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Abstract: We examine general features of causal wedges in asymptotically AdS spacetimes and

show that in a wide variety of cases they have non-trivial topology. We also prove some general

results regarding minimal area surfaces on the causal wedge boundary and thereby derive con-

straints on the causal holographic information. We go on to demonstrate that certain properties

of the causal wedge impact significantly on features of extremal surfaces which are relevant for

computation of holographic entanglement entropy.
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1 Introduction & summary

One of the fundamental properties of a Lorentzian spacetime is its causal structure. In the context

of the holographic AdS/CFT correspondence, the importance of causality was noted very early

on [1] and it was realized that bulk AdS causality should be at the very least compatible with

boundary causality. In fact in asymptotically AdS spacetimes, causal propagation through the

bulk cannot be faster than propagation along the boundary as a consequence of the gravitational

time-delay effect [2, 3]. Nevertheless, we do not understand the holographic dictionary well

enough to pin-point a particular feature of the boundary field theory data that we can directly

associate with the bulk causal structure. It is however clear that for any boundary field theory

state which is described by a semi-classical bulk geometry, one can use certain observables of the

field theory to probe aspects of the bulk causal structure, as has been noted in various contexts

in the past, see e.g. [4–10].
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Of interest to us is the set of bulk spacetime points which is naturally associated with a

particular spatial region of the boundary field theory. This question has been tackled in a number

of different ways in the recent past [11–14]. The various constructions described in these works

can be divided into two classes: those that use regions bounded in the bulk by extremal surfaces

inspired by the holographic entanglement entropy [15] and its covariant generalization [16], and

those that put causal relations at the center stage. From these analyses and earlier works [17]

the following picture emerges: a given spatial region A, whilst certainly being cognizant of the

causal wedge associated with it in the bulk, is however able to access information of part of the

geometry beyond the causal wedge.

Nevertheless, as noted in [11, 13], one might say that the most natural bulk spacetime region

associated with a spatial region A on the boundary is the causal wedge �A and associated

quantities, since these are constructed solely using causal relations. Furthermore, the causally

inspired constructions, as we shall see, serve to bound other observables, and in a certain sense

the causal wedge is the bare minimum that the boundary field theory region should reproduce.

Inspired by this observation, we undertake an examination of causal wedges in asymptotically

AdS spacetimes (see [18, 19] for some previous observations). Despite being a simple exercise,

it reveals rather interesting surprises; in fact we will demonstrate that the causal structure

constrains other observables such as the entanglement entropy in a non-trivial fashion.

1.1 Causal constructions: a review

To set the stage for our discussion let us quickly recall some basic concepts relevant for the

causal constructions. Consider a (d-dimensional) boundary spacetime foliated by a set of (d− 1

dimensional) Cauchy slices Σt, labeled by boundary time t. We will consider spacelike (d− 1 di-

mensional) regions At,Bt, . . . ∈ Σt (generically we drop the subscript t for notational simplicity).

The complement of a region A will be denoted as Ac.

In a nutshell, the causal wedge �A, associated to a boundary region A, is the set of bulk

spacetime points which lie in both the future and the past of the boundary domain of dependence1

♦A for the region A,

�A ≡ J−[♦A] ∩ J+[♦A] . (1.1)

In other words, the causal wedge consists of the set of spacetime events through which there

exists a causal curve which starts and ends in ♦A. The boundary of �A restricted to the bulk,

denoted ∂�A, consists of two2 null surfaces ∂±(�A) which are generated by null geodesics; the

outgoing null geodesics ending on the future boundary of ♦A generate ∂+(�A) and the ingoing

ones from past boundary of ♦A generate ∂−(�A). These bulk co-dimension one null surfaces

∂+(�A) and ∂−(�A) intersect along a bulk co-dimension two spacelike surface ΞA, which for

1 The domain of dependence ♦A corresponds to the boundary spacetime region whose physics is fully deter-

mined by initial conditions at A. More formally, any fully extended timelike curve on the boundary which passes

through ♦A must necessarily intersect A.
2 There may in fact be multiple boundaries; but we postpone a discussion of this subtlety till §2.
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Fig. 1: A sketch of the causal wedge �A and associated quantities in planar AdS (left) and global AdS

(right) in 3 dimensions taken from [20]: in each panel, the region A is represented by the red curve

on right, and the corresponding surface ΞA by blue curve on left; the causal wedge �A lies between

the AdS boundary and the null surfaces ∂+(�A) (red surface) and ∂−(�A) (blue surface).

reasons explained in [13] we dub the causal information surface. In other words,

∂�A = ∂+(�A) ∪ ∂−(�A) and ΞA = ∂+(�A) ∩ ∂−(�A) . (1.2)

By construction, the surface ΞA is anchored on the entangling surface ∂A of the selected region

A, i.e. ∂(ΞA) = ∂A. For orientation, these constructs are illustrated in Fig. 1, for planar AdS

(left) and global AdS (right). We emphasize that our construction is fully general and covariant,

requiring only a spacetime geometry that allows us to define causal curves. For convenience we

focus on a causal spacetime with a smooth metric.

Given the bulk co-dimension two surface ΞA, one can associate a scalar quantity with the

region A. In analogy with the definition of the holographic entanglement entropy [15, 16, 21], in

[13] we defined the causal holographic information of A, abbreviated χA, as quarter of the proper

area of ΞA in Planck units,

χA ≡
Area(ΞA)

4GN

. (1.3)

Although this number is infinite since ΞA reaches to the AdS boundary, as with entanglement

entropy, there is information both in the divergence structure as well as in the regulated quantity.

The simplicity of these bulk constructs suggests that they should have correspondingly natu-

ral field theory dual. Moreover, the importance of causal structure in bulk gravity indicates that

the dual field theory constructs should likewise correspond to fundamental quantities. In order

to obtain hints of what these field theoretic quantities are, we set out to explore the bulk prop-

erties of the causal wedge and associated constructs. In [13] we have considered certain static

geometries in order to study its properties in equilibrium, and suggested that χA captures the

basic amount of information about the bulk geometry contained in the reduced density matrix ρA

for the region A. While χA provides a (rather weak upper) bound on the entanglement entropy

SA, for certain special cases – which happen to be the ones where we can actually calculate the
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entanglement entropy from first principles – the causal information surface ΞA in fact coincides

with the extremal surface EA, so this bound is saturated: χA = SA. To glean more intuition

about the dynamical nature of our constructs, in [20] we focused specific time-dependent back-

grounds corresponding to rapid thermalization. We observed that in general, if we consider a

region A at a certain boundary time tA, the construction of ΞA is quasi-teleological (i.e. tele-

ological only on light-crossing timescale) in time-dependent backgrounds, since the domain of

dependence ♦A contains times later than tA.3 Finally, the recent analysis of [22] attempts to

provide some interesting speculations about the field theoretic interpretation of χA.

In the present work, we continue the exploration of properties of causal wedge and related

constructs, now in complete generality. This presents a somewhat complementary approach to

that of [20]: instead of focusing on specific class of spacetimes where the explicit computation

of χA is tractable, we maximally relax the assumptions about the bulk spacetime, and consider

global properties that these constructs, especially �A and ΞA, must satisfy in general. Neverthe-

less, to exemplify our statements and familiarize the reader with the subtleties, we will present

explicit constructions of ΞA in a particular spacetime in §2.

1.2 Preview of results

We will start in §2 by examining the topological structure of the causal wedge �A for a simply

connected boundary region A. A similar problem was considered in [19], with the conclusion that

for simply connected regions A, the causal wedge must likewise be simply connected. This follows

from the statement of topological censorship [23], which asserts that every causal curve which

begins and ends on the boundary of asymptotically AdS spacetime I = ∂AdS is contractible to

the boundary. Viewing the domain of dependence ♦A ⊂ I as a particular causal sub-domain,

the result follows.

Here we will point out that the situation is actually more subtle. Despite the simplicity of A,

the associated causal wedge may be topologically arbitrarily complicated: for example, it can have

(arbitrarily) many holes, i.e., non-trivial homology. In the examples we encounter, we will show

that in asymptotically AdSd+1 bulk spacetime, it is possible for ∂�A to possess non-contractible

co-dimension two spheres Sd−1. Thus ΞA may be composed of multiple disconnected components.

Moreover, the change in topology can be engineered by varying parameters associated with A
relative to those characterizing the bulk geometry, implying interesting ‘phase transitions’ for χ.

This can be observed already in perhaps the simplest non-trivial example distinct from pure

AdS, namely a neutral static black hole in global AdSd+1 for d > 2, provided A is large enough, as

explained in §2.1 (cf. Fig. 3 for an illustrative plot). Despite the simplicity of the setup, this result

may come as a surprise to many readers, and in fact (to our knowledge) has not been pointed out

3 Curiously, while χ behaves correspondingly quasi-teleologically in general time-dependent backgrounds, in

the case of collapsing thin null shell examined in [20], the temporal evolution of χ remains entirely causal. In

other words, while the causal information surface Ξ gets deformed by the shell quasi-teleologically, its area χ

remains unaffected till after the region A itself encounters the shell.
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previously in the literature. There may be several reasons for this. Initial studies of the causal

wedge (such as explicitly carried out in [20]) often focus on 3-dimensional bulk geometry, where

this effect is absent. For example, the BTZ black hole causal wedge is simply connected for any

region size, as we explicitly illustrate in §2.2. Moreover, most higher-dimensional studies typically

focus on planar black holes, so as to consider duals of states of CFT on Minkowski background.

However, the effect we describe is absent for a planar black hole, since there is no region ‘on the

other side’ of the black hole which could be causally accessible from the boundary. We illustrate

explicitly that when the CFT lives on the Einstein static universe, ΞA is disconnected whenever

the region A covers a sufficient portion of the full system (ranging from more than half of the

full system in case of tiny black holes to almost the entire system in case of huge black holes).

Considering large regions A (i.e. comparable to the size of the full system on compact space)

may perhaps seem too artificial to worry about. To dispel such objections, we proceed in §2.3 to

argue that in fact the causal wedge for arbitrarily small region can also have holes, for a suitably

chosen bulk geometry. A simple example is provided by the global completion of the conformal

soliton [24], which is in fact just a boosted version of a static black hole [1]. One can also consider

genuinely dynamical situations involving multiple black holes. Though the explicit metric is not

known analytically, such configurations provide simple existence arguments for causal wedges

with multiple holes (and correspondingly multiple components of a disconnected ΞA).

Based on the above examples, one might easily wonder if the non-trivial structure of a causal

wedge is somehow inherited from the bulk geometry being causally non-trivial. It is in fact easy

to argue that this is not the case, as we discuss in §2.4. A causally trivial spacetime, such as a

compact star, can likewise admit causal wedges with holes. This further solidifies the robustness

of this feature.

Having seen in §2 that even in simple bulk spacetimes causal wedges may have surprising

properties, the reader might be led to suspect that this will render the CFT dual of the causal

wedge and derived quantities far too complicated. However, we take the viewpoint that since

the causal wedge �A is the simplest and most natural bulk construct associated with a boundary

region A, it ought to have a natural CFT dual nevertheless. In §3 we collect the global properties

that any causal wedge must satisfy. These include natural inclusion properties, as well as simple

additivity properties of the causal holographic information χ, which are previewed in §3.1 and

justified in §3.2.

Having established these global properties for the constructs (�A, ΞA, and χA) derived

from our causal wedge, in §4 we turn to a brief discussion of implications specifically for the

extremal surface EA and the entanglement entropy SA associated to a given boundary region

A. Most intriguingly, the property established in §3 that any extremal surface EA must lie

outside4 of the causal wedge A, together with the observation of §2 that the causal wedge has a

hole (i.e. Ξ consists of two disconnected components) in the Schwarzschild-AdS background for

sufficiently large region A, implies that for such cases, there does not exist a connected extremal

4 By outside we mean here that no part of the extremal surface EA can lie within the causal wedge �A.

– 5 –



surface anchored on ∂A homologous to A. In particular, the connected extremal surface EAc

corresponding to the complement Ac of the region A does not satisfy the homology requirement

since it is separated from A by the black hole, while a surface going around the black hole so

as to be homologous to A would necessarily have to enter inside the causal wedge. This means

that the extremal surface whose area gives the entanglement entropy EA must likewise consist of

two disconnected components: one given by EAc and the other wrapping the black hole horizon.

That in turn implies that for such cases (i.e. sufficiently large A), the difference in entanglement

entropies SA−SAc captures precisely the thermal entropy SBH , and therefore saturates the Araki-

Lieb inequality [25].5 This is perhaps the most interesting result of our explorations, justifying

our intuition that the properties of the causal wedges serve to non-trivially constrain physically

understood observables such as entanglement entropy.

Given the potentially profound implications of the existence of causal wedges with holes, as

well as the relative ease with which one can construct examples of such an occurrence, one might

start to worry that perhaps for any bulk geometry different from pure AdS (and satisfying the

null energy condition), we could construct a sufficiently large boundary region A whose causal

wedge �A has a hole. We address this possibility in §5 and suggest that this does not happen

unless the deformation is sufficiently strong; in spherically symmetric situations, we conjecture

that the presence of holes in the causal wedge is associated with the presence of null circular

orbits in the spacetime.

2 Topological structure of causal wedge

Let us first examine the topological structure of the causal wedge �A for a given bulk spacetime

and a simply connected boundary region A. Recall that the causal wedge can be thought of as

consisting of causal curves which begin and end in ♦A. Although these curves are all continuously

deformable into each other, we show that the causal wedge can be topologically more complicated.

For example, ΞA need not be homologous to A, or even when it is, ∂�A need not be homotopic

to ♦A. We focus on ΞA, specifically whether or not it is connected and the nature of transitions

between the number of its components.

To motivate the possibility of ΞA having multiple components, let us observe that a causal

wedge cannot penetrate a black hole (i.e., ΞA cannot reach beyond an event horizon). Heuris-

tically this follows directly from the definition of a black hole: no causal curve from inside can

reach the AdS boundary, much less ♦A ⊂ I (see also §3). Suppose however that the black hole

is very small (compared to AdS scale). Far away from the black hole, its gravitational effects

are negligible; so there is a spatial region surrounding the black hole from which causal curves

which would have reached well within ♦A in pure AdS still reach ♦A in the actual spacetime. In

5 This observation is further discussed in [26] where it is explicitly demonstrated that connected minimal

surfaces fail to capture the entanglement entropy for large enough regions A. The resulting saturation of the

Araki-Lieb inequality is referred to there as the entanglement plateau phenomenon.
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other words, although the black hole itself cannot lie inside the causal wedge, a spatial region

fully surrounding it is contained in �A. This reasoning suggests that for small black holes and

sufficiently large regions A, the causal information surface ΞA has two components: one similar

to that in pure AdS which is anchored on ∂A, and one which shields the black hole. We will now

check this expectation explicitly for Schwarzschild-AdSd+1 for d ≥ 3 (focusing on d = 4 which is

algebraically simplest) and then comment on other geometries.

2.1 Global Schwarzschild-AdSd+1

To illustrate the point that even for simply-connected regions A the causal information surface

ΞA may be composed of multiple disjoint components, let us consider the Schwarzschild-AdSd+1

black hole. We will w.l.o.g. set the AdS scale to unity, and characterize the black hole by its

horizon size in AdS units, rh ∈ (0,∞). This gives a 1-parameter family of static, spherically

symmetric and physically well-behaved spacetimes with metric

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2

(
dϕ2 + sin2 ϕdΩ2

d−2

)
, f(r) = r2 + 1− rd−2

h (r2
h + 1)

rd−2
. (2.1)

Large black holes (rh > 1) are dual to the thermal density matrix of the field theory on the

Einstein Static Universe ESUd = Sd−1 × R (e.g. as in the case of N = 4 SYM in d = 4), while

small black holes are still physically relevant in the microcanonical ensemble.6 For convenience

we will restrict attention to boundary regions A which preserve SO(d− 1) spherical symmetry.

For purposes of finding the causal wedge �A, we can then reduce this problem to effectively

3-dimensional one7 by reducing the Sd−1 to one non-trivial angle ϕ ∈ [0, π]. The region A is then

characterized by its radius ϕA. As ϕA → π, the region covers most of the boundary space.8 On

the other hand, the planar black hole case is recovered in the limit ϕA → 0 and rh →∞.

It is convenient to use coordinates (t, ρ, ϕ) where ρ ∈ [0, π/2) is related to the standard radial

coordinate r by r = tan ρ. The relevant 3-dimensional piece of the bulk metric is then

ds2 =
1

cos2 ρ

(
−g(ρ) dt2 +

dρ2

g(ρ)
+ sin2 ρ dϕ2

)
, (2.2)

where

g(ρ) = 1− µ cosd ρ

sind−2 ρ
, µ ≡ rd−2

h (r2
h + 1) =

sind−2 ρh
cosd ρh

. (2.3)

6 The translation between field theory and geometry is the following: the black holes with horizon size rh

have a Hawking temperature TBH =
d r2h+(d−2) `2AdS

4π rh `2AdS
. These solutions have a minimum value of TBH attained at

rh =
√

d−2
d `AdS. They however minimize the free energy only for TBH `AdS ≥ d−1

2π or equivalently rh ≥ `AdS.
7 Note that any curve which is causal in the full (d+ 1)-dimensional space is necessarily causal in the reduced

(2 + 1)-dimensional subspace, and conversely any causal curve in the 3-dimensional spacetime trivially lifts to a

causal curve in the full (d+ 1)-dimensional spacetime.
8 To keep ♦A finite, we will however consider ϕA < π in this section. (As explained in §3, when ϕA = π the

boundary region A = Sd−1 is a complete Cauchy slice of the Einstein Static Universe. Then �A is simply the

region exterior of the black hole and ΞA is the bifurcation surface of the horizon.)
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Null geodesics in this subspace are characterized by the reduced angular momentum ` ∈ (−1, 1),

a discrete parameter η = ±1 labeling outgoing (η = 1) versus ingoing (η = −1) geodesics, as well

as the initial position. We can write the differential equations in terms of the affine parameter λ

where ˙≡ d
dλ

as follows:

ṫ =
cos2 ρ

g(ρ)
, ϕ̇ = `

cos2 ρ

sin2 ρ
, ρ̇ = η cos2 ρ

√
1− `2

g(ρ)

sin2 ρ
. (2.4)

We could in principle obtain analytic expressions for (t(λ), ρ(λ), ϕ(λ)), which are given in terms

of elliptic functions. This however does not add much insight and it is easier to see the structure

graphically, so we simply integrate the geodesic equations numerically. In actual implementation

it is convenient to solve (2.4) for t(ρ) and φ(ρ) directly, though we have to keep track of η

changing sign at a turning point where ρ̇ = 0.

Only geodesics with sufficiently large angular momentum have a turning point; these are

ones for which the equation ρ̇ = 0 in (2.4) has a real solution ρ0 ∈ (0, π
2
). It is easy to check that

this only occurs for `2 ∈ (`2
0 , 1), where

`0 =

[
1 + (d− 2) d−

d
d−2

(
2

µ

) 2
d−2

]−1/2

d=4−−→
√

4µ

1 + 4µ
=

2 rh
√
r2
h + 1

2 r2
h + 1

. (2.5)

The corresponding value of ρ0 at this minimal `0 corresponds to the circular null orbit radius

and is given by

ρ0(`0) = tan−1

(
d µ

2

) 1
d−2

d=4−−→ tan−1
√

2µ . (2.6)

For general ` > `0, the radial position of the turning point is given by the largest root of the

polynomial ρ̇ = 0 which is of order d (or d
2

for even d); e.g.

ρ0 = tan−1

√√√√ `2

2 (1− `2)

[
1 +

√
1− 4µ

(
1− `2

`2

)]
for d = 4 . (2.7)

(On the other hand, geodesics with ` < `0 have no turning point: instead they terminate at the

curvature singularity at r = 0.)

Now that we have ρ0, we can find the corresponding ϕ and t coordinates for the turning point.

We typically specify the particular `-geodesic by giving the functions t`(ρ) and ϕ`(ρ) and when

necessary explicitly indicating whether we are before or after the turning point. In particular,

we have the following expressions for the trajectory of the future-directed null geodesics from a

boundary point q∨ defined below (hence initially η = −1) parameterized by `:

t`(ρ) = ti +

∫ ρf

ρi

h`(ρ̃)

g(ρ̃)
dρ̃ , ϕ`(ρ) = ϕi + `

∫ ρf

ρi

h`(ρ̃)

sin2 ρ̃
dρ̃ , h`(ρ) ≡ 1√

1− `2 g(ρ)

sin2 ρ

,

ingoing segment (η = −1) : ti = t∨, ϕi = 0, ρi = ρ, ρf =
π

2
,

outgoing segment (η = 1) : ti = tingoing(ρ0) ≡ t0, ϕi = ϕingoing(ρ0) ≡ ϕ0, ρi = ρ0, ρf = ρ .

(2.8)
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Similar expressions can be written down for the geodesics that end up on q∧.

Let us now turn to the strategy for finding ΞA. Since the geometry is static, we can w.l.o.g.

place A at time t = 0. The domain of dependence ♦A for round regions of radius ϕA is then deter-

mined by two boundary points ♦A = J+[q∨] ∩ J−[q∧] with (t, ρ, ϕ) coordinates q∨ = (−ϕA, π2 , 0)

and q∧ = (ϕA,
π
2
, 0).9 Recall that for general spacetimes the boundary of the full causal wedge

�A is generated by bulk null geodesics which start at q∨ (for ∂−(�A)) or end on q∧ (for ∂+(�A)).

Their intersection gives ΞA. Since the Schwarzschild-AdS spacetime is static, the two sets of

geodesics are merely time-reversed versions of each other, and their intersection necessarily lies

at t = 0. Furthermore, by spherical symmetry, each congruence respects ϕ-reversal symmetry.

This means that it suffices to find just one congruence to determine the rest. For convenience of

discussion let us label the four sets of geodesics by letters P (F ) for past (future) congruence and

R (L) for right (left) part of each congruence, i.e. ingoing from the boundary towards positive

(negative) ϕ. So PR and PL geodesics generate ∂−(�A) and FR and FL geodesics generate

∂+(�A), with ` > 0 along the PR and FL congruence. Hence we only need to find the solution

to (2.4) given by t`(ρ) and ϕ`(ρ) for the PR congruence, say; the symmetries

PR`(t, ρ, ϕ) = PL`(t, ρ,−ϕ) = FR`(−t, ρ, ϕ) = FL`(−t, ρ,−ϕ) (2.9)

then immediately give the PL, FR, and FL congruences.

Let us now consider the intersections of these congruences.10 For each `, PR` geodesic

intersects FR` geodesic at t = 0 and similarly for the PL` and FL` geodesics. Let us denote the

curve generated by these intersections (i.e. parameterized by `) on the t = 0 surface by Xt=0,

and let us denote its coordinates by (ρt=0(`), ϕt=0(`)) and (ρt=0(`),−ϕt=0(`)) for the R and L

halves of the congruences respectively. For each `, we can find these by first solving t`(ρ) = 0 for

ρ and then substituting this into ϕ`(ρ) to determine ϕ. Consider now the function ϕt=0(`). For

the radial geodesics, we necessarily have ϕt=0(0) = 0, whereas for the boundary geodesics, it is

easy to see that ϕt=0(1) = ϕA < π. If ϕt=0(`) increases monotonically with `, or more generally

if ϕt=0(`) < π for all ` ∈ (0, 1), then Xt=0 gives the full curve ΞA.

However, there exists another set of intersections between the congruences which becomes

relevant if ϕt=0(`) > π. In particular, the FR` geodesic intersects the FL` geodesic at ϕ = π, and

similarly for PR and PL geodesics. When ϕt=0(`) > π, the PR geodesic from q∨ (along which ϕ

starts from 0 and increases monotonically with the affine parameter) would have intersected the

PL geodesic (at ϕ = π) before intersecting the FR geodesic (at t = 0 and ϕ = ϕt=0(`) > π). The

moment two null geodesics from q∨ intersect,11 they henceforth become timelike-separated from

q∨, and therefore enter inside �A, no longer remaining on ∂−(�A). The subsequent intersection

9 We adapt the notation introduced in [13]; for simple regions the causal wedge is generated by null geodesics

emanating from two points q∧ in the future and q∨ in the past.
10 For the Schwarzschild-AdSd+1 spacetime, it can be checked that geodesics within each congruence do not

intersect each other.
11 In slight abuse of language but following previous terminology, we will refer to these intersections as caustics

and denote them by C± for the ∂±(�A) congruences.
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Causal wedge can have “holes”

A⌅A
A⌅A

Xt=0

Fig. 2: A plot of the intersection points of the future and past congruence, Xt=0, plotted on the Poincaré

disk. In each panel, the outer circle represents the AdS boundary (with the region A highlighted

in red; ϕA = 2.5 in both panels). The black hole size is rh = 0.5 (left) and rh = 0.2 (right),

denoted by red dashed curve (but obscured in the latter case). Xt=0 is composed of the individual

intersection points, color-coded by ` (from red at ` = 0 to purple at ` = 1). For large enough

black hole (left), ϕt=0(`) < π for all `, and therefore Xt=0 = ΞA. For small black hole (right) Xt=0

self-intersects and therefore ΞA has two components as indicated.

on Xt=0 is therefore not on ∂−(�A) and correspondingly is not relevant for ΞA. Said differently,

ΞA closes off at ϕ = π.

To summarize, the condition for ΞA to have two disconnected components is

max
`∈(0,1)

ϕt=0(`) > π . (2.10)

If (2.10) holds, then there are two12 solutions of ϕt=0(`) = π; let us label them by 0 < `1 < `2 < 1.

In such a case, ΞA has one component given by Xt=0 for ` ∈ (0, `1) and another given by Xt=0 for

` ∈ (`2, 1). The latter is connected to the AdS boundary and is anchored at ∂A for ` = 1. The

former is disconnected from the boundary and wraps the black hole. This situation is illustrated

in Fig. 2, where we plot Xt=0 on the Poincaré disk for connected (left) and disconnected (right)

case.

To understand better what happens in the disconnected case, it is instructive to consider

the full causal wedge. This is illustrated in Fig. 3 where we plot the causal wedge for the same

set of parameters as in the right panel of Fig. 2, but now on a 3-d spacetime diagram in ingoing

12 A-priori, there could have been an even number larger than 2, but explicit checks indicate that this doesn’t

happen; essentially there isn’t enough structure in the geodesic equations for Schwarzschild-AdS to allow multiple

extrema. Said differently, there are two competing effects which influence how much a geodesic ‘orbits’ in a given

time span: the light bending gets stronger nearer to the black hole, but so does the time-delay. To maximize the

former while minimizing the latter, we need to tune ` to attain the optimal penetration depth (approximately

given by the null circular orbit radius); our assertion follows since ϕt=0(`) increases for smaller ` and decreases

for larger `.
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A⌅A

⌅A

⌥A
C+

C�

Fig. 3: Causal wedge for the case rh = 0.2 and ϕA = 2.5, as in right panel of Fig. 2. Same color-coding

(by `) is applied to the null geodesic generators of ∂±�A. In addition to the AdS boundary and

horizon, the plot exhibits the region A (indicated by the thick red curve), the two components of

ΞA (indicated by the thick blue curves), and the curves of caustics C± (indicated by thick brown

curves) which connect up the two components of ΞA. The causal wedge �A bounded by the null

generators clearly exhibits a hole.

Eddington coordinates.13 There are several features of note: as expected, the causal wedge

clearly has a hole, causing ΞA to have two disconnected components, one anchored on ∂A and

one wrapping the black hole. This was already necessitated by the observation that the causal

wedge cannot penetrate the black hole, while approximating the pure AdS causal wedge far away

from the black hole. However, unlike the pure AdS case, the boundary of the causal wedge has

13 Following previous convention [20], we plot ρ radially and choose the vertical coordinate such that ingoing

radial null geodesics lie at 45◦. This fixes the vertical coordinate to be given by v − ρ+ π
2 , where

v = t+
1

2r2
h + 1

(√
r2
h + 1

[
tan−1 tan ρ√

r2
h + 1

− π

2

]
− rh tanh−1 rh

tan ρ

)
.

For this reason, the plot is asymmetric under vertical flip.
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caustics where the L and R geodesics from the same congruence intersect each other (before

intersecting those from the other congruence). The two caustic curves (C+ on ∂+(�A) and C−
on ∂−(�A)) lie at ϕ = π and connect the two components of ΞA, where the latter cusps.

As an aside, we remark that the presence of caustics in the causal wedge implies that gener-

ically the causal information surface ΞA need not be smooth; for less symmetric spacetimes this

can happen even when ΞA is connected. Although that might seem like a bizarre feature, it is

worth remembering that it is actually no worse than the analogous property of an event horizon,

which likewise is not smooth generically.14 In particular, although a horizon generator has to

remain on the horizon, new generators can enter the horizon at caustics.

Let us now return to considering the effect of varying the parameters, namely the transition

between connected and disconnected ΞA exemplified in Fig. 2. As we decrease the black hole size

rh (for a fixed ϕA), the curve ϕt=0(`) reaches higher and higher, eventually exceeding π (and

growing without bound as rh → 0). This is because the null geodesics whose angular momentum

is close to `0 orbit around the black hole many (∼ r−1
h ) times before reaching t = 0. Conversely,

for fixed rh, the causal information surface ΞA is connected if ϕA is sufficiently small (and is

guaranteed to be so if ϕA < π/2 for any rh) and disconnected if ϕA is large enough (and is

guaranteed to be so when ϕA → π for any rh). This is illustrated in Fig. 4, which plots the

causal information surfaces ΞA for the full range of ϕA at a fixed black hole size (rh = 0.2, as in

Fig. 3), projected onto the Poincaré disk. This presents a somewhat complementary information

to that in Fig. 2: whereas the latter varied rh at fixed ϕA, Fig. 4 varies ϕA at fixed rh.

Since ϕA is connected for small ϕA and disconnected for sufficiently large ϕA, we’re guar-

anteed by continuity that for any rh, there is a critical region size ϕ∗A for which Ξ just pinches

off. Let us denote the angular momentum along the corresponding null geodesic (i.e. the one

passing through this pinch-off point) by `∗. The four geodesics, PR`∗ , PL`∗ , FR`∗ , and FL`∗ , all

intersect at a single point t = 0, ϕ = π, and ρ = ρ∗. While this is true whenever ϕt=0(`) = π, here

we have an extra condition that ΞA self-intersects at a tangent, i.e. that max`∈(0,1) ϕt=0(`) = π.

This condition is satisfied only for a specific relation between rh and ϕA. Hence to determine

`∗ and ρ∗, and correspondingly the critical curve in (rh, ϕA) plane, we need to be able to find

max`∈(0,1) ϕt=0(`) efficiently.

While doing this numerically is rather time-consuming, we can simplify matters using the

following observation. Geodesics with angular momentum `0, when close to ρ ≈ ρ0, move very

slowly in the ρ direction. Hence to compensate, i.e. to remain null, they have to move faster

in the ϕ direction to cross the same temporal distance than nearby-` geodesics (which move

at finite speed in the ρ direction everywhere). Assuming that this effect dominates over what

happens to the geodesics in passage between the boundary and vicinity of ρ0(`0), the `0 geodesic

14 Event horizons are locally Lipschitz, but not necessarily more regular than that [27]. There even exist

(rather exotic) examples [28] where the event horizon is ‘nowhere’ differentiable, in the sense of non-existence of

any open neighbourhood where the horizon is differentiable, though they are differentiable ‘almost everywhere’ in

a measure-theoretic sense. More generally, [29] showed that differentiability fails precisely where new generators

join the horizons.
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Fig. 4: The projection of the causal information surfaces ΞA for various ϕA onto the Poincaré disk of

Schwarzschild-AdS5 with fixed black hole size rh = 0.2, color-coded by ϕA which varies from 0

(red) to π (purple) in increments of 0.1. (For example, the blue curve with ϕA = 2.5 corresponds

to the projection of ΞA in Fig. 3.) We can clearly see that ΞA pinches off; for larger ϕA, the

disconnected component of ΞA is located very near the horizon.

will reach ϕ = π ‘earlier’ than the nearby-` geodesics. This in turn means that if we cut them off

at t = 0 to find ΞA, the pinch-off which happens at ϕ = π will occur near the `0 geodesic. This

implies that `∗ ≈ `0. Assuming that in fact `∗ = `0, it is very simple to find the critical curve

in (rh, ϕA) plane given by a function ϕ∗A(rh), since for each fixed rh (which determines `0 using

(2.5)), we merely need to find ρ∗ by solving t`0(ρ∗) = 0, and then integrating the `0-geodesic

from (t = 0, ρ = ρ∗, ϕ = π) back out to the boundary to find ϕA.

We have used this trick to plot the critical curve on (ϕA, ρh) plane in Fig. 5 for various

spacetime dimensions. The approximation `∗ ≈ `0 can independently be checked by explicit

numerical integration and it works extremely well for a large range of black hole sizes.15 As

expected, for tiny black holes ρh � 1, the critical size of the region is ϕ∗A → π/2 and grows

linearly with ρh ∼ rh since there is effectively no other scale in this regime, whereas for very

large black holes ρh � 1, ϕ∗A → π asymptoting to a constant. Note that as ϕA → π we are

guaranteed to have a non-trivial topology of ΞA. In particular, consider the limiting case where

A = S3\i0, i.e., A is a punctured sphere (henceforth denoted as ϕA = π−). Then no matter how

large the black hole is, the causal wedge reaches all the way around the boundary while having

a hole due to the horizon. However, from the observation of footnote 8 (further discussed in §3)

it follows that the limit ϕA → π is not smooth.

It is worth remarking that the non-trivial topology of the causal wedge described above relies

15 In examples that we have examined we find that `∗ − `0 ∼ 10−3 for black holes which are roughly of the

order of the AdS radius.
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Fig. 5: The critical curves on (ϕA, ρh) plane indicating where ΞA pinches off for Schwarzschild-AdSd+1.

ΞA has two components above the curve and only a single component below. To guide the eye, we

also indicate the ϕA = π/2 and ϕA = π (dashed lines); the latter gives the upper bound in ϕA,

while the former indicates the lower bound below which ΞA is connected for Schwarzschild-AdS

black hole of any size. The topmost (red) curve corresponds to Schwarzschild-AdS4 geometry where

the effect of gravity is strongest, while the next (orange) curve is for Schwarzschild-AdS5 which is

our prime exhibit. Increasing the dimension results in slower growth of ϕ∗A(ρh), as exemplified by

d = 5 (green), d = 6 (blue), d = 7 (purple), d = 19 (purple dotted) and d = 49 (blue dashed).

The effects of the weaker gravitational potential are clearly visible with the increasing dimension

and the bottommost curve is close to the limiting behaviour for large d.

on working in global Schwarzschild-AdS geometry. In the planar Schwarzschild-AdS black hole

geometry, one cannot circumnavigate the black hole, there being no “other side”. Nevertheless,

as we will describe later, even in the Poincaré patch of AdS it is possible to encounter causal

wedges with non-trivial topology; for instance a localized black hole in the Poincaré patch will

likewise do the trick (see §2.3).

Above we have presented an example of a causal wedge with one hole. It is now conceptually

easy to generalize this situation to a causal wedge with multiple holes. For example, we can

consider a (dynamical) situation with multiple small black holes in AdS.16 The black holes will

generically orbit each other on timescales set by their separation, radiate gravitational waves,

and eventually coalesce. But we can separate scales in such a way that around each black hole

there is a region which is inside a causal wedge for appropriate A. In fact, if ϕA ≈ π/2, we may

see transitions in the number of components of Ξ. For small black holes and ϕA larger than π/2

by amount related to the black hole separation, ΞA will have a component around each horizon,

16 While such solutions are not known analytically one can construct approximate solutions using a matched

asymptotics method.
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apart from the one connected to ∂A. Hence for a ‘galaxy’ with N separated black holes in AdS,

Ξ will have N + 1 disconnected components.

So far, this section has focused on the topology of the causal wedge and the connectedness

of ΞA. Before closing, let us make an observation about the nature of the ‘phase transition’

between connected and disconnected ΞA as seen by its area χA. Although we don’t evaluate the

causal holographic information χ explicitly, we expect that for fixed rh, χA(ϕA) is not smooth

at the transition point ϕ∗A. Consider the full curve (on our (t, ρ, ϕ) subspace) Xt=0 generated

by intersections of future and past geodesics, characterized by (ρt=0(`), ϕt=0(`)). The causal

information surface ΞA is a subset of this curve, restricted by ϕt=0(`) ≤ π; in particular the two

curves are identical only when ΞA has just one connected component. Since the spacetime is

smooth, the geodesics, and hence their intersections, must vary smoothly in `. Similarly, the

length of the full Xt=0 should vary smoothly as we change ϕA. However, at the transition point

ϕ∗A, χ ceases to be given by length of Xt=0: the difference is given by the finite length piece where

ϕt=0(`) > π. We would therefore expect that χA(ϕA) has a kink at ϕA = ϕ∗A.

2.2 BTZ

Having seen the rich structure of ΞA for Schwarzschild-AdS5, one might wonder whether it is

also present in the simpler case of the 3-dimensional BTZ geometry, which has the form (2.2)

with

g(ρ) = sin2 ρ− r2
h cos2 ρ . (2.11)

Here the calculation is in fact much simpler, and the explicit expressions for null geodesics which

generate ∂�A were presented in e.g. [20]. A representative causal wedge is plotted in the left

panel of Fig. 6. We choose ϕA = 2.5 as in Fig. 3, and we use a tiny black hole rh = 0.02 in

order to emphasize the difference from the higher-dimensional case. In fact, as observed already

in [13], in BTZ spacetime ΞA exactly coincides with EA; the latter corresponds to the spacelike

geodesic anchored at ±ϕA on the boundary. The spatial projection of these is described by

tan ρ = rh
cosh(rh ϕA)√

cosh2(rh ϕA)− cosh2(rh ϕ)
. (2.12)

As can be easily seen, connected spacelike geodesics always exist for arbitrary ϕA, as illustrated

in the right panel of Fig. 6.

One reason why the causal wedge does not close off as in the higher dimensional case is

that taking the black hole arbitrarily small rh → 0 does not approach pure AdS: the latter is

achieved when r2
h = −1. Said differently, in 3 dimensions, the influence of the black hole does

not fall off fast enough. Not only are the effects of a tiny BTZ black hole perceptible on AdS

scale, but even near the boundary there is a qualitative difference between presence and absence

of a black hole. A different way to see that 3-dimensional bulk is special is to note that we have

argued that causal wedges must be simply connected to the boundary domain A [19] as follows

form topological censorship [23]. Since in this low dimension ΞA is a curve, it must be smoothly
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Fig. 6: (Left:) A plot of the causal wedge �A and ΞA (blue curve) in BTZ, with rh = 0.02 and ϕA = 2.5.

(Right:) Projection of spacelike geodesics EA onto the Poincaré disk, for varying ϕA ∈ [0, π] in

increments of 0.05π and rh = 0.1. Since EA = ΞA in BTZ, the left and right panels are analogous

to Fig. 3 and Fig. 4, respectively (modulo the different rh values).

deformable to ♦A. It thus follows that there is no room for non-trivial topology of ΞA in three

dimensional bulk spacetimes.

2.3 Boosted black hole

In §2.1 we have seen that for higher dimensional Schwarzschild-AdS black hole of any size, the

causal wedge has holes for sufficiently large boundary region A. As rh →∞, the critical size of

A for which ΞA becomes disconnected approaches ϕ∗A → π, whereas for rh → 0, the critical size

ϕ∗A → π/2. In particular, to obtain disconnected ΞA for this class of geometries, the region A
must cover at least half of the boundary sphere, and therefore sample a large part of the system.

However, we now argue that large A is actually not a prerequisite for existence of disconnected

ΞA, in the sense that for any finite region A on the boundary we can construct asymptotically

AdS geometries (in more than 3 dimensions) for which ΞA is disconnected.

In fact, a simple example which does the job is a boosted version of the global Schwarzschild-

AdS black hole discussed in §2.1. We can consider a family of geometries, considered e.g. in [1],

corresponding to a boosted global black hole with fixed total energy.17 At zero boost this is

the standard global AdS black hole while at infinite boost, this solution limits to a gravitational

shock wave in AdS. In the static coordinates (defined with respect to a specified boundary time),

the boosted black hole follows a trajectory which approximates that of a timelike geodesic.

We don’t need to do a new calculation to see what will happen for causal wedges in such a

17 See also [30] for a recent discussion where such geometries were called oscillons.
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geometry, since we can simply boost our causal wedge for the static black hole found in §2.1. In

other words, we can implement a coordinate transformation which in pure AdS would transform

a timelike geodesic at the origin ρ(t) = 0 to one which oscillates back and forth with energy

E > 1, whose radial profile is given by

ρ(t) = sin−1

[√
E2 − 1

E
sin t

]
. (2.13)

The requisite transformation is most easily obtained from isometrically embedding AdSd+1 into

Rd,2 endowed with the flat metric ds2 = −dX2
−1−dX2

0 +
∑d

i=1 dX
2
i , restricted to the hyperboloid

−X2
−1−X2

0 +
∑d

i=1X
2
i = −1. This embedding makes the AdS isometries obvious: for instance we

have manifest boost invariance, say X0 → cosh β X0 +sinh β X1 and X1 → cosh β X1 +sinh β X0,

leaving all the other Xi’s unchanged. The energy E in (2.13) is related to the boost in the

obvious manner E = cosh β. So the relevant isometric embedding, which implements the boost

and yields AdS in the conformally ESU coordinates, i.e. (2.2) with g(ρ) = 1, is

X0 = cosh β
sin t

cos ρ
+ sinh β

sin ρ

cos ρ
cosϕ , X−1 =

cos t

cos ρ
,

X1 = cosh β
sin ρ

cos ρ
cosϕ+ sinh β

sin t

cos ρ
, Xk =

sin ρ

cos ρ
sinϕ Ωk , (2.14)

where Ωi with i = 2, · · · , d are direction cosines, i.e.,
∑

i Ω2
i = 1, coordinatizing a unit Sd−2 and

thus explicitly ensuring the SO(d−1) symmetry in the transverse space. The actual transforma-

tion is then generated by comparing the X’s for β = 0 with those for arbitrary boost in (2.14),

and is given (modulo some branch issues) by

ρ̄(ρ, t, ϕ) = tan−1

[
1

cos ρ

√
(cosh β sin ρ cosϕ+ sinh β sin t)2 + sin2 ρ sin2 ϕ

]
t̄(ρ, t, ϕ) = tan−1

[
cosh β tan t+ sinh β

sin ρ cosϕ

cos t

]
ϕ̄(ρ, t, ϕ) = cot−1

[
cosh β cotϕ+ sinh β

sin t

sin ρ sinϕ

]
(2.15)

where the barred coordinates correspond to boost with respect to the unbarred coordinates by

a boost β. The direction cosines are unchanged since we retain SO(d− 1) symmetry.

Note that the boundary is preserved, ρ̄(ρ = π
2
, t, ϕ) = π

2
under (2.15), and this then specifies

the corresponding transformation induced on the boundary. More precisely, the bulk coordinate

transform implementing the boost corresponds to a conformal transformation (involving both

time and space) on the boundary. This transformation changes the size of ♦A. In particular,

small A and highly boosted black hole translates to large A in the static black hole frame, at

time where the black hole is closest to the region A on the boundary in the boosted picture. This

is illustrated in Fig. 7, which shows how a fixed size region A taken at different times translates

into a variable-sized region in a boosted frame with relative boost β (red curve corresponds to

zero boost while purple to β = 4). If we take a hemispherical region with ϕ̄A = π/2 (left), the

‘breathing’ of its size ϕA in the boosted frame is symmetric, whereas starting with a small region
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Fig. 7: Effect of boost on the size ϕA of a region A, as a function of time, as described in the text.

Specifically, we take a fixed-sized region ϕ̄A = π
2 (Left) and ϕ̄A = π

8 (Right) in the boosted frame

and plot how its size ϕA varies in the unboosted frame as a function of time t, for various values

of boost, from unboosted case β = 0 (red) to β = 4 (purple) in increments of 0.5. This illustrates

how arbitrarily small region in boosted frame can look large in unboosted frame for sufficiently

large boosts, albeit for time intervals whose size also shrinks with the boost.

(right) only produces large sizes in the boosted frame at short intervals. Nevertheless, it is easy

to see that no matter how small we take the region A in the unboosted frame, its size in the

boosted frame can get arbitrarily close to π for sufficiently large boosts.

It is now a simple matter to translate the effect of the boost on the causal wedge: it is precisely

the same effect as that of varying the size of ϕA. The topological attributes cannot change by

the coordinate transformation; so since �A has a hole in unboosted frame (equivalently the static

black hole spacetime) for large regions, the same is true in the boosted frame (equivalently in

the boosted black hole spacetime) even for small regions – but only at the auspicious times and

for sufficient boosts.

It is worth noting that another construction which describes the same (Schwarzschild-AdS)

geometry in different coordinates is obtained by simply restricting attention to the Poincaré

patch of global Schwarzschild-AdS. The CFT dual on Minkowski space of such configurations

was dubbed ‘the conformal soliton flow’ by [24]. The event horizon defined with respect to the

Poincaré patch is then closely analogous to the boundary of the causal wedge, since it is generated

by null geodesics in Schwarzschild-AdS which end on the boundary at i+ of the Poincaré patch

which corresponds to some finite ESU time; this was constructed explicitly in [31] (cf., their

Figure 3 for a plot18 of the event horizon in global coordinates in 3 dimensions, though the

vertical axis is the BTZ time t rather than the coordinate used above in Fig. 6 which is more

analogous to Eddington time). More precisely, the future event horizon indicated there would

correspond to ∂+(�A) for ϕA = π, though ΞA for any other ϕA can easily be read off by slicing

their blue surface horizontally higher than i0.

18 Strictly speaking the plot in [31] is for the BTZ conformal soliton where we have argued for the absence of

non-trivial topology; a similar picture in higher dimensions should reveal the appropriate structure.
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So far in this subsection we have discussed geometries which are static though not manifestly

so (they all admit a Killing field which is timelike everywhere outside of event horizon). It is

even easier to construct examples with disconnected ΞA for dynamical situations with collapsing

and evaporating black holes, where the event horizon lasts only for a finite time. Again by

separation of scales, if the black holes are tiny on AdS scale we can put them anywhere, and

they will only eat out tiny spacetime regions from the AdS causal wedge. Then the original ∂�A
(connected to ∂♦A) will be only minimally deformed but the full ∂�A will now include additional

disconnected components. This will again translate into ΞA having multiple components, but

now if we try to project them onto a single Poincaré disk, they may even intersect. However,

topological censorship will still guarantee that the causal wedge remains simply connected.

Finally, note that since we can take A arbitrarily small, the above construction can likewise

be implemented in Poincaré AdS, where the dual CFT lives on flat space. In other words, having

asymptotically global AdS bulk geometry is not a prerequisite to disconnected ΞA either.

2.4 Stars in AdS

So far all our examples of disconnected ΞA involved causally non-trivial bulk geometries. In such

situations it is easy to argue from first principles that for sufficiently large A the causal wedge

must have holes, since by causality �A cannot reach past the event horizon. However, we will

now see that the presence of an event horizon is not a prerequisite for disconnected ΞA. As long

as Ac 6= ∅ and we are in more than 3 bulk dimensions, all of the examples discussed above can be

modified to keep the geometry causally trivial but nevertheless the causal wedge unaffected. In

black hole geometries, null geodesics starting arbitrarily near the event horizon take a long time

to reach the AdS boundary. So they typically don’t make it out to ♦A; as a result ΞA remains a

finite distance away from the event horizon.19 We could then take the metric to remain identical

in the region reached by �A but modify it outside that region so as to get rid of all the horizons.

For example in the Schwarzschild-AdS case, we could in principle replace the black hole by

a compact star (or even a static shell) which is just slightly bigger than the original black hole.

To find out whether or not this is physically realistic, let us examine how compact would such

a star have to be. Since its maximal size is bounded by the deepest reach of ΞA, and the latter

occurs at ϕ = 0, we merely need to see how deep does the radial (` = 0) null geodesic from q∨

penetrate by the time t = 0. This value of course depends on both ϕA and rh. When ϕA is small,

the geodesic of course does not have time to reach very deep, but then the causal wedge does

not have holes, so this regime is irrelevant for our purposes. On the other hand, if we take ϕA

too large in order to guarantee �A having a hole, the geodesics have longer time to travel and

typically they approach exponentially close to the horizon. For example in the case illustrated in

Fig. 3, the ρ value reached by the radial (red) geodesics ρΞ is already very close to the horizon:
ρΞ−ρh
ρh
≈ 5× 10−6, which is scarcely realistic for a compact star.

19 This is an extreme case of the time delay effect discussed in [3].
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To maximize the size of the requisite star, then, we want to minimize ϕA subject to ΞA being

disconnected, i.e. take ϕA = ϕ∗A, and study the corresponding ρΞ as a function of ρh. Numerical

studies indicate that the maximal value attained, which occurs in the limit of tiny black holes, is
ρΞ−ρh
ρh
≈ 10−4. While this is still not be achievable for physically relevant equations of state for

the star, it demonstrates the matter-of-principle point that event horizons are not necessary for

topologically non-trivial causal wedge. In fact, preliminary investigations indicate that it might

be possible for charged scalar solitons in AdS to have non-trivial causal wedge topology; it would

be interesting to explore this further.

3 General features of ΞA and χA

Having seen some curious features of causal wedges in specific classes of examples, we now turn to

explaining the more ‘standard’ and completely general properties indicated in §1.2. We consider

generic boundary regions A and B (using the subscript t to indicate when they lie on the same

time slice) and describe simple relational properties20 of causal wedges etc. associated with them,

including observations pertaining to our constructs in causally non-trivial spacetimes. We will

then compare the areas of various surfaces and consider (sub)additivity properties of χ. Finally,

we will close with a discussion of extremal surfaces, both within the boundary of the causal

wedge and in the full spacetime. In the process, we will specify a useful relation between �A and

any extremal surface EA, whose implications we will consider in §4. In order to facilitate the

reading, in §3.1 we summarize our claims, leaving their proofs and discussion to §3.2.

3.1 Summary of properties

The simple properties which we prove in §3.2 are as follows:

(1). If At ∩Bt = ∅ (and more generally if A and B are spacelike-separated), then �A and �B are

spacelike-separated. Hence �A ∩ �B = ∅ and ΞA and ΞB are likewise spacelike-separated.

(2). If At ⊂ Bt (and more generally if ♦A ⊂ ♦B), then �A ⊂ �B.

Moreover, if At is entirely inside Bt (more generally if ∂♦A ∩ ∂♦B = ∅), then ΞA and ΞB are

spacelike-separated, with ΞB lying deeper than ΞA (equivalently outside �A).

(3). If At and Bt overlap (i.e., if A ∩ B 6= ∅, but A\B 6= ∅ and B\A 6= ∅), then

�A∩B ⊂ �A ∩ �B ⊂
{
�A,�B

}
⊂ �A ∪ �B ⊂ �A∪B . (3.1)

where by
{
�A,�B

}
we mean either �A or �B. Moreover, ΞA∪B and ΞA∩B are spacelike-

separated, with ΞA∪B lying deeper than ΞA∩B (i.e. outside �A∩B), etc.

20 See also e.g. [3, 18, 19] for earlier related discussions.
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(4). For any (not necessarily stationary) bulk black hole spacetimes, no causal wedge can pen-

etrate the event horizon. It then immediately follows that ΞA cannot penetrate an event

horizon for any A.

(5). Causal holographic information satisfies Additivity:

If A ∩ B = ∅, then χA∪B = χA + χB.

(6). Causal holographic information satisfies Subadditivity:

If A ∩ B 6= ∅, then χA∪B ≤ χA + χB.

(However, Strong Subadditivity is not necessarily satisfied, as demonstrated in [13].)

(7). From the set of all surfaces on ∂�A anchored on ∂A, ΞA is the minimal-area one.

(8). Extremal surface EA must lie outside (or on the boundary of) the causal wedge �A.21

3.2 Proofs of simple properties

Some of the proofs of the above statements use the concept of a causal curve, which we take to

be a nowhere-spacelike, maximally extended, connected curve (either in the bulk or along the

boundary). We will denote a future-directed causal curve from a point p to a point q in the

spacetime by γ+
p→q = γ−q→p. Existence of such a curve guarantees that q is in the future of p.

(1). Causal wedges of spacelike-separated regions are spacelike-separated: First

note that if A and B are spacelike-separated, then the corresponding domains of dependence ♦A
and ♦B are spacelike-separated. Otherwise there would exist a (boundary) causal curve which

contains points in ♦A (and hence, by definition of domain of dependence, must intersect A) as

well as points in ♦B (and therefore must intersect B as well). However, existence of causal curve

through both A and B contradicts the assumption that A and B are spacelike-separated.

We can now extend essentially the same proof-by-contradiction into the bulk: If �A and �B
are not spacelike-separated, then there exists a (bulk) causal curve γa→b passing through points

a ∈ �A and b ∈ �B. w.l.o.g. assume that γa→b = γ+
a→b is future-directed. By definition of causal

wedge, we also know that there exists a causal curve γ̃a through the point a which starts and ends

on the boundary inside ♦A and similarly ∃ γ̆b through b starting and ending in ♦B. Out of these

three causal curves we can now create a new causal curve γ = γ̃+
♦A→a∪γ

+
a→b∪ γ̆+

b→♦B composed of

the past part of γ̃a, γ
+
a→b, and future part of γ̆b, joined at a and b, starting from ♦A and ending

in ♦B. By suitably projecting γ onto the boundary obtains a causal22 curve γ̄ intersecting both

21 However, as demonstrated in [20], EA and ΞA need not be always spacelike-separated. When they are, the

above statement guarantees that EA lies deeper than ΞA.
22 The fact that bulk causal curves ‘project’ to boundary causal curves is easy to see: the tangent vector to

the bulk causal curve is timelike (ds2 < 0) and in restricting to the boundary one eliminates a spatial direction

which (as long as the projection is performed in such a way as to maintain the relative weighing of temporal and

angular components) makes ds2 even more negative. Also note that we are restricting to the causal wedge of the

boundary and so are necessarily outside any black hole horizons.

– 21 –



♦A and ♦B, contradicting the observation that ♦A and ♦B are spacelike-separated. This proves

that �A and �B are spacelike-separated.

In particular, there are no points in �A and �B which can be connected by a causal curve.

Since the causal information surfaces Ξ are contained in the causal wedges, there is correspond-

ingly no causal curve connecting ΞA and ΞB – hence these are likewise spacelike-separated. More-

over, the absence of causal curve connecting points in �A and �B trivially implies the absence of

common points between �A and �B; in other words, �A ∩ �B = ∅. �

(2). Causal wedge inclusion for nested regions: First of all, note that if A ⊂ B, then any

boundary causal curve γ̄a through a point a ∈ ♦A must by definition intersect A and therefore

it must necessarily also intersect B, which means that a ∈ ♦B. In other words, ♦A ⊂ ♦B. We

now extend the same argument into the bulk: for any point a ∈ �A, there exists a causal curve

γa which begins and ends in ♦A and therefore begins and ends in ♦B. This implies that a ∈ �B,

proving the inclusion �A ⊂ �B.

To show the rest of the statement, pertaining to ♦A lying strictly inside ♦B, we first recall an

obvious characteristic of points lying on the boundary of a causal wedge, namely the existence

of nearby points which lie outside the causal wedge. In particular, since ΞB lies on the boundary

of �B, if p ∈ ΞB, then within any open neighborhood O(p), there exists a point q which does not

lie within �B. More specifically, since ΞB lies on the intersection of future and past boundaries

of the causal wedge, there exist points q ∈ O(p) through which no causal curve γq can start or

end in ♦B. This in turn implies that through any b ∈ ΞB, any causal curve γb can at best make

it to ∂♦B, but not inside ♦B\∂♦B.

We now show that ΞB lies outside �A. Using the previous observation, we can see that if

any point b ∈ ΞB lies inside �A, then there exists a causal curve γb which reaches ♦A ⊂ ♦B\∂♦B,

a contradiction. To say this differently, suppose that there exists a point b ∈ ΞB which lies inside

�A. If b ∈ �A\∂�A, then there exists an open neighborhood O(b) such that O(b) ⊂ �A ⊂ �B,

contradicting the assumption that b ∈ ΞB. On the other hand, if no part of ΞB lies strictly

inside �A but b ∈ ∂�A, then ΞB must be tangent to ∂�A. This means that the generator of ∂�B
through b must coincide with the corresponding generator of ∂�A. Since this generator must

extend all the way to the boundary, it terminates on ∂♦B and simultaneously on ∂♦A; but this

contradicts our assumption that ∂♦A ∩ ∂♦B = ∅. This argument also shows that the boundaries

of the two causal wedges cannot coincide at any point, so �A must be strictly inside �B.

Having proved that �A lies strictly inside �B and that ΞB lies outside �A, the argument that

ΞA and ΞB must be spacelike-separated proceeds analogously: w.l.o.g. suppose that there exists

a future-directed causal curve γ+
b→a (the proof for past-directed curves proceeds analogously)

connecting a point b ∈ ΞB and a point a ∈ ΞA. Then there is a causal curve γb = γ+
b→a + γ̃+

a→♦A
through b which ends in ♦A ∈ ♦B\∂♦B, again a contradiction. Finally, since ΞA and ΞB are

spacelike-separated and ΞB lies outside �A, it immediately follows that ΞB lies deeper than ΞA.

�
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(3). Causal wedge inclusion for overlapping regions: Suppose that A and B overlap, so

that A∩B 6= ∅, with A\B 6= ∅ and B\A 6= ∅. Then A∩B is a proper subset of each of A and B
which are in turn each a proper subset of A∪B, and we can directly apply the results of property

(2) discussed above. In particular, ♦A∩B ⊂ {♦A,♦B} ⊂ ♦A∪B, so that �A∩B ⊂ {�A,�B} ⊂ �A∪B,

and moreover ΞA∩B and ΞA∪B are spacelike-separated, with ΞA∪B lying deeper than ΞA∩B.

To see the ‘intermediate’ inclusions, it is evident that �A ∩ �B ⊂ {�A,�B} ⊂ �A ∪ �B, and

all that remains to show is that �A∩B ⊂ �A ∩�B and that �A ∪�B ⊂ �A∪B. The arguments are

similar to the ones used above: if p ∈ �A∩B, then there exists a causal curve γp which starts and

ends in ♦A∩B, so it necessarily also starts and ends in each of ♦A and ♦B, and therefore p lies in

both �A and �B – which implies that p ∈ �A ∩ �B. The other inclusion is similarly manifest. �

(4). Causal wedge cannot penetrate event horizon: This statement follows immediately

from the definition of an event horizon: since there is no future-directed causal curve from inside

the black hole which can make out it to the AdS boundary, no point inside the black hole can lie

inside the causal wedge of any boundary region. Correspondingly, the causal information surface

ΞA for any sub-region A of the total boundary space must lie outside the event horizon.23

In asymptotically global AdS spacetimes, there is a slight subtlety: as we take A to cover the

entire spatial section of the boundary, ♦A jumps discontinuously from having finite time-extent

(given by the size of the boundary sphere) to having infinite time extent (and covering the entire

boundary spacetime). In this special case the causal wedge �A is an open set, its boundary

coincides with the event horizon, and ΞA then lies along the event horizon bifurcation surface.

On the other hand, for A being a proper subset of the boundary Cauchy slice, the finiteness of

♦A implies that ΞA can reach only to within a finite (albeit quantitatively small) distance from

the horizon; we saw an example in §2.4.

Now that we have discussed the relational properties between the causal wedges and the causal

information surfaces for two regions, let us briefly turn to the causal holographic information χ.

Recall that this quantity is potentially the one most directly accessible from the field theory.

(5). Additivity: If A∩B = ∅, then by property (1), �A ∩�B = ∅, so ΞA and ΞB are disjoint.

Hence ΞA∪B = ΞA ∪ ΞB, and the individual areas then simply add up, χA∪B = χA + χB. Note

that each of the terms is divergent, with LHS inheriting all the divergences from RHS.

(6). Subadditivity: If A∩B 6= ∅, then A∪B is not simply composed of two disjoint regions

as in property (5) above. Instead, the surface area of this region is strictly smaller than the

23 As an aside, note that this property of remaining outside the black hole does not generically hold for extremal

surfaces, due to the teleological nature of the event horizon: an extremal surface cannot be sensitive to its exact

location in dynamically evolving spacetimes, and therefore can probe inside the black hole; explicit examples have

already been seen in [20, 32] and will be further discussed in [33]. (In contrast, as pointed out in [17], in static

spacetimes extremal surfaces don’t penetrate the event horizon either. Nevertheless, any extremal surface EA
must lie outside a causal wedge �A as we show in Property 8.)
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sum of the individual surface areas, Area(∂[A ∪ B]) < Area(∂[A]) + Area(∂[B]), because the

RHS has additional contribution from Area(∂[A∩B]). Now, since χA has its leading divergence

proportional to Area(∂[A]) and similarly for other regions, the Subadditivity inequality χA∪B ≤
χA+χB is satisfied trivially – i.e. the RHS has stronger divergence. On the other hand, as noted

in §3.1, the property of Strong Subadditivity, where the leading divergences cancel, is actually

not necessarily satisfied.

Properties (5) and (6), along with the basic feature of being (quarter of) the proper area of

a co-dimension two surface, make it tempting to compare the causal holographic information

χA with the entanglement entropy SA. The failure of χA to satisfy strong subadditivity is the

strongest evidence that it cannot correspond to a von Neumann entropy.

Finally, let us close with two properties which have been observed previously, and deal with

extremal surfaces.

(7). ΞA is a minimal surface on ∂�A: We can in fact view this property as an alternate

definition of ΞA, which is conceptually useful for considering the causal holographic information

χA. However, to establish the result, we use the definition (1.2), that ΞA belongs to both ∂+(�A)

and ∂−(�A). The proof assumes null energy condition and uses a crucial observation about

null congruences which generate the causal wedge boundary: the null congruences ∂±(�A) must

have non-negative (and generically positive) expansion in the outgoing (towards the boundary)

direction. For if they had negative expansion, Raychaudhuri equation would imply that they

caustic before reaching the AdS boundary, in contradiction to them generating the boundary of

a causal past/future of ♦A ∈ ∂M.

Let us first restrict attention to the case where �A is topologically trivial, i.e. ΞA is a single

connected surface anchored on ∂A. Consider any other surface ΥA ⊆ ∂�A which is anchored on

∂A. We want to show that ΥA cannot have smaller area than ΞA. We can obtain a subset24 of

ΥA from ΞA by flowing a certain distance λ along the null generators. Let us for the moment

assume that ΥA ∈ ∂+(�A); then we can perform a constant rescaling of the affine parameter

of each null generator individually, such that ΥA lies at constant affine parameter λ0 along the

null generators of ∂+(�A). Now, using the fact that the expansion of the null generators of

∂+(�A) cannot be negative towards the boundary, we know that the area of constant λ slices of

∂+(�A) must be monotonically increasing function of λ; in particular, Area(ΥA) ≥ Area(ΞA).

(The presence of caustics in ∂+(�A) would only strengthen this inequality, since the area of the

remaining part of ΥA, which does not lie along generators from ΞA, is positive.) Same argument

would apply for ΥA lying on ∂−(�A), as the past-directed null generators again expand towards

the boundary. If ΥA lies partly on ∂+(�A) and partly on ∂−(�A), then we can separate ΨA into

domains, separated by ΥA ∩ΞA, and run the argument for each domain separately. Hence in all

24 Recall that new generators can enter ∂�A at caustics, so if ΥA lies closer to the boundary than the first

caustic, all generators from ΞA pass through ΥA but in addition some new ones do as well.
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cases, any surface ΥA cannot have smaller area than ΨA, which means that ΞA is the minimal

surface on ∂�A.

Let us now turn to the topologically non-trivial case, such as discussed in §2.1, where �A
has a hole and ΞA consists of several disconnected surfaces. Then the statement of minimality

of ΞA has to be made more precise, as clearly there are surfaces ΥA ⊆ ∂�A with ∂ΥA = ∂A
with smaller area than ΞA – as a trivial example, take just the connected part of ΞA anchored

on ∂A, or a small deformation thereof. However, if in addition to ∂ΥA = ∂A we require that

ΞA and ΥA are homotopic to each other within ∂�A, then our arguments above go through: any

generator of ∂�A which starts from ΞA must intersect ΥA, where the positive expansion of the

generators guarantees that the latter has larger area. �

The fact that ΞA is a minimal (and therefore extremal) surface on ∂�A however does not

mean that it is an extremal surface in the full bulk spacetime, as emphasized previously in

[13, 20]. The final property will show this explicitly, by providing a relational property between

EA and �A.

(8). Extremal surface is generically outside causal wedge: This is a generalization of the

proof presented in [13] (see also [34]), which was formulated on a given spacelike slice of the bulk

rather than the full Lorentzian geometry.25 The reasoning here is similar; the crux is to argue

that if the extremal surface came within the causal wedge, it would have to be tangent to the

boundary of a nested causal wedge corresponding to some sub-region. Once this is established,

we can obtain a contradiction from comparing the expansions for the extremal surface and a

tangent slice of a causal wedge boundary.

Suppose that an extremal surface EA has a sub-region e which lies strictly inside �A. We

claim that then somewhere along e, there exists a point p at which EA is tangent to ∂�B corre-

sponding to some smaller boundary region B ⊆ A. There may in fact be infinitely many of such

points, but our proof only requires one. The existence of one follows easily if one can foliate �A
by ∂�α for a family of nested regions Aα, parameterized by some parameter α, which we can

choose to be α = 0 at ∂�A and monotonically growing as the size of Aα decreases.26 For then

this foliation specifies a function α on EA (given by the particular ∂�α intersected by our surface

EA at any specified point). Since α = 0 at EA ∩ ∂�A, i.e. on ∂e, and positive inside e, there is a

point p ∈ e where α takes extremal value. At this point p, EA is tangent to ∂�α.27

25 In that more limited context, one can equivalently say that the extremal surface EA reaches deeper than

the causal information surface ΞA; however, in general highly dynamical spacetimes such statement need not be

meaningful when EA and ΞA are not spacelike-separated.
26 For example, one convenient parameterization is by the depth to which Ξα reaches, α = rΞα − rΞA . Alter-

nately, for spherically symmetric spacetimes such as considered in §2.1, we can simply take α = ϕA − ϕα.
27 A potential loophole is that ∂�α might be non-smooth at the point of intersection with EA, e.g, p could be

one of the cusps seen in Fig. 4. In such cases there are two potential ways to extend our arguments. One is that

we could consider other foliations of A on the boundary to ensure that the intersection of the extremal surface

with the causal wedge boundary is at a regular point. More simply however, we could also note that even at the

cusps the expansion of the null congruence towards the boundary while divergent is manifestly positive definite
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Since the above argument followed from the existence of a foliation of �A by ∂�α, we now

pause to briefly consider how generally does such a foliation exist. First of all, it is not hard to see

that for static spacetimes, a foliation of �A is indeed guaranteed to exist; as a canonical example

(which includes caustics and potentially non-trivial topology of �A), consider the Schwarzschild-

AdS example discussed in §2.1. Since the projections of ΞA(ϕA) on the Poincaré disk for different

ϕA indicated in Fig. 4 foliate the entire region of the Poincaré disk which is in the largest causal

wedge, this spatial foliation lifts trivially to the full Lorentzian region inside the largest causal

wedge.28 More generally, we can argue that such a foliation must exist for any static spacetime

as follows. Let us w.l.o.g. fix A to lie at t = 0 on the boundary. We first pick a convenient

foliation of the region A by slicing ∂♦A by constant t = α surfaces and projecting to the t = 0

slice. Denote each leaf of A’s foliation by α and the enclosed subregions by Aα. In case of

circular regions, α ∈ (0, ϕA). Notice that the causal wedge �α for a given sub-region Aα can be

obtained by simply rigidly sliding ∂+(�A) and ∂−(�A) towards each other in time. Now consider

some point p ∈ �A. Since there is a unique point in ∂±(�A) whose temporal projection coincides

with that of p, ∃!α by which we can slide ∂±(�A) such that p ∈ ∂�α. In other words, this

rigid time-translation of ∂±(�A) towards each other defines a natural foliation of �A. We believe

that it is possible to extend this proof to more general spacetimes, although we leave a rigorous

argument for future investigation.

Let us now return to the main argument, having established that if a region e ⊂ EA lies

within �A, then there exists a point p ∈ e at which EA is tangent to ∂�B for some sub-region

B. In fact, we can construct a spacelike surface ΨB within ∂�B which is tangent to EA at p

and is anchored on ∂B. At this point, outgoing null normal to EA coincides with the outgoing

null normal to ΨB (which is the corresponding generator of ∂�B). Now consider the expansions

ΘE and ΘΨ of the two tangent surfaces EA and ΨB at p. By definition of extremal surface, we

know ΘE = 0. On the other hand, since ∂B is a boundary of a causal set, ΘΨ ≥ 0 towards the

boundary. This is however a contradiction, since the way in which these surfaces are tangent to

each other (with E bending away from the boundary more than Ψ) implies that ΘE > ΘΨ. The

reader is encouraged to consult Fig.5 of [13] for a pictorial sketch of this argument.

Since the assumption that EA reaches inside �A produced a contradiction, we conclude that

EA must lie outside (or at best on the boundary of) �A. �

In the generic situation where ΞA is spacelike-separated from EA, it then immediately follows

that EA reaches deeper than ΞA. However, having established that an extremal surface EA cannot

lie within the causal wedge, we should note that this does not automatically imply that EA is

necessarily causally disconnected from ♦A (although this is the case in generic situations, when

EA and ΞA are spacelike separated). Apart from the obvious special examples where EA and ΞA

(and we only need the correct sign for our argument to go through). We thank Matt Headrick and Aron Wall for

useful discussions on this point.
28 Here we envision that ♦A is compact on the boundary. The issue is more subtle if we take A to be a complete

Cauchy slice of the boundary ESU; as noted in footnote 8, ♦A is the entire boundary spacetime and its causal

wedge does not admit such a foliation (as apparent from both Fig. 4 and Fig. 6 (right panel)).

– 26 –



coincide, as pointed out in footnote21, in the case of thin shell Vaidya-AdS explored in [20] we

saw that they can be null-separated.

4 Implications for bulk extremal surfaces

So far, we have been discussing the causal wedge and related constructs in the bulk spacetime,

which as yet have no independently defined construction in the dual CFT. In this section we

point out that our results nevertheless bear on a more familiar context where we do have a

conjectured duality. In particular, they surprisingly turn out to be relevant for the entanglement

entropy SA, which is conjectured [15, 16, 21] to be given by (quarter of) the area of the extremal

surface EA which (i) is anchored on the entangling surface, ∂EA = ∂A, (ii) is homologous to A,

and (iii) in case of multiple such surfaces is the minimal-area one.

In the previous section, we have further justified the anticipated result that no extremal

surface EA can lie within the causal wedge �A (Property 8). While we have presented this as

a property of causal wedges, we can conversely think of it as a property of extremal surfaces.

As already mentioned in §1 the consequence that extremal surfaces penetrate deeper into the

bulk than causal wedges bears on the question of how much of the bulk does a given boundary

region in the CFT describe. But quite apart from this discussion, there is a more remarkable

and surprising consequence of Property 8, when combined with the observation of §2 that causal

wedges can have holes: in a global eternal black hole spacetime, if the causal wedge �A for a

given boundary region A has a hole, then there cannot exist a connected extremal surface EA

anchored on ∂A which is homologous to A.

To see why this is the case, let us first consider the homology requirement. Suppose we take

a region A which covers more than half of the boundary, such as the case indicated in Fig. 3.

If area minimization was the only constraint on the desired extremal surface EA anchored on

∂A, then the extremal surface passing around the opposite side of the black hole from A (i.e.

through ϕ = π) would be the relevant one; let us denote it as EAc . However, such a surface is not

homologous to A, since there does not exist a co-dimension one bulk smooth hypersurface whose

only boundary are EA and A – such hypersurface would have to pass through the black hole,

and would either encounter the black hole curvature singularity, or pass through the Einstein-

Rosen bridge, in which case it would have further boundaries. The upshot is that, to satisfy

the homology requirement, we should either take a surface EA which goes on A’s side of the

black hole (i.e. passes through ϕ = 0), or a pair of disconnected extremal surfaces, EAc and the

bifurcation surface H of the event horizon r = rh.

Now let us consider what happens when the causal wedge has a hole, as in Fig. 3. A connected

spacelike29 surface anchored at ∂A would then either have to stay at larger radial position than

29 Since the bulk geometry is static, in this case of an eternal black hole we can in fact w.l.o.g. take the extremal

surface (which is anchored at constant t on the boundary) to lie at constant t in the bulk. (In more complicated ge-

ometries such as discussed in [35] where there could be more general extremal surfaces, the homology requirement
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the connected part of ΞA (which is ruled out by the homology requirement), or it must pass

around the black hole, in which case it must enter the causal wedge. To justify the latter more

formally, in order to pass through ϕ = 0 and remain outside the causal wedge there, EA would

have to attain smaller radial value than the deepest reach of the disconnected part of ΞA, so

it would have to pass through the radial region traversed by the causal wedge caustics (C± in

Fig. 3). Since this radial region is contained within the causal wedge at all angles, this suffices

to guarantee the passage though the causal wedge. But since that would violate Property 8, no

such connected extremal surface EA homologous to A can exist. �

Comparing this result to the behaviour of spacelike geodesics in BTZ (cf. the right panel of

Fig. 6), the non-existence of requisite extremal surfaces in higher dimensions might seem rather

surprising – in fact, we are not aware of this effect having been noticed previously. Given that

these surfaces exist only for sufficiently small ϕA, and reach deeper into the bulk as ϕA increases,

one might naturally wonder what happens as we try to push this deepest reach rE further towards

the horizon. This is examined in detail in [26], with the curious result that the corresponding

ϕA does not behave monotonically; instead it oscillates between certain maximal and minimal

values. Even more curiously, ϕA(rE) oscillates infinitely many times as rE → rh, exhibiting a

self-similar behaviour. In other words, for a fixed region A with ϕA in a certain range, there

are in fact infinitely many extremal surfaces (all outside the causal wedge) anchored on ∂A and

homologous to A. But conversely for large enough ϕA, there are none.

Let us now ask what are the implications of these results for the entanglement entropy. As

discussed in [26], we learn that the entanglement entropy cannot be a smooth function of ϕA.

At some critical ϕA, the relevant surface which determines entanglement entropy switches from

the EA to the EAc +H family, at which point S(ϕA) has a kink and saturates onto a plateau.

This phenomenon has been described as holographic entanglement plateau in [26], whose Fig.9

shows the various critical curves for ϕA(rh) in the case of Schwarzschild-AdS5 black holes. We

note that these authors choose to display the result in terms of α = 1
π

(ϕA − sinϕA cosϕA); for

the casual wedges this is a rescaled version of our Fig. 5. We must emphasize that the critical

point ϕA(rh) for the entanglement plateau transition of [26] is only weakly determined by the

casual wedge topology (indeed the presence of such an effect has been widely argued for since the

inception of the holographic entanglement entropy proposal [21, 36]). This has to do with the fact

that while non-trivial topology in the causal wedge is sufficient for the entanglement plateaux

to develop, it certainly is not necessary. To ascertain the onset of the plateau phenomenon one

requires detailed dynamics of minimal surfaces, and indeed as in any first order phase transition

the exchange of dominance between the EA to the EAc +H families occurs before it is mandated

by causal wedge topology.

would no longer rule out EAc [26], so the present consideration would be irrelevant.)
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5 Discussion

We have examined global properties of causal wedges and related constructs, proving a number of

useful relational statements valid in arbitrary causal asymptotically AdS bulk spacetime. While

from the CFT standpoint, the causal wedge might have been hitherto viewed as a rather esoteric

construct, the preceding section demonstrated that its properties bear on more familiar CFT

quantities such as the entanglement entropy. Nevertheless, the ultimate goal of this exercise is to

use these properties to try to propose or actually construct the CFT dual of the causal wedge or

associated quantities. The relational statements we discuss in §3 are physically quite reasonable,

and indeed unsurprising; the most curious feature, analyzed in §2, is the topologically non-trivial

nature of the causal wedge �A for simple regions A.

Bolstered by the remarkable ease with which we have been able to produce ‘holes in the

causal wedge’, the reader might well wonder whether this is perhaps the generic situation, namely

whether in any bulk geometry satisfying the genericity condition, we could identify some region

A for which ΞA would have disconnected components. This would have strong implications for

any putative CFT dual.

Since for the Schwarzschild-AdSd+1 family of solutions, the case which was guaranteed to

have disconnected ΞA was the one with maximal A = Sd−1\i0, i.e. ϕA = π−, let us examine

this situation for general bulk geometries. What is the generic form of ΞA and �A? Note that

domain of dependence30 ♦A in this case coincides with the AdS Poincaré wedge boundary, and

in particular includes the Poincaré wedge spatial infinity vertex i0. Moreover the tips q∧,∨ of ♦A
correspond to i± of the Poincaré wedge. This in turn implies that �A does include i0, and since

this point lies both on ∂−(�A) and ∂+(�A) (joined to q∧,∨ by the boundary null geodesics), it

is contained in ΞA. Now the question is, is ΞA just that one point i0, or does it reach into the

bulk? In other words, are there points on bulk Cauchy slice anchored at tA which don’t lie in

�A?

For black holes the answer is clearly yes; but even for causally trivial spacetimes, one might

naively expect that the answer is generically yes, with pure AdS being the only exception. The

motivation for this expectation is as follows: consider a near-boundary point p just radially in

from i0. In AdS, J±(p) intersects the boundary within ♦A only near q∧,∨. When we excite the

CFT state by a bulk deformation (satisfying the null energy condition), these bulk geodesics are

time-delayed [2, 3] so that they don’t make it to ♦A. Hence p would seem not to lie in �A; but

since �A does contain the entire boundary sphere, it should have a hole around p. This would

lead us to expect that ΞA generically reaches into the bulk (presumably in some teardrop-like

shape anchored on the single boundary point i0).

However, there is a subtlety with this reasoning, having to do with the presence of caustics

30 Typically domain of dependence ♦Σ is defined for a closed achronal surface Σ; whereas in the present case

A is open. However, since ♦Σ is defined as the set of all points from which every timelike curve intersects Σ, it

should still be true in the present case that ♦Σ is closed.
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in ∂�A. It is easy to see that radial null geodesics are time-delayed by some finite amount when

traversing the bulk with some gravitational potential well. However, these are irrelevant, because

generically they exit ∂�A and enter inside the causal wedge at a caustic point formed by null

geodesics with ‘angular momentum’31 ±ε, for some ε� 1. The geodesics which we need to focus

on are the ones with maximal angular momentum. These are repelled by the centrifugal potential

and as such stay close to the boundary feeling thereby less influenced by the deformation in the

core (IR) region of the geometry.32 This suggests that the relevant geodesics to consider are the

near-boundary geodesics with angular momentum ` = ±(1− ε).

Null geodesics through deformed AdS (for a static spherically symmetric metric correspond-

ing to a “star” geometry) were examined by [10] in the context of bulk cone singularities. Let

us consider a null congruence emanating from a specified point q∨ on the boundary. In pure

AdS, each null geodesic in this congruence would reach the boundary at the antipodal point,

with33 ∆ϕ = π and ∆t = π. When the geometry has a gravitational potential well, the geodesics

exhibit the usual time-delay and light-bending effect, which leads to a deformation of the future

endpoint (∆ϕ,∆t) of each geodesic, parameterized by the reduced angular momentum ` ∈ (0, 1).

A parametric plot of ∆t(∆ϕ) of geodesic endpoints for typical static spherically symmetric de-

formations of AdS were plotted in [10] (cf., their Fig. 5); the slope of the curve (parameterized

by `) in the (∆ϕ,∆t) plane representing null geodesic endpoints is simply `. This means that in

general, near-boundary null geodesics reach the boundary at a more spatially than temporally

shifted endpoint, ∆ϕ > ∆t. This would seem to imply that the ±` geodesics in the same (fu-

ture or past) congruence intersect each other ‘before’ (i.e. closer to ♦A) than they intersect the

corresponding ` geodesic from the other congruence.

One can check these expectations explicitly in a given deformed bulk geometry. For example,

consider the bulk metric (2.2) with g(ρ) = 1 − ν cos4 ρ with ν � 1. This is a causally trivial

asymptotically AdS geometry with a gravitational potential well given by ν, with pure AdS

corresponding to ν = 0. The causal wedge indeed remains topologically trivial, with a seam of

caustics reaching all the way to i0. In fact, this is to be expected from the black hole result of

§2.1: the shape of (the connected component of) ΞA for large enough ϕA should be determined

only by the asymptotic geometry, and should therefore be the same for corresponding to either a

black hole or a star of the same mass. From Fig. 4 we see that as ϕA → π (cf. the purple curves

on the left), ΞA does not approach a tear-drop shape. In particular, without the disconnected

31 Angular momentum along geodesics is a well-defined constant of motion only in presence of orbital Killing

field; but as a warm-up to address part of the genericity question, we will focus on spherically symmetric spacetimes

in this discussion.
32 We saw this behaviour in Fig. 3, but one can also verify this explicitly in more general static spherically

symmetric examples: the larger angular momentum geodesics are less time delayed than the smaller angular

momentum ones (including the radial one), so they will remain on ∂�A longer, covering up the smaller-angular

momentum geodesics under a seam of caustics.
33 Note that [10] considered equatorial geodesics with polar angle ϕ ∈ [0, 2π), whereas here we are using

ϕ ∈ [0, π] to represent the azimuthal angle. However, as explained in §2.1 due to spherical symmetry the geodesic

equations are of course identical, so we can conflate the two for direct comparison.
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component around the horizon, ΞA would indeed simply retract to i0 as ϕA → π. So we expect

that in order to obtain causal wedges with non-trivial topology, the bulk spacetime has to be

sufficiently deformed from pure AdS.

Said another way, there is an interesting tension between two competing effects. Had the

time-delay effect been the only operative feature, we would have concluded that holes in the

causal wedge would have been generic. On the other hand, if centrifugal repulsion which forces

attention on near-boundary geodesics were to be the primary effect, there would be no room

for non-trivial topology. It is then clear that the natural place to look for non-trivial causal

wedge topology is when the two effects are competing, and indeed our prototypical example of

Schwarzschild-AdS provides one such setting. Naively then, we can abstract from the above

discussion an essential requirement for the causal wedge to develop holes: the spacetime must

admit null circular orbits.34 For it is in this case that there is some non-trivial interplay between

the two effects discussed above and they precisely offset each other at the circular orbit. Indeed

we saw that the critical transition point for Schwarzschild-AdS was effectively determined by

the null circular orbit in §2.1. The justification provided there leads us to conjecture that in

spherically symmetric spacetimes the presence of the null circular orbits is a necessary condition

for non-trivial causal wedge topology. It would be useful to prove this statement rigorously; we

hope to return to this interesting problem in the near future.

One lesson of our explorations which we wish to emphasize is that while studies of global

AdS contain the Poincaré AdS case (as a limit), the converse is not true. Not only is the global

case much richer (as can be expected already from the metric being more complicated), but it

gives us novel insight into important observables. Over the years we have learnt many interesting

lessons by examining field theories on compact spatial geometries and we believe that there is

indeed much more to be learned from similar explorations.
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