 

by Slo3, recent studies have shown that charybdotoxin, paxillin and iberiotoxin all block the human 

sperm K+ conductance but have no effect upon the equivalent conductance in mouse (Mannowetz, et al., 

2013). Since these three substances are all thought to block the channels encoded by Slo1 and not Slo3 

(Tang, et al., 2010), these new data provide strong evidence that different K+ channel subtypes underlie 

GK in mouse and human. Indeed, the fact that changes in pHi had only minor effects upon the K+ current 

recorded from human sperm (see above) does tend to support this hypothesis since it is abundantly clear 

that the K+ channels in mouse sperm are very sensitive to changes in pHi (Navarro, et al., 2007, Santi, et 

al., 2010, Zeng, et al., 2011). However, recent experiments that directly compared the biophysical 

properties of mouse and human Slo3 / LRRC52 showed that that the human channel complex could still 

pass hyperpolarizing K+ current when pHi was < 7.0 (Leonetti, et al., 2012), a result which accords well 

with the K+ currents which we now describe in human spermatozoa themselves. The K+ conductance 

associated with mouse Slo3 / LRRC52, on the other hand, was essentially inactive under such conditions 
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(Leonetti, et al., 2012), a result that accords well with electrophysiological data derived from mouse 

spermatozoa (Navarro, et al., 2007, Santi, et al., 2010, Zeng, et al., 2011). The K+ channels encoded by 

human and murine Slo3 therefore display different biophysical properties. Moreover, we also show that 

the human sperm K+ current is blocked by NNC55-0396 and mibefradil and, although these drugs are not 

usually considered to be K+ channel blockers, they do seem to block Slo3 (Navarro, et al., 2007, Zeng, et 

al., 2011). Moreover, whilst Slo1 encoded K+ channels display a very high degree of K+ selectivity 

(Hoshi, 2012), the hyperpolarizing K+ current seen during sustained depolarization flows via a population 

of ion channels that displayed only modest (~7 fold) Na+ versus K+ selectivity. 

Possible involvement of CatSper 

Although CatSper forms a hormone-sensitive Ca2+ channel under physiological conditions, this 

channel becomes freely permeable to monovalent cations if Ca2+ / Mg2+ are withdrawn and its activity has 

thus been assessed by monitoring Cs+ current that can flow through the channel under divalent-free 

conditions (Kirichok, et al., 2006, Lishko, et al., 2011a). This characteristic of CatSper, which is a result 

of divalent cation binding within the channel pore, can explain earlier observations which showed that 

divalent cation-free (or depleted) medium causes enhanced Na+ influx and depolarization of human sperm 

(Gonzáles-Martinez, 2003, Torres-Flores, et al., 2011) and can also account for the loss of K+ vs. Na+ 

selectivity that we observed in DVF medium. However, NNC55-0396 and mibefradil, structurally-related 

compounds that block CatSper, suppressed the hyperpolarizing K+ recorded under standard 

(physiological) conditions. Moreover, the effects of quinidine, bupivacaine, clofilium and 4-AP upon the 

CatSper-dependent Cs+ current seen under divalent-free conditions were indistinguishable from their 

effects on the K+ current recorded under standard conditions. It is therefore interesting that recordings of 

currents from sperm of mice null for Slo3 and/or CatSper1 show that hyperpolarizing K+ current can flow 

though CatSper at potentials > ~30 mV (Zeng, et al., 2013, Zeng, et al., 2011). Moreover, although mouse 

KSper and CatSper thus appear to share many pharmacological features, the clofilium-induced block of 

Slo3 was essentially irreversible whilst this drug’s effect on CatSper reversed rapidly (Navarro, et al., 

2007, Zeng, et al., 2011). Since this seems to provide a way of distinguishing between the two channel 

types (Zeng, et al., 2011), we undertook a detailed series of experiments that compared the effects of 

quinidine and clofilium upon the hyperpolarizing K+ current and the CatSper-dependent Cs+ currents in 

human sperm. Quinidine caused reversible block of both currents, consistent with data from mouse 

(Navarro, et al., 2007, Zeng, et al., 2011) but unlike the mouse, clofilium caused essentially irreversible 

block of both currents. Thus in human sperm it is very difficult to distinguish K+-channel currents from 

monovalent CatSper on pharmacological grounds and, as in mouse (Zeng, et al., 2013, Zeng, et al., 2011), 
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a part of the hyperpolarizing K+ current may flow via CatSper. However, not all of our data were 

consistent with this hypothesis since progesterone augmented the CatSper-dependent Cs+ current 

(Kirichok, et al., 2006, Lishko, et al., 2011a, Smith, et al., 2013) but had only a negligible effect upon the 

hyperpolarizing K+ current. This result therefore suggests that most of the K+ current must flows via a 

separate population of K+ channels. 

The tail current  

Repolarization of Vm after a test depolarization consistently induced transient inward current (ITail), 

and ionic substitution studies showed that these currents flowed via channels that were less K+ selective 

than those underlying the sustained outward current. Furthermore quinidine augmented ITail despite 

causing full block of the hyperpolarizing K+ current whilst 4-AP also augmented ITail with no effect upon 

the sustained K+ current. Cloflilium, on the other hand, blocked both currents. There are therefore clear 

pharmacological and biophysical differences between the channel populations that underlie these two 

currents and depolarization must therefore activate at least two K+-permeable channel types. As far as we 

are aware, this is the first evidence that quinidine and 4-AP can activate any type of ion channel and these 

unusual responses could be highly significant since both substances can induce a “hyperactive” pattern of 

motility (Alasmari, et al., 2013b, Barfield, et al., 2005a). Earlier studies have assumed that quinidine 

caused hyperactivation by blocking K+ channels (Barfield, et al., 2005a) whilst the effects of 4-AP have 

been attributed to changes in pHi and the mobilization of Ca2+ from an intracellular store (Alasmari, et al., 

2013b). The fact that these substances can both activate ion channels raises the possibility that the channel 

underlying ITail may contribute to the control of motility. Moreover progesterone, which had no effect 

upon the sustained outward K+ current but did augment ITail, induces hyperactivation in a proportion of 

human sperm (Alasmari, et al., 2013a, Alasmari, et al., 2013b, Fabbri, et al., 1998, Sagare-Patil, et al., 

2012, Teves, et al., 2006, Uhler, et al., 1993). This response to progesterone may be critical for progress 

through the female tract and successful interaction with the egg and it is therefore interesting that 

spermatozoa from men with clinically identified fertility defects show that impaired activation by 

progesterone and 4-AP correlate well with reduced fertilization capacity (Alasmari, et al., 2013a).  

The ion channels that underlie ITail displayed weak dependence upon Vm and, since these channels 

are normally inactive at ~-30 mV, current flow through these channels cannot contribute to the resting 

membrane potential under the conditions of the present experiments. However, it is possible that the 

activity of these channels may be modified by diffusible factors that would be lost from the cytoplasm 

once the whole cell recording configuration is established (Hamill, et al., 1981) and we therefore cannot 

exclude the possibility that these channels may be important to the control of Vm in intact spermatozoa. 
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However, it is interesting that, as well as increasing the magnitude of ITail, progesterone caused a 

hyperpolarizing shift in V50 that allowed the ITail to be activated by weaker depolarizations. Progesterone-

induced activation of CatSper is now well documented and this response has been studied by quantifying 

changes to the Cs+ current recorded under divalent-free conditions or to the current carried by Ba2+ 

(Lishko, et al., 2011a, Strünker, et al., 2011). We believe that our data are the first to show a 

progesterone-induced change to the conductive properties of spermatozoa exposed to quasi-physiological 

ionic gradients. Whilst the biological significance of this novel response is presently unknown, the 

importance of progesterone to the control of motility makes it important to characterize the progesterone-

sensitive channels more fully and to establish the extent to which other substances that control sperm 

motility can influence their activity.  

Summary 

Electrophysiological studies of mouse sperm (Kirichok, et al., 2006, Navarro, et al., 2007, Santi, et 

al., 2010, Zeng, et al., 2011) have led to the identification of two cation-permeable conductances. The 

first of these is a pH-sensitive K+ conductance that sets the membrane potential and is almost certainly 

encoded by Slo3 / LRRC52, whilst the second is a Ca2+-permeable channel encoded by members of the 

CatSper gene family (Ren, et al., 2001). Although other cation permeable conductances have been 

identified (see for example, Acevedo, et al., 2006, Felix, et al., 2002, Martínez-López, et al., 2009), 

studies of knock out mouse indicate that it is Slo3 / CatSper that dominate the conductive properties of 

murine sperm (Zeng, et al., 2013). The present electrophysiological studies of human sperm exposed to 

‘physiological’ ionic conditions have identified a K+ channel that is weakly activated by voltage (Fig. 15) 

and this conductance is broadly similar to that recently documented in separate studies (Mannowetz, et 

al., 2013). However, whilst it has been suggested that this may flow via channels encoded by Slo1  

(Mannowetz, et al., 2013), the poor ionic selectivity and unusual pharmacological profile which we report 

are not consistent with this hypothesis. Moreover, we also show that depolarization activate a second 

voltage-dependent conductance that displays very poor K+ selectivity and is subject to rapid inactivation. 

This current has a different pharmacological profile to both the sustained outward K+ current and the 

CatSper-dependent Cs+ current but, like CatSper, shows both stimulation and leftward - shift of I – V 

relationship in the presence of progesterone (Fig 13). This previously undocumented conductance may 

thus play an important role in mediating the physiological effects of this hormone.  
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Figure legends 

Figure 1 K+ currents in human spermatozoa. (A) Raw experimental traces showing the membrane 

currents evoked by a series of depolarizing voltage ramps (top left) that were imposed at 1 Hz. To analyse 

the results of such experiments, the currents evoked by successive depolarizations were pooled in order to 

obtain an average response for each spermatozoon (bottom right). (B) Im – Vm relationships quantified 

under standard conditions (n = 12) and using Cs+-based pipette solution (n = 8). (C) Currents recorded 

from the same cells after 20 – 30 s exposure to K+-rich bath solution. (D) Values of resting Vm estimated 

by regression analysis (see Methods) of data recorded using the standard pipette filling solution and 

during to standard (5 mM K+) and K+-rich (130 mM K+) bath solutions. All data shown as mean ± s.e.m. 

Figure 2 Effects of altering internal pH (pHi). (A) Im – Vm relationships quantified using pipette filling 

solutions that had been adjusted to a pH value ranging from 6.2 – 8.0. (B) The values of Gm derived by 

regression analysis of currents flowing at positive potentials are plotted against pHi; the dashed line 

shows the value of Gm quantified using Cs+-rich pipette solution. (C) Values of resting Vm estimated by 

quantifying the reversal potential are plotted against pHi. All data are mean ± s.e.m. and values of n are 

shown besides each point; asterisks denote data that differed significantly (P < 0.01, one way ANOVA / 

Dunnet’s post Hoc test) from the value of Gm quantified at pHi 7.4. 

Figure 3 Effects of compounds that block K+ channels. (A) Im – Vm relationships quantified both under 

control conditions and after 20 – 30 s exposure to 3 mM quinidine (n = 7). (B) Results of experiments that 

used an identical protocol to explore the effects of 3 mM bupivacaine. (C) Data from experiments that 

explored the effects of putative K+ channel blockers were analysed by calculating (i) the change in Gm (% 

of control) induced by each test substance (filled columns), and (ii) the changes in resting Vm (i.e. the 

observed shift in reversal potential) induced by each test substance. Data are mean ± s.e.m. and n values 

are shown in each pair of columns. Asterisks denote statistically significant deviations from the respective 

control values (*** P < 0.001, ** P < 0.01, Student’s paired t test). 

Figure 4 Direct measurement of Vm. The left hand part of each panel shows a continuous recording from 

a single cell that illustrates the effects of (A) K+-rich bath solution (n = 3), (B) 0.3 mM quinidine (n = 7), 

(C) 3 mM bupivacaine (n = 5), (D) 50 µM clofilium (n = 5) and (E) 2 mM 4-AP (n = 10) upon the zero 

current potential, which provides a read out of Vm. The right hand section in each panel; shows the pooled 

data (mean ± s.e.m) derived from the entire series of experiments. Asterisks denote statistical significant 

differences between the control and experimental data (P < 0.001, Student’s paired t test) 

 at U
niversity of D

urham
 on February 24, 2014

http://m
olehr.oxfordjournals.org/

D
ow

nloaded from
 

http://molehr.oxfordjournals.org/
http://molehr.oxfordjournals.org/


26 

Figure 5 Kinetics of current activation. (A) Membrane currents (n = 7 – 16) evoked by maintained 

voltage steps to a series of test potentials (VTest). (B) The responses to step depolarization consistently 

followed time courses that were very accurately modelled as the sum of 2 exponential processes. The time 

constants () for the fast and slow components of this response were calculated by nonlinear regression 

and plotted against VTest. All data are mean ± s.e.m. and leak / capacitative currents were subtracted on 

line in order to isolate the voltage-induced component of the total membrane current (IV). (C) Steady state 

values of IV were quantified over the final 50 ms of each voltage step, and used to quantify the voltage-

induced increase in membrane conductance (GV); the results of this analysis are plotted against VTest and 

the solid line shows a solution to the Boltzmann Equation fitted to these data by non-linear regression. 

The Boltzmann constant (B) and the voltage required for half maximal activation (V50) are presented. 

Figure 6 Ionic selectivity of the voltage-induced conductance. (A) Currents evoked by step depolarization 

to 68 mV were quantified both under control conditions (n = 18) and using Na+-rich pipette solution (n = 

38) in cells exposed to the standard bath solution (SBS). (B) K+ and Na+ conductances quantified by 

analysis of data in A. (C). Currents evoked using an identical voltage pulse that were subsequently 

recorded from the spermatozoa that were stable enough (standard pipette solution, n = 3; Na+-based 

pipette solution, n = 5) to allow the standard bath solution to be exchanged for a bath solution devoid of 

divalent cations (DVF). (D) K+ and Na+ conductances quantified by analysis of data in C. All data are 

mean ± s.e.m, asterisks denotes statistically significant effect of replacing pipette K+ with Na+ (*** P < 

0.001, Student’s t test). 

Figure 7 Effects of K+ channel blockers on the outward Na+ currents (INa). Currents evoked by step 

depolarization to 68 mV (top panel) were recorded using the Na+-rich pipette solution; left hand panels 

show continuous recorded of Im whilst the right hand panels shows mean currents quantified over the final 

300 ms of the voltage pulse. In each experiment data were recorded during exposure to standard bath 

solution (control) and after 30 – 60 s exposure to 0.3 mM quinidine (A, n = 5); 3 mM bupivacaine (B, n = 

6); 50 µM clofilium (C, n = 5) and 2 mM 4-AP (D, n = 5). All data are mean ± s.e.m.; asterisks denote 

statistically significant effects of the test substances (** P < 0.02; *** P < 0.001; Students paired t test 

Figure 8 Inhibition of outward K+ currents by substances that block CatSper. (A) Relationships between 

Im and Vm quantified under control conditions and after 20 – 30 s exposure to 2 µM NNC55-0396 (n = 5). 

(B) Data from experiments that used an identical protocol to explore the effects of 30 µM mibefradil (n = 

6). (C) The main panels shows a continuous recording of the zero current potential and illustrates the 
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changes in Vm that occur during exposure to 2 µM NNC55-0396 whilst the left hand panel shows pooled 

data from 4 independent experiments. (D) The main panel shows mean currents evoked by a step 

depolarisation to 68 mV recorded using the Na+-rich pipette solution whilst the right hand panels shows 

mean currents quantified over the final 300 ms of the voltage pulse. Data were recorded during exposure 

to the standard bath solution (control) and after 20 – 30 s exposure to 2 µM NNC55-0396. All data are 

mean ± s.e.m and asterisks denote values that differed significantly from control (P < 0.001, Student’s 

paired t test). 

Figure 9 Effects of K+ channel blockers on the cation (Cs+) currents flowing via CatSper. All data were 

recorded using bath and pipette solutions devoid of divalent cations containing Cs+ as the principal cation 

(see Methods), and each panel shows relationships between Im and Vm that were quantified under standard 

conditions (control) and after 20 – 30 s exposure to 0.3 mM quinidine (A, n = 8), 3 mM bupivacaine (B, n 

= 7); 50 µM clofilium (C, n = 5) and 2 mM 4-AP (D, n = 7). 

Figure 10 Effects of quinidine and clofilium upon the hyperpolarizing K+ current and the CatSper-

dependent Cs+ current. In all experiments membrane currents were induced by a series of voltage ramps 

(-92 mv – 68 mV, 5s), and the currents flowing during the final part of each ramp then quantified as a 

read out of the outward current flowing at 65 – 68 mV(IOut). The left hand part of each figure (i) shows 

the changes in IOut induced by 1 min exposure to the test substances. The right hand panels show Im – Vm 

relationships constructed using data recorded under standard conditions at the onset of the experiment 

(Control), once the inhibitory effect of the test substances were fully established and after the drug had 

been washed from the bath by 5 min superfusion with standard bath solution (Wash). (A) Quinidine-

induced (0.3 mM) block of the hyperpolarizing K+ current (n = 5). (B) Clofilium-induced block of the 

hyperpolarizing K+ current (n = 5). (C) Qunidine (0.3 mM) induced block of the CatSper-dependent Cs+ 

current (n = 5). (D). Clofilium-induced block of the CatSper-dependent Cs+ current (n = 5). All data are 

mean ± s.e.m. 

Figure 11 Conductive properties of the ion channels that underlie the transient tail current (ITail). (A) 

Voltage pulse protocol used in all experiments. (B) Typical record showing currents recorded under 

standard conditions ITail was quantified immediately after Vm was stepped to VTest, whilst the steady state 

current (ISteady State) was quantified as the mean current recorded over the final few ms of the test pulse. (C) 

Data subsequently recorded after 20 – 30 s exposure to K+-rich bath solution. (D) Plots showing the ITail – 

Vm relationship quantified during exposure to standard bath solution (Control) and after 20 – 30 s 
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exposure to K+-rich bath solution (High K+). (E) Plots showing the ISteady state – Vm relationship quantified 

during exposure to standard bath solution (Control) and after 20 – 30 s exposure to K+-rich bath solution 

(High K+). All data are mean ± s.e.m (n = 5). 

Figure 12 Effects of quinidine (0.3 mM) upon the sustained outward (ISteady state) and the transient tail 

current (ITail). (A) Voltage pulse protocol used in all experiments. (B) Typical record showing currents 

recorded under standard conditions. (C) Currents subsequently recorded after ~1 min exposure to 0.3 mM 

quinidine (Quin.). (D) Effects of quinidine upon the sustained outward current (ISteady state) quantified as 

the mean current recorded during the final few ms of each voltage pulse. (E) Effects of quinidine on the 

peak tail current (ITail) quantified immediately after each test pulse. (F) Effects of quinidine upon the test 

voltage needed to induce half-maximal activation of Tail. (G) Effects of quinidine upon the maximal 

value of ITail. All data are mean ± s.e.m. (n = 10); asterixes denote statistically significant effects of 

quindine (*** P < 0.001, Student’s t test). 

Figure 13 Effects of 4-amino pyridine (4-AP, 2 mM) upon the sustained outward current (ISteady state) and 

the transient tail current (ITail). Data were recorded using a pulse protocol identical to that shown in Figure 

12. (A) Currents recorded under standard conditions. (B) Currents recorded after ~1 min exposure to 2 

mM 4-AP. (C) Relationships between ISteady state and test potential (VTest) quantified under control 

conditions and in the presence of 4-AP. (D) ITail – VTest relationships quantified under control conditions 

and in the presence of 4-AP. (E) Effects of 4-AP upon the voltage required to induce half maximal 

activation of ITail (V50). (F) Effects of 4-AP upon the maximal magnitude of ITail. All data are mean ± 

s.e.m. (n = 8); asterixes denote statistically significant effects of 4-AP (*** P < 0.001, Student’s t test). 

Figure 14 Effects of progesterone (0.5 µM) upon the sustained outward current (ISteady state) and the 

transient tail current (ITail). Data were recorded using a pulse protocol identical to that shown in Fig. 12. 

(A) Currents recorded under standard conditions. (B) Currents recorded after ~2 min exposure to 0.5 µM 

progesterone. Relationships between ISteady state and test potential (VTest) quantified under control conditions 

and in the presence of progesterone. (D) ITail – VTest relationships quantified under control conditions and 

in the presence of progesterone. (E) Effects of progesterone upon the voltage required to induce half 

maximal activation of ITail (V50). (F) Effects of progesterone upon the maximal magnitude of ITail. All data 

are mean ± s.e.m. (n = 4); asterixes denote statistically significant effects of progesterone (** P < 0.02, 

Student’s t test). 
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Figure 15 Overview of cation-permeable channels fied in the membranes of human spermatozoa. 

Electrophysiological studies of human sperm have now identified (i) a poorly selective K+ conductance 

that appears to set the resting membrane potential by allowing hyperpolarizing K+ current (IK) to flow 

across the membranes of cells depolarized past ~-30 mV. (ii) An unidentified channel that underlies the 

transient inward “tail” current (ITail) that is seem upon repolarization, although the function of this 

conductance is unknown, the fact that it is activated by progesterone raises the possibility that it may form 

part of the mechanism that allows spermatozoa to respond to this female hormone. (iii) The spermatozzon 

cation channel (CatSper) appears to be Ca2+-selective under physiological conditions, although it is freely 

permeable to Na+, K+ and Cs+ in the absence of divalent cations. The effects of a range of 

pharmacological agents are summarised in the lower part of the figure. Each identified conductance has a 

characteristic pharmacological signature indicating that they must be associated with different ion 

channels.  
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