
1

Adaptive Energy-Efficient Power Allocation in
Green Interference Alignment Based

Wireless Networks
Nan Zhao, Member, IEEE, F. Richard Yu, Senior Member, IEEE, and Hongjian Sun, Member, IEEE

Abstract—Interference alignment (IA) is a promising technique
for interference management in wireless networks. However,
the sum rate may fall short of the theoretical maximum e-
specially at low signal-to-noise ratio (SNR) levels since IA
mainly concentrates on mitigating the interference, instead of
improving the quality of desired signal. Moreover, most of the
previous works focused on improving spectrum efficiency, but
the energy efficiency aspect is largely ignored. In this paper,
an adaptive energy-efficient IA algorithm is proposed through
power allocation and transmission-mode adaptation for green IA-
based wireless networks. The power allocation problem for IA is
first analyzed, then we propose a power allocation scheme that
optimizes the energy efficiency of IA-based wireless networks.
When SNR is low, the transmitted power of some users may
become zero. Thus the users with low transmitted power are
turned into the sleep mode in our scheme to save energy. The
transmitted power and transmission mode of the remaining active
users are adapted again to further improve the energy efficiency
of the network. To guarantee the interests of all the users,
fairness among users is also considered in the proposed scheme.
Simulation results are presented to show the effectiveness of the
proposed algorithm in improving the energy efficiency of IA-
based wireless networks.

Index Terms—Interference alignment, energy efficiency, power
allocation, transmission-mode adaptation, fairness

I. INTRODUCTION

INTERFERENCE alignment (IA) is an emerging technique
for interference management in wireless networks [1], [2].

In IA-based wireless networks, the transmitted signals are
coordinated to concentrate interferences in certain subspaces at
the unintended receivers, and thus interference-free subspaces
are opened up for the desired signal at each receiver [3]. In
[1], degrees of freedom (DoFs) and sum rate of the K-user
IA-based network were analyzed. Based on the reciprocity of
wireless networks, some iterative distributed algorithms were
proposed for IA in [4]. Due to its promising performance in
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solving the interference problem in multiuser communication
systems, IA has been applied to several wireless networks
successfully [5], [6], [7], [8], [9]. However, there are still some
challenges when IA is leveraged in practical networks that may
be summarized as follows [10]:

• The received signal-to-interference-plus-noise ratio (SIN-
R) may decrease in IA-based networks [4], [11], [12], [7],
[8], [13], and thus quality of service (QoS) of the systems
cannot be satisfied.

• The closed-form expressions of the IA solutions are diffi-
cult to obtain, especially when the number of users K is
larger than 3. Furthermore, easy-implemented algorithms
with reliable performance should be designed [4], [14],
[15].

• Accurate channel state information (CSI) of the whole
network should be available at all the transceivers to
get the solutions of IA, which is difficult to achieve in
practical wireless systems [16], [17], [18], [19], [20].

One of the most challenging issues mentioned above is the
SINR decrease, because it will affect the QoS and sum rate of
the network directly. The sum rate over interference channel
when using IA can approach the channel’ sum capacity at very
high signal-to-noise ratio (SNR). However, it may fall short of
the theoretical maximum at moderate and low SNRs [10], [12],
since IA mainly concentrates on mitigating the interference,
without involving the quality of desired signal.

Several research works have been conducted to improve the
sum rate or QoS of IA-based networks at low SNR through
improving the quality of desired signal [4], [11], [12], [7], [8],
[13]. A Max-SINR algorithm for IA was proposed in [4] to
maximize the SINR of the received signal, and thus improve
the sum rate of interference networks especially at low SNR.
However, its advantage tends to be lost when SNR becomes
larger. The authors of [11] proposed an iterative IA algorithm
that aims at finding the solutions maximizing the average
sum rate. The reason why the received SINR in IA-based
networks decreases dramatically at low SNR was analyzed
in [12], and an antenna-switching IA scheme was proposed to
improve the sum rate. In [7], [8], [13], resources in the network
were scheduled properly to optimize the performance of IA,
however, they are effective only when additional resources are
available in the network to allocate. Note that in the above-
mentioned research works, namely [4], [11], [12], [7], [8],
[13], equal power allocation scheme is adopted in the IA-
based networks. Power allocation can be an important side to
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leverage to further improve the sum rate of IA.
Power allocation (PA) can be utilized to optimize the

throughput of the wireless network through allocating ap-
propriate transmitted power to each user[21]. Waterfilling
algorithm is a famous strategy to achieve optimal power
allocation [22], which is easy to realize. However, when the
structure of the network and the objective function become
more complex, waterfilling algorithm is no longer suitable
to be used, and more complex optimization problem should
be solved [23], [24]. As green communication becomes more
and more important for the next generation wireless network,
power allocation has also been leveraged to optimize the
energy efficiency (EE) of the network [25], [26].

Recently, power allocation and control have also been
applied to IA to improve its performance [27], [28], [29]. An
improved blind IA was proposed in [27], which can increase
the SINR by simply changing the power allocation in the
transmitted signal. The authors of [28] proposed a distributed
power control algorithm for IA-based wireless networks, in
order to guarantee the data transmission at a fixed data rate
for each user. A PA scheme was proposed for IA in [29]
through using grid search and game theory, and the sum
rate of the network can be optimized. However, all of these
PA algorithms for IA focus on optimizing the sum rate, i.e.,
spectrum efficiency, instead of energy efficiency.

Nowadays, due to the rapidly rising energy costs and
contributions to global CO2 emissions, energy efficiency is
becoming an important design criterion in green wireless
communications [30], [25], [31], [32]. Thus dramatic improve-
ments in EE will be needed, and new tools for optimizing
the EE of the wireless networks will be essential. Although
some excellent works have been done on IA-based wireless
networks, to the best of our knowledge, the EE issue is largely
ignored in the existing IA studies.

In this paper, we propose an adaptive energy-efficient in-
terference alignment (AEEIA) algorithm for green IA-based
wireless networks. The main contributions of this paper are
summarized as follows.

• Unlike the existing works that focused on spectrum
efficiency, we have done some fundamental research on
the energy efficiency aspect of linear IA-based wireless
networks in this paper.

• The spectrum-efficient power allocation problem for IA-
based wireless networks is analyzed in detail, and an
energy-efficient power allocation algorithm is then pro-
posed specially for IA.

• It is shown that, when SNR is low, the transmitted power
of some users may become zero. Therefore, based on
the results of PA, a dynamic user sleep mode control
(DUSMC) algorithm is proposed to improve the EE of
IA-based networks.

• To further improve the EE of IA-based wireless networks,
a transmission-mode adaption algorithm is proposed ac-
cording to the results of DUSMC, and the transmitted
power of active users is reallocated.

• In the proposed AEEIA algorithm, users with low trans-
mitted power will be switched into the sleep mode to
improve energy efficiency. Fairness among users is also

studied in the proposed algorithm.

The rest of the paper is organized as follows. In Section
II, the system model is presented. The PA algorithm is
proposed to improve IA’s EE in Section III. In Section IV,
the DUSMC algorithm is proposed based on the results of
PA. The transmission-mode adaption algorithm is proposed
to further improve the EE of IA-based networks in Section
V, and then the procedure of the proposed AEEIA algorithm
is presented. Fairness among users of the proposed AEEIA
algorithm is studied in Section VI. In Section VII, simulation
results are discussed. Finally, conclusions and future work are
presented in Section VIII.

Notation: Id represents the d × d identity matrix. AT, A†,
A⋆d, (A)ij , and |A| are the transpose, the Hermitian transpose,
the dth column, the ijth element, and the determinant of matrix
A, respectively. ∥a∥ and (a)d are the ℓ2-norm and the dth
element of vector a, respectively. |a| is the absolute value of
complex number a. CM×N is the space of complex M × N
matrices. CN (a,A) is the complex Gaussian distribution with
mean a and covariance matrix A. E(·) stands for expectation.

II. SYSTEM DESCRIPTION

Consider a K-user interference channel consisting K trans-
mitters and K receivers. There exists a one-to-one correspon-
dence between transmitters and receivers. Each transmitter
of a certain user only wants to communicate with its cor-
responding receiver, and vice versa. In the network, M [k]

and N [k] antennas are equipped at the kth transmitter and
receiver, respectively. When linear IA is performed through
using precoding and interference suppression matrices [1], [4],
the received signal with d[k] data streams at the kth receiver
can be expressed as

y[k](n)=U[k]†(n)H[kk](n)V[k](n)x[k](n)

+

K∑
j=1,j ̸=k

U[k]†(n)H[kj](n)V[j](n)x[j](n)+U[k]†(n)z[k](n). (1)

In (1), H[kj](n) ∈ CN [k]×M [j]

is the channel coefficient
matrix between the jth transmitter and the kth receiver in
time slot n. Each entity of H[kj](n) is independent and
identically distributed (i.i.d.), and follows CN (0, 1). Block
fading channel is used in this paper [33], thus the channel
remains constant over each time slot. For clarity, the time slot
number n is henceforth suppressed. V[k] and U[k] are unitary
M [k] × d[k] precoding matrix and N [k] × d[k] interference
suppression matrix of user k respectively, i.e., V[k]†V[k] = Id[k]

and U[k]†U[k] = Id[k] . x[k] =
[
x
[k]
1 , x

[k]
2 , . . . , x

[k]

d[k]

]T
is the

transmitted signal vector consisting d[k] data streams at the
kth transmitter, and the d[k] independent data streams are
multiplexed and transmitted between the kth transmitter and
receiver. x[k] has a transmitted power constraint P

[k]
t , i.e.,

E
[∥∥x[k]

∥∥2] = P
[k]
t . z[k] ∈ CN [k]×1 is the additive white Gaus-

sian noise (AWGN) vector with distribution CN (0, σ2IN [k]),
where σ2 is the power of the AWGN at each antenna of the
receivers.
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When IA is feasible [34], the interferences in the network
can be completely eliminated if the following conditions are
satisfied [4]

U[k]†H[kj]V[j] = 0, ∀j ̸= k, (2)

rank
(

U[k]†H[kk]V[k]
)
= d[k]. (3)

The desired signals of the kth user can be viewed as
received through a d[k]×d[k] full rank channel matrix H[kk] ,
U[k]†H[kk]V[k], and (1) can be rewritten as

y[k] = H[kk]x[k] + z[k], (4)

where z[k] = U[k]†z[k], and it also follows the distribution
CN (0, σ2Id[k]).

The closed-form expression of the precoding matrix V in
IA is usually difficult to obtain, especially when the number
of users in the IA-based network, K, is larger than 3 [3]. In
order to develop methods to obtain the solutions of IA as the
number of users increase, several distributed algorithms are
proposed, including minimizing interference leakage (MinIL)
and Max-SINR algorithms [4], which are adopted in this paper.

In pursuing the matrices U[k] and V[k], IA only focuses
on condition (2) to eliminate the interferences, and does not
involve the direct channel H[kk] to maximize the desired signal
power within the desired signal subspace [17]. Thus several
IA algorithms have been proposed to further improve the
performance of the conventional linear IA-based networks [4],
[11], [12], [7], [8], [13].

Based on the above analysis, the sum rate of the IA-based
network with perfect solutions can be denoted as

SRp =
K∑

k=1

R[k] =
K∑

k=1

log2

∣∣∣∣∣Id[k] +
P

[k]
t

d[k]σ2
H[kk]H[kk]†

∣∣∣∣∣ , (5)

where R[k] is the transmission rate of user k.
However, condition (2) is difficult to satisfy perfectly when

K is large. In practical systems, easy-implemented iterative IA
algorithms are usually adopted, and thus interferences cannot
be eliminated ideally. Furthermore, the CSI used in IA-based
networks cannot be perfectly estimated and fed back, which
will also lead to the imperfect solutions [16], [17], [18], [19],
[20]. In these cases, the sum rate of the IA-based network with
imperfect solutions can be expressed as

SRimp =

K∑
k=1

log2

∣∣∣∣∣Id[k]+U[k]†Q[k]U[k]

(
U[k]†

(
σ2IN [k]+Q̃

[k]
)

U[k]

)−1
∣∣∣∣∣. (6)

In (6), we have

Q[k] =
P

[k]
t

d[k]
H[kk]V[k]V[k]†H[kk]†, (7)

and

Q̃
[k]

=

K∑
j=1,j ̸=k

P
[j]
t

d[j]
H[kj]V[j]V[j]†H[kj]†. (8)

In most previous works, the transmitted power of each user
in IA-based networks is set to be equal, i.e., P [k]

t = Pt, ∀k =
1, 2, . . . ,K. Thus power allocation can be leveraged to further
improve the performance of IA-based networks with adaptive
transmitted power of each user.

III. SPECTRUM-EFFICIENT AND ENERGY-EFFICIENT
POWER ALLOCATION ALGORITHMS FOR IA-BASED

NETWORKS

Only a few research works have been concentrated on
power allocation or control for IA-based wireless networks
to improve the sum rate or guarantee the transmission rate of
each user [27], [28], [29]. In this section, the PA problem in IA
will be analyzed specifically, and two PA algorithms aiming
at maximizing the spectrum efficiency of the network are pro-
posed for the MinIL IA algorithm and Max-SINR algorithm,
respectively [1], [4]. To the best of our knowledge, energy
efficiency aspect of IA has been largely ignored in existing
IA studies, and thus a PA algorithm aiming at optimizing the
EE of IA is proposed in this paper. Besides, this paper mainly
focuses on the PA between different users instead of DoFs,
thus it is assumed that there is only one data stream for each
user in the remaining parts of this paper1.

A. Spectrum-Efficient Power Allocation

In Section II, equal transmitted power Pt is allocated to
each user as usually assumed. However, this may hinder the
improvement of the performance of IA-based networks. In
this section, we assume that the sum transmitted power of
all the users is constrained to be lower than a constant, i.e.,∑K

k=1 P
[k]
t ≤ Pmax

t .
Thus the PA problem to optimize the spectrum efficiency

of IA-based networks can be formulated as follows according
to (9).

max
P

[1]
t ,P

[2]
t ,...,P

[K]
t

K∑
k=1

log2

1+
∣∣∣u[k]†H[kk]v[k]

∣∣∣2 P [k]
t

K∑
j=1,j ̸=k

∣∣∣u[k]†H[kj]v[j]
∣∣∣2P [j]

t +σ2


s.t. P

[k]
t ≥ 0, ∀k = 1, 2, . . . ,K
K∑

k=1

P
[k]
t ≤ Pmax

t . (9)

The optimization problem described in (9) is somewhat dif-
ficult to solve, because it involves the remaining interferences.
In MinIL IA algorithms, e.g., closed-form IA [1] and iterative
IA [4], solutions are achieved to force interferences to be zero,
thus the optimization problem in (9) can be simplified into a
waterfilling strategy with random distributed noise levels.

Theorem 1: In a K-user IA-based network with 1 data
stream each user, if the interferences are eliminated perfect-
ly, the spectrum-efficient optimization problem for PA can
be deemed as a waterfilling power allocation strategy with
the noise level of user k equal to σ2

|hk|2 , where |hk|2 =∣∣∣u[k]†H[kk]v[k]
∣∣∣2 follows exponential distribution.

Proof: Denote hk , u[k]†H[kk]v[k]. If perfect IA can be
obtained, the interferences are thus completely eliminated, and

1The PA problem among data streams of user k in IA-based networks
can be easily extended, which can be deemed as the PA problem among d[k]

antennas at the transmitter in the MIMO system of channel H[kk] with perfect
CSI at transmitter and receiver [22], [35]. It is out the scope of this paper.
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the optimization problem in (9) can be rewritten as

max
P

[1]
t ,P

[2]
t ,...,P

[K]
t

K∑
k=1

log2

(
1 +

|hk|2

σ2
P

[k]
t

)
s.t. P

[k]
t ≥ 0, ∀k = 1, 2, . . . ,K
K∑

k=1

P
[k]
t ≤ Pmax

t . (10)

In the design of u[k] and v[k], it only concentrates on the
condition in (2) without considering H[kk] in (3). Thus u[k] and
v[k] are i.i.d., and independent of H[kk], and we can obtain

E (|hk|2) = E

N [k]∑
i=1

M [k]∑
j=1

∣∣∣(u[k]
)
i

∣∣∣2 ∣∣∣∣(v[k]
)
j

∣∣∣∣2 ∣∣∣∣(H[kk]
)
ij

∣∣∣∣2


=E

N [k]∑
i=1

∣∣∣(u[k]
)
i

∣∣∣2
E
M [k]∑

j=1

∣∣∣∣(v[k]
)
j

∣∣∣∣2
E[∣∣∣∣(H[kk]

)
ij

∣∣∣∣2
]
.(11)

As mentioned in Section II, (H[kk])ij is i.i.d. CN (0, 1), and
u[k] and v[k] are unitary vectors, i.e.,

∑N [k]

i=1

∣∣(u[k]
)
i

∣∣2 = 1 and∑M [k]

j=1

∣∣∣(v[k]
)
j

∣∣∣2 = 1. Thus we can achieve

E(|hk|2) = E

[∣∣∣∣(H[kk]
)
ij

∣∣∣∣2
]
= 1. (12)

Therefore, hk is a complex Gaussian random variable
with zero mean and variance equal to 1, and |hk|2 follows
exponential distribution.

Observing the optimization problem in (10), we can see that
it is similar to the PA problem in multiple parallel channels.
The difference is that the noise level of user k in the PA of
IA-based networks is equal to σ2

|hk|2 . Thus it can be solved by
the famous waterfilling PA strategy [22], and its closed-form
solution can be expressed as

P
[k]
t opt =

(
V − σ2

|hk|2

)+

, (13)

where x+ , max(x, 0), and V should satisfy
K∑

k=1

(
V − σ2

|hk|2

)+

= Pmax
t . (14)

In (13), P [k]
t opt is the optimal transmitted power allocated

for user k, and |hk|2 follows exponential distribution.
Remark 1: In practical networks using MinIL IA algorithms,

the interferences among users cannot be eliminated perfectly.
However, the remaining part of the interference is trivial,
and will not affect the spectrum efficiency of PA strategy
obviously. Thus, the objective function in (10) can be applied
to MinIL IA algorithms with little interference remaining.

In MinIL IA algorithms, the PA optimization problem can
be simplified as (10) and solved by the waterfilling strategy,
because u[k] and v[k] are designed according to condition (2)
and interferences can be assumed to be eliminated perfectly.
The MinIL IA algorithms make no attempt to improve the
desired signal power according to H[kk], and thus it is not
optimal at intermediate and low SNR levels.

On the contrary, if the Max-SINR algorithm for IA is
leveraged to obtain the solutions of u[k] and v[k], condition
(3) is also involved together with (2) to optimize the SINR of
desired signal [4]. However, perfect alignment of interference
is sacrificed in the Max-SINR algorithm, and there is some
nontrivial interference remaining. Thus, the objective function
(10) of the PA optimization cannot be adopted in Max-SINR
algorithm, and we should use the more complicated objective
function in (9) to solve it, in which the remaining interference
is considered. There are many simple but effective methods
for solving the optimization problems [36]. In the simulations
of this paper, the interior-point method is adopted.

B. Energy-Efficient Power Allocation

The spectrum efficiency of IA-based networks can be op-
timized by the PA algorithms in (9) and (10), however, the
energy efficiency is ignored. EE becomes an important design
criterion recently in wireless communications due to rapidly
rising energy consumption in information and communication
technology.

Assume that in each time slot with duration T , the solu-
tions of IA are first calculated in duration T1, and then the
transmission is performed in duration T2. T = T1 + T2, and
T1 ≪ T2. The EE of IA-based networks can be defined as
the transmitted information in unit frequency per Joule energy
consumption (bits/Hz/Joule), and thus the PA problem aiming
at maximizing the EE when interferences are assumed to be
perfectly eliminated can be expressed as (15) (on the next
page).

In (15), P [k] is the total power consumption of user k, and it
comprises the transmitter-circuit power consumption P

[k]
ct , the

receiver-circuit power consumption P
[k]
cr , and the transmitted

power P [k]
t [37], [31]. As T1 ≪ T2, the energy consumption in

the duration T1 of each time slot to obtain the solutions of IA
is ignored when calculating the EE of the IA-based network
in this paper.

To analyze the EE of the spectrum-efficient and energy-
efficient PA algorithms in (10) and (15), the EE and average
transmitted power of the IA-based networks are compared in
Fig. 1 and Fig. 2, respectively. In these two figures, there are
K = 3 users with 2 antennas equipped at each transceiver.
P

[k]
cr , P [k]

ct and Pmax
t are set to 112mW, 98mW and 300mW,

respectively [37], [31].
From the results in Fig. 1, we can see that the energy-

efficient PA algorithm in (15) can further improve the EE
of IA-based networks compared to the spectrum-efficient PA
algorithm in (10). The power allocation of the two algorithms
is depicted in Fig. 2. From the results, we can see that when
SNR is low, the throughput of the network is more important
than the transmitted power consumed for both the EE and SE
of the network, and the averaged transmitted power of the
network is equal to its maximum, Pmax

t . On the other hand,
when SNR becomes larger, the throughput of the network
becomes much higher, and the transmitted power consumed
is much more important than the throughput of the network
when the EE of the network is optimized. Thus the average
transmitted power of the network in the energy-efficient PA
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max
P

[1]
t ,P

[2]
t ,...,P

[K]
t

K∑
k=1

R[k]

K∑
k=1

P [k]

=

K∑
k=1

log2

(
1 +

|hk|2

σ2
P

[k]
t

)
· T2

K∑
k=1

(
P

[k]
ct + P

[k]
cr

)
· T1 +

K∑
k=1

(
P

[k]
ct + P

[k]
cr + P

[k]
t

)
· T2

=

K∑
k=1

log2

(
1 +

|hk|2

σ2
P

[k]
t

)
K∑

k=1

(
P

[k]
ct + P

[k]
cr

)
· T1

T2
+

K∑
k=1

(
P

[k]
ct + P [k]

cr + P
[k]
t

) ≈

K∑
k=1

log2

(
1 +

|hk|2

σ2
P

[k]
t

)
K∑

k=1

(
P

[k]
ct + P

[k]
cr + P

[k]
t

)
s.t. P

[k]
t ≥ 0, ∀k = 1, 2, . . . ,K
K∑

k=1

P
[k]
t ≤ Pmax

t , (15)
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Fig. 1. Energy efficiency comparison in IA-based networks with spectrum-
efficient and energy-efficient power allocation algorithms.
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Fig. 2. Average transmitted power comparison in IA-based networks with
spectrum-efficient and energy-efficient power allocation algorithms.

algorithm becomes lower with larger SNR. For the spectrum-
efficient PA algorithm, the transmitted power of the network is
all equal to Pmax

t with different SNRs, since only the spectrum
efficiency of the network is optimized.

IV. DYNAMIC USER SLEEP MODE CONTROL IN
ENERGY-EFFICIENT IA-BASED NETWORKS

In this section, we first discuss the power allocation problem
in IA-based networks. Then, we propose a dynamic user sleep
mode control algorithm based on power allocation.

A. Discussions of the Power Allocation Results

The EE of IA-based networks can be significantly improved
when the PA algorithm in (15) is leveraged. In this subsection,
its results are further discussed in Remark 2. From the results
in Fig. 1 and Fig. 2, we can know that the PA in algorithms
(10) and (15) is almost the same when SNR is low.

Remark 2: At low SNR, the water level is shallow, and the
noise levels are much higher than the received power of desired
signal. Thus the transmission rate with allocating all the power
to the strongest user (lowest noise level) approximates to the
optimal sum rate exploiting objective function (15), and it can
be denoted as

SRsole = log2

(
1 +

|hmax|2

σ2
Pmax
t

)

≈
K∑

k=1

log2

(
1 +

|hk|2

σ2
P

[k]
t opt

)
, (16)

where |hmax|2 = max(|h1|2 , |h2|2 , . . . , |hK |2), and P
[k]
t opt is

the optimal transmitted power of user k solved by (15).
From the analysis in Remark 2, we can know that, when

SNR becomes lower, the PA strategy tends to select the
strongest user/users to communicate. Thus we further study the
probability of low-power users in a 3-user IA-based network
with 2 antennas equipped at each transceiver, and the results
are shown in Fig. 3. In the figure, the threshold λ, below
which one user can be deemed as low-power user, is set to
5%, 10%, and 20% of the average transmitted power per user
1
K

∑K
k=1 P

[k]
t opt, respectively.

From the results in Fig. 3, it is shown that, when average
SNR becomes lower, the PA of IA tends to allocate more
power to the stronger user with lower noise level. When
Pmax
t /K/σ2 is below -20dB, the transmitted power will be

almost allocated to only one user definitely. Besides, the value
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2 antennas at each transceiver. The threshold λ is set to 5%, 10%, and 20%,
respectively.

of the threshold λ will not affect the number of low-power
users obviously.

Therefore, we want to study the following question: Can we
further improve the energy efficiency of IA-based networks
based on the results of the power allocation?

B. Dynamic User Sleep Mode Control Algorithm Based on
Power Allocation

When the objective function in (15) is exploited in MinIL
IA algorithms, the EE of IA-based networks can be expressed
as

EEIA =

K∑
k=1

R[k]

K∑
k=1

P [k]

=

K∑
k=1

log2

(
1 +

|hk|2

σ2
P

[k]
t opt

)
K∑

k=1

(
P

[k]
ct + P

[k]
cr + P

[k]
t opt

) , (17)

where P
[k]
t opt is the optimal transmitted power of user k.

From the analysis in Remark 2 and results in Fig. 3, it
is shown that, when SNR is low, it tends to allocate all the
transmitted power to the strongest users. Thus the transmission
rate of the other users with low transmitted power is getting
close to 0; however their circuit power is still consumed.

Thus a proper threshold λ ∈ (0, 1) can be set. If the
optimal transmitted power of user k, P

[k]
t opt, is lower than

λ · 1
K

∑K
k=1 P

[k]
t opt in one time slot, the transmission of user

k is terminated in this time slot, and it is switched into
the sleep mode [37]. The circuit power can be saved in
the proposed dynamic user sleep mode control (DUSMC)
algorithm based on the results of PA when there exist some
low-power users, and the EE of IA-based networks can be
consequently improved.

Define S as the set that contains the users in the sleep mode
in the time slot, and it can be expressed as

S =

{
k : P

[k]
t opt <λ· 1

K

K∑
k=1

P
[k]
t opt, k = 1, 2, · · · ,K

}
. (18)

Thus the EE in (17) can be enhanced by the DUSMC
algorithm as

EEDUSMC=

K∑
k=1,k/∈S

log2

(
1 +

|hk|2

σ2
P

[k]
t opt

)
K∑

k=1,k/∈S

(
P

[k]
ct +P

[k]
cr +P

[k]
t opt

)
+
∑
k∈S

P
[k]
s

, (19)

where P
[k]
s is the power consumption of user k when it is in

the sleep mode.
In the sleep mode, the power consumption of users in IA-

based networks mainly results from the leaking current of the
switching transistors with the circuits properly designed [37].
The power consumption of leaking current is usually much
lower than the circuit power consumption in the active mode,
and thus it is neglected in the proposed algorithms in this
paper, i.e., P [k]

s = 0. The analysis and simulation can be easily
modified when the power consumption in the sleep mode is
considered. Thus we can obtain

EEDUSMC≈

K∑
k=1,k/∈S

log2

(
1+

|hk|2

σ2
P

[k]
t opt

)
K∑

k=1,k/∈S

(
P

[k]
ct +P

[k]
cr +P

[k]
t opt

) ≥EEIA. (20)

In (20), the second equality holds when S = ∅.
The value of threshold λ is important in the DUSMC

algorithm, and it will affect the EE of IA-based wireless
networks. It is analyzed in detail in Theorem 2.

Theorem 2: In the DUSMC algorithm with the same
circuit power for each user, if 0 < λ1 < λ2 ≪ 1, then
EEDUSMC(λ1) ≤ EEDUSMC(λ2).

Proof: Define S1 and S2 as the sets of the sleep-mode
users corresponding to λ1 and λ2, respectively. From the
definition of S in (18), we can know that S1 ⊆ S2 with Q
elements in S1. Without loss of generality, we assume that
S2 \ S1 = {1, 2, . . . , i}, i ≥ 1 when S1 ⊂ S2. Thus from (20)
we can obtain

EEDUSMC(λ1) ==

K∑
k=1,k/∈S1

log2

(
1+

|hk|2

σ2
P

[k]
t opt

)
K∑

k=1,k/∈S1

(
P

[k]
ct +P

[k]
cr +P

[k]
t opt

) . (21)

Assume that the circuit power consumption of all the users
is the same, and we have P

[1]
ct = P

[2]
ct = · · · = P

[K]
ct = Pct

and P
[1]
cr = P

[2]
cr = · · · = P

[K]
cr = Pcr.

(1) S1 = S2

The users in the sleep mode with thresholds λ1 and λ2 are
the same, thus we have EEDUSMC(λ1) = EEDUSMC(λ2).

(2) S1 ⊂ S2

Assume that the total transmitted power of the users with
threshold λ2 is Pt λ2 , (21) can be rewritten as (22) (on the
next page). In (22), when 0 < λ1 < λ2 ≪ 1, we have
P

[j]
t opt ≪ P

[k]
t opt and |hj |2 ≪ |hk|2, k ∈ {1, 2, . . . ,K} \



7

EEDUSMC(λ1) =

K∑
k=1,k/∈S2

log2

(
1 +

|hk|2

σ2
P

[k]
t opt

)
+

i∑
j=1

log2

(
1 +

|hj |2

σ2
P

[j]
t opt

)

(K −Q− i)(Pct + Pcr) + i(Pct + Pcr) + Pt λ2 +
i∑

j=1

P
[j]
t opt

. (22)
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Fig. 4. Energy efficiency comparison of a 3-user IA-based network when the
DUSMC algorithm is performed with λ equal to 5%, 15%, 25%, and 35%,
respectively.

S2, j = 1, 2, . . . , i. Thus (22) can be changed into

EEDUSMC(λ1)≈

K∑
k=1,k/∈S2

log2

(
1+

|hk|2

σ2
P

[k]
t opt

)
(K−Q−i)(Pct+Pcr)+i(Pct+Pcr)+Pt λ2

<

K∑
k=1,k/∈S2

log2

(
1+

|hk|2

σ2
P

[k]
t opt

)
(K −Q− i)(Pct + Pcr) + Pt λ2

= EEDUSMC(λ2). (23)

In Theorem 2, it is reasonable to assume 0 < λ1 < λ2 ≪ 1
in practical wireless communication systems to guarantee the
fairness among users in IA-based wireless networks, i.e., we
switch the user to the sleep mode only when the allocated
transmitted power is extremely low.

The energy efficiency of a 3-user IA-based network when
the DUSMC algorithm is performed with different values of
λ is shown in Fig. 4. From the results, we can see that the
energy efficiency of the IA-based network increases with larger
λ, which is consistent with Theorem 2. However the difference
of the energy efficiency with different values of λ is trivial.

Besides, although the value of threshold λ can affect the
EE of IA-based networks, the number of sleep-mode users
changes slightly according to the results in Fig. 3. Thus λ is
set to 5% in the simulations part of this paper.

The analysis in this subsection uses the objective function
(15) of MinIL IA algorithms for simplicity of analysis, and it
can also be extended to Max-SINR algorithm similarly if the
remaining interference is not marginal.

V. TRANSMISSION-MODE ADAPTATION BASED ON THE
DUSMC ALGORITHM

In the DUSMC algorithm, when S ̸= ∅, some low-power
users switch into the sleep mode based on the results of
PA, and the EE can be improved. The number of active
users Na is smaller than the feasible number of users K
[34], i.e., Na < K, and the desired signal subspace is thus
expanded. We can fully exploit the expanded desired signal
subspace to further improve the EE of IA-based wireless
networks. Therefore, a transmission-mode adaption algorithm
is proposed in this section.

A. Na > 1

If there are more than one active users remaining after the
DUSMC algorithm is performed, we can obtain the solutions
of IA again through using the Max-SINR algorithm [4] and
reallocate the transmitted power of Na active users according
to the objective function (9) to further improve the EE of IA-
based networks.

Assume that the regenerated solutions with the Max-SINR
algorithm is û[k] and v̂[k], k = 1, 2, . . . ,K, k /∈ S , and we can
express the SINR of user k without PA and DUSMC algorithm
as in (24) (on the next page). PA is not considered here for
simplicity of analysis.

The second inequality in (24) holds because the subspace
of the desired signal is expanded as the number of users that
share the whole signal subspace decreases, and the Max-SINR
algorithm is leveraged to involve the power of the desired
signal and interference simultaneously and fully exploit the
subspace resource.

After û[k] and v̂[k] are achieved by the Max-SINR algorithm,
k /∈ S , energy-efficient PA algorithm is reused to obtain the
final solutions as (25) (on the next page).

B. Na = 1

If there is only one active user remaining after the DUSMC
algorithm, we can know that it is equivalent to a single-input
and single-output (SISO) Rayleigh fading channel from the
proof of Theorem 1. Thus the advantage of multiple-input and
multiple-output (MIMO) disappears even when there is only
one user communicating in the IA-based network.

Therefore, we should change the transmission mode from
IA to MIMO when there is only one user after the DUSMC
algorithm is performed. The user with the highest transmission
rate of MIMO mode will be selected solely to communicate
in the time slot, and it can be expressed as [22], [35]

RMIMO= max
i

(
log2

∣∣∣∣IN [i] +
Pmax
t

σ2
H[ii]B[i]H[ii]†

∣∣∣∣) , (26)
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SINR[k] =

∣∣u[k]†H[kk]v[k]
∣∣2 Pmax

t /K∣∣∣∣∣ K∑
j=1,j ̸=k

u[k]†H[kj]v[j]
∣∣∣∣∣
2

Pmax
t /K + σ2

<

∣∣u[k]†H[kk]v[k]
∣∣2 Pmax

t /K∣∣∣∣∣ K∑
j=1,j ̸=k,j /∈S

u[k]†H[kj]v[j]
∣∣∣∣∣
2

Pmax
t /K + σ2

<

∣∣∣û[k]†
H[kk]v̂[k]

∣∣∣2 Pmax
t /K∣∣∣∣∣ K∑

j=1,j ̸=k,j /∈S
û[k]†

H[kj]v̂[j]
∣∣∣∣∣
2

Pmax
t /K + σ2

= ŜINR
[k]
. (24)

max
P

[k]
t ,k/∈S

K∑
k=1,k/∈S

log2

1 +

∣∣∣û[k]†H[kk]v̂[k]
∣∣∣2 P [k]

t

K∑
j=1,j ̸=k,k/∈S

∣∣∣û[k]†H[kj]v̂[j]
∣∣∣2 P [j]

t + σ2


K∑

k=1,k/∈S

(
P

[k]
ct + P

[k]
cr + P

[k]
t

)
s.t. P

[k]
t ≥ 0, ∀k = 1, 2, . . . ,K, k /∈ S
K∑

k=1,k/∈S

P
[k]
t ≤ Pmax

t . (25)

where i = 1, 2, . . . ,K. Assume that user k is the selected one
in (26).

The CSI of the network is available at all the transceiver-
s due to the requirements of IA, thus in (26) the trans-
mitted power at each antenna can be optimized through
using the waterfilling strategy. The optimal signal covari-
ance B[k] = Ṽ

[k]
S[k]Ṽ

[k]†
, and Ṽ

[k]
can be obtained

by singular value decomposition of the channel matrix as
Ũ

[k]
D[k]Ṽ

[k]†
= H[kk]. The optimal diagonal PA matrix

S[k] = diag
(
s1, . . . , smin(M [k],N [k]), 0, . . . , 0

)
. The optimal

PA among antennas of user k can be achieved through using
the waterfilling strategy as

si=

(
µ− σ2

Pmax
t δ

[k]2
i

)+

, i = 1, . . . ,min
(
M [k], N [k]

)
. (27)

In (27) δ
[k]
1 , . . . , δ

[k]

min(M [k],N [k])
are the diagonal elements of

D[k], and µ should satisfy

min(M [k],N [k])∑
i=1

si = 1. (28)

C. Procedure of the Proposed Adaptive Energy-Efficient IA
Algorithm

Based on the PA algorithms in Section III, the DUSMC
algorithm in Section IV and transmission-mode adaption in
Subsections V-A and V-B, we propose an AEEIA algorithm,
which can be represented in Algorithm 1.

In Step 1 of Algorithm 1, the MinIL IA algorithm is
applied to avoid high computational complexity, and the
corresponding algorithm can be similarly obtained if the

Max-SINR algorithm is leveraged.

Algorithm 1 - AEEIA Algorithm without Fairness
1: Time slot n in a frame starts.

Solutions of IA are calculated through MinIL IA.
2: Energy-efficient PA is performed through (15).
3: The DUSMC algorithm is performed.
4: If S ̸= ∅ and Na > 1, then
5: Solutions of IA is recalculated by Max-SINR algorithm.

Transmitted power is reallocated according to (25).
6: Elseif S ̸= ∅ and Na = 1, then
7: MIMO transmission mode is adopted.

Transmitted power of each antenna is allocated by (26).
8: End if
9: Transmission of one time slot begins.

After the duration T , the time slot ends.
10: If n = Nf , then
11: n = 1 and a new frame starts.

Nf is the number of time slots in one frame.
12: Else
13: n = n+ 1.
14: End if
15: Go back to Step 1.

VI. FAIRNESS AMONG USERS IN THE ADAPTIVE
ENERGY-EFFICIENT IA ALGORITHM

In the above sections, fairness among the users in IA-based
networks is not considered. In the ideal situation with the
same fading statistics of all the users, the long-term throughput
of each user is almost the same, and the fairness can be
guaranteed [22]. However, when the statistics of the channel
are not symmetric, or channel fading is low, it may be highly
unfair in the proposed AEEIA algorithm, since the throughput
of some users may be quite low. Furthermore, when SNR
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Fig. 5. One-frame time structure of the proposed AEEIA algorithm
considering fairness.

becomes lower, the proposed algorithm becomes more unfair.
Thus the fairness among users in IA-based networks should be
considered when the proposed AEEIA algorithm is performed.

A. AEEIA Algorithm Considering Fairness

In this section, fairness is studied in the proposed AEEIA
algorithm. One-frame time structure of the proposed fair
AEEIA algorithm is depicted in Fig. 5.

In the figure, one frame consists of Nf time slots, and the
duration of each time slot is equal to T . In each time slot,
the optimal solutions are considered first in duration T1, and
then transmission is performed in duration T2. T = T1 + T2.
When fairness is considered in the scheme, the first Nf − 1
time slots are carried out without fairness, and in the Nf th
time slot, fairness is considered.

The throughput of the first Nf −1 time slots of the kth user
in one frame can be expressed as

T [k] =

Nf−1∑
n=1

R[k](n) · T2, k = 1, 2, . . . ,K. (29)

The fairness factor of the kth user in the nth time slot can be
denoted as

α[k](n) =


1, n = 1, 2, . . . Nf − 1

K · 1

T [k]

K∑
i=1

1

T [i]

, n = Nf (30)

and
∑K

k=1 α
[k](n) = K to be consistent with (15).

Thus when fairness is considered in the Nf th time slot of
one frame, the energy-efficient PA algorithm of (15) in time
slot n of each frame can be revised as

max
P

[1]
t ,P

[2]
t ,...,P

[K]
t

K∑
k=1

R[k]

K∑
k=1

P [k]

=

K∑
k=1

α[k](n) log2

(
1+

|hk|2

σ2
P

[k]
t

)
K∑

k=1

(
P

[k]
ct + P

[k]
cr + P

[k]
t

)
s.t. P

[k]
t ≥ 0, ∀k = 1, 2, . . . ,K
K∑

k=1

P
[k]
t ≤ Pmax

t . (31)

In (31), when α[k](Nf ) is large, it means the throughput of
user k is low in the first Nf − 1 time slots of the frame, and
more opportunity will be given to user k to transmit in the Nf

time slot.

Fig. 6. The relationship of the mentioned algorithms in this paper.

In the Nf th time slot, (26) should also be revised as

RMIMO=log2

∣∣∣∣IN [ka]+
Pmax
t

σ2
H[kaka]B[ka]H[kaka]†

∣∣∣∣, (32)

where user ka is the only active user not in S.
Remark 3: The reason why the fair AEEIA algorithm is

performed once every Nf time slots is to optimize the energy
efficiency and guarantee the fairness simultaneously. When Nf

becomes larger, fairness among users becomes less important
compared to energy efficiency.

B. Procedure and Summary of the Proposed AEEIA Algorithm
Considering Fairness

The procedure of the proposed AEEIA algorithm with
fairness can be represented in Algorithm 2.

To further explain the relationship of the mentioned algo-
rithms in this paper, they are summarized in Fig. 6. Different
objectives can be optimized in the power allocation for IA.
When the spectrum efficiency of the IA-based network is
optimized, the spectrum-efficient PA algorithm in (9) or (10)
should be applied. On the contrary, when the energy efficiency
is optimized, the energy-efficient PA algorithm in (15) or (31)
can be leveraged. (15) is used when fairness is not considered,
while (31) is suitable for the case when fairness is harnessed.
Subsequently, the DUSMC algorithm is performed based on
the results of the energy-efficient PA. At last, transmission-
mode adaptation is applied after the DUSMC algorithm when
S ≠ ∅. (26) or (32) is adopted when Na = 1 without or
with fairness, respectively. With the solutions of the proposed
AEEIA algorithm without fairness or considering fairness, the
transmission of the time slot may start.

Therefore, fairness needs not to be considered when
channel fading statistics are symmetric, users are not
sensitive to the delay, or SNR is high. However, when the
channel statistics are not symmetric, users are sensitive to
the delay, or SNR becomes lower, fairness should be involved.
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Algorithm 2 - AEEIA Algorithm Considering Fairness
1: Time slot n in a frame starts.

Solutions of IA are calculated through MinIL IA.
2: Energy-efficient PA with fairness is performed by (31).
3: The DUSMC algorithm is performed.
4: If S ̸= ∅ and Na > 1, then
5: Solutions of IA is recalculated by Max-SINR algorithm.

Transmitted power is reallocated according to (25).
6: Elseif S ̸= ∅ and Na = 1, then
7: MIMO transmission mode is adopted.
8: If n ̸= Nf , then
9: Transmitted power of each antenna is allocated by (26).
10: Else
11: Transmitted power of each antenna is allocated by (32).
12: End if
13: End if
14: Transmission of one time slot begins.

After the duration T , the time slot ends.
15: If n = Nf , then
16: n = 1 and a new frame starts.

Nf is the number of time slots in one frame.
17: Else
18: n = n+ 1.
19: End if
20: Go back to Step 1.

VII. SIMULATION RESULTS AND DISCUSSIONS

In the simulations, we consider a K-user IA-based network
with 1 data stream for each user. All the channels are under
slow Rayleigh block fading [33]. Perfect CSI is assumed to
be available at each transceiver.

According to [37], [31], the transmitter-circuit power con-
sumption P

[k]
ct , receiver-circuit power consumption P

[k]
cr , and

sleep-mode power consumption P
[k]
s of all the users are set

to 98mW, 112mW, and 0mW, respectively. Pmax
t /K is set

to 20dbmW, and thus the constrained total transmitted power
of the network (also the maximum transmitted power of each
user) is equal to 100KmW. The threshold λ is set to 5%. In
Step 1 of the proposed AEEIA algorithm, iterative MinIL IA
algorithm is used to obtain the solutions of IA. The interior-
point method is adopted to solve the problems in (9), (15),
(25) and (31) [36].

A. Spectrum Efficiency and Energy Efficiency
We consider a 3-user IA-based network with 2 antennas

equipped at each transceiver, and the spectrum efficiency and
energy efficiency are studied.

In Fig. 7 and Fig. 8, we compare the spectrum efficiency
of the MinIL IA algorithm with equal transmitted power,
the MinIL IA algorithm with spectrum-efficient and energy-
efficient PA, the DUSMC algorithm, and the proposed AEEIA
algorithm. The spectrum efficiency in Fig. 7 and Fig. 8
is linearly and logarithmically scaled, respectively. From the
results in Fig. 7, we can see that when SNR is high, the spec-
trum efficiency of the proposed AEEIA algorithm, DUSMC
algorithm, and MinIL IA algorithm with energy-efficient PA
is lower than that of the MinIL IA algorithm with equal
transmitted power and MinIL IA algorithm with spectrum-
efficient PA. This is because when SNR is high, the energy-
efficient PA can save transmitted power to improve the energy
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Fig. 7. Spectrum Efficiency comparison of different algorithms in a 3-user
IA-based network with 2 antennas at each transceiver. The threshold λ is set
to 5%. Spectrum efficiency is linearly scaled.
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Fig. 8. Spectrum Efficiency comparison of different algorithms in a 3-user
IA-based network with 2 antennas at each transceiver. The threshold λ is set
to 5%. Spectrum efficiency is logarithmically scaled.

efficiency. From the results in Fig. 8, it is shown that when
SNR is low, the spectrum efficiency can be significantly
improved by the proposed AEEIA algorithm, and the spectrum
efficiency of the DUSMC algorithm, MinIL IA algorithm with
spectrum-efficient and energy-efficient PA is almost the same,
which is lower than that of the AEEIA algorithm. In addition,
we can observe that, when SNR is lower, the throughput of
the proposed AEEIA algorithm is even higher than that of
the spectrum-efficient PA, due to DUSMC and transmission-
mode adaptation; when SNR becomes larger, there is no need
to allocate too much power to each transmitter, because the
throughput is high enough to support the transmission of
the network, and energy efficiency is more important in this
situation. Furthermore, the throughput of the network when
the proposed AEEIA algorithm is used is better than that
when the spectrum-efficient PA is applied at low SNRs. Only
when Pmax

t /K/σ2 is larger than 10dB, the throughput of the
proposed AEEIA algorithm becomes to be lower than that of
the spectrum-efficient PA, which is larger than 10bits/s/Hz.
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Fig. 9. Energy efficiency comparison of different algorithms in a 3-user
IA-based network with 2 antennas at each transceiver. The threshold λ is set
to 5%. Energy efficiency is linearly scaled.
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Fig. 10. Energy efficiency comparison of different algorithms in a 3-user
IA-based network with 2 antennas at each transceiver. The threshold λ is set
to 5%. Energy efficiency is logarithmically scaled.

In Fig. 9 and Fig. 10, we compare the energy efficiency of
the MinIL IA algorithm with equal transmitted power, MinIL
IA algorithm with spectrum-efficient and energy-efficient PA,
DUSMC algorithm, and the proposed AEEIA algorithm.
The energy efficiency in Fig. 9 and Fig. 10 is linearly and
logarithmically scaled, respectively. From the results in Fig.
9, we can see that when SNR is high, the energy efficiency
of the proposed AEEIA algorithm, DUSMC algorithm, and
MinIL IA algorithm with energy-efficient PA is almost the
same and much better than that of the MinIL IA algorithm
with equal transmitted power and MinIL IA algorithm with
spectrum-efficient PA. From the results in Fig. 10, it is shown
that when SNR is low, the energy efficiency of the proposed
AEEIA algorithm is much higher than that of the DUSMC
algorithm, and the energy efficiency of the DUSMC algorithm
is higher than that of the MinIL IA algorithm with energy-
efficient and spectrum-efficient PA. The energy efficiency of
the MinIL IA algorithm with equal transmitted power is the
lowest among these algorithms when SNR is low.
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Fig. 11. Spectrum Efficiency comparison of different algorithms in a 5-user
IA-based network with 3 antennas at each transceiver. The threshold λ is set
to 5%.
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Fig. 12. Energy efficiency comparison of different algorithms in a 5-user
IA-based network with 3 antennas at each transceiver. The threshold λ is set
to 5%.

Fig. 7 and Fig. 9 can show the spectrum and energy
efficiency, respectively, with higher SNR more clearly due to
the linearly scaled Y-axis. The spectrum and energy efficiency
is depicted more obviously when SNR is lower in Fig. 8 and
Fig. 10, respectively, due to the logarithmically scaled Y-axis.
For the conciseness and simplicity of the paper, logarithmically
scaled Y-axis is adopted in the following when spectrum
efficiency and energy efficiency are studied.

B. Performance with More Users

In this subsection, the performance of the algorithms with
more users involved in the network is studied. K = 5, and 3
antennas are equipped at each transceiver. The spectrum effi-
ciency and energy efficiency of the algorithms are compared
in Fig. 11 and Fig. 12. In the simulation, the iterative MinIL
IA algorithm [4] is adopted.

From the results we can observe that when Pmax
t /K/σ2

is below 15dB, the proposed AEEIA algorithm can achieve
both the best spectrum efficiency and energy efficiency per-
formance, and when Pmax

t /K/σ2 is larger than 20dB, the



12

spectrum efficiency of the proposed AEEIA algorithm is lower
than that of the IA algorithms with spectrum-efficient PA and
equal transmitted power. This is because the proposed energy-
efficient IA algorithm mainly focuses on the energy efficiency
of the network, and there is no need to allocate all the power
(equal to Pmax

t ) to the users when SNR is high. Consequently,
the energy efficiency of the proposed AEEIA algorithm is
always optimal among all these algorithms whenever SNR is
high or low.

C. Fairness

In the above simulations, fairness is not involved in the
proposed AEEIA algorithm. In this subsection, fairness is
considered. To quantify fairness, Jain’s index is leveraged
to compare the fairness of the proposed algorithms [38].
For a given length-K vector tp of non-negative real entries
{tpk}Kk=1, the Jain’s fairness index J of vector tp can be
expressed as

J(tp) =

(
K∑

k=1

tpk

)2

K
K∑

k=1

tp2k

. (33)

From the definition in (33) we can know that 1
K ≤ J(tp) ≤ 1.

J(tp) = 1
K is the least fair allocation in which the benefit is

allocated to one sole user, while J(tp) = 1 means the fairest
allocation in which the users receive the same benefit. If we
define tpk as the throughput of user k in the IA-based network,
(33) can be exploited as a metric to measure the fairness of
the proposed algorithms.

A 3-user IA-based network with 2 antennas equipped at
each transceiver is adopted in the simulation. The spectrum
efficiency, energy efficiency and Jain’s fairness index of the
proposed AEEIA algorithm with and without fairness are
compared in Fig. 13, Fig. 14 and Fig. 15, respectively. The
cases when Nf = 2, 4, 8 and 16 of the algorithm with fairness
are shown in the figures, and the equal power allocated IA is
also included. In Fig. 13, Fig. 14 and Fig. 15, quasi-static
Rayleigh fading channel is considered, i.e., the channel is
almost unchanged during each frame as shown in Fig. 5. When
time-varying fading channel is adopted, the channel tends to be
ergodic, and the problem of fairness is not so obvious. When
quasi-static fading channel is utilized, the channel becomes
asymmetric, and it will be more unfair. Thus by adopting
the quasi-static Rayleigh fading channel in the simulation, the
fairness of the algorithms can be demonstrated more clearly.

From the simulation results in Fig. 13, Fig. 14 and Fig.
15, it is shown that when fairness is considered in the
proposed AEEIA algorithm, fairness among the users can be
improved significantly with a little sacrifice of the spectrum
efficiency and energy efficiency. The Jain’s fairness index
can be increased with smaller Nf , while spectrum efficiency
and energy efficiency are increased when Nf becomes larger.
Furthermore, the spectrum efficiency and energy efficiency of
the proposed algorithm considering fairness is close to that of
the proposed algorithm without fairness even when Nf = 2,
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Fig. 13. Spectrum Efficiency comparison of the proposed AEEIA algorithm
with and without fairness, when K = 3. Nf is equal to 2, 4, 8 and 16,
respectively when fairness is considered.
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Fig. 14. Energy Efficiency comparison of the proposed AEEIA algorithm
with and without fairness, when K = 3. Nf is equal to 2, 4, 8 and 16,
respectively when fairness is considered.

and the Jain’s fairness index of the proposed algorithm with
Nf = 2 is much larger than that of the equal power allo-
cation IA when Pmax

t /K/σ2 is larger than -5dB. Thus the
proposed AEEIA algorithm considering fairness in (31) can
significantly improve the fairness of the AEEIA algorithm for
IA-based networks while guaranteeing the spectrum efficiency
and energy efficiency of the network.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an AEEIA algorithm to
improve the energy efficiency of IA-based wireless networks.
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Fig. 15. Jain’s fairness index comparison of the proposed AEEIA algorithm
with and without fairness, when K = 3. Nf is equal to 2, 4, 8 and 16,
respectively when fairness is considered.

In the algorithm, power allocation was designed to improve
the energy efficiency of IA. Based on the results of power
allocation, dynamic user sleep mode control was proposed to
save the energy consumption through switching the weak users
into the sleep mode. Then, a transmission-mode adaption algo-
rithm was proposed to further improve the energy efficiency of
IA-based networks. To guarantee the interests of all the users,
fairness among the users in the network was also considered.
Simulation results were presented to show that the proposed
AEEIA algorithm can improve the energy efficiency of IA-
based networks effectively.

In our future work, and the near-far effect will be studied,
and antenna selection [7] will be applied in the transmission-
mode adaptation scheme to further improve the performance
of the proposed algorithm.
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