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Abstract. In the absence of inelastic scattering, Feshbach resonances produce
poles in scattering lengths and very large peaks in elastic cross-sections. However,
inelastic scattering removes the poles. Whenever the resonant state is coupled
comparably to the elastic and inelastic channels, the scattering length exhibits
only a small oscillation and peaks in cross-sections are significantly suppressed.
A resonant scattering length is defined to characterize the amplitude of the
oscillation, and is shown to be small for many collisions of ultracold molecules.
The results suggest that cross-sections for some ultracold collision processes will
be much less sensitive to details of the potential than has been expected.
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1. Introduction

A Feshbach resonance [1] occurs when a bound state of a two-particle system lies above a
dissociation threshold and is coupled to the continuum. Collision properties show sharp features
(peaks and troughs) near the energy of the resonance. In recent years, Feshbach resonances have
come into prominence in the study of ultracold atomic gases. In these systems the positions of
resonances can often be adjusted using applied magnetic fields, and it is possible to control the
interactions between atoms by tuning resonances to near-zero collision energy [2]–[4]. Magnetic
tuning through Feshbach resonances has been used to produce molecules in both bosonic
and fermionic quantum gases. Long-lived molecular Bose–Einstein condensates of fermion
dimers have been produced, and the first signatures of ultracold triatomic and tetraatomic
molecules have been observed. The new capabilities in atomic physics have had important
applications in other areas: for example, the tunability of atomic interactions has been used
to explore the crossover between Bose–Einstein condensation (BEC) and Bardeen–Cooper–
Schrieffer (BCS) behaviour in dilute gases. There is now great interest in extending the
capabilities from ultracold atomic to molecular systems, to explore the properties of dipolar
quantum gases and develop new forms of quantum control.

Most interpretations of Feshbach resonances have used concepts from the two-channel
model [4], in which the bound state and the continuum are each represented by one scattering
channel. This captures much of the crucial resonant behaviour observed in ultracold atom–atom
scattering. In particular, it predicts that the scattering length passes through a pole and the elastic
scattering cross-section exhibits a very large peak at a zero-energy resonance. However, it is
known from early work on nuclear reactions [5] that inelastic processes suppress resonant peaks
in cross-sections. The purpose of this paper is to explore the consequences of such effects for
ultracold atomic and molecular collisions. Whenever the resonant state is coupled comparably
to the incoming and inelastic channels, the scattering length exhibits only a small oscillation and
the peaks in cross-sections are dramatically suppressed. This is particularly important for the
prospect of controlling molecular collisions.

This paper will first summarize the results of two-channel resonance theory, to define
notation and establish a basis for comparison. The major differences introduced by inelastic
scattering will then be considered. The results are general, but to assist visualization the equations
will be illustrated with examples taken from the elastic and inelastic scattering of NH molecules
with He [6].

2. Resonances in the absence of inelastic scattering

When there is only a single open channel with orbital angular momentum l, the long-range
wavefunction may be written

ψopen(r) = Nk−1/2r−1 sin [kr − lπ/2 + δ(k)], (1)

where δ(k) is the phase shift and the wavevector k is defined in terms of the kinetic energy Ekin

and reduced mass µ by Ekin = h̄2k2/2µ. In the ultracold regime, cross-sections are dominated
by s-wave scattering, with l = 0. The most important parameter is the energy-dependent s-wave
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scattering length a(k), defined by

a(k) = − tan δ(k)

k
. (2)

This becomes constant at limitingly low energy, with corrections given by effective range
theory [7],

a(k) = a(0) + 1
2k

2r0a(0)2 + O(k4), (3)

where r0 is the effective range. The elastic cross-section is given exactly in terms of a(k) by

σel(k) = 4πa2

1 + k2a2
. (4)

For collisions of identical bosons, the factor of 4 is replaced by 8. However, the present work
will omit such extra factors of 2.

If there is only one open channel, the behaviour of the phase shift δ is sufficient to characterize
a resonance. It follows a Breit–Wigner form as a function of energy,

δ(E) = δbg + tan−1

[
�E

2(Eres − E)

]
, (5)

where δbg is a slowly varying background term, Eres is the resonance position and �E is its width
(in energy space). The phase shift thus increases sharply by π across the width of the resonance.
In general the parameters δbg, Eres and �E are weak functions of energy, but this is neglected in
the present work apart from threshold behaviour.

As a function of magnetic field at constant Ekin, the phase shift follows a form similar to
equation 5,

δ(B) = δbg + tan−1

[
�B

2(Bres − B)

]
, (6)

where Bres is the field at which Eres = E = Ethresh + Ekin. The width �B is a signed quantity given
by �B = �E/�µ, where the magnetic moment difference �µ is the rate at which the energy
Ethresh of the open-channel threshold tunes with respect to the resonance energy,

�µ = dEthresh

dB
− dEres

dB
. (7)

�B is thus negative if the bound state tunes upwards through the energy of interest.
Across an elastic scattering resonance, the S-matrix element S = e2iδ describes a circle of

radius 1 in the complex plane as a function of either energy or magnetic field, as shown in the
left panel of figure 1. In the ultracold regime, the background phase shift δbg goes to zero as
k → 0 according to equation 2 (with abg constant and finite), but the resonant term still exists.
The scattering length passes through a pole when δ = (

n + 1
2

)
π, corresponding to S = −1. The

scattering length follows the formula [8],

a(B) = abg

[
1 − �B

B − Bres

]
. (8)

The elastic cross-section given by equation (4) thus shows a sharp peak of height 4π/k2 at
resonance. The two widths �B and �B are related by

�B = −2abgk�B. (9)

At limitingly low energy, �B is proportional to k [2] while �B is constant.
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Figure 1. The resonant circles described by S matrix elements for low-energy
elastic scattering for two different resonances in He + NH (3�−). Left-hand panel:
the circle of radius 1 when only elastic scattering is allowed: incoming channel
n = 0, ms = −1 at Ekin = 10−6 K. Right-hand panel: the much smaller circles
(note the different scale) when both elastic and inelastic scattering are allowed:
incoming channel n = 0, ms = 0 at Ekin = 10−6 K (green, smaller circle) and
4 × 10−6 K (red, larger circle). The crosses show values far from resonance. In
both cases the resonant state has n = 0, ms = +1.

3. Resonances in the presence of inelastic scattering

In the presence of inelastic collisions, the scattering matrix has elements Sii′ . The diagonal
S-matrix element in the incoming channel 0 has magnitude S00 � 1 and may be written in terms
of a complex phase shift δ0 with a positive imaginary part [9],

S00(k0) = e2iδ0(k0), (10)

where k0 is the wavevector in the incoming channel. This can be expressed in terms of a complex
energy-dependent scattering length, a(k0) = α(k0) − iβ(k0) [10, 11], defined by analogy with
equation (2) as

a(k0) = − tan δ0(k0)

k0
= 1

ik0

(
1 − S00(k0)

1 + S00(k0)

)
. (11)

a(k0) again becomes constant at limitingly low energy. The elastic and total inelastic cross-
sections are exactly [12]

σel(k0) = 4π|a|2
1 + k2

0|a|2 + 2k0β
(12)

and

σ tot
inel(k0) = 4πβ

k0(1 + k2
0|a|2 + 2k0β)

. (13)
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When there are several open channels, the quantity that follows the Breit–Wigner form (5)
or (6) is the S-matrix eigenphase sum [13, 14], which is the sum of phase shifts obtained from
the eigenvalues of the S-matrix. The eigenphases and the eigenphase sum are real, unlike the
phases δi obtained from individual diagonal elements, because the S-matrix is unitary, so that all
its eigenvalues have modulus 1.

Across a resonance, the individual S-matrix elements describe circles in the complex plane
[15, 16],

Sii′(E) = Sbg,ii′ − igEigEi′

E − Eres + i�E/2
, (14)

where gEi is complex. The radius of the circle in Sii′ is |gEigEi′ |/�E. The partial width for channel
i is usually defined as a real quantity, �Ei = |gEi|2, but here we also need a corresponding phase
φi to describe the direction of the circle in the complex plane, g2

Ei = �Eie2iφi . For a narrow
resonance, the total width is just the sum of the partial widths,

�E =
∑

i

�Ei. (15)

As a function of magnetic field at constant Ekin,

Sii′(B) = Sbg,ii′ − igBigBi′

B − Bres + i�B/2
, (16)

where gBi = gEi/�µ1/2 and the width �B and partial widths �Bi are signed quantities, �B =
�E/�µ and �Bi = �Ei/�µ.

The partial widths for elastic channels (degenerate with the incoming channel) are
proportional to k0 at low energy. We may define a reduced partial width γE0 or γB0 for the
incoming channel by

�E0(k0) = 2k0γE0 or �B0(k0) = 2k0γB0, (17)

and the reduced widths are independent of k0 at low energy. By contrast, the partial widths for
inelastic channels depend on open-channel wavefunctions with large wavevectors ki and are
effectively independent of k0 in the ultracold regime. If the inelastic partial widths �Ei (or �Bi)
are nonzero, they eventually dominate �E0 (or �B0) as k0 decreases. The radius of the circle
(16) described by S00 thus drops linearly to zero as k0 decreases, as shown in the right-hand
panel of figure 1. This is qualitatively different from the behaviour in the absence of inelastic
channels.

As a function of magnetic field, the scattering length passes through a pole only if δ0 passes
through

(
n + 1

2

)
π, corresponding to S00 = −1. If there is any inelastic scattering, |�B0| < |�B|

and this does not occur. When the circle in S00 is small, the phase shift δ0 and the scattering
length a show only small peaks or oscillations across a resonance.

The expression (12) for the elastic scattering cross-section saturates at a value σel ≈ 4π/k2

when |a| � k−1
0 . Such values of |a| occur only when

∣∣δ0 − (
n + 1

2

)
π
∣∣ � 1 and thus when �B is

strongly dominated by �B0. Since �B0 is proportional to k0 and the inelastic contributions �Bi

are independent of k0, there is a lower bound on the value of k0 at which this occurs. Denoting
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the sum of inelastic contributions to �B as �inel
B , this is given by

|�inel
B | � |�B0| = 2k0|γB0|, (18)

k0 � �inel
B

2γB0
. (19)

The radius of the circle in S00 is �B0/�B. For small k0, where equation (17) applies, this is
approximately 2k0γB0/�inel

B . The formula followed by the complex scattering length is

a(B) = abg +
ares

2(B − Bres)/�inel
B + i

, (20)

where ares is a resonant scattering length that characterizes the strength of the resonance,

ares = 2γB0

�inel
B

e2i(φ0+k0αbg). (21)

Both ares and the background term abg can in general be complex and are independent of k0 at
low energy. The phase correction +2k0αbg in equation (21) is needed to keep the phase of ares

independent of k0. The explicit expressions for the real and imaginary parts of a(B) are

α(B) = αbg +
αres

[
2(B − Bres)/�inel

B

]
+ βres[

2(B − Bres)/�inel
B

]2
+ 1

, (22)

β(B) = βbg +
αres + βres

[
2(B − Bres)/�inel

B

]
[
2(B − Bres)/�inel

B

]2
+ 1

, (23)

where a(B) = α(B) − iβ(B) and similarly for ares and abg. The peak profiles for the elastic and
total inelastic cross-sections are given by equations (12) and (13).

In the special case where the background scattering is elastic (abg is real), unitarity requires
that the circle in S00 must loop towards the origin. This requires that ares is also real. Across
the width of the resonance, the real part α(B) of the scattering length a(B) then oscillates about
abg by ±ares/2 and the imaginary part peaks at β(B) = ares. When the background scattering
is inelastic, however, ares can be complex and the circle in S00 does not point directly towards
the origin. The lineshapes are then unsymmetrical, and β(B) (and hence the inelastic rate) can
show a trough as well as a peak. Nevertheless, the overall magnitude of the oscillations in the
scattering length is still governed by ares.

The behaviour derived here is analogous to that observed when laser light is used to tune
scattering lengths [10, 17]. However, in that case the amplitude of the oscillation depends on
the ratio of excitation and spontaneous emission rates, which both depend on the same dipole
strength (though the ratio of rates can be tuned with laser intensity). In the present case ares

depends on independent elastic and inelastic couplings. If ares is small, the resonant oscillations
in cross-sections and the scattering length are small.

The results (20) to (23) are valid when k0|ares| � 1. Whenever k0|ares| �� 1, equation (8)
fails at values of |a| small enough to reduce the height of the peak in the elastic cross-section
given by equation (12). Conversely, when k0|ares| � 1, S00 describes a circle of radius close
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to 1 in the complex plane; the behaviour of the scattering length is then well described by a
two-channel model and the peak in the elastic cross-section is of height ∼ 4π/k2

0.
The elastic partial width �B0 is proportional to k0 at low energy but becomes constant at

high energy. It may be written [18]

�B0(k0) = �B0C0(k0)
−2, (24)

where �B0 is independent of k0 and depends on the short-range coupling between the bound
state and the incoming channel. The factor C0(k0)

−2 is the amplitude matching function of
multichannel quantum defect theory, which is 1 at high energy but near threshold is [18]

C0(k0)
−2 = k0a

[
1 + (1 − abg/a)2

]
, (25)

where a is the mean scattering length [19] and a = 0.478(2µC6/h̄
2)1/4 for a van der Waals

potential −C6/r6. The transition between the linear and constant regimes depends on C6 and the
reduced mass [20], but typically occurs around Ekin/kB = 1 mK.

The height of the peak (or size of the oscillation) in the total inelastic cross-section is
proportional to |ares|. This in turn depends principally on the ratio of �B0 and �inel

B . Two very
different cases may be distinguished. If the same coupling term connects the bound state to the
incoming and inelastic channels, it is likely that �B0 and �inel

B will be comparable. Under these
circumstances ares will be of the order of a and there will be relatively small oscillations in the
scattering length. Conversely, if coupling to the inelastic (exoergic) channels is much weaker
than coupling to the elastic channel, ares will be large and the scattering length will exhibit a
large oscillation resembling a pole.

It is important to realize that ares (and thus the strength of the resonance) depends on the
relative magnitudes of the couplings from the resonant state to the elastic and inelastic channels.
This is not necessarily the same as saying that the degree of suppression depends on the strength
of inelastic scattering.

The peaks in individual inelastic cross-sections can be rather larger than those in σ tot
inel,

because the radius of the circle in S0i is (2k0|ares|�Ei/�inel
E )1/2, which is considerably larger than

2k0|ares| for small k0.

4. Examples from low-energy atomic and molecular scattering

For atomic collisions, the couplings to inelastic channels are sometimes weak enough that a
two-channel model remains accurate even when inelastic scattering is energetically allowed.
For example, Donley et al [21] and Thompson et al [22] have produced 85Rb2 molecules by
magnetic tuning in the vicinity of a Feshbach resonance between (f, mf ) = (2, −2) states of
85Rb near 155 G. The (2, −2) state is not the lowest in a magnetic field, and the molecules
can decay by spontaneous spin relaxation to atomic levels with f = 2 and mf > −2. The
resonant state has MF = mf1 + mf2 = −4, so this decay requires a change in MF and involves
very weak magnetic dipole coupling. However, the coupling between the resonant state and
the incoming channel (also MF = −4) is through much stronger central terms in the potential.
Köhler et al [23] have used coupled channel calculations including spin relaxation to characterize
the resonance and obtained abg = −484.1 a0 and �B = 10.65 G. Their lifetime τ = 32 µs for
the bare resonance state corresponds to �inel

B = h̄/τ�µ = 0.090 G. With these parameters,
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Figure 2. Real (red) and imaginary (green) parts of the scattering length for
3He + NH collisions in the vicinity of an inelastic Feshbach resonance at a kinetic
energy of 10−6 K. The lines show the results of equation 20. This is the same
resonance as shown in the right-hand panel of figure 1.

ares = 1.14 × 105 a0. The temperature in the experiments of Thompson et al [22] is 30 nK,
corresponding to k0 = 4.3 × 10−4 a−1

0 . In this system, therefore, k0ares ≈ 50 and the resonant
behaviour of the scattering length and the elastic cross-section is well approximated by a two-
channel model.

The situation is very different for rotationally inelastic molecular scattering, where the
potential anisotropy couples the resonant bound state to both the incoming and inelastic channels.
Under these circumstances ares will generally be small. In separate work, we have described
numerical tests of the equations derived here for He + NH(3�−) scattering in a magnetic field
[6]. This is a very weakly coupled system, and for the rotational ground state (n = 0) of NH
the channels with different spin projections ms are coupled only indirectly via excited rotational
levels. The background scattering is essentially elastic, so abg and ares are real. Figure 2 shows the
real and imaginary parts of the scattering length for magnetic tuning across an inelastic scattering
Feshbach resonance in this system. Even for He + NH, where the inelastic couplings are much
weaker than in most other molecular systems, ares ≈ 9 Å and k0ares � 1. The oscillations in
scattering lengths and elastic cross-sections are strongly suppressed at low energies.

There are also atomic systems where the coupling to inelastic channels is strong enough to
suppress the oscillations in scattering lengths. Such effects have been observed, for example, in
calculations on collisions of Sr (2P2) atoms [24], where the bound state is coupled to both the
incoming and inelastic channels by anisotropic potential terms.

Equations (20) to (23) can be adapted to apply to any parameter λ that tunes scattering
resonances across a threshold. The ratio �λ0/�inel

λ is the same for any such parameter (and is
equal to �E0/�inel

E ). The resonant scattering length therefore has the same value for any parameter
λ. ares is a universal measure of the strength of a low-energy resonance, independent of the
parameter used to tune it through a threshold.

This explains previously puzzling results obtained in low-energy reactive scattering.
Quéméner et al [25] and Cvitaš et al [12] have investigated the sensitivity of scattering
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cross-sections in Na + Na2 and Li + Li2 to variations in the potential energy surface. Scaling the
potential tunes reactive scattering resonances across threshold, and this produces oscillations in
the elastic and inelastic cross-sections. In these systems the couplings to individual vibrationally
inelastic channels are somewhat reduced by the large kinetic energy release, so that for low
initial v (with relatively few inelastic channels) some significant resonant peaks remain. For
initial v = 1, the cross-sections oscillate by about a factor of 10 as resonances cross threshold.
Even this corresponds to a relatively small oscillation in the complex scattering length (small ares).
However, the amplitudes of the oscillations decrease substantially with increasing vibrational
excitation of the colliding molecules and are almost smooth for v = 3 for both Na + Na2 [25]
and Li + Li2 [12].

Quite different behaviour has been observed in F + H2 reactions [26], but is also explained by
the present theory. Bodo et al [26] investigated the effect of scaling the reduced mass and observed
pole-like behaviour in the scattering length and large reactive cross-sections as a resonance was
tuned across threshold. In this case the resonant state is localized in the entrance channel of the
reaction, while the only exoergic channels are reactive ones that are separated from the entrance
channel by a high barrier. �inel

E is thus reduced relative to �E0. Because of this, ares is large
(>100 Å) and no strong suppression of the resonant peaks occurs.

The considerations of the present paper lead to a remarkable conclusion. It has been
commonly believed that collision cross-sections in the ultracold regime are extremely sensitive
to details of the potential energy surface, and that for molecules these dependences would be even
more limiting than for atoms. The present paper has shown that this is true only when the resonant
state is coupled much more weakly to inelastic (exoergic) channels than to the incoming channel.
There are some systems where inelastic processes are weak enough for scattering lengths to reach
near-infinite values at zero-energy resonances. However, in other cases inelastic processes will
suppress this behaviour. In general terms, the resonant peaks are suppressed by inelastic scattering
unless there is a specific mechanism that reduces the coupling to inelastic channels.
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