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The Comment by Friedrich et al. does not dispute the central result of our paper [Phys. Rev. A 85, 052508
(2012)] that nonanalytic behavior is present in long-established mathematical pathologies arising in the solution
of finite basis optimized effective potential (OEP) equations. In the Comment, the terms “balancing of basis
sets” and “basis-set convergence” imply a particular order towards the limit of a large orbital basis sets where
the large-orbital-base limit is always taken first, before the large-auxiliary-base limit, until overall convergence
is achieved, at a high computational cost. The authors claim that, on physical grounds, this order of limits
is not only sufficient, but also necessary in order to avoid the mathematical pathologies. In response to the
Comment, we remark that it is already written in our paper that the nonanalyticity trivially disappears with large
orbital basis sets. We point out that the authors of the Comment give an incorrect proof of this statement. We
also show that the order of limits towards convergence of the potential is immaterial. A recent paper by the
authors of the Comment proposes a partial correction for the incomplete orbital basis error in the full-potential
linearized augmented-plane-wave method. Similar to the correction developed in our paper, this correction also
benefits from an effectively complete orbital basis, even though only a finite orbital basis is employed in the
calculation. This shows that it is unnecessary to take, in practice, the limit of an infinite orbital basis in order to
avoid mathematical pathologies in the OEP. Our paper is a significant contribution in that direction with general
applicability to any choice of basis sets. Finally, contrary to an allusion in the abstract and assertions in the main
text of the Comment that unphysical oscillations of the OEP are supposedly attributed to the common energy
denominator approximation, in fact, such anomalies arise with the full treatment of the small eigenvalues of the
density response function. This characteristic of the finite basis OEP is well known in the literature but also is
clearly demonstrated in our paper.
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I. INTRODUCTION

It is well known to the theoretical electronic structure
community that the optimized effective potential (OEP)
method shows pathological behavior for finite basis sets.
Understanding this pathological behavior is the aim of our
paper [1] that is criticized in the Comment by Friedrich
et al. [2]. This pathological behavior was demonstrated by
several authors in the past [3–8].

Friedrich et al. explain the motivation for the Comment
was that our paper [1] “casts doubt” on a number of numerical
OEP calculations with finite basis sets [9], and as such, it
“calls for rapid clarification”. However, the presence of the
mathematical problem outlined above was already known for
a long time, and of course, we do not unveil a new mathematical
pathology in our paper. Instead, our paper contributes to the
understanding of the mathematical problem [10] by showing
that the truncation of the orbital Hilbert space with a finite
orbital basis amounts to a nonanalytic procedure changing
the resulting potential discontinuously. In addition, our paper
proposes a possible way to alleviate the problem.

In our paper [1], we study the effect of a finite orbital basis
by introducing a small scaling parameter λ multiplying the
part of the density-density response function omitted with the
truncation of the orbital Hilbert space. We approximate this
term with the Unsöld approximation [11]. Then, we show that
the OEP vλ, as a function of λ, is discontinuous at λ = 0,
i.e., the potential vλ→0 differs from the potential v0. One step
further, we propose that the limiting potential vλ→0 offers a

better approximation for the OEP than the truncated potential
v0. In that way, the truncated part of the orbital Hilbert space
is included in an effective way, and the amended finite basis
OEP equations are well behaved.

The discontinuity in the potential v̄
.= vλ→0 − v0 may van-

ish for some combinations of orbital and auxiliary basis sets.
In Ref. [1], we provide an equation that determines v̄, and the
discontinuity can be calculated and can be assessed either ana-
lytically with the help of this equation or numerically by calcu-
lating the potentials v0 and vλ for a series of small values of λ.

II. LARGE BASIS-SET LIMIT

The main point of the Comment is that, on the grounds that
the electron density must be sufficiently flexible to respond
to any potential change, it follows that a finite basis OEP
calculation can only be performed with “converged basis
sets”, regardless of the dramatically increased computational
cost. The procedure to obtain such “basis-set convergence”
requires first taking the large-orbital-base limit, before the
large-auxiliary-base limit. At this point, it is useful to review
two different ways of obtaining the large basis-set limit for
both the orbital and the auxiliary basis sets.

A. Sequence of finite auxiliary basis sets—large
orbital basis limit

One way is to take a sequence of increasingly larger
auxiliary basis sets; for each member of this sequence to
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employ a sufficiently large orbital basis so that any change
in the potential, restricted in the auxiliary space, gives rise to a
nonzero change in the electronic density. Each auxiliary basis
in the sequence gives rise to a finite basis OEP characterized
by the auxiliary basis alone since the limit of an infinitely
large orbital basis is used, i.e., if the orbital basis was
expanded further, the potential would not change. In such a
way, a converging sequence of finite auxiliary basis OEPs is
generated. This particular order of limits is termed by Friedrich
et al. as basis-set convergence and “balancing of basis sets”.
They deem that this order of limits is necessary in order to
obtain the OEP.

We point out that Friedrich et al. determine a condition
for basis-set convergence that is too strict and is not satisfied
exactly with a finite auxiliary basis. In addition, Gaussian
orbital basis sets, unlike plane waves, are not systematically
improved upon enlargement since a small Gaussian basis set
is not a subset of a larger one. This complicates the application
of the procedure towards the large orbital basis limit.

B. Sequence of finite orbital basis sets

Another way to reach the large basis-set limit is to use
a sequence of fixed orbital basis sets of increasing size; for
each orbital basis set in this sequence, employ a sufficiently
large auxiliary basis such that any change in the density
(representable with the given orbital basis) corresponds to
some change in the potential in the large auxiliary space.
Obviously, the auxiliary space can be too large, and a singular-
value decomposition (SVD) must be used to truncate functions,
in the auxiliary space, that describe potential changes with
vanishing density responses. These auxiliary functions are
in the null space of the density-density response function
χ0 corresponding to the fixed orbital basis. The nonsingular
eigenfunctions of χ0 compose the effective auxiliary basis that
is actually used for the expansion of the potential. Note that,
with respect to this effective auxiliary basis, the orbital basis is
also converged in the sense of the previous order of limits. Each
orbital basis in the sequence gives rise to a finite orbital basis
OEP. Thus, a converging sequence of finite orbital basis OEPs
can be generated. A technical difficulty is how to separate the
null from the nonsingular eigenvalues of the response function
in order to perform the SVD.

Friedrich et al. argue that, because the electron density must
be flexible to respond to any potential change, it is necessary
to employ the first order of limits. However, there is no reason
why the same physical principle cannot be satisfied with either
order of limits since for both, any potential change within the
effective auxiliary space leads to a nonzero change in density.
In fact, a number of finite basis OEP calculations, including
the introductory example in our paper, has been routinely
performed with a fixed orbital basis [4,12,13].

Next, we show that a sequence of finite auxiliary basis OEPs
cannot converge fully in a finite number of steps.

C. Convergence of a sequence of finite auxiliary basis OEPs

Friedrich et al. seem to assume that a sequence of finite
auxiliary basis OEPs may converge fully in a finite number
of steps. To resolve possible confusion with regard to this
point, we critically examine the relevant analysis in the

Comment. In Ref. [27] of the Comment, Friedrich et al. make
the (weaker) assumption that a well-behaved OEP is always
representable, at least, approximately, by a finite number of
auxiliary functions. Mathematically, this statement is difficult
to understand without specifying the auxiliary basis. For
example, any potential is trivially representable by a single
auxiliary function if the potential function itself happens to
belong to the auxiliary basis.

In Ref. [1], we argued that the nonsingular eigenfunctions
cα(r) of χ0(r,r′) form a natural basis to expand the potential.
In practice, even when a different auxiliary basis set {ξn(r)} is
used, it turns out that the auxiliary basis {ξn(r)} is employed to
expand a subset of the functions {cα(r)} [14], and in effect, the
potential is actually expanded in this subset of the {cα(r)}. The
question about the finite or infinite number of auxiliary basis
functions required to represent the potential is meaningful for
the basis {cα(r)}, and we will use this auxiliary basis set in our
analysis.

Friedrich et al. specify that, at orbital basis convergence,
the potential that solves the finite basis OEP equation for a
finite auxiliary basis also satisfies the OEP equations for the
larger auxiliary basis obtained after augmenting the previous
basis by any arbitrary function ξν(r) orthogonal to the initial
auxiliary basis.

To see that this requirement for basis-set convergence is too
restrictive, we consider the simplest case that, at convergence,
the orbital basis is complete. If the criterion for basis-set
convergence fails for a complete orbital basis, it will have to
fail for any finite orbital basis too as two basis sets cannot be
converged when they are both finite but cease to be converged
after the orbital basis (assumed converged to the large basis
limit) is enlarged even further to completion.

With a complete orbital basis, the density response function
χ (r,r′) has no zero eigenvalues, except for the constant
function. As discussed, we take that the initial auxiliary basis
is composed from a subset of the eigenfunctions {cα(r)}
of χ (r,r′) and that the extra auxiliary basis function ξν is
an eigenfunction of χ (r,r′) with eigenvalue gν . Then, from
Eq. (16) in Ref. [1], the potentials v0,u0 that solve the finite
basis OEP equations in the two auxiliary basis sets do not
coincide in general since

u0(r) − v0(r) = bνξ
ν(r)

gν
. (1)

bν is defined in Eq. (17) of our paper [1]. Numerical results
in the Comment (Fig. 3) and in Fig. 1 show that the ratio
bν/g

ν does not vanish for all ν. It follows that, in general, the
condition for the basis-set convergence of Friedrich et al. is
not satisfied, even with a complete orbital basis.

Basis-set convergence can be defined in either a less general
sense or less strongly. For example, an orbital basis can be
converged in relation to a specific fixed auxiliary basis when
the orbital basis is large enough such that, after increasing
the size of the orbital basis, the results of the calculation no
longer change. It is then possible for an orbital basis to be
converged with regard to one auxiliary basis but not converged
with respect to another.

In principle, a weaker condition can be determined for
the convergence of the sequence of the finite auxiliary basis
OEPs in a finite number of steps within a certain numerical
tolerance. Perhaps, Friedrich et al. have in mind this weak
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FIG. 1. (Color online) The fraction vxα = |bxα|/gα for the con-
tributing eigenvalues of the response function (i.e., those with
bxα �= 0). The magnitude of the contributions diverges out of control
for the small eigenvalues.

basis-set convergence. However, the attempted proof (Sec. IV
of the Comment) that the discontinuity correction vanishes
exactly or, approximately, does not go through using the weak
condition for convergence.

III. RESPONSE TO THE COMMENT

Our paper is criticized primarily because our analysis of
the OEP equations is not based on the supposedly necessary
procedure to construct a sequence of finite auxiliary basis
OEPs, taking the limit of a large orbital basis for each
potential in the sequence. Friedrich et al. argue that, when such
converged basis sets are used, all mathematical anomalies,
including the nonanalyticity, are avoided. However:

(a) Friedrich et al. fail to acknowledge that, in our paper,
we had already mentioned that the nonanalyticity vanishes
with large orbital basis sets. Specifically, we had written that
our “new finite basis OEP equations, give meaningful results
(i.e., nonvanishing discontinuity) for a finite auxiliary basis as
long as the latter is large enough to overlap with the null space
of χ0”. In the limit of large orbital basis sets, the domain of
χ0 completely covers the auxiliary space so that the latter has
zero overlap with the null space of χ0.

(b) A corollary is that, in the limit of large orbital basis sets,
our discontinuity correction v̄ vanishes since it is expanded
in the intersection of the auxiliary space with the null space
of χ0, and in this limit, the intersection is reduced to the
empty set.

The attempted proof by Friedrich et al. is flawed since it
is based on the impossible condition that the potential does
not change upon augmenting the auxiliary basis from one
step of the sequence to the next. In fact, the discontinuity
correction vanishes exactly for every term of the sequence of
fixed auxiliary basis OEPs by taking the large orbital basis
limit each time.

(c) In Sec. II, Friedrich et al. write that the first order of
limits is necessary for the OEP but do not explain what is
wrong with the second order of limits, other than that it leads
to too small eigenvalues of the matrix of χ0, which poorly

approximate the physical eigenvalues of the response function;
the latter are important and should not be ignored according
to the Comment.

Friedrich et al. confuse the small but physically important
eigenvalues of the full response function with the null
eigenvalues of the matrix of χ0. These must be truncated
because they only reflect the fact that the auxiliary space
has more dimensions than the space of the orbital products.
Hence, there are always directions in the auxiliary space
orthogonal to any orbital product, and these give a zero
density response by definition. The null eigenvalues cannot
offer any kind of approximation for the small but physical
eigenvalues of the full response function. In our theory,
they are treated approximately and not exactly, not because
they are unimportant, but because, with the exact treatment,
the potential is undetermined along them. In Fig. 1, we
demonstrate this point by plotting the fraction vxα = |bxα|/gα

for the contributing eigenvalues (bxα �= 0) of the matrix of the
response function shown in Fig. 1 in Ref. [1] [Ne atom with
orbital and auxiliary basis sets correlation-consistent polarized
valence triple-ζ (cc-pVTZ) and uncontracted cc-pVTZ]. It is
seen that their contribution diverges out of control when their
size becomes too small. If one treats them exactly, the resulting
potential is pathological and does not converge. If one truncates
them with a SVD, the resulting converged finite basis OEP v0

(Fig. 2, Ref. [1]) is different from the full OEP because there is
a discontinuity correction separating the two. By treating them
with the Unsöld approximation, we obtain a smooth potential
that converges smoothly to the full OEP.

(d) On the same point, Friedrich et al. mistakenly attribute
oscillatory behavior of the potential in an example in our paper
and in the plot of the potential v∗

x in Fig. 5(b) of Ref. [1]
to the use of the Unsöld approximation. In this example,
the transfer of an eigenvector of χ0 from the null space
(where the eigenvector is treated with the Unsöld approxima-
tion) to the nonsingular space (where the eigenvector is treated
fully) gives rise to strong oscillations. We do not see how the
authors of the Comment infer from this that the oscillatory
behavior is attributed to the approximate treatment of the small
eigenvalues of the response function.

The example in our paper is clear and reads the opposite,
showing that spurious oscillations are produced not by the
approximate but by the full treatment of the eigenvectors with
small eigenvalues. In fact, this behavior is a trademark of the
mathematical pathologies: Various finite basis approximations
of OEP (Krieger-Li-Iafrate [15], localized Hartree-Fock [16],
common energy denominator approximation [17], and effec-
tive local potential [18,19]) employing the Unsöld approxi-
mation [11] for all the eigenvectors of the response function,
are invariably well behaved and give smooth potentials. The
underlying reason is that the δ function in the closure relation
[11] has a complete set of eigenfunctions and its use makes
the finite orbital basis effectively complete.

(e) Friedrich et al. comment that the discontinuity correc-
tion requires the “careful classification of the eigenvalues
of the response function into singular and nonsingular”, a
classification that we “admit to be an ill-posed problem”. In
response, we emphasize that the technical problem of how to
distinguish between singular and nonsingular eigenvalues of
the response function is separate from the nonanalyticity of
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the solution of finite basis OEP equations. The conceptual
differentiation between these two issues is an important
contribution of our paper. These two issues usually are both
present in finite basis OEP calculations and, until our paper,
they were confused as one and the same problem. The need to
separate null from nonsingular eigenvalues of χ arises in order
to analytically calculate the expression for the discontinuity
correction v̄. Instead, one could directly calculate the limiting
potential vλ→0 (Eq. (43), Ref. [1]) for various finite values of λ

when the matrix of the response function is always invertible.
In Figs. 4, 5(a), and 5(b) of Ref. [1] and in Fig. 1 in Ref. [20],
we show that the numerical limit coincides with the analytic
limit.

(f) Friedrich et al. criticize a pedagogical example in the
Introduction of our paper that it shows supposedly false
convergence (see Figs. 1 and 2 in Ref. [1]) because we employ
an “underconverged” orbital basis set and because we use
a small cutoff of 0.001 to truncate small eigenvalues of the
density response function.

The criticism is based on the false assumption that we
intended to take the limit of an infinite orbital basis. However,
it is clearly explained that the opposite order of limits is taken:
Using a fixed orbital basis, we converge the OEP for a number
of auxiliary basis sets of increasing size. Also, we chose the
particular example because there is a gap of several orders
of magnitude in the eigenvalue spectrum of the matrix of χ0

separating null from nonsingular eigenvalues, see Fig. 1 in
Ref. [1]. The cutoff in that example can be any number in the
range between about 10−5 and 10−13.

(g) Although the finite basis OEP equations are solved for
fixed orbital basis sets in the examples in our paper, Friedrich
et al. use terminology meaningful only in calculations
employing the large-orbital-base limit. They characterize the
orbital basis sets and the density response functions in our
examples as underconverged, without making reference to
an auxiliary basis. The term underconverged, in this case, is
doubly unfortunate because it implies that orbital basis sets
that have been employed for decades to optimally represent
the electronic orbitals and density are not fit for purpose when
we consider the OEP.

In our view, if OEP calculations could only be carried out
in the large orbital basis limit, they would be impractical.
On this point, we agree with Staroverov et al. [18] who
write that the large orbital basis procedure “is useless for
practical calculations where the orbital basis is fixed”, and they
continue: “What is needed is a reliable and computationally
inexpensive method for constructing the Kohn-Sham potential
for a given orbital functional in any finite orbital basis set, be
it Gaussian functions, plane waves, or grids. Friedrich et al.
readily accept [2,21] that the basis set balancing leads to
“slow convergence” requiring “uneconomically large orbital
basis sets” rendering the method “cumbersome” and partly
impractical due to “high computational costs”.

IV. CONCLUDING REMARKS

An interesting implication of our discovery is that a
sequence of finite orbital basis potentials v0 is obviously
prevented from converging smoothly towards the full OEP
by the discontinuity correction v̄. With increasing the size
of the orbital basis set, the correction v̄ is expected to shrink
gradually, allowing in the end, convergence of the potential but
for large orbital basis sets. In this sense, the cost of converging
the finite orbital basis OEP equations for v0 towards the full
OEP becomes comparable, eventually, to the high cost of
basis-set convergence. Hence, although the order of limits
of basis sets is immaterial, the nonanalyticity of finite basis
OEP implies that, with the (old) finite basis OEP equations
that determine only v0, but no correction v̄, it is necessary to
use rather large orbital basis sets in order to achieve a smooth
converged potential.

However, with the amended OEP equations proposed in our
paper, it is possible to use standard routine orbital basis sets
with a correspondingly low computational cost. As explained
in Ref. [1], “with the closure relation, the orbital basis set
becomes effectively complete”, and a sequence of finite
orbital OEPs from the solution of the amended equations
in Ref. [1] is expected to converge smoothly to the full
OEP.
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