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Abstract. We review examples of muon-spin relaxation measurements on molecule-

based magnetic coordination polymers, classified by their magnetic dimensionality.

These include the one-dimensional s = 1/2 spin chain Cu(pyz)(NO3)2 and the two-

dimensional s = 1/2 layered material [Cu(HF2)(pyz)2]BF4. We also describe some

of the more exotic ground states that may become accessible in the future given the

ability to tune the interaction strengths of our materials through crystal engineering.

PACS numbers: 76.75.+i, 75.50.Xx, 75.10.Jm, 75.50.Ee



Molecular magnets 2

1. Molecule-based magnets

Molecule-based magnets are systems whose principal structural building blocks are

organic molecules [1, 2]. We understand the microscopic origin of the magnetism

that arises from such materials in terms of paramagnetic spin centres linked via

superexchange pathways. The magnetic centres themselves may be atoms (such as

s = 1/2 Cu2+) or uncompensated spins on the molecules (as in the case of radical

magnets) and the superexchange pathways will frequently pass through the molecular

groups. The great promise of choosing to make our magnets out of molecules is

tunability, that is, the possibility of manipulating the carbon chemistry of the molecules

to form structures which promote magnetic exchange in certain geometries and to

manipulate the strength of the coupling between the magnetic units.

Research on molecular magnetic systems relies on a confluence of experimental

and theoretical physics and chemistry. Chemistry is vital in the synthesis of new

materials with the desired structural properties which incorporate the necessary

magnetic ingredients; experiment allows us to probe the magnetism and we hope that

theory can explain it. Looked at in another way, we might say that progress in the

field of many-body theory relies on the existence of materials whose properties closely

approximate those of simple models. Indeed, it has been suggested [3] that magnetic

insulators may serve as so-called quantum simulators of a range of phenomena that

occur in interacting quantum systems beyond the horizons of magnetism, such as Bose-

Einstein condensation, for example.

In this Comment we will discuss some examples of the use and successes of muon-

spin relaxation (µ+SR) [4] as an experimental technique in the field of molecule-based

magnetism. We will classify the systems that we discuss in terms of their magnetic

dimensionality, that is, the number of dimensions in which the coupling between

magnetic units is strong. The explanation of the physics of such systems is usually given

in terms of low energy models of exchange-coupled spins [5, 6, 7] whose long-wavelength

properties have been elucidated using field-theoretic techniques and, in particular, the

renormalization group (RG) [8, 9]. In presenting some possible future directions for

muon spectroscopy in this field we will describe some of the theoretical models which

are currently motivating the synthesis of new materials.

The subject of molecular magnetism has been reviewed thoroughly elsewhere [1, 2],

as has early, and more recent, work using µ+SR [10, 11, 12, 13, 14]. However, it is

worth mentioning some of the notable themes from the early muon work, which include:

(i) the observation of long-range magnetic order (LRO), such as in the purely organic

material β-phase p-NPNN, where oscillations in the muon asymmetry are found below

0.7 K [15]; (ii) the observation of dynamics in molecular nanomagnets such as the single

molecule magnet Mn12Ac [16] and (iii) the possibility of observing collective magnetic

behaviour such as the spin-crossover transition [10]. These investigations play to the

strengths of µ+SR in that they require a probe sensitive to small magnetic moments and

their dynamics and the possibility of distinguishing between uniform magnetic effects
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Figure 1. The structure of Cu(pyz)(NO3)2. (a) The Cu-pyz-Cu chains. (b) The chain

packing viewed along the a-direction. [22].

and minority, strongly magnetic phases. Also worthy of note here are investigations

of critical phenomena using muons, such as the case of the molecular antiferromagnet

Co(C3H6O3) [17] where chiral-like critical behaviour was observed.

The Comment is structured as follows: in section 2 we will discuss the theoretical

prediction of one-dimensional magnetism and its realization in molecular chains. In

section 3 we turn to layered two-dimensional systems and in section 4 to the recently

realised possibility of switching between dimensionalities. Finally we discuss some of

the possible future directions for this field in section 5.

2. Magnetism in one dimension

Much recent work on molecular magnets using µ+SR has concerned materials whose

low-energy physics may be thought of as arising from interactions which are constrained

to act in less than three spatial dimensions. Such physics is usually achieved by forming

an array of transition metal ions, such as s = 1/2 Cu2+ and linking these using one

or more molecular ligands in such a way as to promote strong interactions between the

magnetic ions only along particular directions and weaker ones along others.

As an example, we will consider a material whose structure promotes strong,

antiferromagnetic superexchange along one-dimensional, parallel, linear chains, and

weaker exchange in the other two perpendicular directions. Such a material may be

constructed if we link Cu2+ ions along one direction using pyrazine (pyz ≡ C4H4N2)
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ligands and separate the chains using NO3 groups. The resulting material formed from

this recipe is Cu(pyz)(NO3)2 and is shown in figure 1.

To understand the physics of such materials we seek to describe them using simple

spin models. To a good first approximation the crystal field surrounding the Cu2+ ions

does not cause the spin to favour any particular spatial direction, resulting in a so-

called Heisenberg spin [18]. The resulting one-dimensional (d = 1) quantum Heisenberg

antiferromagnet (1DQHAF) may be described by a model Hamiltonian [5, 6, 19]

Ĥ = J
∑

〈ij〉

Ŝi · Ŝj, (1)

where i and j label spins along the same chain and the sum is over unique nearest

neighbours bonds only. For materials such as Cu(pyz)(NO3)2 the parameter J may be

determined from the result of magnetic susceptibility or pulsed field magnetization (see

below).

The model Hamiltonian in eqn 1 is very interesting and has motivated a wide range

of research [5, 6]. It possesses a continuous O(3) symmetry (here the global rotation of

all of the spins through an arbitrary angle). In common with other d = 1 models with

finite range interactions there will be no LRO for T > 0. (For d = 1 this is easy to see:

pass the message “line-up” along the chain in the presence of a defect (or a fluctuation)

and the message is lost at the weak link: since each spin is only able to communicate with

its neighbours the message cannot pass around the weak link). Although this problem

may be solved exactly using the famous Bethe ansatz [7] the solution is rather unwieldy

and many of our insights arise from the predictions of a continuum model which, as

long as the long-range spin-spin coupling is not too large (see section 5), results from

mapping the problem onto a d = 1 model of spinless fermions and then using a technique

known as bosonization. The predicted state is known as a Tomonaga-Luttinger (T-L)

liquid [6, 7] and its excitation spectrum is one of gapless, linearly dispersing, particle-

like excitations. Some physical insight into the nature of these excitations comes from

figure 2(i). An antiferromagnetically correlated region [as shown in (a)] may be excited

if we flip a section of the spins, as has been done after the fourth spin in (b). This

creates a spin 1/2 excitation, known as a spinon [shown shaded in figure 2(i)], which

may move by hopping by two lattice spacings at a time [shown in (c)].

The idealisation that leads to the T-L model has ignored many interactions in

Cu(pyz)(NO3)2 and one of these proves particularly relevant: the interaction between

chains parametrised by an exchange interaction J⊥. This changes the Hamiltonian to

Ĥ = J
∑

〈ij〉

Ŝi · Ŝj + J⊥

∑

〈ij′〉

Ŝi · Ŝj′ , (2)

where i and j′ label spins on adjacent chains. In order to probe d = 1 behavior a

system described by this model we would need to work in a temperature regime where

J⊥ ≪ T ≪ J . Once we start to approach a regime where the characteristic energy of the

thermal fluctuations allows detail on the level of J⊥ to be resolved, we should expect that

the three-dimensional nature of the material becomes evident and it will magnetically
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Figure 2. (i) The spinon excitation in a d = 1 chain. (ii) The phase diagram of a d = 1

chain system with nearest neighbour coupling J1, next-nearest neighbour coupling

J2 and anisotropy parameter α [VBS=valence bond solid; T-L liquid=Tomonaga

Luttinger liquid (see Section 5).] (iii) The valence bond solid with a single s = 1/2

excitation. (iv) The phase diagram of a d = 2 system showing a quantum critical point

at a coupling gc and a quantum critical region at elevated temperatures.

order. However, the strongly anisotropic nature of the exchange (J⊥/J ≪ 1) will have

consequences on the ordered state that arises [20] and the ordering temperature TN is

driven downwards by the one-dimensional nature of the system compared to a three-

dimensional one. The ordered magnetic moments will also be renormalized, making

them potentially very small, and difficult to observe with magnetic susceptibility. Finite,

but possibly very long, correlation lengths may exist above the ordering temperature,

reducing the entropy in the system. Consequently, the entropy change on ordering

will be much reduced compared to a more isotropic system and may prevent specific

heat measurements from detecting a transition. Add the difficulty of deuterating all

of the hydrogen-containing groups in the system (and the possibility of deuteration

changing the delicate superexchange pathways [21]) and neutron diffraction also becomes

difficult. It is here that µ+SR has proven very effective in detecting magnetic transitions

in reduced dimensions that have proven difficult to observe using more conventional

experimental methods. Before the µ+SR study, no magnetic order had been observed

in Cu(pyz)(NO3)2 despite specific heat measurements made down to 70 mK. However,

the clear zero-field precession signal from µ+SR [23] shows unambiguous evidence for

LRO below a transition temperature of TN = 0.107 K as shown in figure 3.

A useful figure of merit in comparing the success with which a material realizes

one-dimensionality is TN/J , since this quantity should be zero in the ideal case and

of order and close to unity for an isotropic material. This quantity may also be used

to estimate J⊥, which is the parameter of interest in the Hamiltonian in eqn 2. One

method of doing this is has been developed from Quantum Monte Carlo computations
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Figure 3. Zero field muon-spin relaxation data measured on Cu(pyz)(NO3)2, showing

long-range magnetic order below TN = 107 mK [23].

[24], whose results may be approximated using the expression

|J⊥|/kB =
TN

4c

√

ln
(

a|J |
kBTN

)

+ 1

2
ln ln

(

a|J |
kBTN

)

, (3)

with a = 2.6 and c = 0.233. This yields a value of |J⊥/J | = 4.4 × 10−3 for

Cu(pyz)(NO3)2, demonstrating that it is indeed a very well isolated approximation of

a d = 1 magnet. In addition, coupled chain mean field theory [25] predicts an ordered

moment of 0.05 µB.

The application of a magnetic field to our d = 1 system acts to polarize the spins.

If we imagine doing this at T = 0 then there will be a point at a field µBB ≫ J where all

of the spins will be aligned. This aligned state is separated from the partially polarised

antiferromagnet by a quantum critical point (QCP) [6] at a field Bc = 2J/gµB (we

neglect interchain interactions here). One advantage of investigating molecular magnetic

systems such as these is that the exchange strength, and hence the QCP, is typically of

order J ≈ 10 K, translating as Bc ≈ 10 T. Although such fields are currently outside

the range accessible via µ+SR they are accessible using pulsed magnetic fields and the

combination of high-field magnetization and muon spectroscopy [26] has proved valuable

in fully characterising new materials in recent years. These characteristic energy scales

are orders of magnitude smaller than the corresponding ones for inorganic spin chains

such as Sr2CuO3, whose QCP occurs at an experimentally inaccessible field around 200

times larger than that of Cu(pyz)(NO3)2.

An even more ideal example of this physics is found in the radical system DEOCC-

TCNQF4 [27]. In this case no LRO transition is observed using µ+SR down to 20 mK,

constraining |J⊥/J | < 6 × 10−5, making this the most successful realization of a

1DQHAFM yet reported. In this case, the weak relaxation that is observed via µ+SR

allows the investigation of the magnetic fluctuation spectrum. Whether the excitations

in 1DQHAFs are ballistic or diffusive remains a key question in the physics of spin chains

[28, 29] and one that can be addressed with LF µ+SR measurements. Field-dependent

studies can be used to distinguish between these types of spin transport, since their

spin autocorrelation functions have different associated spectral densities f(ω) which
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Figure 4. Zero field µ+SR data measured on [Cu(HF2)(pyz)2]BF4. (a) Zero field

oscillations below TN = 1.54 K allow us to identify LRO and probe the critical

behaviour. [34] (b) For T > TN we observe muon-fluorine dipole-dipole oscillations

that allow us to deduce muon sites [35, 36].

vary as ω− 1

2 for d = 1 diffusive transport and f(ω) ∝ ln(J/ω) for ballistic motion. In

DEOCC-TCNQF4 diffusive transport was identified. This contrasts with the inorganic

1DQHAF Rb4Cu(MoO4)3 where ballistic transport was shown to dominate the muon

relaxation [30]. The details and general rules of the d = 1 transport are complicated

and this continues to be an area exciting much interest and new research.

3. Two dimensions

The model of the two-dimensional square lattice quantum Heisenberg antiferromagnet

(2DSLQHA) has received significant attention as another apparently simple system

where the influence of dimensionality leads to the emergence of an unusual ground state

and excitation spectrum [31]. It is also, of course, the low-energy model that describes

the Mott insulating parent phase of the cuprate superconductors. The 2DSLQHA shows

no magnetic order for T > 0, owing to the Coleman-Mermin-Wagner theorem [32, 33],

but there is good evidence that it orders at T = 0 with a much renormalized ordered

moment of around 0.62 µB [31]. The excitations of the model at T = 0 are gapless spin

wave excitations with a linear dispersion [5, 6, 31].

Of the materials recently synthesised which show two-dimensional (d = 2) magnetic

properties, one of the most successful classes is based on two-dimensional square layers

of Cu2+ linked with pyrazine groups to form [Cu(pyz)2]
2+ layers with an intralayer
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exchange coupling J . These square layers may be linked with HF2− ions to form

pseudocubic arrays of [Cu(HF2)(pyz)2]X [shown inset in Fig. 4(a) [34]], where X is

an anion that sits in the centre of the cube and provides charge neutrality. As in the

d = 1 case, we are able to identify magnetic order in this system at low temperature and

assess the degree to which it may be described as two-dimensional [35]. As an example

we may consider [Cu(HF2)(pyz)2]BF4 (Fig. 4) which magnetically orders at T = 1.54 K

[34]. If we attribute the ordering to an interlayer coupling J⊥ we may use the results of

quantum Monte Carlo calculations which, in this case, predict [24] that

|J⊥/J | = exp

(

b −
4πρs

TN

,

)

, (4)

where ρs = 0.183J is the spin stiffness and the parameter b = 2.43. For

[Cu(HF2)(pyz)2]BF4 we find J = 6.3 K and |J⊥/J | = 9 × 10−4, making this material a

highly anisotropic d = 2 antiferromagnet.

In addition, the fact that these systems contain fluorine leads to oscillations at

temperatures above TN attributable to F-µ+ dipole-dipole coupling [Figure 4(b)]. These

are useful here as they allow us to work out where the muons which give rise to these

signals are localised with respect to the fluorine nuclei in these materials [36]. It is

worth noting however that in complex materials such as these there are often several

classes of muon sites, not all of which may be accounted for by those muons giving F-µ+

oscillations.

Although interlayer coupling in a 2DQHAF again provides a means for magnetic

order to occur at non-zero temperatures there is evidence that in this system a degree

of g-factor anisotropy causes the Cu2+ ions to take on a degree of XY -like behavior

[37]. This is of interest as the pure XY -model allows the occurrence of a new sort

of excitation: the vortex. A single vortex is unstable alone, and in the absence of

an external electromagnetic field, we may only stabilise vortices at low temperature

by binding them with antivortices. The transition between bound vortex-antivortex

pairs and single vortices stabilised by thermal fluctuations at high temperature was

originally identified by Kosterlitz and Thouless and by Berezinskii for an ideal system,

but has never been observed in a bulk magnet [38, 39, 40]. However, the physics that

those authors identified may have an effect even when only a small XY -like component

is present. In this case we expect that, while at high temperature the spins will be

Heisenberg-like, as the temperature is lowered to a scale where the XY -like component

is resolvable it becomes energetically favourable for the spins to tip into the XY -plane.

On further decrease of temperature the possibility of a vortex-binding transition greatly

increases the correlation length, at which point the interlayer coupling J⊥ causes the

system to undergo a transition to LRO [37].

One experimental consequence of XY -like behaviour is that the phase boundary

in applied magnetic field takes on a non-monotonic form as shown in figure 5 [41, 35].

The application of the field makes it energetically favourable for the spins to tip into

the XY plane, effectively reducing the dimensionality. It then has a dual effect on

the spins by suppressing the amplitude of the order parameter by forcing spins along
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Figure 5. (a,b) Transverse field µ+SR measurements on Cu(HF2)(pyz)2]BF4. (c) The

relaxation rate allow us to extract the ordering temperature in field. (d) The result is

a non-monotonic phase boundary caused by a small XY -like component in the spin

Hamiltonian of the system [35].

a particular direction and also reducing the phase space for phase fluctuations from a

sphere to a circle. At low fields the magnetic ordering transition is controlled by phase

fluctuations and at higher field by amplitude fluctuations leading to the non-monotonic

phase boundary that is observed in experiment [41]. We have been able to measure the

phase boundary in field using both LF µ+SR and transverse field (TF) µ+SR [35] as

shown for [Cu(HF2)(pyz)2]BF4 in figure 5. It has been argued [41] that the energy scales

for this physics are controlled by the Kosterlitz-Thouless physics described above. It is

probable that the physics of vortices, along more complicated topological objects such

as merons and skyrmions, will be an area of future interest in this field.

4. Switching the dimensionality

We might ask if it is possible to gain control over the dimensionality of a system. There

have been two recent advances that suggest that this is a fruitful area for future work: the

first a synthetic route; the second using pressure as a means of creating a dimensionality

switch.

The first route [42] relies on varying the proportions of reactants in the

material synthesis, which makes it possible to create two distinct, but closely related

materials, one two-dimensional; the other one-dimensional. The coordination polymer

[Cu(pyz)2(pyO)2](PF6)2 (where pyO denotes pyridine-N-oxide=C5H5NO) is another

d = 2 square lattice material based on [Cu(pyz)2]
2+ layers, this time with pyO groups

protruding from them. By changing the proportion of pyz and pyO molecules in the

preparation from 3:1 to 2:1 the water-containing material [Cu(pyz)(pyO)(H2O)2](PF6)2

is produced. Here pyz ligands link Cu atoms along the b-axis only, forming highly

one-dimensional chains. Crucially, the strong nearest-neighbour exchange interaction

maintains a value of J ≈ 8 K in both cases.

These structures suggest d = 2 and d = 1 magnetic behaviour, which is indeed

confirmed by a combination of high-field magnetometry and muon-spin relaxation [42].
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Figure 6. Dimensionality switching: µ+SR allows us to probe magnetic order in (a)

d = 2 [Cu(pyz)2(pyO)2](PF6)2 and (b) d = 1 Cu(pyz)(pyO)(H2O)2](PF6)2. [42]

The results of the µ+SR measurements are shown in figure 6 where we are able to

establish where each material undergoes a transition to LRO. The ordering temperature

and magnetic moment size of the d = 2 material are both larger than in the analogous

d = 1 material, which reflects the expected increase in the influence of fluctuations for

d = 1 compared to d = 2. We conclude, in this case, that to turn a material from d = 2

to d = 1, one must just add water!

The second method of controlling dimensionality involves using pressure as a switch

[22]. The material CuF2(H2O)2(pyz) [43] is based on a chain-like structure but, rather

counter-intuitively, it is a good realization of a 2DQHAFM. The reason for this is that

the chains arrange themselves in such a way as to form square layers of Cu2+ ions with

superexchange pathways provided by hydrogen bonds. Crucially, the unfilled dx2−y2

orbital lies in the plane of the square layers, providing strong two-dimensional exchange

with only weak coupling along the chains.

Applying hydrostatic pressure causes a dramatic change in behaviour above around

10 kbar [22]. Here the magnetization shifts from that typical of a d = 2 system to that

of a d = 1 magnet. µ+SR has been carried out under pressure and reveals the change

in TN as expected from a change from d = 2 to d = 1. The microscopic explanation for

this quantum phase transition is suggested by a combination of x-ray diffraction and

electron spin resonance [44, 45]. The application of large hydrostatic pressures causes a

small structural distortion which, in turn, causes the Jahn-Teller axis of the Cu2+ ions

to switch directions, resulting in the dx2−y2 orbital shifting from linking Cu atoms in

hydrogen bonded [Cu(pyz)2]
2+ layers to point along the Cu-pyz-Cu chains.

It is possible that such a switching of magnetic dimensionality will be found, and

ultimately engineered, in a variety of magnetic coordination polymers. The fundamental

change in the character of a system in going from d = 2 to d = 1 is such that this

switching feature could conceivably find a use in future quantum technologies.
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5. Frontiers: a zoology of ground states

We now turn to a possible future direction for the engineering of coordination polymers.

We hope that it will soon be possible to produce materials that realise still more

complicated models of low-dimensional magnetic behaviour. These would allow us to

realise a large number of new and potentially exotic ground states. Here we briefly

review the predictions for some of the quantum states that may be achieved if we are

able to tune the interaction strength of our s = 1/2 spins. For the full story we refer

you to some of the excellent books on this subject [5, 6, 7].

5.1. d = 1: Tomonaga-Luttinger, Valence bond solid and Ising-Néel states

When describing the 1DQHAFM in section 2 we claimed that the disordered T-L ground

state with its gapless linear excitation spectrum was reached if the coupling was not too

large. More precisely, we mean that the antiferromagnetic nearest neighbour exchange

coupling J1 is dominant and the antiferromagnetic next-nearest neighbour exchange J2

is small in comparison. However, if the ratio of the couplings exceeds a critical value

J2/J1 > Jc then the system adopts another ground state: the spin-Peierls or (in more

modern terminology) the valence bond solid (VBS) state, illustrated in figure 2(iii). The

VBS ground state involves the spins staggering their bond exchange energy, essentially

forming antiferromagnetically coupled dimers along the chain. There are two ways of

doing this along any chain (since a particular site may form a dimer with its neighbour to

the left, or to the right) and so the ground state that is realised must break translational

symmetry. An antiferromagnetically coupled dimer has a singlet ground state, resulting

in a total S = 0 ground state for the VBS. The excitations of the VBS phase are lone

spins which reside between the valence bonds. These are spin s = 1/2 excitations which,

as in the T-L case, are also known as spinons but here there is an energy gap ∆ which

must be exceeded to create such an excitation. In fact, the energy required to excite a

spinon of momentum p is given by Ep = (∆2 + v2
Fp2)

1

2 , where vF is the Fermi energy of

the system.

Although we have hitherto concentrated only on low-energy models which include

purely spin degrees of freedom, the realization of the VBS state also requires the

inclusion of magnetoelastic coupling (and it is in this context that it is usually called

a spin-Peierls state). Above the spin-Peierls transition temperature TSP, we have a

uniform antiferromagnetic next-neighbour exchange in each chain; below TsP there is

an elastic distortion resulting in the dimerization described above, and hence two,

unequal, alternating exchange constants. The alternating chain possesses an energy

gap between the singlet ground state and the lowest lying band of triplet excited

states which closes up above TsP. The transition temperatures may be related to the

relevant coupling constants; whereas the conventional Peierls distortion is expected at

a temperature TP ∼ (EF/kB) exp(−1/Λ), where EF is the Fermi energy of the system

and Λ is the electron-phonon coupling constant, the spin-Peierls transition is expected

at TsP ∼ (J/kB) exp(−1/Λ). J ≪ EF and hence TsP ≪ TP [46].
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One example system is the organic salt MEM(TCNQ)2, which consists of one-

dimensional stacks of planar TCNQ molecules, each of which has a charge of −1

2
e

associated with it. Adjacent stacks are separated by arrangements of MEM molecules,

each of which possess a localized charge of +e. It undergoes two structural distortions.

The first, which occurs at 335 K, is a conventional Peierls transition in which the TCNQ

chains dimerize. This results in a change from metallic to insulating behaviour as a

single electronic charge becomes localized on each TCNQ dimer; the single spin on each

dimer couples antiferromagnetically to its neighbours. This phase persists down to the

spin-Peierls transition at 18 K, where a further dimerization of the TCNQ stacks takes

place (this is a tetramerization of the original chain). µ+SR studies indicate a slowing

down of the electronic fluctuations resulting from the opening of the spin-Peierls gap

in the magnetic excitation spectrum as the temperature is lowered below TsP [47]. At

the very lowest temperatures the electronic spin fluctuations freeze out and the muon-

spin depolarization is dominated by persistent slow fluctuations which can be ascribed

to a defect-spin system [48]. It has been speculated that the muon spin might locally

create a spin defect by breaking a singlet pair, giving rise to the relaxation ascribed to

defect spins and which is only revealed when the other sources of relaxation have frozen

out [48]. These results have now been extended to the related material DEM(TCNQ)2

[49]. Other examples of spin-Peierls systems include other organic systems such as

TTF-CuS4C4(CF3)4 (TsP = 12 K) [50] and TTF-AuS4C4(CF3)4 (TsP = 2 K) [50, 51].

A common feature of such materials is flat organic molecules in columnar stacks. The

large interchain separation and weak van der Waals intermolecular interactions favour

the dominance of magnetoelastic effects over interchain ordering. In contrast the chains

in corresponding inorganic materials, such as copper chain compounds, are quite rigid

due to the ionic bonding and only a single example of an inorganic spin-Peierls material

is known (CuGeO3, with TsP = 14 K [52]).

As the previous example of the VBS illustrates, allowing strong interactions from

distant spins opens up new possibilities of interesting phases to study. A rich seam of

physics is revealed if start with a d = 1 spin Hamiltonian, and allow the possibility of

both an XY -like spin anisotropy component and next-nearest neighbour interactions.

This is the content of the J1-J2 model, whose Hamiltonian is given by

Ĥ = J1

∑

〈ij〉

(Ŝx
i Ŝx

j + Ŝy
i Ŝy

j + αŜz
i Ŝ

z
j ) + J2

∑

ik

(Ŝx
i Ŝx

k + Ŝy
i Ŝy

k + αŜz
i Ŝ

z
k), (5)

where i and j label nearest-neighbours; i and k label next-nearest neighbours and α

is a parameter which we may vary from 0 (XY spins), through 1 (Heisenberg spins)

to large values (resulting in Ising spins). This model may, in turn, be mapped onto

the sine-Gordon model of quantum field theory [6, 53] (the origin of the latter’s curious

name is described in Ref [53]) and whose RG scaling analysis leads to the phase diagram

shown in figure 2(ii).

From figure 2(ii) we see that tuning the parameters of this model allows us to access

three ground states: the T-L liquid; the VBS (both described above) and the Ising-Néel

state. [It is worth noting that along the line α = 1 (corresponding to Heisenberg spins)
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Phase T = 0 ground state excitation character

Tomonaga-Luttinger liquid Spin disordered s = 1/2 spinons gapless

Valence bond solid Dimerised spinons gapped

Ising-Néel Néel ordered spinons gapped

Table 1. Phases of the d = 1 magnet.

it can be argued that for J2/J1 < Jc the system is a T-L liquid but for J2/J1 > Jc

the system adopts the VBS state (as claimed above and in section 2)]. The Ising-Néel

state, reached by making α > 1, with moderate next-nearest neighbour coupling, is

characterized by a spontaneously broken symmetry at T = 0. Here we have magnetic

LRO (not seen in either the T-L or VBS states) involving a staggered expectation value

for the z-component of the spins. The lowest energy excitations of this phase are gapped

s = 1/2 spinons. The properties of these states are summarised in table 1.

5.2. d = 2: quantum criticality and spin liquids

The ground state for the 2DQHAF is antiferromagnetically (Néel) ordered at T = 0

[5, 6, 31]. This phase has gapless spin-wave excitations which do not carry a definite

spin. (However, if the Néel order is aligned along z, the spin waves have total Sz = ±1.)

As we increase the strength of the effective long-range coupling (which we call g here)

another phase is realised above a QCP at a critical effective coupling gc, as shown in

figure 2(iv). This phase, which is often called a quantum paramagnet, does not show

LRO and has a gap against s = 1 excitations, which may be thought of as flipped

spins. This state can also be realised in the sort of spin model we have been considering

by including next-nearest neighbour interactions as we discussed for the d = 1 model.

Numerical and series expansion studies suggest that gc corresponds to a ratio of next-

nearest to nearest neighbour exchange couplings of J2/J1 = Jc ≈ 0.4. The arguments

leading to the quantum paramagnet neglect the contribution of Berry phases to the final

configuration of the system. If these are included a VBS state is realised with singlet

bonds lining up in columns or plaquettes on the d = 2 square lattice. Such a ground

state is four-fold degenerate and so, as in the d = 1 case, the VBS state that is realised

must break translational symmetry. However, the lowest lying excitation is the same

as predicted for the quantum paramagnet (a gapped s = 1 quasiparticle), but higher

excitations will be different [6].

Finally, although everything we have discussed in this section applied for T = 0,

we may consider non-zero temperatures in this d = 2 case, which results in the phase

diagram shown in figure 2(iv). The curved lines represent crossovers in behavior which

allow us to identify a quantum critical region, which extends down to T = 0 for

g = gc. Here, both quantum fluctuations (i.e. time dependence in the wavefunctions

deriving from uncertainty relations) and thermal fluctuations are equally important

and it is impossible to describe the excitations in terms of nearly-free quasiparticles.
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Phase T = 0 ground state excitation character

Néel (g < gc) Staggered order Total Sz = 1 spin waves gapless

Quantum paramagnet (g > gc) disordered s = 1 flipped spins gapped

Valence bond solid (g > gc) total S = 0 s = 1 gapped

Table 2. Phases of the d = 2 Heisenberg magnet. The inclusion of Berry phases in

the theoretical description leads to the VBS phase for g > gc.
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2D-BEC

Figure 7. (a) The triangular lattice with couplings t1, t2 and t3 as shown. By varying

the coupling we may realize (b) the d = 1 or (c) the d = 2 cases. (d) Generalised phase

diagram [55] for the triangular lattice. [QSL=quantum spin liquid phase, κ-CN =

κ-(BEDT-TTF)2Cu2(CN)3.] (e) Phase diagram of κ-(BEDT-TTF)2Cu2(CN)3 derived

from µ+SR measurements [54].

In this region the phase of the wavefunctions are as incoherent as Nature allows,

realising an (almost) ideal fluid. Quantum critical behaviour continues to be an area

of much experimental and theoretical interest. The properties of the d = 2 system are

summarised in table 2

As an example of how muons may be useful in elucidating the physics of the exotic

phases described here, we mention the case of κ-(BEDT-TTF)2Cu2(CN)3 [54]. This

is a d = 2 system based around a triangular lattice of (antiferromagnetically coupled)

s = 1/2 spins, whose low energy physics provides an example of a frustrated, non-

collinear antiferromagnet. In fact, the triangular lattice, shown in figure 7(a) may be

viewed as a meeting point of the d = 1 and d = 2 cases. We may recover those cases by
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tuning the coupling constants to form either well coupled d = 1 chains (e.g. by taking

t1 ≫ t2, t3) [figure 7(b)] or, with the choice t1 = t2 ≫ t3, forming a lattice which is

topologically equivalent to the d = 2 square lattice case [figure 7(c)]. A general phase

diagram for the triangular lattice, derived from calculations using modified spin wave

theory [55] and assuming perfectly localized Heisenberg spins, is shown in Fig. 7(d).

The d = 1 case is realised far along the horizontal axis, where the T-L ground state is

identified as one example of a quantum spin liquid (QSL) state (here used as a general

term used to describe a T = 0 ground state without LRO, of which there are potentially

very many varieties). The d = 2 case is found far along the vertical axis showing the

expected T = 0 collinear (Néel) LRO. Of note in figure 7(d) is the isotropically coupled

case (t1 = t2 = t3) where the classical solution of antiferromagnetic LRO with a 120◦

spin structure is realised, albeit with moments much reduced by quantum fluctuation.

This neighbours a QSL state for the case where the couplings are slightly anisotropic.

Returning to the case of κ-(BEDT-TTF)2Cu2(CN)3, we see that its couplings

appear to place it on the border of the QSL and Néel phases in figure 7(d). In fact, a

more realistic description of the material is achieved by assuming that U/t (the ratio

of the electronic correlation energy to the bandwidth) is finite. This, which amounts

physically to a relaxation of the assumption that the relevant electronic degrees of

freedom are perfect Heisenberg spins (or so-called “quantum tops”) is expected to

destabilise phases showing LRO near the origin in figure 7(d), enlarging the QSL phase

to such an extent that κ-(BEDT-TTF)2Cu2(CN)3 should be expected to realize a QSL

ground state. The µ+SR measurements [54] suggest that the material realizes a Z2

QSL ground state showing topological order [6], with total S = 0 and s = 1/2 spinon

excitations with a very small gap against their creation. (The “Z2” assignment tells us

that the system is described by a topological gauge field theory [53] somewhat similar

to those used to describe fractional quantum Hall fluids, whose description is locally

invariant under the Z2 group of transformations of the fields.) There is also evidence for

another type of gapped excitation in this system, which is a point-like vortex known as

a vison. For κ-(BEDT-TTF)2Cu2(CN)3 muon measurements [54] not only suggest this

complex excitation spectrum, but the application of magnetic fields allows the system

to be driven into other phases showing LRO with extremely small magnetic moments,

leading to the phase diagram shown in figure 7(e). The exquisite sensitivity of µ+SR and

the potential to apply it to samples which are smaller than those required for inelastic

neutron measurements have made it particularly useful in this context.

6. Conclusion

In the short term muons will continue to allow us to probe low-moment LRO and aspects

of the excitation spectrum in low-dimensional magnetic systems based on molecular

building blocks. In addition to the cases outlined here there are many other avenues

for future study in this field, including the investigation of d = 0 systems such as

those based on dimers or on molecular nanomagnets formed from clusters containing
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large numbers of strongly coupled spins. Also of interest are spin-ladder systems which

interpolate between the harsh extremes of d = 1 and d = 2. In the future, the possibility

of being able to work in more extreme conditions involving large applied magnetic fields

and pressures will open out more of the phase diagrams of these systems. At the same

time, advances in materials synthesis will allow us to approach the platonic ideals of the

models described in this Comment.
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