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We study the linear and nonlinear structure formation indhaton and symmetron models of modified
gravity using a generic parameterisation which descrilagye class of scenarios using only a few parameters,
such as the couplingetweerthe scalar fieldnd the matteand the range of the scalar force on very large scales.
For this we have modified th&-body simulation cod&COSMOG, which is a variant oRAMSES working in
modified gravity scenariogp perform a set ofil10 simulations for different models and parameter values,
including the defaulACDM. These simulations enable us to explore a large portidineoparameter space. We
have studied the effects of modified gravity on the mattergrapectrum and mass function, and found a rich
and interesting phenomenology where the difference wah\BDM template cannot be reproduced by a linear
analysis even on scales as largé:as 0.05 hMpc™*. Our results show the full effect of screening on nonlinear
structure formation and the associated deviaffom ACDM. We also investigate how differences in the force
mediated by the scalar field in modified gravity models leagualitatively different features for the nonlinear
power spectrum and the halo mass function, and how varyiagnitividual model parameters changes these
observables. The differences are particularly large imtminear power spectra whose shapesfar), dilaton
and symmetron models vary greatly, and where the charstitebump around hMpc™* of f(R) models is
preserved for symmetrons, whereas an increase on muctessales is particular to symmetrons. No bump is
present for dilatons where a flattening of the power spectekas place on small scales. These deviations from
ACDM and the differences between modified gravity modelsh sscdilatons and symmetrons, could be tested
with future surveys.

I. INTRODUCTION the problem of the actual value of the dark energy density
now, these models suffer from another serious probbtamk

The apparent acceleration of the Universe could be due to &nergy evolves on cosmological time scales only when the
least four different reasons: a cosmological constank elar ~ Scalar field leads to a long range interacti@i.course, one
ergy [1], modified gravity![2] or large spatial inhomogefest ~ can decreg that dark energy does not couple to bary0n§ asin
[3]. The last of these violates the Copernican principleraad ~coupled quintessence modgland therefore alleviate gravita-
quires a theory for the initial conditions of the Universeilwh ~ tional problems linked to the existence of a scalar fifth éorc
the first three invoke a change of the dynamics of the Universé# this is not the case, then a solution which has been put for-
itself. ward in the last decade is screened modified gravity mediated

The cosmological constant solution is rather peculiar as n&Y & scalar field.
real dynamics is attached to it until the vacuum energysstart Many models ofcreenednodified gravity have been con-
dominating the energy content of the Universe. This seems tgtructed so far, which fall within two broad categories.-Fol
have happened in the quite recent past, a fact which is proowing the initial works on massive gravity, models involv-
lematic and related to the astoundingly small value of tite cr ing nonlinear kinetic terms, such as the Galiledr [4-6], enak
ical density of the Universe compared to particle physics exuse of the Vainshtein mechanish [7] whereby large nonlin-
pectations, which scale as the fourth power of the mass of ar§arities in the vicinity of dense objects effectively redule
heavy particle present in the early Universe. scalar coupling to matter to be below the experimental beund

To alleviate this problem, two other possibilities are com-Another class of models originating from the chameleon the-
monly invoked. The first one is dark energy [1], in which the ory [€,19] use a screening of the fifth force in dense environ-
dynamics of a fielde.g., a scalar field in the simplest cask} ~ ments due to the nonlinearities of either the scalar patenti
termines thdate of the UniverseSo far no real solution to the Or its coupling to matter (or both). Chameleon models such
cosmological constant problem has been found within this se @s f (12) gravity [10--12] are such that the mass of the scalar

ting although phenomenological works abound. Settingeasidfield becomes large in dense bodies, effectively supprgssin
the magnitude of the scalar force; other models such as the
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dilatons [18] and symmetronis |14,/ 15] are such that the effecthe growth of structure. On the other hand, where local mat-
tive coupling to matter becomes vanishingly small in densder densities are high enough, screening effects develdp an
environments. All cases in the second class of screened modtructure formation converges to its GR behaviour. These tw
ified gravity can be described by the same formalism whiclcompeting effects have been confirmed in already-available
has been recently unified |16,/ 17]. In this paper, we will con-N-body simulations of (R) gravit 25--34], chameleoh [B5—
centrate on the second class. [38), dilaton [39] and symmetroh [41,142] models.

It has been shown irE[_lL?] that the background cosmology In this work, we apply thém(a), 3(a)) parameterisation
of these models is extremely constrained. Indeed, thelattt to generalise dilaton and symmetron models and study their
particle masses (in the Einstein frame) and the gravitation large-scale structure formation. We use modified versidns o
constant (in the Jordan frame) cannot vary substantially bethe ECOSMOG code [48] to runN-body simulations in these
tweenthe era of theBig Bang Nucleosynthesis (BBN) and models. This code is based on the publicly-available adapti
now implies that the scalar field must stay very close to thenesh refinement (AMR) codBANBES [44], which is effi-
minimum of the effective potential since before BBN. This is ciently parallelised and suitable to run simulations Syste-
guaranteed when the mass of the scalar field on the cosmologally. The AMR nature of the code means that a higher reso-
ical background is much heavier than the Hubble expansiofution can be achieved, without sacrificing the overall perf
rate, securing the stability of the minimum to ‘kicks’ oceur mance of the code, in dense regions where the field equations
ring when particles such as the elecsatecouple([18]. A are most nonlinear, ensuring the accuracy of the fifth foate c
consequence of this is that the effective equation of sthte cculation there. As a result, our simulations are able to @rob
the scalar field in the late-time Universe becomes extremelyhe structure formation in these modified gravity modelsmlow
close to—1, hardly distinguishable from the purecold dark  to scales well below the typical dark matter halo sizes.

matter A\CDM) scenario. In practice, models ffR2) gravity,  The results of our simulations indicate that large devietio
chameleon, dilaton and symmetron types usually behave likgom ACDM in the power spectrum can be found on scales of
ACDM in thebackground cosmology since before BBN.  order 1 Mpc for both symmetron and dilaton models for val-

Fortunately, this does not imply that their cosmology is to-ues of the parameters which comply with the local constsaint
tally degenerate with that of thaCDM model the effects  (the gravitational tests in the Solar system and a mild sup-
of modified gravity appedn the structure formatiarindeed,  pression of the fifth force on galactic scales typically irs@o
within the Compton wavelength of the scalar fiéldravity is  that the range of the fifth force should be less than a few Mpc
modified and the growth rate of structures is altered EJX.V 18]Jin the cosmological backgrouid_arge differences are also
At the linear level, this results in a modification of the gtbw present in the number density of intermediate-sized dartk ma
equation which depends on the scalar field maés) and the  ter halos with masses of ord&d'3 — 10"h~1 M, (represent-
coupling to matters(a) expressed as functions of the scaleing objects from groups of galaxies to small galaxy clusters
factor. It turns out that all screened modified gravity msedel For models with a fifth force whose range in the cosmological
with no higher derivative terms in their Lagrangian, inéhgl  background is of order Mpc and a coupling strength to matter
their field-dependent potenti&l(,) and the coupling to mat-  of order unity, the deviation frorACDM can reach~ 40%
ter 3(¢), can befully reconstructed from theole knowledge  in the symmetron case and 30% in the dilatonic one. Such
of the functionsm(a) and 3(a). This allows one to engineer |arge differences are testable using future galaxy surveys

models directly from their linear perturbation properties., Moreover, symmetron and dilaton models are distinguish-
givenm(a) andj(a) one can build a fully consistent model gp|e thanks to the very different time dependence of theit co
of modified gravity defined by() andV/ () [16,[17], which plings to matter. For symmetrons, the coupling has a slow de-

implies that one could study the nonlinear evolution of COSpendence on the scale factoin the recent past of the Uni-
mic structures in the late Universe simply from the knowl-yerse and vanishes before a transition redshifits defini-
edge ofm(a) andf3(a). This provides aystematic approach  tion will be given later). Dilaton models have a much sharper
to screened modified gravity which can be applied to genergependence on the scale factor and generically decrease ex-
alised chameleon, dilaton and symmetron models. For othgfonentially fast going back in times will be discussed in
schemes to parameterise modified gravity sell[19-24]. detail in §ITB, the time dependence of the coupling strength
Studying the nonlinear regime of structure formation is ofcan be roughly translated into a density dependence, and the
particular importance for screened modified gravity modelssteep density dependence in the recent past of the Universe (
as local gravity tests often imply that deviations from gen-equivalently in regions of low matter density) for dilatodi
eral relativity are strongest on megaparsec (Mpc) scaléfs [ els suggests that the dilaton screening is more efficiiese
where nonlinearities cannot be neglected. Two competing efyroperties make the matter power spectra and halo mass func-
fects influence the dynamics of modified gravity here. On thgjons behave qualitatively differently in these mod&\e will

one hand, the gravitational interaction is enhanced by®p  give a more detailed summary of the results in the concluding
ence of a long-range fifth force which implies an increase ogection_

The layout of this paper is as follows: in[H we review
scalar-tensor theories and show how such theories of mddifie
gravity can be analysed using a simple parametrisationtwhic

2 The Compton wavelength of a scalar field is definedas m_;, and  encapsulates all the dynamics; iflBwe briefly describe the
meg IS the effective mass of the scalar field (see below). generalised symmetron m and dilaton (g]]]:B:D mod-
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els and the possible effects of varying each model parametehas a minimuny.,in (0., ). The mass of the scalar field at the

the equations that will be used in thé-body simulations are
summarised in while the details are given in[& Bl we
next carry out tests of our codes il and the cosmologi-
cal simulations of this work are then discussed MIBor the
symmetron (&/TA) and dilaton (8/TB) cases respectively;
finally we summarise and conclude i\l

In the paper we use the uniis= ¢ = 1 except where ap-

minimum,

m2 _ szeﬂr
dp?

()

L)
$Pmin

must be positive. In a cosmological setting we will also im-
pose thain? > H? with H being the Hubble expansion rate.

pears explicitly. Overbar (subscrigtdenotes the background This guarantees the stability of the minimum to perturbetio

(present-day) value of a quantity and subscripimeans
d/de. k = 87G N = My,?, whereMp is the reduced Planck

mass and-y is Newton'’s constant, are used interchangeably.

II. MODIFYING GRAVITY WITH A SCALAR FIELD
A. Screened modified gravity

The action governing the dynamics of a scalar figlth a
scalar-tensor theory is of the general form

S = /d4ar\/—_g {MT{%IR - %(W)Q = Vi(p)

+ / A2/ =G L (D, G, (1)

whereg is the determinant of the metrig,,, R is the Ricci

scalar andp,(,? are various matter fields labelled byA key
ingredient of the model is the conformal couplingwfvith
matter particles. More precisely, the excitations of eaeit-m
ter field w,(,? couple to a metrigj,,, which is related to the
Einstein-frame metrig,,,, by the conformal rescaling

Guv = AQ(S")QW- ()

When matter is described by a pressure-less fluid with

(8)

whereut = da* /dr is the 4-velocity field of the fluid and
is the proper time, the matter density, is conserved

ny o W v
T = puutu’,

9)

wheref = V,u* = 3H is the expansion scalar and the tra-
jectories are determined by the modified geodesics

pm + 0pm =0,

. % Vi
w4+ f—ut = — . 10
B Vo B Vo, (10)

In the weak-field limit with a line element
ds® = —(1 + 2¢)dt? + (1 — 2¢)dz'dax;, (11)

and in the non-relativistic case, this reduces to the matlifie
geodesic equation for matter particles

d?zt

= —V'[p+1InA(p)].

(12)

This can be interpreted as the motion of a particle in theceffe
tive gravitational potential defined as

U =¢+1nA(p), (13)

The metricg,,, is the Jordan-frame metric. The fact that the i ) . . » ]
scalar field couples to matter implies that the scalar fielheq @nd is @ manifestation of the dynamics of modified gravity.
tion becomes density-dependent. More specifically, thessca One may also call the deviation from the Newtonian gravity a
field equation of motion (EOM) is modified due to the cou- fifth force. In this paper we will use these terminologiegint

pling of the scalar field> to matter: changeably. .
a When a particle of mass/ in a homogeneous background

Op = —BT + < matter density is the source of gravity, the scalar fieldsfiat
de’
whereT is the trace of the energy momentum ten3dt’,
0O = Vv#V,, and the coupling op to matter is defined by

dln A
B(p) = Mp 1

This is equivalent to the usual scalar field EOM with the ef-
fective potential

Verr (¢) = V() — [A(p) =1 T. (5)

We will always require that the effective potential posesss
unigue density-dependent minimum in the presence of pre
sureless matter for which = —p,,, i.e., that the potential

Vet () = V() + [A(p) — 1]pm (6)

3)

(V2 +m?) = 5£5<3> (r),

o (14)

in which 6®) () is the 3-dimensional Dirag-function andm
the scalar field mass in the background. This implies that

(4)

U=—(1+28%") (15)

GNM
p—

Wheng ~ O(1) andmr < 1, this implies a substantial devi-
ation from Newton’s law. For bodies much bigger than a point
article, nonlinear effects imply that the effective cangffelt

y a test mass near the soun be much smaller thanor
thescalar fieldnass becomes much larger than the inverse of
the typical size of thesource(m—! < r). The dilaton and
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symmetron models satisfy the first criterion which guaraste The time evolution of the scalar field is tightly constrained
that solar system and laboratory tests of gravity are evaded by BBN physics due to its coupling to matter particles. The

In addition to theself-screening described above, the mod-fact that the scalar field evolves along the minimungf ()
ification of gravity depends on the environment of the bodiesmplies that the masses of fundamental particles
as well. For example, in a high-density background, thesscal
field massn in Eq. (I3) can be very large, which suppresses my = A(@)Mbare, (20)
the deviation from Newtonian gravity according to Hqg](15). . ) _ .

This environmental dependence is at the heart of the screefft Which mi..c is the bare mass appearing in the matter La-
ing mechanisms in chameleon, dilaton and symmetron case@angian, evolve too. In practice, tight constraints ontime
Indeed, as shown i [17], the screening is effective when th¥ariation of masses since the time of BBN
Newtonian potentiab 5 generated at the surface of a dense Amy Ay

body satisfies (21)

My ]\/fpl ’

[P0 = $e| € 200 Mp1®, (16) whereAgy is the total variation of the field since BBN, impose
that Am., /m.,, must be less thar 10%. At a redshift of or-
derz. ~ 10, electrons decouple and give a ‘kick’ [18] to the
scalar field which would lead to a large violation of the BBN
bound. To avoid this, the field must be close to the minimum
of Ve (¢) beforez, and simply follow the time evolution of
tively the minimum. Moreover, the total excursion of the scaladfiel
following the minimum must be small enough. In practice, we

In cosmological simulationsy., = ¢ is the background . o
value of p, while . is the value inside clustered structures,wIII always assume thap/Mp:| < 1 along the minimum tra

. jectory, implying that the BBN bound for the time dependent
which can be very small. In generalcould changéy several o . o !
: : X ; - minimum is always satisfied. The models are then valid pro-
orders of magnitude from low-density to high-density regio . IR -
g . . vided the electron ‘kick’ does not perturb the minimum too
and this is why the accurate calculationyfs a challenging

) ) . . uch. The minimum of the effective potential acts as a slowly
task. The equations of motion which govern the dynamics o . . 5
o : . . varying cosmological constant. Indeed, whef > H? the
the modified gravity models which we consider here are 2 . . . :
minimum is stable for all the models we will consider. In this

wherey, -, are respectively the minimum of the effective po-
tential inside and far away from the dense body; is the
Newton potential at the surface of the body ahd = 5(¢0)

is the coupling to matter outsidNote that the self and envi-
ronmental screenings are encode@®ip andy.., S respec-

V2¢ =~ 4G (pm — pm) (17) case, the dynamics are completely determined by the mini-
CQVQ(,D ~ Vw(sp) — Vw((p) + Aga(‘P)ﬂm _ Aga(@)ﬁm7(18) mum equation

T G 8o 4 v Pm

@ - _v¢ —C B(QP)VQP - ﬁ(@)(paa (19) @ . — _ AFP] (22)

where in Eq.[[7HI8) we have worked in the quasi-static “mit In fact, the knowledge of the time evolution of the mass
so that terms involving time derivativégve beerdropped;  onq the coupling is enough to determine the time evolution

this is a good approximation throughout the course of coSMig¢ the field. Using the minimum equation, we can deduce that
evolution as the time derivatives are generally much smalley,q field evolves according to

than the spatial onBsThe first of these equations is the Pois-
son equation while the last one is the modified Newtonian dy- de  3H ALm
namics due to the presence of the scalar figld.f. Eq. [L0). dt — m2" Mp’
We have reinstated the factorsclbecause in code units (see
below)c is no longer unity

(23)

This is the time evolution of the scalar field at the backgibun
level since the instant when the field starts being at the min-
imum of the effective potential. The knowledge of the time
evolution of the mass: and the coupling is enough to deter-
mine the bare potentid (¢) and the coupling functior ()
ecompletely. To see this, integrating EG3( once, we find

B. Tomography

We shall always consider the cosmological evolution of th
scalar fieldy in modified gravity models with a minimum of 3 “ B(a)
V. (¢) at which the scalar field mass satisfiesn? > H2. p(a) = o /

_am?(a) pm(a)da + ¢, (24)
wherep, is the initial value of the scalar field at,; < agpn
and we have takeA () ~ 1 given that the temporal variation

. - m : of fermion masses must be very weak. If the coupling strength
rectly. A more rigorous proof of the validity of the quasast approxima-

tion would be by solving the full time-dependent scalar fieldM, which gis expressed in terms of the flebdand not the scale factor

is beyond the scope of the current work. However we find thathe lin- a, this is also equivalent to
ear perturbation calculations f[17], one gets indistisigable results by u
solving the full (linearised) EOM and using the quasi-stafyproximation, ? de 3 1
ETORY me(a)da“ (25)
a

am?

3 This has been shown explicitly in, e.d..|[25], which compatree two di-

showing that the latter is actually quite reasonable. o 5@,) Mp,

ini
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Similarly the minimum equation implies that the potentiahc  Typically this implies thatn/Hy = 10%. Hence we find that

be reconstructed as a function of time screened models of modified gravity can only act on scales
3 “ B2a) below the order of a few Mpc. In fact we will make use of the
V=W- d 26 i
"Iz ) am Pm(a)da, (26)  ratio
whereVj is the value of the potential at = a;,;. This de- ¢ = E, (31)
fines the bare scalar field potentla{y) parametrically when mo

B(a) andm(a) are given. Hence we have found that fo#
nonlinear dynamics of the theory can be recovered from th
knowledge of thé¢ime evolutions of the mass and the coupling A = 2998¢ h~Mpe. (32)
to matter since before BBN.

The reconstruction mapping gives a one-to-one corresponfhese scales, in the Mpc range, are beyond the linear pertur-
dence between the scale factond the value of the field bation regime and can only be accurately analysed using nu-
¢(a) in the cosmic background. As the scale factor is in a onemerical simulations. This is the aim of the present artitrie.

to-one correspondence with the matter energy depsiy.),  the next subsection, we will describe the models we will gtud
we have obtained a mapping, — ¢(p.,) defined using the in detail numerically.

time evolution ofmn(a) and3(a) only. Given these evolutions,
one can reconstrutthe dynamics of the scalar field for den-
sities ranging from cosmological to solar system valuesgisi C. The dilaton and symmetron models
Eq. 29 and Eq.[26). By the same tokeri/ () can be recon-
structed for all values af (andp,,,) of interest, from the solar
system and Earth to the cosmological background today.

In particular, we can now state the screening condition of
modified gravity models [c.f. EqIB)] as

gvhich is related to the range of the fifth force as

1. Dilatons

The environment-dependent dilaton model was originally
described in[[13]. The essential features of the dilatonehod
include a runaway potential and a coupling functidfy)
which has a minimum. The potential is derived in the strong
, . , coupling limit of string theory and the form of the coupling
with constant matter densitigs, our = pm(a = dinout) - function ensures the field does not runaway to infinity, which
side and outside the dense body respectively, and where wgg|d imply decompactification. I [13] the coupling furanti

have defined,.s = f(a = acut). Note that the gravitational 54 pare potential of the scalar field were specified as fetlow
properties of the screened modified gravity models can be cap

tured by the cosmological evolutions of the scalar field mass 1 A

A - %pm (a)da << Bout]\/jlg’lq)N7 (27)

in

_ - e _ 2
and coupling function only. Alp) =1+3 M2 (o — @), (33)
The loosest screening condition follows from the ftiw V(p) = Voe 1#/Mr1. (34)

Milky Way should be screened as otherwise large deviations
from Newtonian gravity would have been detected in the solapjere A, > 1, > 0 are dimensionless model parametés,
system For the Mllky Way, the denSity is around six orders of is a model parameter with mass dimension 4 @mdin arbi-
magnitude larger than the cosmological background imglyin trary constant. The screening mechanism of the dilaton ode

thata;, ~ 10~ its Newtonian potential i@ ~ 107°. Tak-  js shown in Figll Again, denoting the value gf which min-

ing the outside environment to be close to the cosmologmq}mseS%ﬁ.((p) BY ¢min, When matter density is highni, is

background we have,, ~ 1. Writing very close tap, so that8(¢min) ~ 8(p.) = 0 and the fifth
m(a) = mof(a), B(a) = Bogla), (28) force essentially vanishes, while when matter density\s lo

©min Can evolve away fromp,. so that8(pmin) # B(¢«) = 0,
wheref andg are smooth functions af with slow variations  giving rise to a non-negligible fifth force.

we find To study the cosmology of the dilaton model we need only
2 1 consider the dynamics in the vicinity of the field, where
Hoofls [F 20 o< Mpve, (29)
"o o ) Bly) ~ 22 ) (35)
in which ©,,, is the fractional matter densitpefining I = (p) ~ MPI(SO 7

Jib e da, e find that

from which we deduce that

mg > 3Qm0]'

HO - dq

@ da

(30) _de
a*m?(a)’

Y — Px
Pe — Px

In

= 9A9Q,0H /

Qini

(36)

and therefore
4 This is done by assuming that the scalar field always miniritsesffective
potential V¢, and thus the results below are more of qualitative estisnate a

a d
than quantitatively accurate predictions. 1B(¢)| = [8(pe)| exp {9A2QmOH02/ m} - (37)

Qini
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FIG. 1. Aniillustration of how the dilaton mechanism work$i€ldashed, dotted and solid curves are respectively thg@btertiall’ () of the
dilaton field, the coupling function and the total effectpatentialVes (). Left Panel: in high matter-density regions the minimumiéfz (¢)

is where the coupling strength vanishes and so the fifth fisresappressedright Panel: in low matter-density regions the coupling strength
does not vanish at the minima &« (¢), where the dilaton field resides, and so a nonzero fifth fakeg effect in structure formation.

FIG. 2. An illustration of how the symmetron mechanism woikse dashed, dotted and solid curves are respectively teepotentiall’ ()

of the symmetron field, the coupling function and the totédeifve potential.s (). Left Panel: in high matter-density regions the minimum
of Veg(¢p) is where the coupling strength vanishes and so the fifth fisrseppressedright Panel: in low matter-density regions the coupling
strength does not vanish at the minimal@f: (), where the symmetron field resides, so a nonzero fifth forkestaffect in the structure
formation.

This is the relation between the coupling at the initial tamel
other cosmological times.

value of 3 today,5(¢0), by

a4:§<a>} - (38)

It is possible to have a very small coupling in dense matter
(|8(pe)| < 1) for any value of the coupling on cosmological
in dense matter on Earth and is related to the cosmologicacaleq|3(o)|) provided thatd, > 0 and that the time varia-

1
18(¢0)] = 1B(ge)] exp [%Q N

The initial coupling (taken at;,; < appy) iS the same as



tion of m(a) is slow and does not compensate thie* diver-  for z < z, ands = 0 for z > z.. Similarly,
gence in the integrand. In this situation, the coupling fiamc

(£ converges exponentially towards zero: this is the Damour- s
Polyakov mechanism [40]. The fact thdt > 0 guarantees m(a) = my[1 -~ (;) :
that the minimum of the coupling functiofi() is stable and _ i
becomes the minimum of the effective potential which atwrac Notice that for symmetron models a subscripdenotes the
the scalar fieldat late timesIf A, < 0, the effect of the Valueatfarfutur¢a — oc), and a subscriptmeans the value
coupling is destabilising and implies thatliverges exponen- &t the symmetry breaking, i.e., whefu) becomes nonzeroin
tially fast away fromp,. the cosmological background.

Alternatively, a smooth variation of the coupling function Using the reconstruction mapping, it is straightforward to

(45)

matter in the cosmological background and therefore istere find that
ing consequences for the large-scale structure can bevachie 3
when the evolution of the mass of the scalar field compensates pla) = psy/1 — (—*) , (46)
the 1/a* factor in the radiation era and evolves in the matter a
era. This is obtained for models with for z < z, andyp = 0 before. Here we have defined

m2 (a) = 3A2H2 (CI,)MI:Q)I (39) _ 2B*p* (47)
Indeed,H (a) ~ a2 in the radiation era, which implies that " m2Mp’
the time variation of3(¢) between BBN and matter-radiation and
equality is

Me = V20, pu = pmoay . (48)

O,
86) = Blpdexp [5G @ — )| . (40) | |

0 The potential for: < z, as a function of; can then be recon-
in which €2, is the fractional density for radiation, and in the structed, using the technique introduced above, as

matter-dominated era 5
ax

a>3 Via) = Vo + D20 [(—)6—1} (49)

B(¢) = B (¢ea) ( 41) 2m2ME, |\a

Q,
o The potential as a function gf can then be found to take the

in which a subscript, denotes the value of a quantity at the form of Eq. @3, with 12 given in Eq. @8 and
matter-radiation equality. This is the behaviour of thedih

2
models already analysed in [39]. \ = % (50)
2. Symmetron Meanwhile,3 as a function ofy is reconstructed as
The symmetron model was originally described id [14, 15], B(p) = &(p. (51)
for which the coupling function and bare potential of the P
scalar field take the following forms respectively: It could be checked that this agrees with EqJ (42), by taking
17 p\2 B8 =dlnA/dp ~ dA/dy, where thexx symbol comes from
Alp) =1+ (M) 7 (42)  the fact thatd ~ 1.
1 1
V(p) = Vo — 5u%¢" + A" (43)

) Ill.  GENERALISED SYMMETRON AND DILATON
Here M < 10~3Mp, is a mass scale and ~ Hyp, A < 1 MODELS

are model parameters. The screening mechanism of the sym-
metron model is shown in Fi@ When the matter density
is high ¢min coincides with the minimum ofi(y) such that
B(pmin) = 0 and the fifth force vanishes, whilst when mat-
ter density is low3(pmin) # 0, resulting in a cosmologically
interesting fifth force.

A fundamental property of the symmetron models is that A. Generalised symmetron model
the coupling to matter vanishes identically in dense reg@m
at redshiftsz > z,, and an order-unity coupling is obtained
after a transition at a redshiff and in the low matter-density
regions. In the original symmetron model, this is given by

In this section we discuss the generalisations of the dilato
and symmetron models, and the effects of varying the model
parameters.

1. Model parameterisation

The original symmetron model discussed in the previous

s\ 3 section only includes one specific potential. As a straghtf
Bla) = By [1 - (;) ’ (44)  ward generalisation of this idea, let us consider the falhgw



m(a) andj(a):

m(a) = m, [1 _ (%)P’r, (52)
B(a) = B, [1 - (%)‘T (53)

2. Effects of varying model parameters

Let us analyse the effects of varying the five model param-
etersa., By, N, M and¢ on structure formation.

As discussed ifl [17], the modifications of the structure for-
mation at the linear perturbation level is completely deter
mined by the two temporal functions(a) and 8(a), from

wherermn, i1 are two new parameters and not necessarily equathich we can see that:

to each other, an@in,, 8, ) are the mass and coupling in vac-
uum as above. As in [16], if the scalar field always follBws

©min, ONe can obtain the following solution far(a):

p(a) = p. [1 - (%)1 e , (54)

where we have defined, = ~—2-—,,4.£%a;* and from
here we will neglect the subscriptn €,,,0. Note that Eq.84)
is only valid if » — 2m + 1 # 0; the case ofi — 2/ = —1

1. The strength of the fifth force vanishes fo< a. and
approachegs? times that of the Newtonian gravity for
a > a,. Decreasing. increases the time during which
the fifth force is active thus enhances the matter cluster-
ing today.

2. Increasing3, makess larger at all times, which makes
the fifth force stronger and leads to more clustering.

3. According to Eq.[(88), increasiny makes/3 smaller

corresponds to a potential that is not bounded below and is ~ P€causéy| < |o,| in general. This can weaken the

therefore not a viable physical model. Again, H64)(is for
a > a, and fora < a. we havep(a) = 0.

To study the nonlinear evolution @f, we need to know
V.. (¢) as it appears in th&-body equations Eq1g). Noting
thaty increases monotonically with, we find

v, = d¥tel do |
= —(h— 2+ )mZp, [1 - (%)1 '

n—2m+1
= —(h — 2+ 1)m2p, (g)

*

x l1 - (%)W] . (55)

Defining the parameters

27 — 21 + 2 20 — 2 + 1
M==-°- N=="-"_ 56
n—2m+1’ n—2m+1"’ (56)

we find that the potential can be written quite simply as

HQ(pQ 1 o N 1 @ M

%4 =07 |\ (= — | = (57
et | v (2) ()] e
In a similar manner, foe > a. we get

N—-1
B(¢) = Bla(p)) = s (g) | (58)

Itis evidentthat whev = 2 andM = 4 we recover the orig-

effect of the fifth force. It is because of this reason
that the symmetron screening is more efficient than the
chameleon screening with a constar.7].

4. By increasingV the scalar field will make the transi-
tion fromy = 0to ¢ = ¢, much quicker, because then
©M is smaller for smallp and so (1) the symmetry in
Vet () is easier to be broken and (B)g(p) becomes
steeper fronp = 0 to ¢ = ¢,. This leads to a stronger
(and earlier kick-in of the) fifth force and thus matter
becomes more clustered.

5. Anincrease irg is equivalent to an increase in the range
A, of the fifth force since\, = 2998¢ Mpc/h in vac-
uum This extends the modifications of gravity to larger
cosmological scaleand decreases the exponential fac-
tore=™" of suppression of the fifth force

These properties will be investigated in depth usiipody
simulations below.

B. Generalised dilaton model
1. Model parameterisation

The environment-dependentdilaton model has already been
presented in the previous section. For the model ih [13]rit ca
be shown that

m(a) = moa” 2, (59)
Bla) = Boa®m ", (60)

inal symmetron model. In what follows we will only consider where bothn(a) and3(a) are power law functions of. If

M, N to be even and positive integers witth > N to avoid
having a potential that is unbounded from below.

5 See|[BD] for a more detailed discussion on the time-evaiutib,.

m(a) = moa™", (61)

with » # 3/2, then is no longer a power law function af,
as we will see below.

As a straightforward generalisation of the dilaton ideg, le
us consider a quadratic coupling functidry) which has a



minimum aty... Neary, we haveS(y) = As(p — i)/ Mpy. 2. Effectsof varying model parameters
Assuming that the dilaton field always follows the minimum
Of Vest (), ¢rmin, ONe can solve fo(a) from an integral[16]: As in the symmetron model, let us first analyse how vary-
" ing the four parameterd,, 8y, r and¢ affects the structure
5((1 < 1) _ BO exp |:99mA2§2/ a?r—4da:| formation.
1
s 9r_3 1. Increasing4, enhances = 99Q,,4,£2 and so makes
= Poexp % —3 (a -l (62) B(a) smaller ata < 1. As 3(a) controls the strength of

the fifth force, this weakens its effect.

in which we have used Edel) and defineds = 9Q,, 4,£2.
Eq. 62 is only valid whenr # 3/2, while the case of =
3/2 corresponds tex(a) andj3(a) both being non-power-law,

WhICh. will be studied elsewhere. . 3. The effects of- are two-fold. On the one hand, increas-
As in the symmetron case, we need to have the expression ing ~ makesm(a) larger and therefore the fifth force

2. Increase inj, makesf(a) larger at all times, which
strengthens the fifth force.

of Vi (i) to study the nonlinear evolution gf. For this we shorter ranged for < 1; on the other hand, it makes
will use the relations fB(a) larger fora < 1, provided tha2r — 3 is not very
d(kV) close to0, and this strengthens the fifth force. As a re-

sult, we expect that this will decrease the matter clus-

da ) 9 tering on large scales but increase it on small scales.
N SOWAC
am?(a) Mg, 4. An increase ir¢ is equivalent to a decreaseiim, and
25 an increase ir, which means that bothu.(a) andg be-
= =270, 562 Hia® " exp o —3 (a* 7% —1)| (63) come smaller for, < 1. This increases the matter clus-

tering on large scales and decreases it on small scales.

where we have used the expressionsitf) and 5(a) given Because of the exponential functionfiia), the effect

in Eqs. B162), and of changingg is most significant at early times.
d(v/7y) 5. There are degeneracies between the different effects.
SVHEY) For example, increasingand decreasingare expected
da to leave similar imprints on the large-scale structure, as
pla) pm(a) we see below.

am?(a) M3,
2.9 9r—4 S 9r_3 Note that the dependence ors quite different from that in
= 90m B5€"a”" " exp {m(a B 1)} - (64)  the chameleon models with constant couplinfgé, 35,37],
and the symmetron modél [17]. In those cases, increasing
Using the above two equations, it is straightforward to find decreases:(a) and therefore increases the range of the fifth
force, resulting in more matter clustering.
d[xV(a)]/da The above analyses only apply to linear perturbations, the
VAV, = d(/ry)/da dependence of the fifth force on the dilaton parameters i mor
complexin the nonlinear regime, and this is best seen frem th

= 30,80 H3 exp { (a®" 3 — 1)] a~3(65)  two functionss(p) andV,, (), which govern the nonlinear

2r—3 equations (see above):
= _30 HZAQ(QP_QP*) . . . . .
0T My 1. IncreasingA, implies that the parabolic functioA(y)
5 becomes steeper near its minimumpat ., and this
o {1 n 2r —3 log As(p — w*)} o . (66) makes it harder for the scalar field to roll away frgm
s Mp1Bo wheregs(y) = 0. This weakens the fifth force.
where Eq.[65) can be used directly when one needs the back- 2. Increasing3, makesAs (¢ — ¢.)/Mp1 8y closer to zero
ground value o¥/,(¢) and Eq.[66) can be used in full nonlin- and thereforeV/, ()| larger. This means thaf(y) be-
ear calculations such as thebody simulations. As in general comes steeper, making it easier for the scalar field to roll
Az (p — ¢«)/Mp1 < Bo, the logarithmic here is negative, and away fromyp, wheres(p) = 0 and therefore strength-
to make sure the last line of E@®®) is well defined for any- ening the fifth force.
we should require < 3/2. Otherwise the terms in the brack-
ets can be negative when — ., making the power func- 3. If 2r — 3 is not too close to zero, increasingowards
tion ill-defined. Because appears in bott(¢) andV,(¢) 3/2 makes|V,(¢)| larger according to Eql6@ and so
throughy — ., without loss of generality, in what follows we makes it easier for the scalar field to roll away frgm

takep, = 0 by a redefinition ofp. whereg(y) = 0. This strengthens the fifth force.
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4. Similarly, increasing (therefores) makesV () shal-  Eq. (I8 becomes
lower and the fifth force weaker. Meanwhile, the scalar

field becomes less massive and therefore less likely to @295 ~ a’ N1 [ﬁ (%)3 _ 1]

follow the local minimum ofV.g which is determined (M — N)e2¢? a

by the matter density field and more likely to take larger a2 Y

values — this could give rise to a larger valuefoand +W@ . (68)

therefore a stronger fifth force.

2. Thedilaton case

IV. THE N-BODY SIMULATIONS
Similarly, the dilaton fieldy is generally very smallf <

Mp)) and should be positive (otherwise the logarithmic in
Eq. €9 is ill-defined). This means that the numerical value of
) ) ) _ ) o can easily go negative in the relaxation procedure, leading

_In this section we derive the equations used inody  the failure of convergence. To avoid this problem, we follow
simulations, namely, the Poisson equation for the graeitat [25,[35] and use a newly-defined variable= log(p/Mp1)
potential and the EOM governing the dynamics of the scalajnstead ofy itself. During the cosmic evolutiop:| remains
field. For the sake of completeness we first describe the codg(1) ~. 0(10), compared to the several orders-of-magnitude
units used in these equations. The code units used in our cod@an of,, making it easier to handle the numerical errors.
are based on (but not exactly the same as) the supercomov-agier some simplification, the dilaton equation of motion
ing coordinates ofl [45]. They can be summarised as follows=q. [18) becomes
(tilded quantities are expressed in code units):

A. Equations in code units

3

3 Vet ~ N—QQmAgf)e“afl (69)
T - pa - av c
= 75 P = , V= 55 __3
aB Q BH 3 r — 3 u 2r—3
e . gm0 = log |
= P 4= Hy—, &= .
© = BHE 2" ° 7 BH,
In the abover is the comoving coordinate,. is the critical B. The discretised equations

density todays?,, the fractional energy density for matter to-

day,v the particle velocityg the gravitational potential and  Evidently, to put the above equations into tNiebody code

c the speed of light. In additiorn3 is the size of the simula- one must discretise them. For the Poisson equation we have
tion box in unit ofh~'Mpc andH, the Hubble expansion rate

today in units ofl00h km/s/Mpc. Note that with these con- — 14, ., .\ + ;1 j 1 + @i joi ke + Gijo1.k + Pijht
ventions the average matter densityis= 1 at all times. Al h? w w o o -

the newly defined quantities are dimensionless. i k1 — 66 k] = §Qma (Pijx —1),(70)
Using the code units defined above, the Poisson equation 2
Eq. (I becomes where ¢; ; . is the value of¢é in the grid cell with index
o (3., K)-
Vi~ 5Qma(ﬁ— 1). (67)

Note that the Poisson equations for both the symmetron and 1. Symmetron equation of motion

the dilaton cases are unchanged compared to the case of stan- ) ) )
dard GR, because we have neglected the contribution from the The discrete version of the nonlinear symmetron EOM can
scalar field to the source term. In what follows, we introduce?® obtained similarly:

the symmetron and dilaton versions of the scalar field equa- By~
L L"(@i k) =0 71
tion, i.e., EqILY. (@igk) =0, (71)
where the operatdi:h(@_,jyk) is defined as
h~ _ 1. ~ ~ ~
1. The symmetron case L™(@ijx) = 72 [‘Pi+1,j-,k T Pi-14k + Pijrik T Pij—1k
o , +@i g1 + Pije—1 — 68ijk]
Throughout the cosmic history, the symmetron field has a 9 3
. . . a N—1 |~ a
small magnitude, i.e|p|/Mp) < 1. To guarantee the numeri- - N M piie— -1
- L (M — N)é&2¢2 i,J,k I 03
cal accuracy, instead of solvingitself, we solve for a newly- »
defined variables = ¢/¢,. This variable is constrained by a? M1

0 < |@| < 1 everywhere. The symmetron equation of motion - (M — N)&2¢2 Pi gk - (72)
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Eq. [7J) is solved using the nonlinear Gauss-Seidel relaxation, In practice, Eqs[{2[74) must be modified at the boundaries

which can be summarised as of refinements for the multigrid implementation, as is thgeca
of the Poisson equation. Ref. [43] gives a detailed review of
h noa LB all the technical details involved in th¥-body code imple-
Giik = Piin — Wﬁ,ld), (73)  mentation: interested readers are referred to that paper.
—gore
Pijk
h 2. Dilaton equation of motion
where
W = The discrete version of the nonlinear dilaton equation can
oL (%,j,k) 6 (N—-1)a®> _n_s [~ al 1} be obtained similarly:
Toah R (M —N)&@e2 Pigk |Piikz T
9Pk h* (M — N)e2g2 ™ a LM(uijx) =0, (75)
M —1)a? -
—W@%,ﬁ. (74) where the operatdt”(u, ; ;) defined as
“ N :
|
1
LM (uijk) = 35 [bw%,j,kum,j,k — Uik (bi+%7j,k + bi—é,j,k) + bz‘—%,j,k“ifl-,jvk}
1
T {bia.ﬁéak“ivﬂ'“vk — Uik (bi,j+§,k + bz',j—%,k) + bi,j—%,kuz‘,j—l,k}
1
to3 {bi,j,m%ui,j,kﬂ — Uijk (bi,j,k-i—% + bi,j,k—%) + bi,j,k—%ui-jykfl}
3
3 O — 3w 1773 3
+~—2§2mA2a26“i’j”“ {azr—3 +I=° —ul’f’k} — ,,_QQmAQﬁi,,j7ka_leui’j’k- (76)
C S © C
|
Hereb = 0e*/0u = e*, Eq. {79 is solved using the nonlinear Gauss-Seidel relax-

ation as well, which can be summarised as

1
bivs ik = 5 (bivrgn +bigk), h(, hold
1 uh,pcw _ uh,pld _ L (ui,jj,k ) (77)
big ik =5 (bigr +bimrjn), ok Lik T e (uleld)”
Aulrold
i,j,k

and h is the length of the cell in the numerical simulation
mesh. where

OL" (u; ; &2
Wij,k c
— bi gk [uz‘+1,j,k + Ui—1,5,k + Wi 41,k + Uim1,5,k T Ui 5 k+1 + Uijk—1 — 6Ui,j,k}

(Q)ui,ng W
~2
C
o2 (i1, + b1k + bijr1k + bij—1.k + bijkt1 + bije—1 + 6bijk]
__3 __2r
+3Qm Azel; pa® |a* 70 + o3 Birgik T L g |2 + o3 Ligk o
sJs S (p 62 S (p
—3Q,, Ao pa2etiik, (78)
I
Again, Egs. and must be modified at the bound- V. CODE TESTS
g q

aries of refinements for the multigrid implementation, abés

case of the Poisson equation. In this section we present the results of code tests we have

performed to show that our symmetron and dilaton equation
solvers work well. To lighten the notation, throughout thés-
tion we use the unitd/p; = 1.

There are five parameters for the generalised symmetron



TABLE |. The parameter values for the six models used in thme-sy

metron code test.

12

T | T | T | T | T
model Qs Bo (N, M) I3
a 0.5 0.5 (2,4) 0.001 1E-4 |- .
b 0.2 0.5 (2,4) 0.001
c 0.5 1.0 (2,4) 0.001 L 4
d 0.5 0.5 (27 6) 0.001 : model a, a=1.0, before rel. model a, a=1.0, after rel. 1
e 0.5 0.5 (27 4) 0.0005 model b, a=1.0, before rel. model b, a=1.0, after rel.
f 0.5 0.5 (2,4) 0.002 S - model a, a=0.6, before rel. model a, a=0.6, after rel.
1E5 | -
TABLE II. The parameter values for the five models used in fte d o e S5 s S e o . 2
ton code test. B Bo,e, swade U T S B Vag f e, e,
model Ao Bo r 3 | 200 42?0 a e e, 8 st
a 5 x 10° 0.5 1 0.001 T
b 1 x10° 0.5 1 0.001 0.0 02 04 06 08 1.0
c 5 x 10° 1.0 1 0.001 /B
d 5 x 10° 0.5 0 0.001
e 5 x 10° 0.5 1 0.002

FIG. 3. (Colour online) Test of the solver for the symmetrqoation

in a constant matter density field. Only results in the cdbagthe
z-axis are shown, and the-coordinate is rescaled by the size of
the simulation box so that € [0,1]. Results for three models as
explained in the legend have been shown (the empty symiibés),
final answer corresponding to which are filled symbols of thme
type and colour. The horizontal lines with the same colouestlae

act analytical solution.

model, namely:., 8y, N, M and¢, and we sefV = 2 and test
the code for 6 models summarised in tdbl&here are 4 pa-
rameters for the generalised dilaton model, nam#glys,, r
and¢ (note thats can be calculated whe#, and¢ are given,
and is therefore not an independent model parameter), and
test the code for 5 models summarised in tdle

For the dilaton model, the field also takes exactly its back-

A. Homogeneous matter density field ground valuez, given by

In a universe with a homogeneous density, the symmetron @(a) = Bo
field ¢ shouldexactly take it9ackground value, namely Az

o= [1- (=)

everywhere. Thus, as the simplest test of the symmetron equ
tion solver, one can show that in such a homogeneous fiel
given some random initial guess @fon the cells of the sim-

lulan?n mesh, aft(:rr] a relaionablﬁ number Otf (fr?ussb-s\/eédbel el (see figure caption for more details). We have also teste
axation sweeps, the solutions ail converge to the above-bac , . o4 ge gt # 1.0 and found the same good agreement.
%)und value. Such simple test have been used previously in

141 /48] to show that the solver for extra degrees of free-

dom works correctly.

We have performed this test for all the six symmetron mod-
els summarised in Table The result is shown in Fi@, where
we plot the values op/Mp in the cells in thex-direction, be-
fore and after the Gauss-Seidel relaxation; for clarity weeh  consider the solution ap around a point mass at the origin,
only shown the results for models a and baat= 1.0 and  for which case we have an analytical solution which is accu-
model a atz = 0.6. We can see that the final solution agreesrate except for the regions very close to the mass. Such a test
with the analytical result (the horizontal lines) very wigdee  has been used previously 89, 43].
figure caption for more details). Following [25], we construct the point-mass density field as

We have also tested the code for a model with= 0.5 at ~ (hereafte®; ; , = pi jr — 1)
a = 0.4. In this case the symmetry df.¢(p) has not been
broken yet, and we expect thatvanishes everywhere. This is
confirmed by the tests (which are not shown here).

a2r—3] ’ (80)

e 273 exp |:2T_3
everywhere in a homogeneous universe.
We have performed this test for three of the five models

summarised in Tab[El The results are shown in F[d. where
we plot the values dlbg(/@) in the cells in thex-direction,

oth before and after the relaxation. For clarity we have onl

hown the results at = 1.0. It can be seen that the final solu-
tion agrees with the analytical result (the horizontaldineery

(79)

B. Point mass

As a second test of our symmetron equation solver, let us

—4 (N3 _ 1.
%k:{lo (N3—1), i=j=k=0; (81)

—1074, otherwise.
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3 T | T | T | T | T 1E'4 E T LI | T T T T LI | E
) B o model a before « model a after N F 7
i model b before + model b after i 1E-5 E
1 s model d before + model d after - E E
- g 1E6 E° -
0 E E
o a s a E ]
2 e A PV 3 1E7 | -
s 1k o a 4 o E 3
s IS b, o ° N a A a N o E E
— I 28,0 © OO a0 ° » o g F E
> 2+ — - 8 b -
3 2 ., S o & oo 2 ] s 1E-8 3 3
g [ o %% T o - F ]
> o O ° 20 e, 0 1E-9 | -
3 P ° o E E 3
4 s N ° 2 S o 4 Ro o o & ° = E 3
5 " o F ]
6o _oa % o ° e : B %°%8% Lo s 1E-10 b =
5 L o s g o oo o 2 AR o] E E
s L N 1E-11 =
LS vy ] PP B A B I W

0.0 0.2 0.4 0.6 0.8 1.0 1 10

x/B x (Mpc/h)

FIG. 5. (Colour online) The solution by = ¢ — @ around a point
mass constructed according to Hg.](81), for the six test sgtmam
models in Tabléll (see the legend). The solid curves with #mes
bols and the numerical solutions are denoted by filled sysiiothe  colours are the corresponding analytical approximatiohghvare
same type and colour. Note that, insteadf(¢), we have shown accurate far from the point mass. Only solutions alongitasis are
log(¢/@). The horizontal lines with the same colours are the exacishown.

analytical solution, which is zero identically.

FIG. 4. (Colour online) Similar to Fid.]3, but for the dilatomodel.
For clarity only the results of models a, b, d (as indicatetheleg-
end) are shown: the initial guesses are represented by bty sgm-

the code units) in the symmetron case is given by

in which i, j, k are respectively the cell indices in they, = asx\3 _ e 2 (M — N)sin(27zx)
direction. In the test we use a cubic box with 250k~ 'Mpc (;) plz) =1+ [ } [2 — sin(27a)| N1
and 256 grid cells in each direction. We have done this test fo , M_N
all six models of tablflata = 1. — [2 — sin(272)] ’ (84)
On the other hand, the analytical solution can be obtainetvherex is rescaled so that € [0, 1]. We consider only the
approximately by solving the equation x-dependence, which is equivalent to a one-dimensional con-
figuration. The solution to this density field can be anagitic

worked out to b,
o(x) = |2 — sin(27x)]. (85)

Fig.[[shows the symmetron test results for the sine density
field given above, at = 1 and for the six models listed in
Tablelll It can be seen that the numerical solutions (symbols)
agree with the analytical solutions (solid curves) verylwel

Similarly, for the dilaton field let us consider the followgin

V260 ~ m?dp (82)

in which the effective mass of the scalar fiéld = ¢ — ¢ is
m? = ¢2HZ. The analytical solution is

dp o lexp(—mr)7 (83)
r

with r the distance from the point mass. Hilal
Fig.[§ shows the comparison between the numerical soludensity field

tions tody along ther-axis (symbols) and analytical solutions &a (27)2

(solid curves) for the symmetron models, and we can see thaf ) = Q,, A, 3

the two agree very well in all cases. The discrepancies dt sma

2 is because the linearisation procedure in deriving[B3).i6

not accurate and the discrepancy at:big because the size of 3

0¢ has reached the level of the discretisation efrdr [25].819. in which . is rescaled such thate [0, 1]. The solution to this

shows the comparison for the dilaton models, and once agai@ensity field can be analytically worked out to be
we find excellent agreements. ’

sin(2mx)

(86)

2 — sin(27x)

3
— — g T 2r-3
a2 2r —3 log [2 sm(27mc)” &
s

o(z) = %@ 12 — sin(2r2)] (87)

C. Sine density field

6 More exactly speaking, we specify the solution we want thiedo repro-
As our third test, let us consider the sine density field intro  duce and then use the EOM to calculate the correspondingtyléetl that

duced in[[25], which (after some modification to account for gives rise to this solution.



10 T T T

14

SN
R 4e3 model a
model b
+  model ¢
1E-4 + model d
model e
1E-5
1E-6 L1l . R | L
1 10
x (Mpc/h)

FIG. 6. (Colour online) The solution t6p = ¢ — ¢ around a
point mass constructed according to Eq. (81), for the fivediba-

ton models in Tabl&ll (see the legend). The solid curves tith
same colours are the corresponding analytical approxamsiivhich
are accurate far from the point mass. Only solutions aloag:thxis

are shown.

o
=}

0.2

0.4

0.6

computationz is rescaled so that/B € [0, 1].

Fig.Blshows the dilaton test results for the sine density field
given above, att = 1.0 for models a, b, c and at = 0.2
for model a listed in Tabll As in the symmetron case, the
agreementis very good.

D. Gaussian density field

The last test on the regular (i.e., unrefined) grid uses a-Gaus
sian type density configuration. Again, here we only conrside
one dimension, and for the symmetron case the density field
is specified as

(%) pta) =1+ (é)Q (a(M — N)(x — 0.5)/W*

N-1
“ ¢ 1 —aexp {—7@;3'25)2})

~(1-aew [_ﬂ])N (58)

W2

where again: has been scaled to code units so that [0, 1],
W, « are numerical constants which respectively specify the
width and height of the density field, which obviously peaks

atz = 0.5. Such a density field has been used in the code test
FIG. 8. (Colour online) Solutions of in a one-dimensionalaf

of [43].

0.8

-
o

FIG. 7. (Colour online) Solutions of in a one-dimensionalaxf
direction) sine density field constructed using Eql (84),the six
test symmetron models (as indicated besides the curves)sdlid
curves with same colour are the corresponding analyticalli®and
the symbols are the numerical solutions. A simulation bakwide
length of250h~'Mpc and 256 grid cells on each side is used in the

model a
model b
=~ model ¢
< model a, a=0.2

Note that such a density field is not exactly periodic at thedirection) sine density field constructed using Eq] (86)tlioee test

edges of the simulation box, but given thEtis small enough,

dilaton models (a, b, ¢) at = 1.0 and model a at = 0.2 (as indi-

5 — 0 at the box edges and periodic boundary conditions ar&ated besides the curves). The solid curves are the congisigoan-

approximately satisfied.
The solution top can then be obtained analytically and is

P(z) = pu [1 — aexp (—mﬂ)} ;. (89)

alytical results and the symbols are the numerical solstiérsimu-
lation box with side length a2504 ! Mpc and 256 grid cells on each
side is used in the computatianis rescaled so that/B € [0, 1].
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FIG. 9. (Colour online) Solutions of in a one-dimensionalaxf FIG. 10. (Colour online) Solutions ap in a one-dimensionalxf
direction) Gaussian-type density field constructed usigqg{88), for  direction) Gaussian-type density field constructed usiqg(€0), for
the six test symmetron models in Table | (see legends). Theé so three test dilaton models (a, b, c)at= 1.0 and test model a at =
curves are the analytical results from Hg.1(89) and the sysnbith 0.3 (see legends). The solid curves are the analytical predigfrom
same colours are the corresponding numerical solutionsméla- Eq. [89) and the symbols with same colours are the correapgpnd
tion box with side length 0250~ *Mpc and 256 grid cells on each numerical solutions. Other specifications are the same Eigif8.
side is used in the computation and the symmetron equationlys

solved on the regular domain gridlis rescaled so that/ B € [0, 1].

which clearly shows that whem — 1 |¢| could be made very AL L L R B R B

A . 1E6 = =
small atx = 0.5 while atx — 0 orx — 1 it goes top = ..
We have implemented E{B§) into our numerical code and er L ]
the numerical solutions fap are shown in Figd We can see
that they agree with the analytical solution H8GYvery well. s L 1
For the dilaton case we use the following density field
(z—0.5)2 (2—0.5)2 s B9 F E
3(2) &a 2o XP {_ W2 1 -2 (90) o e00 vt 3
pP\r) = s r =0.999, leve b
30, Ay W2 1 — avexp {_%ﬂ} 1E-10 E. 0=0.999, level 9 3
F a=0.9999X0.1, level 8 3]
. £ ]
_ o521 T 1E11 Lo =0.9999X0.1, level 9 ]
+ la23 4 2r—3 log |1 — ae™ — a3 Eo 2=0.99999X0.01, level 8 1 |
S [+ @=0.99999X0.01, level 9 L ]
1E-12 AR N I AU S SR NR NS S
0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58

wherez, W anda are specified similarly as above.

The test results for the dilaton models are shown in[EQ.
where again we find good agreement with the analytical solu-
tion Eq. B9.

x/B

FIG. 11. (Colour online) Same as Fig. 9, but for the model g and

a = 0.999, 0.9999, 0.99999 (from top to bottom: red, green, blue).

The symmetron equation is solved on two levels: level 8 (Guzilar
E. Equation solver on refinements domain grid) and level 9 (the first refinement), and their nticaé

solutions are represented by empty and filled symbols of dnees

The above tests show that our solver of the scalar field EOI\ﬁh"’lpe and colour respectively. The solid curves of the sanioeirs

K tel | ds. But i lodical si are the corresponding analytical solutions from Eq] (89%irAula-
WOrKS accurately on regular grids. butin cosmoiogical SIMu i, hox with side length 0250h~*Mpc and 256 grid cells on each

Iati.ons these equations are also splved on irregularlpestha  gjge is used in the computation and the symmetron equationlys
refinements where they can take different forms due to the respjved on the regular domain gridis rescaled so that/B € [0, 1].

finement boundaries [43]. It is therefore necessary to k&st t For clarity we have multiplied the results for = 0.9999 and
scalar field equation solver on refinements as well, which w®.99999 by 0.1 and0.01 respectively.
will do in this subsection.
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The Gaussian-type density configuration provides a good
way to check the multilevel scalar-equation solver, beeaus
the density peak can be made arbitrarily high by adjustieg th
parametery and the value of the matter density is the crite-
rion we use to refine grid cells in cosmological simulations. 1E-7
In the vicinity of this peak, the density fieffichanges rapidly
and higher spatial resolution is necessary to compufand
differentiate it to get the fifth forcegccurately.

Consider the case where the regular domain grid is refined
only once, in regions where the density value exceeds a given S Ee
threshold (we call this a ‘two-level problem’, and in the nu-
merical examples below the coarse and fine levels are respec-
tively levels 8 and 9). The density valugsn both the coarse
and the refined cells are calculated using B§) {or the sym-
metron case and E@Q) for the dilaton case, while the values 1E-11
of p at the fine-level boundaries are computed from interpola-
tion of those in the nearby coarse-level cells [43].

Fig.[IT shows the numerical values gfon both levels in
the region covered by the refinement, for the symmetron case.

We show the results for model a only and for four differentg,5 15 (Colour online) Same as Fig] 10, but for the model lg on
values ofa (0.999, 0.9999 and0.99999 from top to bottom),  anda = 0.999,0.9999,0.99999 (from top to bottom: red, green,
and for eachx the results from the coarse and fine levels arepjue). The dilaton equation is solved on two levels: leveth@ fegu-
denoted respectively by empty and filled symbols. For comiar domain grid) and level 9 (the first refinement), and theimerical
parison we have also plotted the analytical results[B).§s  solutions are represented by empty and filled symbols of dhees
solid curves. As we can see, both fine-level and coarse-levehape and colour respectively. The solid curves of the saroeirs
results are virtually indistinguishable from the exacugion. ~ are the corresponding analytical solutions from EQl (89%irAula-

This does not mean that the refinement is unnecessary holon Pox with side length 0250/~ ' Mpc and 256 grid cells on each
side is used in the computation and the dilaton equationyssaived

e"?“ beczuse,lfés shgwn In.m’ trlle fine Ie\ael has more d?ta an the regular domain grid: is rescaled so that/B € [0, 1]. For
pOInt§ and couid prope reg|on§ closer t(.) the e.Xtreme va ug 0cIaLrity we have multiplied the results foer = 0.9999 and0.99999
%, Which corresponds to the high density region where high,
resolution is needed.

For the dilaton, FigIZ2shows the numerical values gfon

both levels in the region covered by the refinem_ent. Again, we \When a new code is written, one needs to test its cosmolog-
show the results for model a only and for four different value jca simulations. This is straightforward for a standardeo
of o (0.999, 0.9999 and0.99999 from top to bottom), and for 4 ACDM simulations, because there are fitting formulae and
eacha t_he results from the coarse and fine levels are .denoteggsuns from other codes to compare to. Unfortunately, up to
respectively by empty and filled symbols. For comparison Weyoy there are no accurate fitting formulae for modified grav-
have also plotted the gnalytlcal res_ults ERBP) (as solid curves. ity theories such as symmetron, dilaton af{d) gravity. But
Excellent agreement is found again. several serialV-body codes simulating'(R) gravity (e.g.,
[25,128]) and symmetron models (e.d../[41]) do exist in the
literature: in both cases good agreement VIEBEOSMOG has
F. Other tests been found. See, for examplé, [43] for a comparison fir?)
gravity, and we have also checked explicitly that our sym-
In the above we have focused on various tests of the scal@netron simulation result agrees with thatlof/[41].
field solver of theECOSMOGcode, as this is the only new addi- ~ Finally, for cases where approximate analytical results ca
tion to the defaulRAMSES N-body code. These tests checked be obtained from other methods, we find good agreement be-
the validity of the new subroutines against different dgnsi tweenECOSMOG and the approximation solutions. An exam-
distributions, and the good agreements with analytical-sol ple is thef(R) gravity model of [11] with|df/dR| = 10—,
tions shows the validity of the code and its accuracy. the nonlinearity of which is very weak and so the matter power
As the standard gravity solver and particle-updating subspectrum can be approximated by linear perturbation theory
routines ofRAMSES are not touched, tests carried out for themdown to relatively small scales. This is actually confirmed i
(which show that th&®AMSES code works very well) need not  [34], which can serve as another test of B@OSMOG code.
be repeated here. The AMR simulation algorithm is often im- In short, theECOSMOGscalar field solver has been tested in
plemented in different ways in different codes; for a dethil
explanation of its implementation RAMSES and therefore in
ECOSMOG we refer to [[44] and [43] respectively. We do not
present the full details here as they are too long and thismpap ’ Another independent code which is still being developed atgrees with
is mainly concerned with the modified gravity physics. ECOSMOGvery well.

166 ——T—T— T

1E-8

@=0.999, level 8
a=0.999, level 9
«=0.9999, level 8, X 0.5
«=0.9999, level 9,X 0.5
4 0=0.99999, level 8, X 0.25 \! 1]
4 4=0.99999, level 9 X 0.25

1E-10

L | L | L | L | L | L
0.46 0.48 0.50 0.52 0.54
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y 0.5 and0.25 respectively.
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various ways, and several cosmological simulations of modi . .
y 9 TABLE Ill. The parameter values for the nine models used & th

fied gravity models usingCOSMOG agree with similar sim- . . )
. . symmetron cosmological simulations. For each model we Baee
ulations done using other codes, such as the codes developﬁ%

independently il’@ﬂﬂl]. ations of initial conditions, and therefore a total 6f.r4|n.s.
model name a. B, (N,M) 2998 realisations
ACDM — - — — 5
VI. COSMOLOGICAL SIMULATIONS Al 050 1.0 (2,4) 1.0 5
A2 050 1.0 (2,6) 1.0 5
In this section we describe and analyse the results of cos- A3 0.50 1.0 (2,6) 2.0 S
mological simulations of the dilaton and symmetron modified A4 0.50 10  (4,6) 2.0 5

gravity models. We also perforctdCDM simulations for com-

parison. For each model we run 5 realisations with the same B; ggg 1'8 (372) 1'8 g
physical parameters and simulation specification, buediff B3 033 10 52’43 2.0 5
ent realisations of initial conditions. The initial coridits are 4 033 1.0  (4,6) 2.0 5

generated usinyPGRAFI C [4€] at redshiftz; = 49.0 with
different seeds of random numbers. Since;at 49.0 the ef-
fect of the fifth force is negligible, the initial conditioskould
be the same for all models studied here. For the ease of com-
parison, we use the same random seed to generate initial con-

ditions for the same realisation of all models, includingisy 3. How the potential parametéd influences the results:

metron, dilaton and CDM. _ _ . . Model Al versus A2 and B1 versus B2.
The background expansion history in the studied dilaton

and symmetron models is in practice indistinguishable from 4. How the range\, = 2998¢ Mpc/h of the fifth force in-

that of the fiducialACDM model [17]. In all simulations we fluences the results: Model A2 versus A3 and B1 versus

adopt WMAP7[477] cosmological parameters, with= 0.71, B3.

Q= 0.267, Q4 = 0.733,ns = 0.963 andog = 0.801.

The size of the simulation box is chosen to be A28Vpc,

and the domain grfthas2® = 256 cells on each side. The grid

cells are refine when the effective number of particles imthe 1. Nonlinear matter power spectra

exceeds 9.0, and the finest refinement level equivalently has

24 cells on each side. The number of particlediis= 2563 The most direct way to see the effect of modified gravity

in all simulations. on the clustering of matter is to look at the matter power spec
trum P(k). We have measured the nonliné3k) in the sym-
metron models and calculated their relative differencemfr

A. The symmetron models the ACDM prediction. The results are shown in Figg [14

The power spectra are measured using the publicly available

The symmetron models are specified by the four model pac0dePOMNES [4€].
rametersu,, M, N and{. We have chosen to fig, = 1.0 .
for all our runs in order to see the effect of varying the other 1+ The symmetry breakingcale factom.. controls when

2. How the coupling strength paramet®raffects the re-
sults: Model A3 versus A4 and B3 versus B4.

parameters individually. The effect of varyify is to modu- the fifth force starts to kick in. From Fifl3we could

late the strength of the fifth force and was investigatedHer t see that decreasing. (i.e., moving from A models to
symmetron ini[41]. In Tabld[) we list the parameters for the B models) leads to a stronger matter power spectrum as
nine models we have simulated. the fifth force would have more time to participate in

structure formation. Notice that when< «. the mat-

ter power spectra in symmetron models are essentially
unchanged as can be seen in Bidl. This is because

on linear scales there is strictly no fifth-force effect be-
fore a = a., since the magnitude of the fifth force is
determined by thdackground matter density, which

In the rest of this subsection, we will focus on the effects
of changing each model parameter on the major cosmological
observables such as the matter power spectrum and halo mass
function. More specifically, we will analyse the results of o
numerical simulations according to the following:

1. How thesymmetry breakingcale factor, affects the is always higher thap. beforea = a.. However, on
results: Model Al versus B1, A2 versus B2 and A4 ver- nonlinear scales, the fifth force can kick in even before
sus BA4. a = a4 inregions where matter density drops belaw

thus the structure formation is affected even.at

8 As RAMSES and ECOSMOG are adaptive mesh refinements codes, the do-
main grid is defined as the finest uniform (regular) grid whickers the 9 In Fig.[14 symmetry breaking has just happened for A modelstea fifth-
whole simulation box. force effect has not accumulatedaat= 0.5.
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FIG. 13. (Colour online) The relative difference betweea thatter power spectra of the symmetron models and\@BM paradigm. The
symbols are from thé/-body simulations, and the curves are linear perturbatienry predictions. Details are illustrated by the legends,
a=1.0.

2. The parameteN of the matter coupling o ¥~ de- creasing the range moves the modifications of gravity

termines how the matter coupling evolves. As the field
moves towardg = 0 in high density regions, a larger

N means that the fifth force becomes more suppressed
as shown in[[17]. This effect can be seen in B8 (up-

per right panel)Note that varyingV also changes the
evolution ofp through the changes df(¢) andV (y);
however the numerical result here shows that this effect
is subdominant.

. The parameten/ of the self-interaction termp™ ¢
V() determines howonlinearlythe model behaves. A
higher-order (largeM) interaction term means that the
nonlinearities, and therefore the screening mechanism,
are less at play (sedlBAZ]), which again leads to more
matter clustering as confirmed by the lower-left panel of
Fig.[I3 This effect can also be seen by noting that the
nonlinear power spectra for the cases\éf= 6 are in
general closer to the corresponding linear power spectra
than for the cases dfl = 4.

. The range\, = 2998¢Mpc/h of the fifth force deter-
mines which scales are influenced by the fifth force. In-

to larger cosmological scales as can be seen ifIHg.

In the linear perturbation regime, the power spectra
for two models with different ranges\(; 2) are re-
lated bythe scaling relation?; (k) = Py (kX /Ae2).
However, this scalingio longer holds in the nonlin-
ear regimeFor example, when, decreaseghe sym-
metron mass becomes heavier, the screening effect is
enhanced and consequently the power spectrum is sup-

pressed (c.f. Figl3and gIITAZ)).

. At late times (Fig_113) the linear perturbation preditio

is a bad approximation to the full solution, which is be-
cause the symmetron EOM is highly nonlinear. Indeed,
as in the case of (R) gravity [34], the linear theory be-
comes inaccurate almost as soon as the power spectrum
starts to deviate from th&CDM prediction. This shows

the importance of properly taking into account the non-
linear effects (by numerical simulations) in the study of
structure formation in modified gravity models.

. The agreement between the linear and nonlinear results

becomes better at earlier times (c.f. Figl 14), when the
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FIG. 14. (Colour online) The same as Higl 13, butdot 0.5.

effect of nonlinearity has not accumulated for long. makesA P/ P frozen on small scales (thus remain monoton-
ically increasing) while at the same time still grow on large
In f(R) gravity models, it is known.[34] that the shape scales (e.gk > 1hMpc~?) as the fifth force still propagates
of AP/P follows a fixed evolution path, and at any given among different halos.
time the position of a model on this path is determined by the Tg understand this behaviour more properly would require a
properties of the fifth force and how long it has become nonqetailed study of the density and velocity fields, togethithn w
negligible. Similar patterns appear here, for example@Ah  their time evolutions, and these will be left to future worktw
modelsa,. = 0.5 where the fifth force becomes non-negligible higher-resolution and larger simulations.
later than in the B models, for whiah. = 0.3. Correspond-  As an illustration of the above effects, the difference be-
ingly, in Fig.[I3AP/P has a peak at ~ 1/Mpc~'. Onthe  yeen the symmetron models we have simulated £@BM
other hand, Fid. 13 shows that for symmetron model3/ P oy scales of order 1 Mpc can be as large as 30 percent today.
goes up again on very small scalésx a few), whilein f(R)  Thjs can be seen in Fig.13 for models B1 and B3 where the
modelsA P/ P decreases for these scales [34]. range of the force is respectively 1 and 2 Mpc and the highest
This pattern for the symmetron matter power spectrum caRyoyer in the potential is 6 and 4 respectively. On these ex-

be understood as follows. At early times the model is wellamples; the characteristic bump of the symmetron models can
described by linear perturbation theory and the symmetropsq pe seen in a clear way.

mass (and the coupling strengiip)) is nearly the same ev-

erywhere; the Yukawa nature necessarily means that the fifth

force decays with distance, and as a reduRk/ P increases _

monotonically withk at these times (see F[§4). Later when 2. Massfunctions

highly nonlinear and dense structures have formed, the sym-

metron screening mechanism starts to work so that the fifth We have measured the mass functions from our simula-
force inside these structures are efficiently suppressgd)(  tions using the publicly available codé¢dF [49], which is ef-
becomes small) and GR is locally restored since then, whicficiently parallelised using/Pl andOpenMP. The mass of a
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FIG. 15. (Colour online) The ratio between the mass funstioithe symmetron models and th€ DM paradigm at. = 1.0.

halo is defined as the total mass containe®ino, the radius  where the sum is over five realisations and the quantity with
at which the density contragt drops below 200 times the crit- an overbar denotes the average over five realisations.

ical density. For each model, includingDM, we have cal- In Fig.[I3we show the ratios between the symmetron and
culated the average and standard deviation of the mass fundCDM mass functions from our simulationsat= 1.0. The
tion over the five realisations. results az = 0.5 are shown in Figlgd

Because we are interested in how the fifth force can change The fifth force leads to an overall enhancement of the for-
the matter clustering, we show the ratio of the symmetron anehation of dark matter structures. The effect is strongest fo
ACDM mass functionsSR = nsymmetron/7acom. The stan-  intermedium-sized/ ~ 10'3h~1 M) halos and we find a
dard deviatiorr of R for each mass bin is computed using maximum enhancement in the mass function of arou(id
the normal rule of propagation of errors, according to whichcompared taA\CDM for the models we have simulated. For

we have the largest halo masses/( > 10'*h~!M,) the symmetron
o 2 o 2 ox )2 e o mass functic_)n goes towards<CDM as the symmetron screen-
(—R) = (ﬁ) (—A) —2pMEZA " (91)  ing mechanism makes sure the fifth force is effectively sup-
R MG A MG 1A pressed for such massive objects.

The subscripts;c; and, denote the modified gravity model ~ The effects of varying different model parameters on the
(the symmetron here and the dilation in the next section) anénass function are not as clear as in the power spectrum, but
ACDM respectively, ang is the correlation coefficient be- we can see the same trends. More specifically,

tween the mass functions of the two, i.e., _ _
1. For models with smalled. (i.e., the B models) we see

‘ . from Fig.[I8that a larger fraction of high mass halos is
> (nig — ve) (nf — na) obtained. As with the matter power spectrum, the mass
i 72 (92) function is essentially unmodified far < a, (see A
models in Figll§ for whicha, = 0.5 and the effect of

i = 2 i = \2
2 (mhie —ie)” 3 () —7a) the fifth force has not accumulatedat= 0.5). These

2 2

>
|
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FIG. 16. (Colour online) The same as Higl 15, butdot 0.5.

are to be expected since the fifth force is not at play orthe four parameters are highly degenerate. This behawour i
cosmological scales at such early timasd for smaller  different from what we will see in the dilaton simulations be
ax the fifth force has acted for a longer period. Hencelow.

more large halos form and fewer small halo survive the  The significant deviations of our symmetron models from
mergers the prediction of theACDM paradigm, as shown in Figs.]15

2. As mentioned in §1ITAR, increasing the parametér and1®, should be detectable by future surveys.

leads to a suppression of the fifth force, especially for
large halos and in high density regions whre< .
This can be seen from the upper-right panel of Eig. 15.
Note that in models B3 and B4 bofki and M are dif-
ferent, and the effect is not purely due to varyiNg

B. The dilaton models

) ] . ) ) ] In this subsection we analyse cosmological simulations of
3. As discussed in ETITA2, increasing’ makes it easier  the generalised dilaton models. We vary all four model param
for the scalar field to roll away fronp = 0 where the  etersa, . 5, r and¢, so that each of them takes 4 (3 fdy)
coupling strength vanishes. This leads to a stronger fifthyiferent values with the rest remaining the same. Thisltesu
force and consequently more large halos, as can be se@ 5 total of 12 dilaton models, as summarised in Td§E
in Fig.[18 (lower-left panel). The choices of parameter values are such that A2, B2, C2 and
4. Increasingé increases the rangk, of the fifth force D2 are the.same r.nodel,.to facilitate a cross (l:omparison. .
and leads to more high-mass halos. This can be seen in AS the dilaton simulations were run on a different machine
Fig.[8 from the symmetron ones, we have simulated the same default
ACDM models on both machines, and checked that they agree
As for AP/ P, the effects of varying different model pa- very well. This enables a direct comparison between dilaton
rameters on the shape Afn/n are similar, which shows that and symmetron simulations if needed.
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are from theV-body simulations, and the curves are linear perturbatieonry predictions. Details are illustrated by the legeadsla = 1.0.

TABLE IV. The parameter values for the 65 cosmological sinul
tions we have performed for this study. Note that '—' mearas the
parameters are unused for tA€DM case, and it means that the

model name A, Bo r ¢ realisations
ACDM — - - — 5
Al 2.5 x10° 0.50 1.00 0.001 5
A2 1.0 x 10° 0.50 1.00 0.001 5
A3 0.5 x 10° 0.50 1.00 0.001 5
B1 1.0 x 10° 0.25 1.00 0.001 5
B2 - - - - 5
B3 1.0 x 10° 0.75 1.00 0.001 5
B4 1.0 x 10° 1.00 1.00 0.001 5
c1 1.0 x 10° 0.50 1.33 0.001 5
Cc2 - - - - 5
C3 1.0 x 10° 0.50 0.67 0.001 5
C4 1.0 x 10° 0.50 0.40 0.001 5
D1 1.0 x 10° 0.50 1.00 0.0005 5
D2 - - - - 5
D3 1.0 x 10° 0.50 1.00 0.002 5
D4 1.0 x 10° 0.50 1.00 0.003 5

1. Nonlinear matter power spectra

This subsection contains results about the nonlinear matte
parameters are the same as in A2 in the cases of B2, C2 and D2. power spectra for the simulated dilaton modEig.[17 shows
the relative differences between the dilaton A@DM results

ata = 1.0, from which we can see the following properties:

1.

Decreasingi, leads to stronger matter clustering, since
A, controls the steepness of the coupling functifp)
(see Figll). As discussed in HIB2] the largerA, be-
comes, the steepet(y) is and the harder it is fop to

roll away fromy. whereg(y) = 0 — this means that
3 is closer to zero and the fifth force is more strongly
suppressed.

. Increasingg, leads to stronger matter clustering,&s

determines the strength of the fifth force.

. Ther-dependence is weak since large changésanly

take place at early times (see below). We see the feature
discussed in §IIB2] that increasing: decreases the
matter power on larger scales & 0.2Mpc/h) and in-
creases it on smaller scales; this happens in both linear
and nonlinear results.
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FIG. 18. (Colour online) The same as Higl 17, butdot 0.5.

4. As discussed in BB 2] decreasing simultaneously f(R) gravity models), for which only the first part con-
increases the strength and decreases the range of the tributes to the screening

fifth force, causing more (less) clustering of matter on _ ) )
small (large) scales. This can be seen by comparing the At @ = 0.5 (cf. Fig.[18), all the above properties remain,
results of D1 and D2. On even smaller scales, howeveMith the following noticeable features:

the matter power spectrum increases Witigain. 1. The agreement between linear perturbation theory and

the full simulations gets better as nonlinearities have not
reached their full effect. This is the same as the sym-
metron (see above) anfd R) [34] cases.

5. As in the symmetron case, at late times the linear per-
turbation theory is a rather bad approximation to the full
nonlinear dilaton model, and fails to accurately predict

the matter power spectrum even for~ 0.04h/Mpc. 2. The difference between the different C models becomes
This once again shows the important réfebody sim- - larger than at, = 1.0 because, as mentioned above, the
ulations have to p|ay in the studies of modified graV|ty effect of Changing is main'y to mod|fyﬂ(a) at ear|y
theories. times.

6. Overall, we see that the nonlinearity suppresses the mat- The linear-nonlinear agreement is even bettet at 0.3
ter power compared with the linear theory predictions,(see Fig[l9). This indicates that the nonlinearity of the model
which shows that the dilaton mechanism works well foronly becomes important at late times, which is possibly be-
large scale structures. The suppression of the fifth forceause the formation of high density structures only thevedri
comes from two parts: the smallnessoénd therefore ¢ to deviate from its background value.
Ve in high density regions, and the smallnesg 0f) — Most of our simulation results show less deviation between
this indicates that with the same configurationsahe  the simulated dilaton models adCDM than the case of the
fifth force in the dilaton models here is more strongly symmetron models. One of the reasons for this lies in the sim-
suppressed than in the case of a constépy (e.g., in  ulation details. In the symmetron models we have fixed the
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coupling strengtlB, = 1, while for the dilaton cases, except

for models B3 and B4, the coupling strength is taken to be at

mostB, < 0.5. As the fifth force scales a8?, this makes a
significant difference (c.f. Figl4 upper right panel). As an
example, model B4 differs fro‘dCDM by nearly as much as
the symmetron models do (and even more).

The shapes of the dilaton matter power spectra are worth 2.

discussing, as they show significant difference from thesas
of symmetron andf(R) gravity models. From Fig$. 17, 118

andI9 we can see that:

1. In both linear and nonlinear casespP/ P tends to flat-

ten on small scales. In the linear case, this is very differ-
ent from the behaviour of chameleon models with con-

stant coupling strength. In that case, the fifth force al-

ways has the same strength but at early times its range is

limited by the very heavy scalar field mass: this means
that on very small scales the fifth force has started en-
hancing clustering of matter ever since very early times,

which is why A P/ P keeps increasing with [17]. For

dilaton models, on the other hand, the scalar field mass
evolves more slowly and the coupling strength is sup-
pressed at early times: this means that by the time the 3.
fifth force becomes non-negligible, its range has be-

come large enough and below this range the growth
of matter density perturbations is enhanced in a nearly
scale-independent way (at least in the linear regime).
Such a feature can indeed also be seen in the linear pre-
dictions of A P/ P for symmetron models (cf. Fig13).

The flattening effect o\ P/P on small scales is pre-
served when varying model parametersand 3y, but

is weakened by varyingand¢. This is because, as dis-
cussed in &§1TBP, varyingl, and3, does not change
the scalar field mass, while varying the other two pa-
rameters does. Taking the parameteas an example,
increasingr makesm more sensitively dependent on
local matter density (i.e., more like a chameleon model
which has no flattening ich P/ P). On the other hand,
decreasing- makes$ more sensitively dependent on
local matter density and so suppresses the fifth force
on large scales; on small scales the suppression can be
compensated by the decreasespfvhich makeg ™"
larger, and the combined effect can be a weakened flat-
tening of AP/ P again.

Changes in- (and similarly in&) make eitherm or
B more sensitively dependent on local matter density,
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FIG. 20. (Colour online) The ratio between the mass funsetimithe dilaton models and theCDM paradigm at: = 1.0.

the deviation from linear perturbation results and the large halos the screening effect weakens this enhance-
screening effect get stronger, especially at late times ment, and many of the small halos have accreted more
when structures have developed. This explains why at matter or merged with other halos to form larger halos.
late timesA P/ P can decrease with time when varying

r andé. 2. As discussed in B 2] decreasingl, makes the fifth
force less screened, and as a result more large halos are
The above results imply that the shape of the nonlinear mat- formedand fewer small halos survive the mergers

ter power spectra can be different in dilaton and other modi-
fied gravity (e.g. chameleon) models. This will be studied in
more details in a forthcoming work.

3. Increasings, makes the fifth force stronger and pro-
duces more halos @l mass ranges probed by our sim-
ulations.The dependence afy is quite sensitive, for
example, forBy = 1 the deviation fromACDM can be

> Mass functions up to 50%, while for 5y = 0.25 this is less than 5%.

4. As in the case of the matter power spectrum, the mass
This subsection contains the result of the mass functions function becomes larger asincreases, and the depen-

from the dilaton simulations. The method to calculate the av dence onr is quite weak, especially when< 1 (mod-

erages and standard deviations here is the same as thahusedi  els C2, C3 and C4)As mentioned above, this is be-

the symmetron case. cause increasing simultaneously increases the cou-
Fig.20shows the results at= 1.0, where we can see that pling strength and decreases the range of the fifth force,

) o ] and the two effects cancel to some extent.
1. The dilatonic fifth force enhances the formation of dark

matter structures. The effect is strongest for medium- 5. The¢-dependence of the mass function shows a similar
sized halos and is weaker for very large and very small behaviour to that of the matter power spectrum. For ha-
halos. As in the symmetron case, this is because for very los more massive than 5 x 10134~ M, we find that



26

1.4 T T T T T T III T T T T T T 16 T T T T T IIII T T T T T T
| A1 i - B1 .
15 |- -
13 - 2 A3 — | - B3 I
I o B4 )
L —t— l 4 14 = —
= %IH J I < L T
SR i N L N Q13 - — —
8 +— —— J 8 I 1
L S 1 < T |
= L S q2 T 1 l l —
S = —| 2 T ‘—I—M ¥
5 5 r —— = ]
c S g1 b 1 —

0.9 1 Lol 1 T T N B | 0.9 1 Lol 1 T N B |

1E12 1E13 1E12 1E13
halo mass (My,,/h) halo mass (M,,/h)

14 T T T T LI I| T T T T T T 15 T T T T T 17T I| T T T T T T

C1 L D1 |

13 b = c3 14 . D3

+
;
s
=
:

i

=
[a]
)
<
E F
Sqq L T s | L
k] — T T
= | 1oy 1 § 11 = |
- el I = ]
10 =2 mmd e R — o f *“i AAAAAA —= 1 T 1
1 l r o
0.9 1 1 1 1111 II 1 1 1 111 0.9 1 1 1 11 11 II 1 1 1 111
1E12 1E13 1E12 1E13
halo mass (M_,,./h) halo mass (M_,,./h)

sun’ sun

FIG. 21. (Colour online) The same as Higl 20, butdot 0.5.

decreasing results in more halos being produced, sim- mation to the full theory. This implies that the screeninghef
ilarly to the matter clustering power &t~ 1hMpc~!. fifth force has not yet been very significant, as is confirmed by
For smaller halos, model D2 predicts fewest while D3,this figure, which shows a weaker suppression of the dilaton-
D4 gradually catch up D1, which is similar to the matter to-ACDM ratio at the high mass end. As in F@0, the mass
power atk > 3 — 4hMpc~!. Overall, thet-dependence function results att = 0.5 show a good match with the be-

is quite weak, similar to the-dependence. haviour of the matter poweNote also that the effect of vary-

ing r and¢ is larger at early times, which also agrees with the
As in the case of the matter power spectra, we are intetbehaviour of matter power spectra.

ested in the shapes of the mass functions. As discussed,aboveThe above results indicate that the period between(.5

changing- (or £) makes either the scalar field mass or the couand, = 1.0 is an important era for the dilaton model, during
pling strength more sensitively depend on local matteriens \yhich the structure formation is significantly affected bg t
and in both cases the screening gets stronger (especially faonlinearity of the model. In particular, we see that thepsha

large halos), consistent with what is seen in the matter powesf A P/ P and An/n experiences qualitative changes during
spectrum. A change ifl; strengthens or weakens the screen-thjs period.

ing effect but does not change the coupling strength for un-
screened particles, and as a result the mass function behave
asinf(R) gravity models|[28]. Finally, a change fiy mainly
affects the coupling strength for unscreened particlesnot
so much the degree of screening, which is whwy/n flattens
for large halo masses. A. Symmetron and dilaton screening

To see how the dilaton effect on the mass function changes
with time, we also show in Fii2I the ratio between the mass  Modified gravity models vary according to their screening
functions aiz = 0.5. As discussed in the previous subsection,mechanisms by which the fifth force is suppressed in local en-
at this time the linear perturbation theory is a better appro vironments. The Vainshtein mechanism works in theories of

VIl. DISCUSSIONS, SUMMARY AND CONCLUSIONS
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the Galileon type where a scalar field with non-canonical ki-it is screened in dense regions. An intuitive way to see this i
netic terms couples to matter in a reduced fashion in densk look at the expressions @fa) in these two models, as our
environments. Chameleons have an environment-dependatiscussion on tomography shows that this could be tramslate
mass that becomes large enough to Yukawa suppress the fififfito 5(p. ), therefore giving us a sense about the screening, at
force in dense regions. Finally, the symmetron and the dilaleast qualitatively. From Eq<. (H3.162) we can see that
ton share a similar mechanism whereby the coupling of the
scalar field to matter is field-dependent and can vanish in the
presence of dense matter. What distinguishes these twe type
of models is their scalar potentials: a Mexican-hat for sym-
metrons and a monotonic function for dilatons. The coupling
function for both types of models is a quadratic fundtbn
Following the idea ofl[16, 17], the generalised dilaton and
symmetron models studied here are completely specified by
two temporal functionsn(a) and5(a). These give the most
general models with a quadratic coupling to matter and scala
field mass that is a power-law function@fn the background

cosmology for the generalised dilatons. For the generhlise 2. |n dilaton models, the coupling grows exponentially

1. In symmetron models, the coupling vanishes at a.
(or equivalently forp > p,) and after that it grows as
a power-law function. Varying frond to g, between
a = a, and todayS depends quite sensitively anor
pm inthe regime wittp,,, < p,; however, the symmetry
of Vg can be quickly restored for,,, > p. resulting in
a strong suppression of the fifth force. In other words,
there is a cleacutoff density beyond which the screen-
ing is very effective, and this cutoff is close g, which
is fairly low.

symmetron models, the scalar field mass vanishes fora. with time and with decreasing density. As can be seen
and increases to its present cosmological value from tmen. | in Eq. (62),3 decreases and becomes vanishingly small
both models, the Screening of the fifth force is achievedglhl hi if one goes back in time or goesto high-density regionsl
density regions where the scalar field is trapped near the min much more quickly than it does in the symmetron mod-
imum of A(y). Yet the temporal dependences of the coupling els [c.f. Eq. [GB)]. This implies that the dilaton screen-

to matter are drastically different: for generalised syrtrores ing can become effective for lower densities than the
it varies smoothly from a vanishing value far< a, to its symmetron mechanism.

present value whereas the generalised dilatons it grows-exp ] ) o
nentially fast in the recent past of the Universe to reach itdt @ppears that the dilaton screening mechanism is more ef-
present value. ficient t_han the symmetron mechanism. However, local tests
As discussed if [17], the background expansion rate of sucff gravity are carried out in very dense regions, where the
models is practically indistinguishable from that of tharst  fifth force can be strongly suppressed in both models. With-
dard ACDM paradigm, so that the cosmological effects of theQUt Specifying the exact parameter values for a given model,
fifth force could only be seen in the large-scale structures. Peing it dilaton or symmetron, itis hard to say which one can
this work, we have performed large-scalebody simulations ~ Satisfy local constraints more eaffly
for the generalised dilatons and symmetrons, investigatin
detail the effects of varying the dilaton and symmetron pa-
rameters on the nonlinear structures of the Universe. Séme o
these parameters are associated with the coupling to n¥gtter
(3. for the symmetron cageand¢ which specifies the range  Let us now summarise the results for each model.
of the fifth force on the cosmological background. A few ex-
tra parameters are used in the parameterisation to define the
shapes of the potential and coupling function as functidns o
the scalar field. For the dilatons, these parametersiare
and for the symmetrons they are, N and/. The symmetron models we have simulated are close to what
Let us first discuss the common features of these models: is allowed by local gravity experiments. Those constraanés
. . mainly on the combination of the parametersands with the
e g et or ) eterinesihe vl gounin Sengis, bengan (amos) Lnconstined para.
more structures. eter. This parameter, WhICh Contro_ls the magmtude of tltha_ fif
force compared with gravity, can in principle be constrdine
2. Decreasing leads to a shorter range for the fifth force by its effect on the cosmic structure formation.
and therefore a smaller enhancement of matter cluster- Our simulations show that for a fiducial value/@f = 1.0
ingE. the symmetron models predict an enhancement of the nonlin-

. . t ith tACDM of up t040% f
In the end, the effects on structure formation are mainly dezai qozv&;zg?;:\%%m%(r&sz?z ~ 10 hl\(/l)pggl OLigZSNi(s)(re

termined by how fast the fifth force evolves and how efficientWe find an enhancement of up0% in the mass function for
halo masses in the range f'? — 10'4h =1 M.

B. Summary of numerical results

1. Generalised symmetron models

10 Of course, other types of coupling functions can be used,easave done
in the generalised symmetron model.

11 |n the dilaton case, changirgalso affects the coupling strength, making 12 It is clear that by varying the parameter values both modafste made
the dependence gqhmore complicated. either more or less screened.
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We have shown how the fifth-force effect is changed by
varying the other four model parametets; N, M and¢.

matter power for scales smaller than- 1hMpc—! be-
tweenz = 1 andz = 0. This is at leasb0% smaller

. than the linear perturbation result, again showing that
1. The parametew, controls when the symmetry in

Ve (p) is broken so the fifth force becomes non-
vanishing. Decreasing. gives it more time to influ-
ence the matter clustering, as a result not only the mat-
ter power spectra and mass functions deviate more from
the ACDM results but also their shapes change qualita-
tively (more discussion below).

. N is the parameter which controls the coupling strength
via B o< . Since|yp| is very small, increasing/ will
suppress the magnitude of (or the fifth force), and
therefore causes less clustering of matter.

. M is theshape parameter of the symmetron field poten-
tial, which determines how easy it is ferto roll away
from ¢ = 0 where vanishes. Increasing/ makes

the fifth force is efficiently screened in dense regions.
In the mean time, the mass functions are increased by
up to50% with respect to thé\CDM prediction. These
numbers assume thdt = 10°.

. Increasing r to 3/2 simultaneously increases the

strength and decreases the range of the fifth force. The
r-dependence of the matter clustering is rather weak as
a result of the cancellation due to these two opposite
effects. Assumingd, = 10° and 3, = 0.5, increas-

ing r to 1.333 only enhances the matter power spec-
tra by less thanl0% at k ~ 1hMpc~! and 15% at

k ~ 10hMpc~1, which is again significantly smaller
than the predictions of linear perturbation theory. The
mass function increases by up2a% in this case.

this easier, leading to a less-screened fifth force and thus
more clustering and structures of matter. 4. The effects of increasing are similar to those of de-
creasingr, and as a result the dependencetas also

4. ¢ controls the scalar field mass and therefore the range fairly weak

of the fifth force in vacuum), = 2998¢h~'Mpc. In-
creasing makes the scalar field mass (range of the fifth Again, future galaxy surveys can place realistic constsain
force) proportionally larger (shorter), and thus leads toy the models studied here.

a stronger suppression of the fifth force and limits its

range.

As a rough guidance, increasing the symmetry-breaking
scale factora, from 0.33 to 0.50, decreasing\, from

2.0h~'Mpc to 1.0h~'Mpc, increasingV from 2 to 4 or re- In both the generalised symmeton and dilaton models, as
ducingM from 6 to 4 are found to lower the enhancement of j, #(R) gravity models([34],we find that at late times the lin-

the power spectra and mass functions-byl0 — 20%. The gar nerturbation theory faiis to be a good approximatiomeve
parameters we adopt in the simulations are in the ‘redlistics,, quite large scalegi(~ 0.052Mpc—1). However, at earlier
range and can be tested by future galaxy surveys. times it gives better agreement with the full simulationisisT
indicates that the environmental suppression of the fiftbefo
becomes more important at late times when cosmic structures
(very dense matter clumps) have already formed. This high-
lights the importance of numerical simulations in the statly
We have also studied how structure formation in the gen{screened) modified gravity models.

eralised dilaton models is affected by varying the four mode  The deviations of matter power spectra and mass functions
parametersly, 5o, andg. from ACDM in the symmetron and dilaton models are not di-

1. The effect of increasingl, is to make the total effec- rectly comparablg, because they depend on the exact param-
tive dilaton potentiaV,q () steeper and so to keep the eter values used in each model. Howeve_r, we can see that the
scalar field closer tg,, wheres and the fifth force van-  Shapes oAP/P andAn/n can be very different in the two
ishes. The\CDM limit is retrieved by lettingds — oo. models, which is prob_ably_ a consequence of the different be-
According to our simulations, reducing, to 5 x 104  haviour of the respective fifth forces.
produces a- 20% enhancement in the nonlinear mat- At early times AP/ P increases witlt in both models (see
ter power spectrum between= 1 andz = 0, whichis -9, Figs. T4 arid 19), similarly to what we se¢ (&) gravity
significantly smaller than the linear perturbation predic-modelsi[23, 34]. Differences appear at late time when thte fift
tions, demonstrating the efficiency of the dilaton screenforce has been in effect for long enough:
ing mechanism. It also enhances the mass function by
maximally~ 25% in the same redshifts. These numbers
assume that, = 0.5.

3. Highlights and comparisons

2. Generalised dilaton models

1. For f(R) gravity models we see thdtP/ P develops a
peak atk ~ O(1)hMpc~1, and on even smaller scales
it decreases witk. The peak comes from the enhanced
matter clustering due to the fifth force acting between
clusters, and the turnover on small scales is because
(compared witlh CDM result) on these scales the short-
range fifth force still accelerates particles and prevents

2. The effects of increasing, are to strengthen the fifth
force overall, and3y, = 0 corresponds to thaCDM
paradigm. The simulations show that even increasing
Bo to 1.0 only causes30 — 35% enhancement in the
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them from further clusterifig. 1. to show the power of the modified gravity parameterisa-
tion proposed in [16, 17] in systematic studies of struc-
2. In the symmetron case, we also see the peakBf P ture formation,

atk ~ O(1)hMpc~!, and on even smaller scales it goes
up again. This seems to imply that the particle veloc- 2. to acquire a sense about the qualitative behaviour of the
ity inside halos stops being enhanced after the screen-  generalised symmetron and dilaton models, and the ef-
ing effect has kicked in (recall that the ‘cutoff’ den- fects of varying individual parameters, and

sity for screening is quite low here and that ‘screening’
here means a suppression of the amplitude, rather than
range, of the fifth force), as a result of which the shape
of AP/P on small scales is preserved since early times.

3. to make a preliminary exploration of the 4-dimensional
parameter spaces in these models and find models
which are testable by the near-future observations.

For all the test models in this paper, we find deviations from
eQjCDM with similar magnitudes as those found in tfigR)
on scales smaller thal ~ 1hMpc—". Such a flatten- gravity model|[28, 34], which means that many of the cosmo-
ing in AP/ P is expected in the linear perturbation re- logical tests off () gravity [29,31+:38] could in principle be
sults for both the symmetron and dilaton models, ascarned out here as well - .
in the linear regime the time at which the fifth force On the other hand, the predictions of the cosmological ob-
becomes non-nealigible is scale-independent below th ervables can be different from those in other modified grav-
scalem-"! For s ?n?netrons the flatter?in is destroved'Y models with screening mechanisms, such as the chameleon

0% y 9 Y& models For example, the shape of the matter power spectrum

by the screening effect, while for dilatons it is not. can be different in the symmetron, dilaton ap¢R) gravity
As mentioned in § VILA, dilaton screening can apply models, which implies that the respective screening mecha-

to lower matter densities: this indicates that the inter- . . : . . .
cluster fifth force can be strongly suppressed as welnisms indeed work quite differently. It would be interestin

: 1o understand better the origin of such differences andfsee i
gggq;hgsstgse 25;‘: 2235203/ eert edgv: 2’?133 l()rllfl),n“g;a Tg;i'rb—\ey can be used to distinguish between the different maldifie

a more definite conclusion could only be drawn after ag’ravity models in cosmology. These studies are under way.

more detailed study of the density and velocity fields in
the simulations, which is beyond the scope of this paper.

3. In the dilaton models, no obvious peak4f/P can
be seen: the power spectrum seems to have flatten
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C. Conclusions and outlook

In short, the aim of this paper is threefold:

13 Contrary to intuitive understandings, thisrist because ‘the fifth force is
suppressed on small scales’. The chameleon effect onlgesdhe range
of the fifth force, but not its amplitude within that range.
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