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Abstract 

A major advantage of distributed resources is their potential for deferring 

investments in distribution network capacity. However, utilizing the full 
benefits of these resources requires addressing several technical, economic 
and regulatory challenges. This paper explores the main prerequisites in 

terms of operational and organisational paradigm as well as regulatory 
framework and incentives for distribution network utilities to innovate and 

overcome these challenges. We propose a market-oriented approach termed 
as “contract for deferral scheme” (CDS) in order to adopt an economically 
efficient portfolio of distributed generation, storage technologies and 

demand response as network resources that provide capacity and defer 
demand driven network investments. Moreover, we discuss potential 

incentive mechanisms to address the issue of commitment by resource 
providers for delivery upon the request of network operator.  
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1. Background 

 

A traditional power system is characterised by conventional generation sources that 

inject large amounts of power into the transmission grid, which is in turn transported to 

passive distribution networks, and delivered to the end-users. Electricity distribution 

networks are a crucial element of power sector infrastructure and have a critical role to 

play in the smart and sustainable electricity sectors of the future. A key feature of the 

future networks is that they will perform in an operating environment and paradigm in 

which distributed generation (DG), demand response (DR), and storage facilities are 

important components of the system. This change is driven by climate and sustainability 

policies along with affordability and reliability of electricity supply. Future sustainable 

power systems will be based upon coexistence of conventional power plants and 

distributed generation, and tap into demand response and storage as network resources 

to defer and optimize network investments. 

The electricity distribution network operators (DNOs) are responsible for maintaining 

the safety and reliability of the network to support power flows and ensure quality of 

supply. Integration of distributed resources2 introduces new challenges and 

opportunities that require innovative technical, economic and regulatory solutions to 

overcome barriers and utilise possibilities. This includes enabling distributed resources 

to compete with alternatives in providing network and non-network services to the 

DNOs. In the context of non-network solutions, there is an opportunity for replacing or 

deferring grid reinforcement by meeting demand locally through deployment of DGs, 

storage technologies and reducing peak demand through demand response. This implies 

a change in the operating paradigm from passive to active distribution networks which 

enables managing a portfolio of generators, users, and storage as network resources. 

From an economic viewpoint it is important that innovative solutions are both effective 

and cost efficient. For instance, the cost of distributed resources as a means to satisfy 

local demand needs to be lower than traditional network reinforcement in order to be 

considered as an economical alternative. However, a challenge is to attribute a value to 

these energy resources. This is because there is no clear instruction available to value a 

complex set of technical and financial opportunities (and challenges) raised form 

integration of these resources. Moreover, adopting distributed resources in order to 

defer demand driven grid reinforcement requires extending the traditional business 

model of distribution companies. Thus, along with technical concerns, a great deal of 

complexity lies in the economic and regulatory sides of these innovative solutions. For 

example, the issue of ownership model of resource facility, differentiating between 

costs of capacity and energy, dispatchable and non-dispatchable generation, possibility 
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of trade in other markets, managing storage and demand response are important issues 

that need to be addressed. Moreover, the presence of uncertainties such as the 

sustainability of costs and possibility of demand reduction over time constitute some 

risk elements. 

This paper explores a new approach to integration of distributed resources as 

alternatives to distribution grid reinforcement and highlights some prerequisites of 

enabling innovative solutions in terms of operational philosophy and economic and 

regulatory issues. Also, we propose a three stage market-based approach termed 

“contract for deferral” scheme in order to employ a portfolio of generation, storage 

technologies and demand response to supply network capacity and defer demand driven 

investments. 

The next section discusses the need for innovative network solutions from an efficiency 

perspective and explores some of the main other advantages of distributed generation. 

The need for a new operational model of distribution companies is explored in Section 

3. Section 4 discusses the state-of-the-art of the literature on estimation of benefits of 

distributed generation in terms of investment deferral. Regulatory challenges and their 

possible solutions are presented in Section 5. Section 6 presents an extended business 

model for distribution network operators. Finally, Section 7 concludes the paper. 

 

2. Innovative Approaches to an Old Issue 

 

One of the main responsibilities of distribution utilities is to carry out necessary grid 

reinforcement in order to ensure continuity of supply as demand grows. In doing so, the 

network companies project the growth of electricity consumption and assess the scale 

and type of investment needed to meet future demand.  

A feature of traditional network upgrade is that while demand grows gradually, network 

reinforcement is carried out in large increments requiring lumpy investments. As a 

result, part of grid capacity remains idle for long periods in anticipation that demand 

catches up. Therefore, in a network reinforcement cycle, the total capital employed, to 

deliver a given amount of output, is higher than the theoretical optimum needed at any 

given time. This, in turn, raises the issue of inefficient utilisation of resources and as a 

consequence leads to distorted connection charges. Figure 1 presents the demand 

growth path and a corresponding network capacity enhancement schedule.    denotes 

the initial capacity and    represents the added capacity as a result of reinforcement. 

The issue of resource inefficiency, in demand driven network investments, is 

exacerbated when the mid or long term development of demand are uncertain. As 

demand grows the productive efficiency of network will improve because more capacity 
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will be utilised. However, demand for electricity can also decline instead, in which case 

the idle capacity of the system increases the productive inefficiency (Jamasb and 

Marantes, 2011). Factors such as higher efficiency of appliances, demand-side 

management, higher building standards, higher prices and change in consumption 

profile of region due to movement of a large consumer (e.g., factories) can reduce the 

rate of increase or even reverse the demand growth. The case of upward deviation of 

demand from projections is less critical for system efficiency, as there is the possibility 

of investment according to the need such that shortages in network capacity can be 

avoided. 

 

 

Figure 1: Demand growth and network capacity enhancement 

Source: Authors 

 

The electricity distribution networks are natural monopolies and their revenue is 

regulated in order to induce cost efficiency. However, while the conventional operation 

paradigm and incentive properties of the regulatory framework have mainly led to 

“operational cost efficiency” of the networks; there is less evidence of “investment 

efficiency” through implementing smart solutions. Considering the scale of investments 

associated with network reinforcement, even a partial solution that proportions capacity 

upgrade with demand growth can improve economic efficiency and social welfare.  

An alternative solution to the traditional network enforcement is to meet part of the 

demand for energy services locally through DGs, storage technologies and managing 

demand through effective demand response programs. Although the effect of 

investment deferral is not coming only from DGs, they are among the most promising 
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and reliable resources for this purpose. Demand response and storage facilities, when 

adopted along with DGs, can give a boost to grid investment deferral.  

Distributed generation sources are connected to the low voltage distribution network so 

they avert the need for costly redundant transformers. Hemdan and Kurrat (2011) show 

that efficient integration of DGs can, by correctly siting them in the network, provide a 

solution to the increasing demand for load. Depending on the location and network 

condition, some grid reinforcement with shallow costs may be involved in initial 

connection of distributed generation. However, beyond that, one effect of DG can be 

that it defers deep investments for grid capacity expansion.  Moreover, as DGs can be 

installed frequently and in small increments they can alleviate the inefficiency from the 

underutilised capacity when grid is reinforced (Hoff et al., 1996).  

The benefits of DGs are not limited to deferral of investments in distribution networks. 

The main driver of DGs is environmental policies aiming at a sustainable electricity 

supply. Furthermore, there are potential technical advantages in the uptake of DGs 

including reduction of network energy losses, quality of supply and reliability 

improvement (Zangiabadi et al., 2010; Jamasb et al., 2005). Table 1 presents the main 

advantages of distributed generation and the services they provide. As shown, peak 

power reduction and ancillary services are tied in with all benefits of DGs. The case in 

favour of the integration of DG becomes stronger when taking the entire network and 

system benefits into account, although deferral of investments and resource efficiency 

improvement are sufficient standalone economic justifications. 

 

DG Services DG Benefits 

 

 
 
Peak power reduction (*) 

 
Ancillary service provision ( ) 

 
Emergency power supply ( ) 

Energy cost saving *     

Investment deferral of generation capacity*   

Investment deferral of network reinforcement*   

Reduce right of way need for grid infrastructure *   

System reliability benefits *     

Reduce network energy loss and congestion *     

Power quality benefits *     

Increase power system resiliency *     

Environmental advantages *     

Table 1: Services and associated benefits offered by distributed generation 

Source: Adapted from DOE (2007) 
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3. Distribution Network Management: From Network Operator to 

System Operator 

 

Distribution grids have traditionally operated as passive networks which receive power 

from high voltage transmission grid and then transfer it to the end user without having 

much control over the power flows. As the grid only relies on the reserve element of 

capacity to avoid outages and other rare events, the grid capacity available to new 

generation connection is often about half of installed capacity. Therefore, network 

capacity for DGs integration is limited under the current planning and operation of 

distribution companies.  

However, under an active management paradigm, the connection capacity is aligned 

with the improvement of technical characteristics and efficiency of the network. This 

allows the system operator to create additional capacity to host more new generation 

resources without voltage and thermal constraints violations (Zhang et al., 2009). Under 

this condition, DGs also serve as network equipment or an integral part of DNOs and 

not only as conventional power plants that are connected to the grid.  

Moreover, public opposition concerning new grid infrastructure is increasingly an issue 

for network companies (Tobiasson et al., 2013). Local community opposition, protests, 

and legal challenges, can significantly impede grid expansion plans and raise the project 

cost to the network operators and rate payers. Investment in technologies that allow 

effective utilisation of installed grid capacity will be more likely to gain public support 

compared to traditional network expansions. Therefore, active management of network 

to increase utilisation of existing network capacity can offer significant benefits for 

distribution utilities in this respect. 

Active management of networks requires real time control and management of DGs and 

distribution network equipment based on real time measurement of primary system 

parameters such as voltage and current (Zhang et al., 2009). This is to ensure that these 

parameters remain within their operating constraints. Integration of DGs might result in 

bidirectional power flow, something which the current distribution grids are not 

designed for. The main issues confronting the grid as a result of distributed generation 

connection include: islanding, voltage regulation, harmonics, reverse power flow 

effects, over-voltage condition, metering, and system losses (Dondi et al., 2002). 

Investments in remote DG control can overcome some of these issues. At the same 

time, ancillary services can be provided as by-product of these technologies. Thus, the 

need for active network management will increase as more DGs are connected to the 

low voltage network. Also, the scale of DGs can open new possibilities for managing 

and planning the network.  
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Penetration of DGs in low voltage network requires a shift in operational philosophy of 

distribution network operators. The DNO does not have the ability to influence the 

demand and generation, as required, when the reliability of system is endangered. In 

fact the system possesses finite flexibilities to meet the regulatory requirements 

concerning quality of supply and to prevent major network failure. Moreover, DNOs 

can only carry out network expansion in response to peak demand growth and there is 

little room for innovative solutions under their current operating paradigm. Thus, a 

paradigm shift in the role from DNO to distribution system operator (DSO) can pave the 

way towards implementing smart solutions (Poudineh and Jamasb, 2012a).  

The distribution system operator (DSO) will control a portfolio of generation, demand 

response and storage technologies and effectively use them for efficient operation of the 

distribution network. A DSO will be able to manage a network with more flexibility and 

has more control over the power flow and voltage profile. The flexibility of power flow 

and control in the network along with access to the demand and generation response 

will enable the DSO to contribute to balancing of the power system. Figure 2 illustrates 

a schematic view of the new opportunities arising as a result of evolution of DNO to 

DSO. As shown in the figure, DSO can manage dispatchable, non-dispatchable, storage 

facilities and flexible demands resources to promote efficient operation of distribution 

network. Moreover, some resources such as flexible demand can contribute towards the 

resource adequacy as well as reliability of whole system when there is a smart 

infrastructure in place that enables an effective demand response.  

 

 
Figure 2: A future distribution system operator (DSO) model 

Source: Authors 
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Non-regulated activities 

An increasing volume of embedded generation along with the evolution of distribution 

system operator will introduce new business opportunities such as creating a market for 

ancillary service at distribution level, commercial and technical aggregations of non-

dispatchable resources etc. Ancillary services are those interconnected operations that 

are necessary to support flow of power from generator to the end consumers. Some of 

the most important ancillary services are: frequency response, primary and secondary 

reserve through generation or demand, fast start load reduction, warming and hot 

standby, reactive power and black start (Waghorn, 2003).  

Under the current operating paradigm, DNOs do not purchase any ancillary services 

from distributed generations connected to their network. This is because, firstly, these 

services are procured by transmission system operator (TSO), on behalf of the all 

customers, and then the cost of these is passed to the consumers through uplift in 

transmission payment (Raineri et al., 2006). Secondly, due to traditional engineering 

requirement and security standards, up to now, the incentives were concentrated on 

network assets and distribution companies were required to provide these services 

through the installed network capacity rather than embedded generation. Thirdly, there 

is currently no market in place, at the level of distribution network operators, which 

enable trading ancillary services.  

The active network management provides an opportunity for a DSO-managed market 

based solution for ancillary services rather than viewing it as an integral part of 

transmission system operator. This market will bring about technical as well as financial 

benefits. From a technical view point, distribution networks need to meet power 

security and supply requirement based on a set of specified standards. From an 

economic perspective, these services need to be procured at the lowest possible cost. 

Therefore, such a market model will help achieving technical objectives in a cost 

effective way.  

The operation of companies in this market will be outside their current regulated 

activities and will not affect the regulated part of their business. This might create 

incentive for the companies to engage in this market. However, the objective of local 

balancing should not come at the detriment of national balancing system. Thus, the 

balancing operations of DSO need to be in full coordination with transmission system 

operator. Moreover, if network companies at different geographic regions are able to 

define their needed product based on their own requirement, there will also be a 

possibility for a single ancillary service market across different regions (Waghorn, 

2003). 
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4. Distributed Resources and Investment Deferral:  

Value Assessment 

 

The plethora of studies has attempted to assess the value of distributed resources with 

respect to their impact on distribution network investment deferral. These studies 

mainly revolve around distributed generation as it is considered a promising energy-

based alternative for distribution network capacity enhancement. The proposed methods 

in the literature are based on two different perspectives of this issue. The first approach 

attempts to attribute a cost to the distributed generation for a given level of network 

investments whereas the second approach tries to investigate the impact of (a given) 

distributed generation on network investment deferral. Figure 3 summarises the 

approaches adopted in the literature.  

Hof et al. (1996) in an early study address the issue of valuing DGs as alternative to grid 

reinforcement. They simplified the assessment by assuming that the value of DG 

originates from two sources: the effect on operating costs and the effect on capacity 

investment of distribution companies. The study calculates a break-even price for 

investment deferral taking into account economic and technical constraints. The break-

even price is per unit of capacity value of DG that makes a distribution company 

indifferent between undertaking conventional investments and procuring this service 

from DG. Other studies in this category include Miri-Larimi and Haghifam (2012) that 

attempted to obtain a minimum energy price for DGs while taking into account a 

number of benefits. 

 

 

Figure 3: Approaches to evaluate DG as a non-network solution 

Source: Authors 
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The second category is based on evaluating the effect of DGs penetration on deferring 

network investments. Mendez et al. (2006) propose an approach, based on Monte Carlo 

simulation, to assess the medium and long term impact of DGs on investment deferral 

of radial distribution networks. The study demonstrates that after initial investment for 

connection of DGs, the net effect of DG is that it can defer capacity enhancement driven 

by natural demand growth. Also, they show that the intensity of the effect depends on 

the type of distributed generation. For example, wind turbines have less effect on 

investment deferral compared with combined heat and power (CHP) due to the 

intermittent nature of the production of the former. Moreover, their approach shows that 

a dispersed siting of DG resources will improve the effect.  

Gil and Joos (2006) attempt to quantify the value of network capacity upgrade deferral 

of DGs. The study found that the benefits are maximised, if DGs are sited at the end of 

long feeder and near load pockets because of their effect on energy losses and 

congestion reduction. They also suggest that assessment of DG value in terms of 

capacity ($/kVA) and/or energy ($/KWh) is a function of the utilities upgrading 

strategies and under circumstances that DG is not owned by utility, it is important to 

quantify the value with respect to both.  

Pudaruth and Li (2007) have attempted to quantify the costs and benefits of DG for 

investment deferral of distribution companies. Their approach is based on the principle 

that the time horizon of future reinforcement of an asset in the network can be evaluated 

from the asset loading level and the projected load growth rate. Their method aims to 

translate the investment horizon into monetary terms reflecting future network 

development cost. The study quantifies the network costs or benefits introduced by DGs 

in terms of thermal capacity limits of lines and assets.  

Piccolo and Siano (2009) analyse the implication of DNOs’ preferences for the size and 

location of DGs uses a multiyear multi-period optimal power flow method. They also, 

examine the implication of regulatory model on optimal connection of DG within 

existing networks. Wang et al. (2009) adopt the UK Engineering P2/6 approach and 

demonstrate that significant benefits, in terms of investment deferral, can be harnessed 

if the DG contribution to system security is taken into account. Moreover, they show 

that the deferment varies significantly with the location and size of the generator. 

Another related work is Zhang et al. (2010) that attempt to measure the effect of micro-

generation on deferral of investments in transmission lines and show effective site 

reallocation will increase the benefits of capacity deferral for the same amount of DGs 

connected. 

Schroeder (2011) argue that demand side management and storage also constitute 

important tools in operation of distribution networks that could benefit system operation 

by avoiding capacity shortages. He shows that, in the case of storage, for example, grid 
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reinforcement can be avoided at some voltage level without harming system security 

because the network capacity utilisation rate will remain well below the threshold. Also, 

he noted that the effect of demand side management will be stronger when more flexible 

demands such as electric vehicles are available. Similar to the case of distributed 

generation, the advantages of storage and demand response are not limited only to the 

deferment of network reinforcement but they also include, peak shaving, spinning 

reserve, voltage and frequency regulation, and dealing with variability of supply side 

(Zafirakis et al., 2013). 

 

5. Regulatory Aspects 

 

Under the current power sector operating paradigm, adoption of storage technologies, 

demand side participation and penetration of DGs are policy driven rather than being 

market oriented. Hence, the rate of penetration of these resources are influenced by 

regulation and incentives provided by the energy regulators. These incentives usually 

address the principal stake holders that are DNOs and resource provider (e.g., DG 

developers). In order to unlock the system benefits of distributed resources, the 

technical and institutional framework that form the behaviour of the power sector need 

to be realigned. A significant part of this change involves levelling the playing field for 

distributed generation and allowing DNOs to take on a new and more active role. Some 

of the most important challenges as a result of distributed resources uptake are 

presented here. 

 

5.1 Ownership model of DGs 

In order to fully realise the system benefits of DGs concerning investment deferral and 

technical requirements, DNOs need to exert some degree of control over the location 

and operational status of DGs. Under the current regulatory framework, the power 

sector is unbundled and DNOs are prevented from owning generation resources 

(Niesten, 2010). Although, this is important in terms of economic advantages and 

efficiency for the wholesale electricity market, it hampers coordination between 

network and generation planning when DG is planned and connected. Moreover, the 

European directives 2005/89/EC and 2003/54/EC state that DNOs should consider DG 

connection as a solution for network expansion (Piccolo and Siano, 2009; Wang et al. 

2009). However, the directives give no instruction as how this can be achieved under 

the unbundled sector model.  

There is some scope for regulatory innovations that can alleviate this problem to some 

extent. These solutions are a function of rate of DG uptake in a particular region and can 
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broadly be categorised into low penetration and high penetration scenarios. For 

example, where penetration of DGs is very low in a particular region and virtually there 

is no chance of competition, regulator can authorise some limited “conditional 

ownership” of DGs by DNO given that the following conditions are satisfied: 

 DNO can demonstrate that DG is strategically located within the grid in order to 

avoid demand driven network investments.  

 DNO can show that it is more appealing economically than conventional 

network reinforcement.  

 DNO commits to transfer the ownership of DG to the third party upon request of 

regulator based on some pre-specified agreements with regulator.  

The reasons behind the third condition is that if  the situation of the region changes over 

time in the sense that more independent DGs are installed, then there is no justification 

for DNO ownership of DGs as the model of high penetration scenario can be 

implemented. Moreover, the regulator may be concerned about non-discriminatory 

access to the network by new DG developers. Therefore, the exit strategy is to ensure 

that there is no discrimination and it converges to the high penetration scenario where 

feasible, and also to reduce the possibility of gaming the regulator. Despite these 

possible challenges, this method is straightforward for DNO as it averts the need for 

economic evaluation of per unit of capacity cost of DG because it is feasible where the 

total cost of integration is lower than that of network reinforcement.  

In the high penetration scenario, the regulator can, where feasible, directly or indirectly 

incentivise connection of DGs by the DNO, as an alternative to grid reinforcement. At 

the same time, it allows the DG developers to bid in competitive auctions for capacity 

contracts. From the regulatory perspective, this approach is preferable over the previous 

method, because it is independent of network operator’s situation and the DNO does not 

need to meet a specific condition. Also, it does not violate the operating condition of an 

unbundled power sector paradigm. Furthermore, the presence of a well-designed market 

with sufficient number of players will more likely produce efficient outcomes. 

However, in smaller parts of the network a DNO-owned model may be preferable. 

 

5.2 Incentives and alignment of benefits 

The current incentives for integration of DGs by DNOs are not directly relevant in terms 

of the impact that DG would have on network infrastructure and on generation supply. 

For example, siting a DG close to demand centres or an area served by frequently 

congested lines will be beneficial for DNO as it reduces network energy losses and has 

a real impact on demand driven investments. Therefore, the effect of DG on grid 

depends on many factors such as location, technological specification and timing of 

investments (Vogel, 2009). Lack of a mechanism that aligns these benefits between DG 

developer and DNO might reverse the expected advantages of DGs integration.  
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An example, in this respect, is the network energy losses. Networks are incentivised to 

reduce losses and are rewarded or penalised for outperforming or underperforming the 

loss targets. Although, DG can reduce energy losses, it is generally bounded by time 

and location and under the condition that capacity exceeds the demand it even can 

increase overall energy losses because the relationship between capacity and loss is U-

shaped (Harrison et al., 2007). Therefore, given this relationship, DNOs might be 

exposed to DG induced losses with consequences for their revenue. On the other hand, 

generators are not incentivised for their positive or negative impact on the network 

losses. Hence, there is an inherent conflict between the interest of developers that might 

wish to increase DG penetration and the DNO which might avoid DG induced losses.  

The solution for these issues might lie in devising an efficient connection charges for 

DGs. A mechanism that not only includes the real cost of connection but also rewards 

when DG installation is in line with the optimal operation of the network (Jamasb et al., 

2005). The distribution use of system charge (UoS) can play an important role in this 

respect. In fact connection charges, for DGs, could be based on their capacity and the 

sole-use network asset used. On the other hand, rewards can be grounded on generator 

exported power at system peak, proximity to the frequently congested zones and the 

network asset utilised. This is to ensure that the reward will reflect the estimated 

investment deferral driven by demand growth. Taking into account these cost drivers for 

devising the charges and rewards will help to guarantee that they are aligned with the 

costs imposed by DGs on the network.  

Also, within the regulatory framework, the instructions should be transparent, consistent 

and unidirectional in order to boost innovations. For example, in the UK, under the 

RIIO-ED1 regulation model, innovative solutions are incentivised by way of rewarding 

the downward deviation from the expected capital expenditure in business plan of 

DNOs (Ofgem, 2012). While this seems desirable, the regulatory framework does not 

provide clear indication of how to address the issue of network reinforcement using 

non-network solutions. This potentially increases the barriers for DNOs to implement 

smart solutions and might force them to forego operational benefits of DGs and choose 

conventional network reinforcement. 

 

5.3 Demand response and storage facilities 

Demand response and storage technologies are also potential resources that can act as 

alternative to the conventional network reinforcement. In order to fully utilise these 

resources and improve efficiency of grid operation, the challenges concerning 

participation of demand response and storage technologies need to be addressed 

effectively. For example, the rules governing electricity markets and reliability 

requirements have been designed for, and evolved under, a generator supply paradigm 

(Capper et al., 2012).  
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Therefore, there might be regulatory limitations on the amount of demand response that 

can participate in network balancing as it is often categorised as a non-energy resource. 

However, demand response is usually an underutilised resource that is very effective in 

the sense that it is speedier than many generation types. This feature of demand 

response is particularly helpful when peak demand and network constraints coincide. 

Hence, an extended product definition is helpful in order to allow demand response to 

provide bulk power system and certain types of ancillary services. Moreover, the 

definition of bulk power system also can be extended to adopt demand response along 

with other new resources such as storage technologies.  

The current regulations of most electricity markets require a resource, which provides 

balancing services, to be able of providing both ramping up and down services 

something which is not compatible with all types of loads. Thus, separation of balancing 

up and down services will enable those loads with unidirectional balancing capability to 

participate as well. Moreover, investment deferral decision with respect to demand 

response requires polices and tools consistent with the nature of the service as demand 

response has statistical properties. This includes broadening the regulatory view of 

capital expenditure because, investment in demand response, through it can substitute 

network capacity upgrade, is not a form of investment in primary network assets.  

Additionally, Grunewald et al. (2011) shows that the penetration of storage facilities are 

sensitive to a wide range of uncertainties such as future plant mix, technology 

development, market structures and the stochastic uncertainty of returns. In order to 

facilitate the uptake of these resources, policies and regulation need to reduce the risk 

for investors.  This, in part can be achieved through a supportive regulatory framework 

that provides certainty in future trading arrangement, especially in the balancing market. 

Moreover, there might be many small scale storages in which case an aggregator needs 

to act on behalf of them. Furthermore, as demand response and storage technologies are 

able to offer capacity for only a short period of time, regulation needs to be tailored so 

that more of these resources can be accommodated. 

 

6. An Extended Business Model  

 

The revenue sources of distribution companies are the regulated connection charges and 

use of system charges (UoS). Based on the type of consumer and regulatory framework 

model, new connection fees can be divided into shallow and deep cost charges (Jamasb 

et al., 2005). Deep costs also include the incurred expenses as a result of reinforcement 

needed to maintain connection. Under the shallow connection charge, the consumer will 

pay the costs in order to become connected to the nearest grid point.  
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Implementing smart solutions for grid issues in an environment with high penetration of 

DGs requires flexible regulation as the power network operation lacks competition. The 

current incentive regulation schemes only promote cost efficiency for delivering a given 

quantity and quality of output and does not provide much flexibility for innovative 

solutions (e.g., the same energy service but with a different type of output). Over time, 

this might result in shrinking the revenue base of DNOs as the presence of DGs close to 

the site of demand reduces the volume of energy transmitted in the grid (van Werven 

and Scheepers, 2005). Therefore, there is a need for diversification and extension of the 

DNO’s business model beyond provision of connections and energy transport charges 

only. This extended business model will form an important part of the evolution of 

DNO to DSO. 

In order to realise the full potential of a DSO business model, it is helpful to identify the 

key actors and the services they receive from or offer to networks. The key players that 

interact with DSOs include residential consumers, commercial users, industrial 

customers, DG operators, storage facilities operators, retail suppliers and transmission 

system operator (TSO). DSO can offer certain services to each of these players that 

construct its main sources of revenue and receive certain services from them that will 

constitute part of its costs. The interaction among these players will lead to socio-

economically beneficial activities and outcomes for all actors through new business 

framework. For example, due to deregulation and market liberalisation, the capacities of 

large scale power generation reserves are declining in many countries (Gordijn and 

Akkermans, 2007). This creates new business opportunities for DGs that could be 

realised through adopting many small scale dispatchable distributed generations which 

supply part of system reserve.  

The new organizing paradigm of distribution companies as DSO will bring new 

opportunities in terms of offering new services. These services will include local 

balancing in the distribution network, premium reliability for some commercial or 

industrial customers and also offering system data to the DGs operators and retail 

energy suppliers as DSO is the only party that have such information (van Werven and 

Scheepers, 2005).  

These services will offer new sources of revenue for DSOs which were not possible 

under a conventional DNO business model. At the same time, the costs to DSO will 

include operation and maintenance, grid reinforcement which can be either in a 

traditional way or in the form of demand response and capacity payment (DG and 

storage), procurement of ancillary services from DGs and TSO, and finally cost of 

energy losses. Figure 4, illustrates the existing and new services, flow of revenue, costs, 

and interaction of key players in an extended business model of DSO.  
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Figure 4: The extended business model for DSO 

Source: Authors 

 

The new environment will, as a result of high penetration of DGs and evolution of 

distribution companies to DSOs, extend the business model beyond the traditional 

connection and UoS charges which, in turn, will improve the process of revenue 

generation. DSO will also contribute to the national load balancing and will be 

compensated for that by TSO. This will be done through dispatchable DGs (and 

possibly storage and demand response resources) that are under the control of 

distribution system operators.  

Moreover, many commercial and industrial users need premium reliability as their 

production process is sensitive to the electricity input (Poudineh and Jamasb, 2012b). 

DSOs will be reimbursed by those industries for providing highly reliable connections. 

Furthermore, with the use of information and communication technologies, valuable 

system data will be available that can be shared with DG operators and/or retail 

suppliers for the purpose of efficient planning and operation in return for a payoff.  

On the cost side, along with traditional operating and maintenance expenditures and 

cost of energy loss, DSO will purchase ancillary services from DGs as well as TSO. 

Also, the DSO will utilise storage facilities, demand response and DGs as alternatives to 

grid capacity enhancement and pays for the capacity provided by these resources. 
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6.1 Contract for deferral scheme (CDS) auctions 

Perhaps the most challenging task is designing of an economic model that delivers the 

network service (network capacity) cost effectively using alternative resources (DGs, 

storage and demand response). Provided the regulatory issue concerning the ownership 

of distributed generation and an unbundled power sector, our proposed model is based 

on a contract for deferral scheme (CDS). Under this approach, DSOs will be able to 

enter into contract with distributed generations, demand response providers and storage 

facilities operators that offer available capacity when needed. The market participants, 

who enter a contract, will be obliged to have available the required capacity at the time 

of network constraints (or when they are called) and in return, the DSO offers them a 

capacity payment.  

In fact, CDS is a mechanism to select a portfolio of capacity supply from DGs, storage 

facilities, and demand response through a competitive forward auction process. The 

auctions can reveal the value of the product (capacity) and maximize the revenue 

obtained, if a sufficient number of non-colluding bidders participate (Newbery, 2003). 

The selected resource portfolio will act as a substitute for conventional demand driven 

network reinforcements. CDS auctions can be implemented in three stages as outlined 

in the following subsections.  

 

6.1.1 Evaluation phase  

In this stage the DSO forecast demand growth over the subsequent years and projects 

the required network capacity. Also, DSO determines which resources are eligible to 

submit offer at the price they are willing to provide capacity. For example, DSO needs 

to determine whether to allow only existing capacities or both existing and new capacity 

providers can participate in the auction and also specifying type of resources. In terms 

of type, the feasible options usually are dispatchable distributed generations (e.g., 

CHPs), fairly electricity intensive and electricity dependent consumers (industrial and 

commercial consumers which might be able to provide demand response), and storage 

facilities operators. DSO might allow intermittent resources such as wind and solar 

power to participate. However, these need to be treated differently due to their 

intermittent nature. For example, a DSO could exclude resources that already receive 

feed-in tariff3. Moreover, DSO can specify the minimum volume of storage facility that 

is allowed to participate in the auction. 

                                                                 
3
 This is because, firstly, the output is stochastic. Secondly even though aggregation is possible, however, 

they will be overpaid as feed- in tariff is a form of capacity payment. 
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The DSO will then stack all the offers to construct a merit order curve and based on the 

capacity needed (  ), for the duration of contract, clears the price (  ) (Figure 5). The 

DSO accepts the offers which are below the market clearing price. The conditions of 

feasibility of such an auction are: a) the clearing price should be at maximum equal to 

break-even price that makes DSO indifferent between conventional reinforcement and 

smart solution, and b) the price needs to be desirable for resource developers as well, 

otherwise they might decide to withdraw from the auction (this can happen if the price 

is set administratively and resource developer are asked to bid only for volume of 

capacity).  

 

 

Figure 5: Market clearing price for capacity 

 

6.1.2 Planning phase 

Following the acceptance of offers and clearing price, the DSO can determine the lead 

time that the new projects needs to be completed and hence, fulfil their obligation for 

capacity supply. However, if it is an existing resource then the lead time will be shorter 

(e.g., the following year). Therefore, taking into consideration the different lead time for 

existing and new projects, the auction needs to be held well in advance of demand 

growth to allow sufficient time for the construction of new capacity if required. 

Moreover, specifying different delivery periods will facilitate the participation of 

demand response as they can avoid the lead time of constructing projects. 
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6.1.3 Implementation phase 

In this stage, accepted offers needs to deliver capacity they have committed to. This 

stage can be of any time interval based on the agreement between DSO and capacity 

provider. However, it is likely preferable to give more time length to the new capacities 

because longer term agreement will enhance certainty of investment return and reduce 

the cost of capital. For example, allocating one or two years commitment period to the 

existing resources and then offering five years to the new capacity providers can be a 

reasonable approach. 

In practice, there are two possible approaches to running CDS auctions. The first is 

based on a pay-as-bid or discriminatory price auction and the second is based on a 

single price mechanism. There are some advantages and disadvantages of adopting any 

of these approaches. For example, while the first case seems to be cost efficient, the 

participants have incentive to game the DSO by bidding for a higher price as they try to 

mimic the most expensive bid. The second case, on the other hand, suffers from 

allocative inefficiency problem because except for the most expensive bid, the rest of 

bidders will receive a price well above their marginal cost. At the same time, this 

approach provides more stability for revenue of resource developers and is more 

appealing in terms of investment, innovation and resource adequacy. There is a body of 

literature discussing the merits and weaknesses of these two models of auction running 

in electricity markets (see, e.g., Bower and Bunn, 2001; Liu et al., 2012; Damianov and 

Becker, 2010; von der Fehr and Harbord, 2002; Fabra et al., 2006). 

In order to encourage investment and reduce risk of investment, DSO needs to 

differentiate between existing resources and new capacities. A better approach would be 

to pay the same price in the first year of commitment period to all the capacity providers 

that win in the auction. However, thereafter, only new capacities are able to adopt 

market clearing price for the whole period. This approach encourages investment in new 

resources and at the same time reduces allocative inefficiency under the condition that 

every bidder receives market clearing price.  

The CDS auction based on the aforementioned procedure has several advantages. 

Firstly, it protects developers of DGs and storage facilities from market risks, decreases 

the financing cost and improves commercial bankability of investments. Secondly, it 

improves competition, encourages investments and hence; speeds up deployment of 

DGs, storage facilities and participation in demand response. Thirdly, the auctions help 

with creating an integrated market for substitution of a resource portfolio as a virtual 

network capacity at distribution level and simplifying the process of valuing alternative 

solutions to grid reinforcements. Fourthly, in countries with “energy only electricity 

market”, CDS auctions help to alleviate the “missing money” and  gradual reduction of 

reserve margin problems which arise from capping price spikes in the wholesale 

electricity market.  
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6.2 Prioritisation of support 

Generation scheduling and control is an important component of day to day operation of 

a power system which needs a high degree of coordination among various players in the 

hierarchy of power system control. This becomes even more important with the 

presence of DGs as they operate in a widely varying power system control environment 

ranging from highly autonomous to strongly interconnected systems with hierarchic 

multi- level control.  

Under the CDS contracts, DG operator, DSO and TSO are the entities that will have 

control over operational status of DGs. In order to improve coordination among these 

players and avoid conflict of interest, prioritisation of support needs to be clearly 

determined. The form of allocating priority can be based on the type of distributed 

generation and the initial purpose of developing DG. For example, if DG is installed at 

first place to satisfy the developers’ own demand, a feasible arrangement would be to 

give the owner of DG priority because it is usually needed as a backup power supply. 

The DSO then would be the second entity that has priority to call generation for local 

balancing as there is no other alternative, and finally TSO is the third. Where the DG 

output is not required locally or nationally, the produced energy can be sold into the 

wider electricity market.  

 

6.3 Incentives to fulfil commitment 

According to the CDS contract the capacity supplier will be paid based on the price 

specified in the agreement and the resource operator is obliged to deliver capacity or to 

reduce demand when called by DSO. A challenging issue from the perspective of DSO 

is the commitment of the capacity provider to deliver when needed. Any uncertainty in 

this will undermine the effectiveness of smart solution as alternative to grid capacity 

enhancement. Therefore, a penalty mechanism needs to be designed in order to reduce 

the possibility of this event occurring and also improve efficiency of CDS auction. This 

mechanism needs to take into consideration several aspects of this issue, such as the 

possibility of strategic behaviour and gaming the DSO, allowing for maintenance 

planning of energy-based resources, and linking the size of penalties to the total volume 

of capacity payment etc. 

Drawing on the experience from the established capacity markets, there are two possible 

approaches to incentivise resource operators to deliver at the time of need. One 

approach would be to pin the terms of CDS contract to some reference capacity market 

in such a way that when the reference price is above the contract price, the resource 

operator will need to pay the difference. This incentivises resource owners to deliver at 

the time of network constraint and peak demand, because even if they do not operate 
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they still need to pay the difference. The price spikes usually coincide with time of peak 

demand and network constraints. However, if they do not coincide this method can be 

problematic. Moreover, in many countries such a national level capacity market might 

not be available to provide a reference price.  

The second approach would be that the resource owner receives capacity payment for 

their availability period according to CDS contract and to be penalised based on an 

administratively set price if they fail to deliver when they are called or when they fail a 

spot check by DSO. This method is more straightforward and easier to be implemented. 

However, total annual penalties should be capped in order to avoid unquantifiable risk 

to the investors. For example, the cost of penalty could be proportional to the volume of 

capacity (e.g., a percentage of the annual payment for that resource during the capacity 

commitment period). Moreover, DSO should offer the option to resource provider to 

default on its commitment and pay penalty when called under condition that 

unpredicted faults developed. 

 

7. Conclusions 

 

The power sector is evolving with anticipated penetration of distributed generation and 

storage technologies. Distribution networks which were originally designed as passive 

and one way transporters of electrical energy are entering a new era in which 

operational philosophy will change to the bi-directional power flows and the use of 

information and communication technologies. These will bring new opportunities to 

implement innovative solutions for traditional issues such as demand driven network 

reinforcement, through locally satisfying of demand, using a portfolio of resources 

including distributed generation, storage technologies and demand response. This paper 

analysed the new possibilities and challenges that are arsing as a result of adopting 

distributed resources as alternative solution to the demand driven investment and 

proposed some regulatory innovations to reduce those challenges.  

The necessity for evolution of distribution companies from DNO to DSO was discussed 

and the methodologies that are adopted in the literature to measure the value of DG are 

reviewed. The key regulatory challenges which DNOs are facing and their possible 

remedies are identified. Specifically, we proposed a three stage market-oriented 

approach termed “contract for deferral scheme” (CDS) to overcome some of those 

regulatory issues and value the services offered by capacity providers. Moreover, the 

issue of capacity provider commitment to deliver upon the request of DSO was explored 

and potential solutions, based on the experience of established capacity markets, are 

introduced.  
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The CDS contracts have several potential advantages. For example, they protect the 

developers of DGs and storage facilities from market risks, decrease the financing cost 

and improve commercial bankability of investments. Moreover, such contracts improve 

competition, encourage investments and hence speed up deployment of DGs, storage 

facilities and participation in demand response. Furthermore, they help with creating an 

integrated market for substitution of a resource portfolio as a virtual network capacity at 

distribution level and simplifying the process of valuing alternative solutions to grid 

reinforcements. Finally, in countries with “energy-only” electricity markets, CDS 

auctions can help to alleviate the problems of “missing money” and gradual reduction of 

reserve margin due to lack of incentives for investment in capacity. 
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