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Abstract. A colouring of a graph is ecological if every pair of vertices that have
the same set of colours in their neighbourhood are coloured alike. We consider
the following problem: if a graphG and an ecological colouring c ofG are given,
can further vertices added to G, one at a time, be coloured so that at each stage
the current graph is ecologically coloured? If the answer is yes, then we say that
the pair (G, c) is ecologically online extendible. By generalizing the well-known
First-Fit algorithm, we are able to characterize when (G, c) is ecologically online
extendible, and to show that deciding whether (G, c) is ecologically extendible
can be done in polynomial time. We also describe when the extension is possible
using only colours from a given finite set C.

For the case where c is a colouring of G in which each vertex is coloured dis-
tinctly, we give a simple characterization of when (G, c) is ecologically online
extendible using only the colours of c, and we also show that (G, c) is always
online extendible using the colours of c plus one extra colour.

We also study (off-line) ecological H-colourings (an H-colouring of G is a ho-
momorphism from G to H). We study the problem of deciding whether G has
an ecological H-colouring for some fixed H and give a characterization of its
computational complexity in terms of the structure of H .

1 Introduction

One of the goals of social network theory is to determine patterns of relationships
amongst actors in a society. Social networks can be represented by graphs, where ver-
tices of the graph represent individuals and edges represent relationships amongst them.
One way to study patterns of relationships in such networks is to assign labels in such a
way that those who are assigned the same label have similar sorts of relationships within
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the network; see, for example, Hummon and Carley [10]. Several graph-theoretic con-
cepts such as ecological colourings [2], role assignments [7] and perfect colourings [3],
have been introduced to facilitate the study of social networks in this way.

This paper focuses on ecological colourings. The term “ecological” is derived from
certain models of population ecology in which individuals are assumed to be determined
by their environment. For example, in biology, features of a species’ morphology are
usually defined in relation to the way such a species interacts with other species. Also,
some network theories of attitude formation assume that one’s attitude is predicted by
the combination of the attitudes of surrounding individuals [4, 6].

We introduce some basic notation and terminology. Throughout the paper, all graphs
are undirected and without loops or multiple edges unless otherwise stated. We denote
the vertex and edge sets of a graph G by VG and EG respectively (but often omit sub-
scripts). An edge between u and v is denoted (u, v). The neighbourhood of a vertex u
in G is denoted NG(u) = {v | (u, v) ∈ EG}. For a subset S ⊆ VG and a function c on
VG (for example, a colouring of the vertices), we use the short-hand notation c(S) for
the set {c(u) | u ∈ S}. The colourhood of a vertex v in a graph G with colouring c is
defined to be c(NG(v)). For a set C, we write A+x to denote A∪{x} for some subset
A ⊆ C and x ∈ C.

Ecological colourings were introduced by Borgatti and Everett in [2] to analyse
power in experimental exchange networks. Formally, an ecological colouring of a graph
G = (VG, EG) is a vertex mapping c : VG → {1, . . .} such that any two vertices
u, v ∈ VG with the same colourhood, that is, with c(NG(u)) = c(NG(v)), have the
same colour c(u) = c(v). Note that such a colouring does not have to be proper, that
is, two adjacent vertices may receive the same colour. This reflects that two individuals
that play the same role in their environment might be related to each other. See Fig. 1
for an example of a proper ecological colouring.

1 2 1 2

3

Fig. 1. A proper ecological colouring that is also an ecological K3-colouring.

One of the appealing features of ecological colourings is a result of Crescenzi et
al. [5]. In order to state the result precisely, we need to introduce some terminology.
A twin-free graph (also known as a neighbourhood-distinct graph) is a graph in which
no two vertices have the same neighbourhood (including empty neighbourhoods). A
graph G that is not twin-free can be made twin-free as follows: whenever we find a pair
of vertices u and v for which NG(u) = NG(v), we delete one of them until no such
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pair remains. It is easy to check that the resulting graph is independent of the order in
which vertices are deleted and is twin-free; it is called the neighbourhood graph of G
and is denoted by GN . The main result of Crescenzi et al. [5] states that an ecological
colouring of a graph G using exactly k colours can be found in polynomial time for
each 1 ≤ k ≤ |VGN

| and does not exist for k ≥ |VGN
|+ 1.

Our motivation for studying online ecological colourings. In static optimization
problems, one is often faced with the challenge of determining efficient algorithms
that solve a particular problem optimally for any given instance of the problem. In the
area of dynamic optimization the situation is more complicated: here, one often lacks
knowledge of the complete instance of the problem.

This paper studies ecological colourings for dynamic networks. Gyárfás and Lehel [8]
introduced the concept of online colouring to tackle dynamical storage allocations. An
online colouring algorithm irrevocably colours the vertices of a graph one by one, as
they are revealed, where determination of the colour of a new vertex can only depend
on the coloured subgraph induced by the revealed vertices. See [11] for a survey on
online colouring.

Perhaps the most well-known online colouring algorithm is FIRST-FIT. Starting
from the empty graph, this algorithm assigns each new vertex the least colour from
{1, 2, . . .} that does not appear in its neighbourhood. It is easy to check that an eco-
logical colouring is obtained at each stage and hence FIRST-FIT is an example of an
online ecological colouring algorithm. Note, however, that it may use an unbounded
number of colours. If we wish to use at most k colours when we start from the empty
graph, then we can alter FIRST-FIT so that each new vertex v is assigned, if possible,
the least colour in {1, 2, . . . , k − 1} not in the colourhood of v, or else v is coloured k.
We call the modified algorithm k-FIRST-FIT. It gives a colouring that is ecological but
not necessarily proper (consider, for example, 1-FIRST-FIT which assigns all vertices
the same colour).

A natural situation to consider is when we are given a nonempty start graph G0 =
G, the vertices of which are coloured by an ecological colouring c. At each stage i, a
new vertex vi is added to Gi−1 (the graph from the previous stage) together with (zero
or more) edges between vi and the vertices of Gi−1, to give the graph Gi. Knowledge
of Gi is the only information we have at stage i. Our task is to colour the new vertex
vi at each stage i, without changing the colours of the existing vertices, to give an eco-
logical colouring of Gi. If there exists an online colouring algorithm that accomplishes
this task, we say that the pair (G, c) is (ecologically) online extendible. If there is an
algorithm that uses only colours from a finite set C, we say that (G, c) is online ex-
tendible with C (of course, we assume throughout that C ⊇ c(V )). Motivated by our
observation that colourings obtained by FIRST-FIT and k-FIRST-FIT are ecological, we
examine which pairs (G, c) are online extendible.

Our motivation for studying ecological H-colourings. In order to analyse the salient
features of a large network G, it is often desirable to compress G into a smaller net-
work H in such a way that important aspects of G are maintained in H . Extracting
relevant information about G becomes much easier using H . This idea of compres-
sion is encapsulated by the notion of graph homomorphisms, which are generaliza-
tions of graph colourings. Let G and H be two graphs. An H-colouring or homo-
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morphism from G to H is a function f : VG → VH such that for all (u, v) ∈ EG

we have (f(u), f(v)) ∈ EH . An ecological H-colouring of G is a homomorphism
f : VG → VH such that, for all pairs of vertices u, v ∈ VG, we have

f(NG(u)) = f(NG(v)) =⇒ f(u) = f(v).

See Fig. 1 for an example of an ecological K3-colouring, where K3 denotes the com-
plete graph on {1, 2, 3}. The ECOLOGICAL H -COLOURING problem asks if a graph G
has an ecological H-Colouring. Classifying the computational complexity of this prob-
lem is our second main goal in this paper. This research was motivated by Crescenzi
et al. [5] who posed the computational complexity of a variant of ECOLOGICAL H -
COLOURING as an open problem. This variant is that of testing whether a graph has a
surjective ecological H-colouring, that is, an ecological H-colouring f with f(VG) =
VH . We call this problem the SURJECTIVE ECOLOGICAL H -COLOURING problem.
We will show that our results on ECOLOGICAL H -COLOURING provide a partial com-
plexity classification of SURJECTIVE ECOLOGICAL H -COLOURING.
Our results and paper organisation. In Section 2, we characterize when a pair (G, c)
is online extendible. We extend the characterization to the case where the extension
must use only colours from a give finite set C. In Section 3, we investigate the com-
putational complexity of deciding whether online extensions can be obtained and show
that this can be done in polynomial time if the set of colours is either unspecified or
fixed. We then focus on the case where each vertex of a k-vertex graph G is coloured
distinctly by c. In Section 4, we show that such a pair (G, c) is always online extendible
with k + 1 colours, and give a polynomial-time online colouring algorithm for achiev-
ing this. We show that this result is tight by giving a simple characterization of exactly
which (G, c) are not ecologically online extendible with k colours. This characterization
can be verified in polynomial time. In Section 5, we classify the computational com-
plexity of the ECOLOGICAL H -COLOURING problem. We show that ifH is bipartite or
contains a loop then ECOLOGICAL H -COLOURING is polynomial-time solvable, and is
NP-complete otherwise. Section 6 contains conclusions and open problems. Amongst
others, we will discuss the complexity status of the SURJECTIVE ECOLOGICAL H -
COLOURING problem and indicate which cases are still open.

2 Online Ecological Colouring

2.1 Examples

We first give an example to demonstrate that not all pairs (G, c) are online extendible.
Consider the ecologically coloured graph in Fig. 2.(i). Suppose that a further vertex is
added as shown in Fig. 2.(ii). Its colourhood is {1, 3, 4} so it must be coloured 2 to keep
the colouring ecological (since there is already a vertex with that colourhood). Finally
suppose that a further vertex is added as shown in Fig. 2.(iii). Its colourhood is {2, 3, 4}
so it must be coloured 1. But now the two vertices of degree 2 have the same colourhood
but are not coloured alike so the colouring is not ecological.

We also give an example of a pair (G, c) that is online extendible but for which we
cannot use FIRST-FIT or k-FIRST-FIT. Let G be the path v1v2v3v4 on four vertices
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Fig. 2. A pair (G, c) that is not online extendible.

coloured abcd. We will show in Theorem 3 that (G, c) is online extendible (even if we
are forced to use only colours from {a, b, c, d}). However, FIRST-FIT or k-FIRST FIT
(arbitrary k) cannot be used with any ordering of {a, b, c, d}. To see this, add a new
vertex adjacent to v1 and v3. Any correct online colouring algorithm must colour it b.
So if the algorithm is FIRST-FIT, b is before d in the ordering of the colours. Next add
a new vertex adjacent to v3. If this vertex is not coloured d then the colouring will not
be ecological, but FIRST-FIT will not use d as b (or possibly a) is preferred.

2.2 Rules

Let us now describe our general approach for obtaining online ecological colourings
when they exist. As before, let G be a graph with an ecological colouring c and let C
be a set of colours where C ⊇ c(V ). What we would like to do is to write down a set
of rules: for each subset A ⊆ C, a colour x should be specified such that whenever a
vertex is added and its colourhood is exactly A, we will colour it x. We would like to
construct a fixed set of rules that, when applied, always yields an ecological colouring.
There is no reason a priori that a general online colouring algorithm should be based
on a set of rules. We show in Theorem 1 though that every online ecological colouring
algorithm can be simply assumed to follow a set of rules. However, finding such a set
turns out to be nontrivial. We start by making the following definitions.

(i) A rule is a pair containing a set of colours A and a colour x and is denoted A→ x.
(ii) A rule A→ x represents a vertex v in G if v has colourhood A and c(v) = x.

(iii) The set of rules that represent each vertex of G is said to be induced by (G, c) and
is denoted R(G,c).

(iv) A set of rules R is valid for (G, c) if R ⊇ R(G,c) and for each pair of distinct rules
A→ x, B → y in R, we have A 6= B.

(v) A set of rules R is full on a set of colours C if for every A ⊆ C, there is exactly
one colour x ∈ C such that A→ x is in R.

5



We will sometimes refer to a set of rules R on C meaning that for each rule A → x
of R, we have A ⊆ C and x ∈ C.

Notice that a full set of rules R constitutes an online colouring algorithm: if v is a
newly revealed vertex with colourhood A and A → x is the unique rule for A in R,
then v is coloured x by R. Notice also that the k-FIRST-FIT algorithm can be written
down as the full set of rules

Rk
FF = {A→ min{y ≥ 1 | y /∈ A} | A ⊂ {1, . . . , k}} ∪ {{1, . . . , k} → k},

that is, the k-FIRST-FIT algorithm assigns colours to new vertices purely as a function
of their colourhoods. In this way, the notion of rules generalises FIRST-FIT.

While a full set of rulesR gives an online colouring algorithm, it does not guarantee
that each colouring will be ecological. For this, we must impose conditions on R. The
following observation, which follows trivially from the definitions, shows that having a
valid set of rules for a coloured graph ensures that it is ecologically coloured. We state
the observation formally so that we can refer to it later.

Observation 1 Let G = (V,E) be a graph with colouring c. Let R be a valid set of
rules for (G, c). Then c is an ecological colouring of G.

Proof. Suppose c is not ecological. Then there are two vertices coloured x and y, x 6= y,
which both have colourhoodA ⊆ c(V ). Then the set of rules induced by (G, c) contains
two rules A → x and A → y. Since R is valid for (G, c), it must contain the rules
induced by (G, c), but this contradicts that R must contain at most one rule for each
set A. ut

Note that if we have a valid and full set of rules R on C for (G, c) and further
vertices are added and coloured according to the rules, R might not necessarily remain
valid for the new graph, that is, R might not be a superset of the induced rules for the
new graph. Let us see what might happen. Suppose that a new vertex u is added such
that its colourhood is B and that, according to a rule B → y in R, it is coloured y. Now
consider a neighbour v of u. Suppose that it had been coloured x at some previous stage
according to a ruleA→ x inR. But now the colour y has been added to its colourhood.
So R is valid for the altered graph only if it contains the rule A+ y → x.

This motivates the following definition. Let R be a set of rules. We say that R is a
good set of rules if for all sets A,B and all colours x, y the following holds:

if (A→ x) ∈ R and (B → y) ∈ R and x ∈ B then (A+ y → x) ∈ R.

It is an easy exercise to check that the rules Rk
FF for k-FIRST-FIT are good.

2.3 Conditions for obtaining online extensions

We are now able to characterize when a pair (G, c) is online extendible.

Theorem 1. Let G = (V,E) be a graph with ecological colouring c. Then (G, c) is
online extendible if and only if there exists a set of rules R such that
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(i) R is valid for (G, c), and
(ii) R is good.

Furthermore (G, c) is online extendible with a finite set C if, in addition to (i) and (ii),

(iii) R is full on C ′, where C ′ is a set of colours satisfying C ⊇ C ′ ⊇ c(V ).

The purpose of C ′ in the statement of Theorem 1 is to account for the possibility that
some of the colours of C may, under all circumstances, not be required.

Proof. The theorem describes two results corresponding to the fact that, when seeking
online extensions, we may or may not specify the set of colours C to be used. The only
difference is the extra condition (iii) in the case where the set is given. The two results
can be proved together if we take care to note that, throughout, a set C may or may not
have been specified.

(=⇒) We assume that (G, c) is online extendible, and show that this implies (i)
and (ii), and, also, that if the extension can be made using colours from a given finite
set C, then (iii) is satisfied.

Assuming that (G, c) is online extendible, there exists, by definition, an algorithm
α that can be used to obtain an ecological colouring of any graph constructed by adding
vertices to G. We shall show that, by carefully choosing how to add vertices to G and
colouring them with α, we obtain a graph which induces a set of rules that is valid for
(G, c), good and, if C is given, full on some set C ′ ⊆ C.

First, we describe one way in which we add vertices. If a graph contains a vertex
u coloured x with colourhood A, then the set of rules induced by the graph includes
A→ x. To protect that rule means to add another vertex v with the same neighbourhood
(and thus also the same colourhood) as u, to colour it x (as any correct algorithm must),
and to state that no further vertices will be added that are adjacent to v. Hence all future
graphs obtained by adding additional vertices will also induce the rule A→ x.

We use this method immediately: we protect each of the rules induced by (G, c). In
this way, we ensure that the set of induced rules for any future graph is valid for (G, c).

While α is being applied, let G∗ denote the current graph. If C is given, then let C∗

be the set of colours used on G∗; otherwise let C∗ = c(V ). Let R∗ be the set of rules
induced by G∗. As long as R∗ is not full on C∗, we add a new vertex as follows:

Let B ⊆ C∗ be a set for which R∗ does not contain a rule. Add to G∗ a new
vertex u with colourhood B and use the algorithm α to obtain an ecological
colouring. Add vertices to protect any rule induced by the new graph not inR∗.

Note that it is possible to add such a vertex u without making it adjacent to vertices
that have been used for protection (so the rules induced by the new graph are a superset
of the rules induced by G∗). There is at least one rule induced by the new graph not
induced by the previous graph, namely B → y, where y is the colour α assigns to u.
So, if we continue in this way, the number of rules will increase. In the case that C is
given, a full set of rules RF will eventually be obtained for some set C ′ ⊆ C. In the
case that C is not given and C∗ = c(V )), we will eventually obtain a set of rules that
contains a rule for every subset of c(V ); in this case, let RF be the subset of those rules
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that contains one rule A → x for each A ⊆ c(V ). In each case, let GF be the final
graph obtained.

In each case, RF is valid for (G, c) and if C is specified it is full for C ′. Thus it
only remains to prove that RF is good. If the rules are not good, then they include rules
A → x, B → y, A + y → z such that x ∈ B and x 6= z. Let u be a vertex in GF

coloured x with colourhood A. Choose a set of vertices S 3 u with c(S) = B such
that each vertex, except possibly u, is not one that was created to protect a rule. Add
a new vertex adjacent to the vertices of S. This must be coloured y by α. But now the
neighbourhood of u is A + y and the colouring is not ecological (since no vertex has
been added adjacent to the vertex protecting the rule A + y → z); this contradicts the
definition of α.

(⇐=) Suppose that R is a set of rules that is valid for (G, c), good, and, if C is
given, is full on C ′ where C ⊇ C ′ ⊇ c(V ). We must show that this implies that (G, c)
is online extendible (with C). That is, we must describe how to colour vertices as they
are added to G in such a way that all colourings obtained are ecological.

Let G0 = G, and suppose that graphs G1, G2, . . . , Gr are obtained by the succes-
sive addition of vertices v1, v2, . . . , vr (that is, Gi is obtained from Gi−1 by adding the
vertex vi and some incident edges). We will describe how to colour each vi to obtain a
colouring ci ofGi, and also describe a set of rulesRi that is good and valid for (Gi, ci).
By Observation 1, this will prove that ci is an ecological colouring of Gi.

If C is given, then we simply let each Ri = R and colour each new vertex using R;
this can be done since R is full on C ′ ⊆ C. We note that each Ri is good and will prove
validity below. If C is not given, we colour vi and construct Ri as follows. Set R0 = R,
which we know is a set of rules that is valid for (G0, c) and good. Given (Gi−1, ci−1)
and the set of rules Ri−1, let S be the colourhood of vi in Gi−1. If Ri−1 contains a rule
for S, use that rule to colour vi and set Ri = Ri−1. If no rule exists for S, colour vi
with a new (that is, as yet unused) colour k, and set

Ri = Ri−1 ∪ {S → k} ∪ {(T + k → z)| (T → z) ∈ Ri−1, z ∈ S}. (1)

Note that Ri is a set of rules on ci(Vi) and that Ri contains at most one rule for each
subset of ci(Vi) (since each of the added rules involves a set that does not have a rule in
Ri−1).

We show that Ri is good, assuming by induction that Ri−1 is good. If Ri = Ri−1,
then Ri is good, so we may assume that Ri is constructed according to (1). Suppose
that (A → x) ∈ Ri and (B → y) ∈ Ri with x ∈ B. We show by case analysis that
(A+ y → x) ∈ Ri.

Case 1: x = k
By the definition of Ri, if x = k then A = S. Also, using the definition of Ri, if
x = k ∈ B and (B → y) ∈ Ri, then y ∈ S. Thus (A+ y → x) ∈ Ri.

Case 2: x 6= k, y = k
By the definition of Ri, if y = k then B = S. Also, using the definition of Ri, since
x ∈ S = B and (A→ x) ∈ Ri then (A+ k → x) ∈ Ri, that is, (A+ y → x) ∈ Ri.

Case 3: x 6= k, y 6= k
Since x, y 6= k, then A 6= S and B 6= S. By the definition of Ri, since (A → x) ∈ Ri
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then (A−k → x) ∈ Ri−1. Similarly, since (B → y) ∈ Ri, then (B−k → y) ∈ Ri−1.
Since x 6= k, then x ∈ B−k. SinceRi−1 is good, we have that (A+y−k → x) ∈ Ri−1.
If k 6∈ A, then the previous statement gives precisely that (A + y → x) ∈ Ri−1 ⊂ Ri

as required. If k ∈ A, then since (A → x) ∈ Ri, we have x ∈ S (using the definition
of Ri). Thus from our deduction that (A+ y − k → x) ∈ Ri−1 and x ∈ S, we see that
(A+ y → x) ∈ Ri (from the definition of Ri).

Finally, we show thatRi is valid for (Gi, ci) (in both the case whereC is unspecified
and each Ri is as constructed just above, and also the case where C is given and each
Ri = R, the given set of rules). We know that Ri contains at most one rule A → x
for each set A, so we need only to show that Ri contains the rules induced by (Gi, ci).
Assume, for induction, that Ri−1 is valid for (Gi−1, ci−1). Let B be the colourhood of
vi in Gi. Now Ri contains a rule for B, say B → y, by which vi is coloured y, giving
the colouring ci ofGi. We must check that there are rules inRi to represent each vertex
ofGi. Clearly the ruleB → y represents vi. Let v 6= vi be a vertex ofGi. Suppose, as a
vertex of Gi−1, it is represented by the rule (A→ x) ∈ Ri−1 ⊂ Ri. If v is not adjacent
to vi, then in Gi, v is still represented by the rule (A→ x) ∈ Ri. If v is adjacent to vi,
then v is represented by the rule A+ y → x; this rule is present in Ri since Ri is good
and contains the rules A→ x and B → y, where x ∈ B. ut

3 Computational Complexity of Online Extendibility

We now consider the computational complexity of deciding whether or not (G, c) is
online extendible.

Theorem 2. Given an input graph G = (V,E) with an ecological colouring c, the
problem of deciding if (G, c) is ecologically online extendible is solvable in polynomial
time.

The theorem considers the case where the set of colours to be used is not specified.
Whether or not (G, c) is online extendible with a fixed set C of cardinality ` is also
solvable in polynomial time: enumerate all full sets of rules on all C ′ ⊆ C and check
whether they are good and valid for (G, c); the number of sets of rules to be checked
depends only on ` and is independent of |G|, and checking a set of rules requires poly-
nomial time. So far, we have not been able to prove the computational complexity if C
is part of the input rather than fixed.

Proof. By Theorem 1, to decide whether (G, c) is online extendible, we must check
whether there exists a set of rules that is valid for (G, c) and good. We successively re-
duce this condition to simpler but equivalent conditions, eventually reaching a condition
that can be checked in time polyonomial in |G|.

We begin by observing that there exists a set of rules that is valid for (G, c) and good
if and only if there exists a set of rules on c(V ) that is valid for (G, c) and good. In one
direction this is obvious. For the other direction, assume we have a set of rules R that
is valid for (G, c) and good. Note that R may contain rules (A → x) with A 6⊆ c(V ).
However, let R̂ be the set of rules on c(V ) given by

R̂ = {(A→ x) ∈ R : A ⊆ c(V ), x ∈ c(V )}.
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It is easy to verify that R̂ is good given that R is good.
Next we prove a useful lemma that gives equivalent conditions for goodness.

Lemma 1. Let G = (V,E) be a graph with ecological colouring c, and let R be a set
of rules on c(V ) that is valid for (G, c). Then R is good if and only if the following
conditions hold.

(1) If (A → x) ∈ R with y ∈ A, then there exists B ⊆ c(V ) such that (B → y) ∈ R
with x ∈ B.

(2) If (A→ x) ∈ R and (B → x) ∈ R, then (A ∪B → x) ∈ R.
(3) If (A→ x) ∈ R and (B → x) ∈ R and A ⊆ X ⊆ B, then (X → x) ∈ R.

Proof. (=⇒) Suppose R is a set of rules on c(V ) that is valid for (G, c) and good.
To prove (1), suppose y ∈ A and (A → x) ∈ R. Since R is valid for (G, c), there

exists B′ such that (B′ → y) ∈ R (for every colour z, there exists Z ⊆ c(V ) such
that (Z → z) ∈ R). Since R is good, (B′ + x → y) ∈ R, and setting B = B′ + x
proves (1).

We prove (2) and (3) together by showing that if (A → x) ∈ R and (B → x) ∈ R
and y ∈ B, then (A + y → x) ∈ R. Thus adding the elements of B one by one to
A yields both (2) and (3). If (B → x) ∈ R and y ∈ B, then by (1), there exists B′

such that (B′ → y) ∈ R and x ∈ B′. Then since R is good and (A → x) ∈ R,
(B′ → y) ∈ R, and x ∈ B′, we have (A+ y → x) ∈ R as required.

(⇐=) To prove the converse, we assume that R is valid for (G, c) and satisfies (1),
(2), and (3), and we must show that R is good.

Suppose (A → x) ∈ R and (B → y) ∈ R with x ∈ B. Then by (1), there exists
B′ such that (B′ → x) ∈ R and y ∈ B′. By (2), (A ∪B′ → x) ∈ R, and by (3), since
y ∈ B′, (A+ y → x) ∈ R, as required. This completes the proof of Lemma 1 ut

So far (using the above lemma), we have deduced that (G, c) is online extendible
if and only if there exists a set of rules on c(V ) that is valid for (G, c) and satisfies
conditions (1), (2), and (3) of Lemma 1. We reduce this condition further.

LetR be the set of rules induced by (G, c) and letR′ be a set of rules on c(V ) that is
valid for (G, c) and good (if such a set of rules exists). Clearly R′ ⊇ R, and R′ satisfies
conditions (1), (2), and (3) of Lemma 1. For each x ∈ c(V ), let

A(x) = {A|(A→ x) ∈ R},

and for each x ∈ c(V ), let Mx ⊆ c(V ) be defined by

Mx =
⋃
A(x).

By condition (2) of Lemma 1, R′ must contain the rule Mx → x for each x ∈ c(V ).
For each x ∈ c(V ), let R(x) be the set of rules defined by

R(x) = {B → x|A ⊆ B ⊆Mx, A ∈ A(x)}.

By condition (3) of Lemma 1,R′ must contain all the rules inR(x) for every x ∈ c(V ).
Setting

R∗ =
⋃

x∈c(V )

R(x),

10



we have that R′ ⊇ R∗.
Notice that R∗ satisfies conditions (2) and (3) of Lemma 1, by construction. One

can check that R∗ also satisfies condition (1) of Lemma 1 as follows. Suppose (A →
x) ∈ R∗ and y ∈ A. By construction of R∗, there exists A′ ∈ A(x) such that y ∈ A′
and (A′ → x) ∈ R. Since R is the induced set of rules for (G, c), there exists a vertex
v of G coloured y with colourhood A′. Thus the neighbourhood of v contains a vertex
w coloured y. If the rule induced by w is B → y, then x ∈ B (since v, coloured x, is in
the neighbourhood of w) and (B → y) ∈ R ⊆ R∗. Thus (3) holds.

Thus, if R∗ is valid for (G, c), then R∗ is good by Lemma 1; if R∗ is not valid for
(G, c) (the only way this can happen is if there is more than one rule for some set), then
there is no set of rules that is good and valid for (G, c) because any such set of rules
must contain R∗. Thus (G, c) is online extendible if and only if R∗ is valid for (G, c).

We can determine in time polynomial in |G| whether R∗ is valid (without a priori
constructing R∗). To see this, consider that the only way R∗ is not valid is if there exist
rules A→ x and A→ y in R∗ with x 6= y. In that case, we must have

Mx ⊇ A ⊇ Ax for some Ax ∈ A(x),
and My ⊇ A ⊇ Ay for some Ay ∈ A(y).

The above holds if and only if Mx ∩My ⊇ Ax ∪ Ay . Thus, for each pair of distinct
colours x and y, and for each Ax ∈ A(x) and Ay ∈ A(y), we simply check whether
Mx∩My ⊇ Ax∪Ay (this can be done in time polynomial in n). If no such containment
exists thenR∗ is good and valid for (G, c) and so (G, c) is online extendible; otherwise,
there is no set of rules that is good and valid for (G, c) and so (G, c) is not online
extendible. This completes the proof of Theorem 2. ut

4 Online Extensions of Twin-Free Graphs

We noted in the previous section that if we are given a graph G = (V,E) ecologically
coloured with c and a set of colours C ⊇ c(V ), we do not know the complexity of
deciding whether (G, c) is online extendible with C (that is, whether (G, c) is online
extendible with a specified number of extra colours). A natural question to start with is
to consider the case in which all vertices of G have distinct colours. Thus we assume
that G is twin-free else the colouring would not be ecological. Theorem 3 solves this
case by showing that any such pair (G, c) is online extendible using one extra colour
in addition to c(V ). We show in the second part of this theorem that the above is tight
by characterizing those pairs (G, c) for which we always need the extra colour. The
simple necessary and sufficient conditions in our characterization can easily be checked
in polynomial time.

Theorem 3. LetG = (V,E) be a twin-free graph on k vertices and let c be a colouring
of G with |c(V )| = k (thus c is an ecological colouring of G).

1. (G, c) is online extendible with c(V ) and one extra colour.
2. (G, c) is online extendible with c(V ) if and only if G contains a vertex u∗ such that

(i) the neighbourhood of u∗ is maximal in G, that is N(u∗) is not a proper subset
of NG(v) for all v ∈ V , and

11



(ii) the graph G− u∗ is twin-free.

The smallest twin-free graph that does not satisfy the two conditions (i) and (ii) in
Theorem 3 is a graph on two components, one of which is an isolated vertex and the
other is an edge. The smallest connected twin-free graph that does not satisfy these two
conditions is obtained from a complete graph on four vertices u1, u2, u3, u4 after adding
two new vertices v1, v2 with edges (u1, v1), (u2, v1), (u3, v2), (u4, v2) and (v1, v2).
We can construct an infinite family of such examples as follows. Take two disjoint
copies, H and H ′, of the complete graph K2n on 2n vertices with a perfect matching
removed. Let (v1, w1), (v2, w2), . . . , (vn, wn) be the perfect matching removed from
H , and let (v′1, w

′
1), (v

′
2, w

′
2), . . . , (v

′
n, w

′
n) be the perfect matching removed from H ′.

Let G be the graph obtained by adding the edges (v1, v′1), (v2, v
′
2), . . . , (vn, v

′
n) to H ∪

H ′. Clearly, the vertices with maximal neighbourhoods are v1, . . . , vn, v′1, . . . , v
′
n, but

removing vi (resp. v′i) from G leaves twins v′i, w
′
i (resp. vi, wi).

Proof. We restate that G is a twin-free graph on k vertices and that c is an ecological
colouring ofG with |c(V )| = k. Define C := c(V ) = {1, 2, . . . , k}. To prove each part
of the theorem, we must find a valid, good, full set of rules R for (G, c). We know that
R must contain rules that represent each vertex of G; we must describe how to define
the remaining rules. Here is a useful technique.

Let A contain the subsets A ⊆ C for which R(G,c) contains a rule involving A. To
propagate R(G,c) apply the following to obtain a set of rules R∗(G,c):

• for each 1 ≤ i ≤ |C|, fix an ordering for the collection of sets inA of cardinality i;
• for each subset A ⊆ C, let, if possible, A∗ be the smallest member of A, first

ordered, that is a superset of A (possibly A∗ = A). If A∗ exists and A∗ → x is a
rule in R(G,c), then add A→ x to R∗(G,c).

We make two claims. The first is a simple observation.

Claim 1. We have that R∗(G,c) is valid for (G, c). Furthermore R∗(G,c) is a full set of
rules on C if and only if R(G,c) contains a rule C → x for some x.

Claim 2. We have that R∗(G,c) is good.

We prove Claim 2 as follows. If R∗(G,c) is not good, then there are rules A → x and
B → y in R∗(G,c), where x ∈ B, but A+ y → x is not in R∗(G,c). By definition, R(G,c)

contains a rule A∗ → x. Notice that A∗ is the set of colours used on the neighbours
of the vertex in G coloured x. Similarly R(G,c) must contain a rule B∗ → y, where
x ∈ B ⊆ B∗ and B∗ is the set of colours used on the neighbours of the vertex in G
coloured y. So the vertices in G coloured x and y are adjacent and so y ∈ A∗. But then
A∗ contains A+ y so we must have A∗ = (A+ y)∗. Thus A+ y → x is in R∗(G,c). This
proves Claim 2.

We now prove the first part of the theorem. Let G′ be obtained from G by adding a new
vertex v∗ adjacent to all existing vertices and to itself (we could avoid having a loop by
adding two new vertices adjacent to every vertex in G and each other; but allowing the
loop makes the analysis a little tidier). Colour v∗ with colour k+1 to obtain a colouring
c′ of G′, and write C ′ = {1, . . . , k + 1}. Note that G′ is twin-free.

12



AsR∗(G′,c′) contains a rule involving C ′, Claim 1 tells us that it is a full and valid set
of rules on C ′ for (G′, c′). By Claim 2, R∗(G′,c′) is also good. It remains only to show
that R∗(G′,c′) is valid for (G, c).

Note that each vertex v ofG has the colour k+1 in itsG′-neighbourhood. Therefore,
as a vertex of G′, v is represented in R(G′,c′) by a rule A + (k + 1) → x (where A is
the set of colours in the G-neighbourhood of v). Observe that, sinceA∗ is a minimal set
containing A that is involved in a rule of R(G′,c′), and since all rules B → y in R(G′,c′)

satisfy k+ 1 ∈ B, we have A∗ = A+ (k+ 1). Thus R∗(G′,c′) contains the rule A→ x,
which represents the vertex v of G. This is true for all vertices of G, and so R∗(G′,c′) is
also valid for (G, c). Thus R∗(G′,c′) is a full set of rules on C ′ = {1, . . . , k + 1} that
is good and valid for (G, c). Thus (G, c) is online extendible with {1, . . . , k + 1} by
Theorem 1. This completes the proof of the first part of Theorem 3.

Now we prove the second part of the theorem.
(=⇒) We begin by showing that if G contains a vertex u∗ such that G− u∗ is twin-

free and the neighbourhood of u∗ in G is maximal (that is, it is not a proper subset
of the neighbourhood of another vertex in G), then (G, c) is online extendible with
c(V ) = C = {1, . . . , k}. If we can construct a full set of rules on C that is good and
valid for (G, c) then we are done by Theorem 1.

We may assume that u∗ is coloured k. Let G′ be obtained from G by adding edges
to G so that u∗ is adjacent to every vertex in G, including itself. Note that G′ is twin-
free: u∗ is the only vertex adjacent to every vertex in the graph and if two other vertices
both have neighbourhoods A+ u∗, then in G one must have neighbourhood A and the
other A+ u∗, contradicting that G− u∗ is twin-free.

Let R∗(G′,c) be obtained from R(G′,c) by propagation. As R(G′,c) contains the rule
C → k, we have that R∗(G′,c) is a full set of rules on C that is valid for (G′, c) by Claim
1 and that is good for (G′, c) by Claim 2.

It remains only to show that R∗(G′,c) is valid for (G, c). Note that for each vertex
v 6= u∗ of G, if c(NG(v)) = A, then R(G′,c) contains the rule A+k → x. Also R∗(G′,c)

contains the rule A→ x as A∗ = A+ k (since A∗ is a minimal superset of A and must
contain k). In G, the set of colours in the neighbourhood of v is either A or A + k; in
either case there is a rule in R∗(G′,c) to represent it.

Let B be the colours in the neighbourhood of u∗ in G. Then B∗ = C as, by the
maximality of B, there is no other superset of B involved in a rule of R(G′,c). Since
R(G′,c) contains C → k, R∗(G′,c) contains B → k which represents u∗. So R∗(G′,c) is
valid for (G, c) as required.

(⇐=) Suppose that for every vertex u∗ of G, either G − u∗ is not twin-free or the
neighbourhood of u∗ in G is not maximal. We show that (G, c) is not online extendible
with C = {1, . . . , k}.

Suppose, for a contradiction, that there is an online algorithm to extend (G, c). Add
vertex v to G adjacent to all vertices in G to form G1. Without loss of generality, our
algorithm assigns colour k to v to give us a colouring c1 of G1. Let u be the vertex
of G0 := G that is coloured k. There are two cases to consider: either G0 − u is not
twin-free or NG0

(u) is not maximal.
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SupposeG0−u has twins, that is two vertices a and bwith the same neighbourhood
(inG0−u). The colouring c0 = c, and therefore c1, colours a and b differently; however
we have c1(NG1(a)) = c1(NG1(b)), a contradiction.

Suppose NG0
(u) is not maximal; suppose S = NG0

(u) and T = NG0
(u′), where

T = S ∪{t1, . . . , tr}. Let Ni = NG0
(ti). (Note that r 6= 0 since G0 = G is twin-free.)

Add vertices w1, . . . , wr to G1 one at a time, where wi is adjacent to each vertex in
Ni ∪ {u}. Our online algorithm is forced to assign the colour of ti to wi (since they
have the same colours in their neighbourhoods). Let Gr+1 be the graph obtained after
addition of w1, . . . , wr and let cr+1 be its colouring. In (Gr+1, cr+1), we find that u
and u′ have the same set of colours in their neighbourhoods but are coloured differently
(since they were coloured differently by c0). This is a contradiction. ut

Now we show that the two online algorithms implied by statements 1 and 2 of
Theorem 3-1, respectively, run in polynomial time. Let G be a twin-free graph with
ecological colouring c. We follow the proof of Theorem 3. The procedure is very similar
for each of the two algorithms. First we amend G to obtain a graph G′; in the first
algorithm we also amend the colouring c to obtain c′. Then we propagate R(G′,c′) (in
fact, R(G′,c) for the second algorithm). Next, when a new vertex vi is presented and
needs to be coloured, we first determine the set of colours A in the neighbourhood of
vi. Next we compute the corresponding set A∗, which is the smallest and first ordered
member of A with A ⊆ A∗; note that the set A∗ exists due to the addition of vertex
v∗ in the first algorithm and modification of the vertex u∗ in the second algorithm,
respectively. This gives us the rule by which vi should be coloured. The total time used
is polynomial in the size of G.

5 Ecological H-Colouring

In this section we classify the computational complexity of the problem ECOLOGICAL
H -COLOURING for all fixed target graphs H . Before doing this, we must introduce
some further terminology. Given a graph H on k vertices, we define the product graph
Hk. The vertex set of Hk is the Cartesian product

VHk = VH × · · ·VH︸ ︷︷ ︸
k times

.

Thus a vertex u of Hk has k coordinates ui, 1 ≤ i ≤ k, where each ui is a vertex
of H (note that these coordinates of u need not be distinct vertices of H). The edge set
of Hk, EHk , contains an edge (u, v) in EHk if and only if, for 1 ≤ i ≤ k, there is an
edge (ui, vi) in H . For 1 ≤ i ≤ k, the projection on the ith coordinate of Hk is the
function pi : VHk → VH where pi(u) = ui. It is clear that each projection is a graph
homomorphism.

Theorem 4. If H is bipartite or contains a loop, then ECOLOGICAL H -COLOURING
is in P . IfH is not bipartite and contains no loops, then ECOLOGICAL H -COLOURING
is NP-complete.
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Proof. The first sentence of the theorem is an easy observation which we briefly justify.
If H has no edges, then G has an ecological H-colouring if and only if G has no edges.
Suppose H is bipartite and contains at least one edge (x, y). If G is bipartite, then we
can find an ecological H-colouring by mapping each vertex of G to either x or y. If G
is not bipartite then it is clear that there is no homomorphism from G to H . If H has a
loop, then any graph has an ecological H-colouring since we can map every vertex to a
vertex with a loop.

We prove that the ECOLOGICAL H -COLOURING problem is NP-complete for loop-
less non-bipartite H by reduction from H -COLOURING which is known to be NP-
complete for loopless non-bipartite H [9].

Let G be an instance of H-colouring and let n be the number of vertices in G. Let
k denote the number of vertices in HN , the neighbourhood graph of H (recall that the
neighbourhood graph of H is a graph in which each vertex has a unique neighbourhood
and is obtained from H by repeatedly deleting one vertex from any pair with the same
neighbourhood). Let π denote a vertex in Hk

N whose k coordinates are the k distinct
vertices of HN (the order is unimportant). Let G′ be a graph formed from G and n
copies of Hk

N by identifying each vertex u of G with a distinct copy of the vertex π; see
Fig. 3. We can distinguish the copies of Hk

N by referring to the vertex of G to which
they are attached.

G G′

u = π

Hk
N

Fig. 3. The graph G′ formed by attaching G to copies of Hk
N .

We claim that G has an H-colouring if and only if G′ has an ecological HN -
colouring which is clearly equivalent to G′ having an ecological H-colouring. As it
is clear that if G′ has an ecological HN -colouring, the restriction to VG provides an
H-colouring for G, all we need to prove is that when G has an H-colouring, we can
find an ecological HN -colouring for G′.

If G has an H-colouring, then clearly it also has an HN -colouring f . We use f to
find an ecologicalHN -colouring g forG′. For each vertex u ∈ VG, f(u) = πi for some
i (this is possible because of the choice of π as a vertex that has each vertex of HN as a
coordinate). For each vertex v in the copy of Hk

N attached to u, let g(v) = pi(v). Note
that g(u) = pi(u) = πi = f(u) for each vertex u in VG.

Certainly g is anHN -colouring: the edges ofEG are mapped to edges ofHN since g
is the same as f on VG, and the edges of each copy of Hk

N are mapped to edges of HN

as g is the same as one of the projections of Hk
N on these edges.
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We must show that it is ecological; that is, for each pair of vertices s and t in G′, we
must show that

g(NG′(s)) = g(NG′(t)) =⇒ g(s) = g(t). (2)

Suppose that g(NG′(s)) = g(NG′(t)). We know that g(s) = pi(s) = si for some value
of i. Then for each x ∈ NHN

(si), there is a vertex s′ ∈ NG′(s) with g(s′) = x (since
we can choose as s′ a vertex in the same copy of Hk

N as s with s′i = x and s′j being any
neighbour of sj , 1 ≤ j ≤ k, j 6= i).

Thus g(NG′(s)) ⊇ NHN
(si) and so, since g is an HN -colouring, g(NG′(s)) =

NHN
(si) and then, by (2), g(NG′(t)) = NHN

(si). But as the neighbourhoods of ver-
tices in HN are distinct, we must have g(t) = si = g(s). This completes the proof of
Theorem 4. ut

6 Conclusions and Open Problems

LetG = (V,E) be a graph with ecological colouring c. In the first part of our paper, we
showed that checking whether a pair (G, c) is online extendible can be done in polyno-
mial time. We also showed that checking if (G, c) is online extendible with some fixed
finite set C ⊇ c(V ) is also polynomial-time solvable (although the time taken is a very
large function of |C|). Determining the computational complexity of this problem when
C is part of the input remains an open problem. We obtain a positive result when con-
sidering pairs (G, c) in which each vertex of the k-vertex graph G has a distinct colour.
For such (G, c), we can check in time polynomial in k if (G, c) is online extendible
with any C ⊇ c(V ). Indeed, we found that if |C| = k + 1, then (G, c) is always online
extendible with C, and there are infinitely many examples of (G, c) that are not online
extendible with C when |C| = k. It would be interesting to know whether there are ex-
amples (G, c) that are online extendible with an infinite number of colours but not with
a finite number. An answer to this question is also relevant for the problem of finding a
good set of rules R that is valid for some pair (G, c) should (G, c) be online extendible.
The complexity status of the latter problem is also still open.

In the second part of our paper we gave a complete complexity classification of
ECOLOGICAL H -COLOURING. We showed in Theorem 4 that if H is bipartite or
contains a loop then ECOLOGICAL H -COLOURING is polynomial-time solvable, and
is NP-complete otherwise. Theorem 4 implies that SURJECTIVE ECOLOGICAL H -
COLOURING is NP-complete if H is a neighbourhood graph that is neither bipar-
tite nor contains any loops; we can reduce from the corresponding ECOLOGICAL H -
COLOURING problem by adding a disjoint copy of H to the given graph G. Moreover,
SURJECTIVE ECOLOGICAL H -COLOURING has no yes-instances if H is not a neigh-
bourhood graph. Hence, we are left with the case in which H is a neighbourhood graph
that is bipartite or that contains at least one loop. We leave solving this case for fu-
ture research. We note, however, that classifying the complexity of the SURJECTIVE
H -COLOURING problem that asks if a graph allows a surjective homomorphism to a
fixed graph H is a notoriously difficult open problem [1].
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1. M. Bodirsky, J. Kára and B. Martin, The complexity of surjective homomorphism problems –
a survey, Discrete Applied Mathematics 160 (2012) 1680–1690.

2. S. P. Borgatti and M. G. Everett, Graph colorings and power in experimental exchange net-
works, Social Networks 14 (1992) 287–308.

3. S.P. Borgatti, M.G. Everett, Ecological and perfect colorings, Social Networks 16 (1994) 43–
55.

4. R.S. Burt, STRUCTURE Version 4.2 Reference Manual, Center for the Social Sciences,
Columbia University, New York, 1991.

5. P. Crescenzi, M. Di Ianni, F. Greco, G. Rossi and P. Vocca, On the existence of Ecological
Colouring, Proc. of the 34th International Workshop on Graph-Theoretic Concepts in Com-
puter Science, Lecture Notes in Computer Science 5344, Springer, Berlin (2008), pp. 90–100.

6. E.H. Erickson, The relational basis of attitudes, Social Structures: A Network Approach, Cam-
bridge, Cambridge University Press, pp. 99–121, 1988.

7. M.G. Everett and S. P. Borgatti, Role colouring a graph, Mathematical Social Sciences 21
(1991) 183–188.
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