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Abstract

In this paper we propose and analyse a hp-adaptive discontinuous finite ele-
ment method for computing electromagnetic modes of propagation supported
by waveguide structures comprised of a thin lossy metal film of finite width
embedded in an infinite homogeneous dielectric. We propose a goal-oriented
or dual weighted residual error estimator based on the solution of a dual
problem that we use to drive the adaptive refinement with the aim to com-
pute accurate approximation of the modes. We illustrate in the last section
the benefits of the resulting hp-adaptive method in practice, which consist in
fast convergence and accurate estimation of the error. We tested the method
computing the vanishing modes for a metallic waveguide of square section.
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1. Introduction

With the fast development of microfabrication technology, nanophotonics
has received very high interest. As an important branch of nanophotonics,
plasmonics has enabled light-matter interactions at a deep subwavelength
length scale. Plasmonics, or surface plasmon based photonics, focus on how
to exploit the optical property of metals. In this work probably the most
simple plasmonic device, consisting in a metallic waveguide embedded in an
infinite homogeneous dielectric, is analysed and used to assess the perfor-
mances of the hp-adaptive method presented in this paper.

Preprint submitted to Journal of Computational and Applied MathematicsSeptember 30, 2013



The goal-oriented error estimator derived in Section 4 is the adaptation
to the plasmonic waveguides problem of the error estimator presented in [1].

The model problem considered in this work is defined on a rectangular
domain Ω that is the union of two disjoint subdomains Ωout, Ωin, where Ωin

coincides with the section of the metallic waveguide and Ωout := Ω \Ωin. For
simplicity we are going to consider only rectangular waveguides.

We also define three scalar functions A, B and C that can assume a
positive and real value in Ωout and either a positive and real value also in Ωin

or a complex value in Ωin. We are going to denote the values of A, B and C
in each subdomain with Ain, Aout, Bin, Bout, Cin and Cout.

The model problem can be written in the following form: seek eigenpairs

of the form (λ, u) ∈ C×H1
0 (Ω) such that

∫

Ω

(∇v)∗A∇u− Buv = λ

∫

Ω

Cuv for all v ∈ H1
0 (Ω), (1)

where ∗ denotes Hermitian transpose and where we imposed Dirichlet homo-
geneous boundary conditions along the border of the domain as the domain
has been truncated as explained in Section 2. In this work we assume that
the interface Ωin ∩ Ωout is aligned with the meshes.

The outline of the paper is as follows. In Section 2 we briefly describe how
problem (1) is derived from Maxwells equations. In Section 3 we introduce
the discrete version of problem (1) and the discontinuous Galerkin method.
In the following Section 4 the error estimator is presented and in Section 5
the adaptive algorithm is described. Finally in Section 6 we present some
numerical results.

2. Plasmonics eigenvalue problems

The mathematical development (see e.g. [2]) begins with Maxwell’s equa-
tions in frequency domain for a lossy inhomogeneous isotropic medium of a
metallic waveguide of infinite length aligned with the z-axes and surrounded
by dielectric material. Then uncoupling Maxwell’s equations yields the fol-
lowing time-harmonic vectorial wave equations for the electric and magnetic
fields:

∇×∇× E− ω2εµE = 0 ,
∇× ε−1∇×H− ω2µH = 0 ,

(2)

where ω is the frequency, E is the electric field, H is the magnetic field, ε
and µ are, respectively, the dielectric permittivity and magnetic permeability
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tensors. Because of the assumptions, the dielectric permittivity ε is a scalar
function in x and y only. Furthermore we assume that µ is homogeneous and
for simplicity we assume that µ = 1.

Due to the structure under consideration, that is invariant in the z di-
rection, the mode fields vary along this dimension according to e−γz where
γ = α + iβ is the complex propagation constant of the mode with α the
attenuation constant and β the phase constant.

Then substituting this field form into (2) and considering the two polar-
ization cases TE (Ex = 0) and TH (Hx = 0) we obtain a couple of uncoupled
scalar equations:

∆Ey + (γ2 + ω2µε)Ey = 0 (TE case) , (3)

∇ · (ε−1∇Hy) + (γ2ε−1 + ω2µ)Hy = 0 (TM case) . (4)

Each of problems (3), (4) can be solved in two ways, either fixing γ and con-
sidering ω2 as the eigenvalue or fixing ω and considering γ2 as the eigenvalue.
Anyway all of these problems may be written in the abstract form as that of
seeking (λ, u) with u 6= 0 such that

∇ · (A∇u) + Bu+ λCu = 0 . (5)

Since A , B or C may be discontinuous, (5) has to be understood in an
appropriate weak form. So far (5) is posed over all of R2. Problem (5) is
difficult to solve numerically because it is posed on an unbounded domain.
In order to make the problem more treatable, it is necessary to truncate the
domain far enough away from the metallic guide. The resulting domain Ω is
of rectangular shape with homogeneous Dirichlet boundary conditions. An
analysis of the effect of truncation of the domain on self-adjoint problems
with potential is done in [3]. In view of that and of the numerical results
presented in [4] where the same approach was tested on photonic crystals, it
seems that the truncation is stable for the modes confined on the surface of
the metallic guide which decays exponentially away from the guide.

3. Discrete eigenvalue problems

In recent years discontinuous Galerkin (DG) methods for elliptic prob-
lems [5] have become increasingly popular. Some of the main reasons for
this increase of interest in DG methods is that allowing for discontinuities
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across elements gives extraordinary flexibility in terms of mesh design and
choice of shape functions. Additionally, hp-DG, which are based on lo-
cally refined meshes and variable approximation orders, have been shown to
achieve tremendous gains in computational efficiency for challenging prob-
lems [6, 7, 8, 9, 10, 1, 11, 12, 13].

Since we are going to construct sequences of adaptively refined shape-
regular meshes, we denote the meshes by Tn, where n is the index of the
mesh. The meshes Tn are partitions of Ω ⊂ R

2 into open quadrilaterals
{K}K∈Tn. We also assume that, in the interior of each element K ∈ Tn, A, B
and C are smooth. In presence of jumping coefficients, the jumps are aligned
with the meshes used in this work. The diameter of an element K ∈ Tn is
denoted by hK . Furthermore, we assume that these diameters are of bounded
variation, that is, there is a constant b1 ≥ 1 such that

b−1
1 ≤ hK/hK ′ ≤ b1, (6)

whenever K and K ′ share a common edge. We store the diameters of the
elements of Tn in the mesh size vector h = {hK : K ∈ Tn}. Similarly, we
associate with each element K ∈ Tn a polynomial degree pK ≥ 1 and define
the degree vector p = {pK : K ∈ Tn}. We assume that p is of bounded
variation as well, that is, there is a constant b2 ≥ 1 such that

b−1
2 ≤ pK/pK ′ ≤ b2, (7)

whenever K and K ′ share a common edge.
For a partition Tn of Ω and a degree vector p, we define the hp-version

discontinuous Galerkin finite element space Sn of complex valued functions
by

Sn = { v ∈ L2(Ω) : v|K ∈ PpK (K), K ∈ Tn }, (8)

where, PpK(K) is the space of polynomials on K of degree less or equal pK
in each dimension.

Next, we define some trace operators that are required for the DG meth-
ods. To this end, we denote by EI(Tn) the set of all interior edges of the
partition Tn of Ω, and by EΓ(Tn) the set of all boundary edges of Tn. Fur-
thermore, we define E(Tn) = EI(Tn) ∪ EΓ(Tn). The boundary ∂K of an
element K and the sets ∂K \ Γ and ∂K ∩ Γ will be identified in a natural
way with the corresponding subsets of E(Tn).

Let K+ and K− be two adjacent elements of Tn, and e ∈ EI(Tn) given
by e = ∂K+ ∩ ∂K−. Furthermore, let v be a scalar-valued function, that is
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smooth inside each element K±. By v±, we denote the traces of v on e taken
from within the interior of K±, respectively. Then, since we are dealing with
jumping coefficients we need to use the definition of the weighted average of
the diffusive flux A∇nv along e ∈ EI(Tn) introduced in [6]

{{A∇nv}}w = ω−(A∇nv)
− + ω+(A∇nv)

+ ,

where

ω− =
nt
K+A+nK+

nt
K−A−nK− + nt

K+A+nK+

, ω+ =
nt
K−A−nK−

nt
K−A−nK− + nt

K+A+nK+

,

where we denote by nK± the unit outward normal vector of ∂K±, respectively.
Similarly, for a scalar function we have the following weighted average

{{v}}w = ω−v+ + ω+v− .

Then, the jump of v across e ∈ EI(Tn) is given by

[[v]] = v+ nK+ + v− nK−,

[[A∇nv]] = A+∇nv
+ · nK+ +A−∇nv

− · nK−.

On a boundary edge e ∈ EΓ(Tn), we set {{A∇nv}}w = A∇nv and [[v]] = vn ,
with n denoting the unit outward normal vector on the boundary Γ.

Remark 3.1. The weighted mean value {{·}}w satisfies the following relation:

(A∇nu)
+·nK+v++(A∇nu)

−·nK−v− = {{A∇nu}}w·[[v]]+[[A∇nu]]{{v}}w , (9)

which is already a well-known result for the standard DG mean value.

For a mesh Tn on Ω and a polynomial degree vector p, let Sn be the finite
element space defined in (8). We consider the (symmetric) weighted interior
penalty discretization [6] of (5): find (λn, un) ∈ C× Sn such that

An(un, v) = λnb(un, v) , for all v ∈ Sn , (10)

with b(un, un) = 1 and where

An(u, v) :=
∑

K∈Tn

∫

K

AK∇nu · ∇nv − BKuv dx

−
∑

e∈E(Tn)

∫

e

(

{{A∇nv}}w · [[u]] + {{A∇nu}}w · [[v]]
)

ds+
∑

e∈E(Tn)

∫

e

c [[u]] · [[v]] ds,

b(u, v) :=

∫

Ω

u C v dx .
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Here, ∇n denotes the element-wise gradient operator and AK and BK denote
the restrictions ofA and B ontoK. Furthermore, the function c ∈ L∞(E(Tn))
is the discontinuity stabilisation function that is chosen as follows: we define
the functions h ∈ L∞(E(Tn)) and p ∈ L∞(E(Tn)) by

h(r) :=

{

min(hK+, hK−), r ∈ e ∈ EI(Tn), e = ∂K+ ∩ ∂K−,

hK , r ∈ e ∈ EΓ(Tn), e ∈ ∂K ∩ Γ,

p(r) :=

{

max(pK+, pK−), r ∈ e ∈ EI(Tn), e = ∂K+ ∩ ∂K−,

pK , r ∈ e ∈ EΓ(Tn), e ∈ ∂K ∩ Γ,

and set the penalty parameter to be

c = δγK
p2

h
, (11)

with γK = ω+nt
K+A+nK+ = ω−nt

K−A−nK−, and with a parameter δ > 0
that is independent of h, p, A+ and A−. The parameter c defined here is an
hp-version of the weighted penalty parameter [6].

4. Goal-oriented a posteriori error estimation

In this section we introduce the a posteriori analysis, which is based on
an auxiliary problem described below. The analysis presented here follows
the analysis already presented in [1] which was applied to different kinds of
eigenvalue problems. The actual form of the auxiliary problem depends on
the goal functional J(·) utilized. We note that, even if the primal problem
(5) is non-linear, the auxiliary problem, which is related to the dual/adjoint
operator in (5), is linear for our choice of J(·). It is interesting to remark
that the analysis can be easily used with a different goal functional to obtain
an automatic adaptive method to target particular measurements of the er-
ror. In this section we consider only a functional to estimate the error for
eigenvalues.

From [14] we have that the minimum regularity for eigenfunctions of (5)
on a domain with discontinuous coefficients of the kind we consider in the
work is u ∈ H1+2/3(Ω) ∩H1

0 (Ω). Also from the theory in [14] we know that
the eigenfunctions are continuous everywhere and that A∇u is continuous
where A is smooth and it is continuous across the interfaces between different
values of A. Since we have assumed that the initial mesh, which resolves the
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jumps of A, is always conforming then it is not possible with our refinement
procedure to have a face in any adapted mesh tangential to a corner of the
interface between different values of A. It a fortiori follows that across all
faces of the mesh A∇u is continuous.

In order to proceed we recast the discrete problem (10) in a more suitable,
but equivalent form: seek eigenpairs ûn := (λn, un) ∈ C× Sn, such that

N (ûn, v̂n) = 0 ∀v̂n = (δn, vn) ∈ C× Sn ,

where

N (ûn, v̂n) := −An(un, vn) + λnb(un, vn) + δn(‖un‖
2
0,C − 1) , (12)

where ‖ · ‖0,C is the standard L2(Ω) norm weighted by the coefficient C.
Now, we briefly outline the key steps involved in estimating the error

in the goal functional J(û) − J(ûn) employing the Dual Weighted Residual
(DWR) technique [15, 16], for a general target functional of practical interest
J(·). Because the analysis is the same for many different definition of the
functional J(·), we introduce its definition used in the numerical experiments
only later in this section. For the moment we work with a general J(·) which
is assumed to be differentiable. So, we write J̄(·, ·; ·) to denote the mean
value linearisation of J(·), defined by

J̄(û, ûn; û− ûn) = J(û)− J(ûn) =

∫ 1

0

J ′[θû+ (1− θ)ûn](û− ûn) dθ ,

where J ′[ŵ](·) denotes the Fréchet derivative of J(·) evaluated at some ŵ ∈
C×S, and S := Sn+

(

H1+2/3(Ω)∩H1
0 (Ω)

)

is the space of functions that are

sum of a finite element function in Sn and a function in H1+2/3(Ω) ∩H1
0 (Ω).

In the same way, we write

M(û, ûn; û−ûn, ŵ) = N (û, ŵ)−N (ûn, ŵ) =

∫ 1

0

N ′
û[θû+(1−θ)ûn](û−ûn, ŵ) dθ .

We now introduce the following formal dual problem: find ẑ ∈ C × S such
that

M(û, ûn; ŵ, ẑ) = J̄(û, ûn; ŵ) , ∀ŵ ∈ C× S . (13)

We assume that (13) possesses a unique solution. This assumption is, of
course, dependent on both the definition of M(û, ûn; ·, ·) and the target func-
tional under consideration. For the proceeding error analysis, we must there-
fore assume that (13) is well-posed. In order to compute our error estimator
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we are not going to solve (13), but compute a discrete approximation of it in
order to obtain an accurate approximation of the dual solution ẑ.

The next theorem introduces the residual forming the error estimator and
its corollary introduces a simple way to compute an upper bound of the error.

Lemma 4.1. Let û ∈ C×
(

H1+2/3(Ω) ∩H1
0 (Ω)

)

be an eigenpair of (5) with
‖u‖0,C = 1, then for any ẑ ∈ C× S we have

N (û, ẑ) = 0 .

Proof. Without loss of generality we assume that ẑ := (δ, zn+zc), with δ ∈ C,
zn ∈ Sn and zc ∈ H1+2/3(Ω) ∩H1

0(Ω). Applying (12) we have

N (û, ẑ) = −An(u, zn+zc)+λb(u, zn+zc) = −An(u, zn)+λb(u, zn)−An(u, zc)+λb(u, zc) .
(14)

Because u is continuous and A∇nu is continuous across the faces of the mesh
we have by integration-by-parts and by using (9) that

An(u, zn) =
∑

K∈Tn

∫

K

AK∇nu · ∇nzn − B u zn dx−
∑

e∈E(Tn)

∫

e

{{A∇nu}}w · [[zn]] ds

=

∫

Ω

−∇ · (A∇u) zn − B u zn dx = λb(u, zn) ,

(15)
it is useful to remark that the last integral is well-defined in the distribution
sense because the test function zn and A are smooth in the interior of each
element. Similarly because zc is continuous and its regularity is at least
H1+2/3, we have by integration-by-parts:

An(u, zc) =
∑

K∈Tn

∫

K

AK∇nu · ∇nzc − B u zc dx = λb(u, zc) . (16)

Substituting (15) and (16) into (14) we have the result.

Theorem 4.2. Let us denote by ẑn the finite element approximation of ẑ in

Sn. Then

J(û)− J(ûn) = −N (ûn, ẑ − ẑn) =
∑

K∈Tn

ηK , ∀ẑn ∈ C× Sn ,
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where the residual ηK is defined as:

ηK =

∫

K

−(λnC un +∇ · (AK∇un) + Bun)(z − zn) dx

−
1

2

∫

∂K/Γ

{{A∇(z − zn)}}w · [[un]] ds+
1

2

∫

∂K/Γ

[[A∇un]]{{z − zn}}w ds

+
1

2

∫

∂K/Γ

c[[un]][[z − zn]] ds−

∫

∂K∩Γ
n · (A∇n(z − zn))un ds+

∫

∂K∩Γ
cun(z − zn) ds .

Proof. From the formal dual problem (13) and by Lemma 4.1 we have that:

J(û)− J(ûn) = J̄(û, ûn; û− ûn) = M(û, ûn; û− ûn, ẑ)

= N (û, ẑ)−N (ûn, ẑ) = −N (ûn, ẑ − ẑn) ,

where in the last equality we used the fact that N (ûn, ẑn) = 0. Then by the
definition of An(·, ·) and since ‖un‖0,C = 1 we have:

−N (ûn, ẑ − ẑn) = An(ûn, z − zn)− λnb(un, z − zn)

=
∑

K∈Tn

∫

K

AK∇nun · ∇n(z − zn)− (Bun − λnCun)(z − zn) dx

−
∑

e∈E(Tn)

∫

e

(

{{A∇n(z − zn)}}w · [[un]] + {{A∇nun}}w · [[z − zn]]
)

ds

+
∑

e∈E(Tn)

∫

e

c [[un]] · [[z − zn]] ds .

Integrating by parts the second-order term element-wise we obtain:

∑

K∈Tn

∫

K

AK∇nun · ∇n(z − zn) dx =
∑

K∈Tn

{

∫

K

−∇n · (AK∇nun)(z − zn) dx

+

∫

∂K

nK+ · (A∇nun)(z − zn) ds
}

.
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Using (9), the second term on the right hand side can then further be ex-
panded to

∑

K∈Tn

∫

∂K

AK
∂un

∂nK+

(z − zn) ds =
∑

e∈EI(Tn)

∫

e

{{A∇un}}w · [[z − zn]] + [[A∇un]] · {{z − zn}}w ds

+
∑

e∈EΓ(Tn)

∫

e

n · (A∇nun)(z − zn) ds .

Then substituting this back we finally obtain:

−N (ûn, ẑ − ẑn) =
∑

K∈Tn

∫

K

(

−∇ · (AK∇un)− Bun − λnCun

)

(z − zn) dx

−
∑

e∈EI(Tn)

∫

e

{{A∇n(z − zn)}}w · [[un]] ds+
∑

e∈EI(Tn)

∫

e

[[A∇un]]{{z − zn}}w ds

+
∑

e∈EI(Tn)

∫

e

c [[un]] · [[z − zn]] ds−
∑

e∈EΓ(Tn)

∫

e

n · (A∇n(z − zn))un ds

+
∑

e∈EΓ(Tn)

∫

e

c un(z − zn) ds ,

which is equivalent to
∑

K∈Tn ηK .

Since we are interested in the accurate computation of the modes sup-
ported by the metallic waveguide, we introduce the following definition for
the functional of interest

J(v̂) := δ‖v‖20,C , (17)

where v̂ := (δ, v), in such case we have

J(û)− J(ûn) = λ− λn ,

because we have assumed that all eigenfunction are normalized, i.e. ‖u‖0,C =
‖un‖0,C = 1. Then we use the definition of J(·) from (17) to write down
explicitly the Fréchet derivative of J(·) and of N (·, ·) at û:

J ′[û](v̂) := λb(u, v) + λb(v, u) + δ‖u‖20,C ,
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and

N ′[û](v̂, ẑ) := −An(v, z) + λb(v, z) + δb(u, z) + βb(u, v) + βb(v, u) ,

with v̂ := (δ, v) and ẑ := (β, z). Since û is unavailable, we introduce an
auxiliary problem — which is an approximation of problem (13) — which is
based on the computable approximation ûn:

N ′[ûn](v̂, ẑ) = J ′[ûn](v̂) . (18)

This leads to the following linear problem, which has a unique solution: seek
ẑ := (β, z) ∈ C× S, such that

−An(v, z)+λnb(v, z)+δb(un, z)+βb(un, v)+βb(v, un) = λnb(un, v)+λnb(v, un)+δ‖un‖
2
0,C ,

for all (δ, v) ∈ C× S.
It should be clear from the definition of ηK in Theorem 4.2 that these

quantities are not explicitly computable, in general. In order to obtain a
computable quantity, the dual solution ẑ must be approximated in some
suitable finite element space. Apparently the approximation zn ∈ Sn is of no
use, because N (ûn, ẑn − ẑn) = 0. In practice, it is necessary to compute an
approximation of z in a space S̃n which is “richer” than Sn. Probably the
simpler choice to construct a richer space is to maintain the same partition,
but increase the local polynomial degree by one on each element.

5. Adaptive Algorithms

The hp-adaptive algorithm used for the numerical experiments in Sec-
tion 6 is detailed below in Algorithm 1.
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Algorithm 1 Goal-oriented adaptive algorithm

(λj,n, uj,n, Tj,n, Sn) := GoalDG(T0, S0, j, θ, tol, J(·))
n = 0
repeat

Compute the j-th eigenpair (λj,n, uj,n) on Tn

S̃n := DualSpace(Tn, Sn)
Compute (β̃n, z̃n) ∈ C× S̃n solving the linear problem (18) on Tn

Compute ηK for all K ∈ Tn

if
∣

∣

∑

K∈Tn ηK
∣

∣ < tol then
exit

else

(Tn+1, Sn+1) := Refine(Tn, Sn, θ, {ηK}K∈Tn)
n = n+ 1

end if

until

The algorithm takes as input: an initial mesh T0, an initial DG space
S0, the index j of the eigenpair to approximate, a real value 0 ≤ θ ≤ 1
to tune the marking strategy, a real and positive value tol which prescribes
the required tolerance, and finally the goal functional J(·) that should be
used. The algorithm has a very simple structure that consists of a repeat-
until loop. During each iteration of the loop a new approximation of the
eigenpair of interest is computed, then the finer space S̃n is constructed and
an approximate solution (δ̃n, z̃n) of problem (18) is computed. Finally the
error estimator is calculated and, if the estimated error

∣

∣

∑

K∈Tn ηK
∣

∣ is lower
than the prescribed tolerance tol the algorithm stops; otherwise the mesh Tn

and the space Sn are refined and another iteration follows. To complete the
description of the algorithms we must describe the function DualSpace and
Refine.

The function Refine applies a simple fixed-fraction strategy to mark a
minimal subset of elements containing a portion of the error proportional to
θ. Then the choice for each marked element between splitting the element
into smaller elements (h-refinement) or increasing the polynomial order (p-
refinement) is made by testing the local analyticity of the solution in the
interior of the element as described in [17]. The function DualSpace con-
structs the space S̃n by increasing by 1 the order of polynomials in each
element in Sn.
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6. Numerical experiments

In this section we have collected numerical results using our a posteriori
error estimator with the clear aim to show the robustness of the error esti-
mator and the fast decay of the error on a sequence of hp-adapted meshes.
Since we are most interested in testing the adaptive method in the possible
most difficult case, we set up a problem with A equal to 1.52 in Ωout and
equal to −11.8 + 1.23i in Ωin, also we choose B = 0 and C = 1. The val-
ues of A are chosen to represent real materials. The reason why we only
choose to play with the values of A is because a jump in the coefficient of
the second order term of the operator can lead to strong singularities in the
gradient of the eigenfunctions. These local singularities are hard to resolve
with standard finite element methods and pose a challenging test for our
method. Discontinuities in B or C do not pose the same kind of difficulties.

Following [18], we assume an error model of the form

λn = λ+ Ce−2a 3
√
DOFs,

for problems with discontinuous coefficients, whose eigenfunctions are ex-
pected to have isolated singularities. The constants C and a are determined
by least-squares fitting, and a is reported for each problem.

Plots are given of the relative error for eigenvalues |λ − λn|/|λn|, the
correspondent relative value of the a posteriori error estimator |η|/|λn| and
the associated effectivity index, which is defined as |λ − λn|/η. In order to
visually appreciate the converge rate of the hp-adaptive method, we plot a
red line computed with the least-squares fitting method to highlight the slope
of the curve.

As reference solutions for problems in this section we use highly accurate
computations on very rich finite element spaces to produce “exact eigenval-
ues” for our comparisons.

All the experiments have been carried out using AptoFEM (www.aptofem.com)
on a single processor desktop machine. In particular, we used ARPACK [19]
to compute the eigenvalues and MUMPS [20] to solve the linear systems.

The eigenpair that we have decide to compute is one of those vanishing
modes concentrated on the surface of the metallic fibre and it has multiplic-
ity 2. In Figure 1a we have reported the initial mesh and the distribution of
different materials in the domain. The red part correspond to the metallic
waveguide. Figure 2a shows the convergence of the relative error for eigen-
values and the decay of the relative error estimator as well. As can be seen
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(a) (b)

Figure 1: (a) Distribution of different materials in the domain and initial
mesh. In red we have the section of the metallic waveguide. (b) Real part of
the eigenfunction.

the two curves are very close together remarking the reliability and accuracy
of this error estimator. This is very different from the performance of the ex-
plicit error estimator presented in [4] for similar problems. Clearly the extra
computational work necessary to compute the solution of the dual problem
leads to much more accurate estimations of the error. This is further sup-
ported by the values of the efficiency index reported in Figure 2b which are
close to 1.

In Figure 1b we reported the real part of the eigenfunction of interest.
As can be seen the mode is well concentrated on the border of the metallic
fibre and it presents local singularity in the gradient at the corners of the
waveguide. Especially on two corners the singularities seem stronger.

In Figure 3a we reported the real part of the eigenfunction of interest
with the adapted mesh after 9 iterations of the adaptive algorithm. The fact
that the refinement concentrate mostly around two of the corners suggests
that stronger singularities are present there. Finally in Figure 3b we have
the adapted mesh and order of polynomials after 9 iterations of the adaptive
algorithm. High order elements in the interior of the waveguide are indication
that the eigenfunction is smooth inside the waveguide.
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Figure 2: (a) Plot of the relative error for eigenvalues and relative value of
the error estimator. The red line represent the estimated convergence rate
of a = 0.2165. (b) Efficiency index for the hp−adaptive method.

(a) (b)

Figure 3: (a) Refined mesh after 9 iterations and real part of the eigen-
function. (b) Adapted mesh after 9 iterations. The color scheme indicates
different order of polynomials used in the elements.
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[17] P. Houston, E. Süli, A note on the design of hp-adaptive finite ele-
ment methods for elliptic partial differential equations, Comput. Meth-
ods Appl. Mech. Engrg. 194 (2-5) (2005) 229–243.
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