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Abstract

We study the asymptotic behaviour of Markov chains (Xn, ηn) on Z+×S, where Z+ is the non-negative
integers and S is a finite set. Neither coordinate is assumed to be Markov. We assume a moments bound on
the jumps of Xn , and that, roughly speaking, ηn is close to being Markov when Xn is large. This departure
from much of the literature, which assumes that ηn is itself a Markov chain, enables us to probe precisely the
recurrence phase transitions by assuming asymptotically zero drift for Xn given ηn . We give a recurrence
classification in terms of increment moment parameters for Xn and the stationary distribution for the large-
X limit of ηn . In the null case we also provide a weak convergence result, which demonstrates a form
of asymptotic independence between Xn (rescaled) and ηn . Our results can be seen as generalizations of
Lamperti’s results for non-homogeneous random walks on Z+ (the case where S is a singleton). Motivation
arises from modulated queues or processes with hidden variables where ηn tracks an internal state of the
system.
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1. Introduction

There are many applications that naturally give rise to Markov processes on a product state-
space X × S where S describes some operating regime or internal state of the system, which
influences the motion of the process in the primary space X. Important classes of examples
include, among others,

• modulated queues, in which S may contain operating states of the servers or other auxiliary
information such as the size of a retrial buffer, as arise in various applications such as those
described by Neuts in [26];

• regime-switching processes in mathematical finance or ecology, where S may contain market
or other environmental information;

• physical processes with internal degrees of freedom, where S may describe internal energy or
momentum states of a particle, such as adopted by Sinai as a tool for studying the Lorentz gas
(see e.g. [18]), or exemplified by the so-called correlated or persistent random walk.

In several of the key examples, the S-component of the process is ‘hidden’, and the main interest
is in the asymptotic behaviour of the X-component of the process.

In the most classical setting, the projection of the process onto S is itself Markovian. In this
case, the queueing models become Markov-modulated [26,10], while other examples fit into the
class of Markov random walks [14]. This case also includes processes that can be represented
as additive functionals of Markov chains [27]. Such models pose a variety of mathematical
questions, which have been studied rather deeply over several decades using various techniques
that take advantage of the additional Markov structure, and much is now known.

Much less is known when the process projected onto S is not Markovian: the main focus of
the present work is to replace the Markovian assumption by a weaker (asymptotic) condition
that provides sufficient structure. This relaxation is necessary to probe more intimately the
recurrence–transience phase transition for these models, since the natural setting (parallelling
the classical work of Lamperti) is to suppose that the law of the process is non-homogeneous
in X, in particular, the mean drift of the X-component of the process will be asymptotically
zero. This non-homogeneity precludes, in general, the S-component of the process from being
Markovian, but admits our weaker conditions.

To avoid technicalities, yet provide a setting rich enough to explore many interesting phenom-
ena, we take X to be the countable set Z+ := {0, 1, 2, . . .} and take S to be finite. These models
are already of interest for numerous applications, and there is an existing literature devoted to
random walks on half strips (Z+ × {0, 1, . . . ,m}) or strips (Z × {0, 1, . . . ,m}): see [9,24,7,8]
and references therein.

As an example consider the following queueing model. A queue is served by a single server
and experiences arrivals at rate λ; the service rate is modulated via an internal state of the
server ηn , as well as the length of the queue Xn (in discrete time, i.e., in terms of the jump
process). Allowing the service rate to depend on the queue length distinguishes this model from
the class of semi-Markov queues [26]. When (Xn, ηn) = (x, i), x ≥ 1, the service rate is
ρi (x) = ρ (1 − 2ci/x), where ci , i ∈ S are parameters of model with |ci | < 1/2. In the case
where ci ≡ 0 for all i , the internal states of the server are indistinguishable and the model is
simply (the jump process of) an M/M/1 queue with arrival rate λ and service rate ρ; the critical
case from the point of view of recurrence and transience is ρ = λ, and so that is the most
interesting setting to perturb with non-zero ci . So we take ρ = λ from now on. The specification
of the model is completed by stipulating that whenever an arrival (departure) occurs the internal
state of the server transitions according to the stochastic matrix (ai j ) ((bi j )). In other words,
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given (Xn, ηn) = (x, i), x ≥ 1,

(Xn+1, ηn+1) =


(x + 1, j) with probability

1

2

1 −

ci
x

ai j ;

(x − 1, j) with probability
1 −

2ci
x

2

1 −

ci
x

bi j .

Given (Xn, ηn) = (0, i), (Xn+1, ηn+1) = (1, j) with probability ai j .
In general, (ηn) is not itself a Markov chain, so this model falls outside the usual Markov-

modulated queue framework. However, for large queue lengths the probabilities of arrival and
departure are approximately equal, and so the ηn process should be well approximated by the
Markov chain on S with transition matrix Mi j = (ai j + bi j )/2. Under the condition that the
matrix M be irreducible, our results determine conditions for transience and recurrence in terms
of the stationary distribution of the chain with transition matrix M and the constants ci .

2. Model and main results

We now describe precisely our model. Our state-space is the half-strip Z+ × S, where S is
finite and nonempty; for k ∈ S, we call the subset Z+ × {k} a line. We consider an irreducible
Markov chain (Xn, ηn) ∈ Z+ × S, with transition probabilities

P[(Xn+1, ηn+1) = (y, j) | (Xn, ηn) = (x, i)] = p(x, i, y, j), (2.1)

and provide conditions for recurrence/transience of (Xn), in a sense that we explain below.
Throughout we use the notation Fn := σ(X0, η0, . . . , Xn, ηn) and R+ := [0,∞).

The process (Xn) is typically not itself a Markov chain; under our standing assumptions,
however, it does inherit the recurrence/transience dichotomy from (Xn, ηn), as the following
result shows.

Lemma 2.1. Exactly one of the following holds:

(i) If (Xn, ηn) is recurrent, then P[Xn = 0 i.o.] = 1.
(ii) If (Xn, ηn) is transient, then P[Xn = 0 i.o.] = 0, and Xn → ∞ a.s.

In the former case, we call (Xn) recurrent, and in the latter case, we call (Xn) transient.

Similarly, a natural distinction between positive- and null-recurrence holds.

Lemma 2.2. There exists a (unique) measure ν on Z+ such that

lim
n→∞

1
n

n−1
k=0

1{Xk = x} = ν(x), a.s., (2.2)

for any x ∈ Z+. Exactly one of the following holds:

(i) If (Xn, ηn) is null, then ν(x) = 0 for all x ∈ Z+.
(ii) If (Xn, ηn) is positive-recurrent, then ν(x) > 0 for all x ∈ Z+ and


x∈Z+

ν(x) = 1.

If (Xn) is recurrent, then we say that it is null-recurrent or positive-recurrent according to which
of (i) or (ii) holds.

The proofs of Lemmas 2.1 and 2.2 are standard and are omitted.
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In the cases that we consider, we will assume that the displacement of the X -coordinate has
bounded p-moments for some p < ∞:

(Bp) There exists a constant C p < ∞ such that E[|Xn+1 − Xn|
p

| Fn] ≤ C p, a.s. ∀n.

In particular, (Bp) for some p > 4 will suffice for all of our results, while for some of our results
p > 1 is sufficient.

Define qx (i, j) =


y∈Z+
p(x, i, y, j). We also assume:

(Q∞) limx→∞ qx (i, j) = q(i, j) exists for all i, j ∈ S, and (q(i, j)) is an irreducible stochastic
matrix.

Note that since


j∈S qx (i, j) = 1, the limit in (Q∞) is necessarily stochastic; however the
irreducibility of (q(i, j)) does not follow from the irreducibility of (qx (i, j)) for all x ∈ Z+. For
some of our results, it is necessary to assume a stronger condition than (Q∞) that controls the
rate of convergence of qx (i, j), namely:

(Q+
∞) There exists δ0 > 0 such that maxi, j∈S |qx (i, j) − q(i, j)| = O(x−δ0) as x → ∞, and

(q(i, j)) is an irreducible stochastic matrix.

Given (Q∞), we define (η⋆n) to be a Markov chain on S with transition probabilities given by
q(i, j). Since (η⋆n) is irreducible and finite there exists a unique stationary distribution π on S
with π( j) > 0 for all j ∈ S and satisfying π( j) =


i∈S π(i)q(i, j).

Remark 2.3. A sufficient condition for (Q+
∞) is that there exists x0 ∈ Z+ such that

(H) p(x, i, y, j) = r(y − x, i, j)

for all x ≥ x0, i.e., for all x large enough, the transition probabilities depend on x and y only
through y − x . Then, qx (i, j) = q(i, j) =


z≥−x0

r(z, i, j) for all x ≥ x0. The homogeneity
condition (H) plays an important role in much of the existing literature, but is too restrictive
for our purposes. We discuss (H) and some of its consequences, including the connection to the
theory of additive functionals of Markov chains, in Section 3.1. For now, we remark that if (H)
holds for all x ≥ x0, then necessarily Xn+1 − Xn is uniformly bounded below (by −x0).

We denote the moments of the displacements in the X -coordinate by

µk(x, i) := E[(Xn+1 − Xn)
k

| Xn = x, ηn = i] =


j∈S


y∈Z+

(y − x)k p(x, i, y, j);

then µ1 is well defined provided (Bp) holds for some p ≥ 1, while µ2 is finite if (Bp) holds for
some p ≥ 2. Our results will apply to the following two cases:

(MC) There exist di ∈ R such that for all i ∈ S, as x → ∞, µ1(x, i) = di + o(1);
(ML) There exist ci ∈ R and s2

i ∈ R+, with at least one s2
i nonzero, such that for all i ∈ S, as

x → ∞, µ1(x, i) = ci/x + o(x−1) and µ2(x, i) = s2
i + o(1).

Since S is finite, the implicit constants in the x → ∞ error terms in these expressions (and simi-
lar ones later on) may be chosen uniformly over i . Just as above, some of our results will require
a stronger assumption than (ML) that controls the error terms as a function of x , namely:

(M+

L ) There exists δ1 > 0 such that, as x → ∞,

µ1(x, i) =
ci

x
+ O(x−1−δ1) and µ2(x, i) = s2

i + O(x−δ1).

Next we state our main results. The first two are concerned with the classification of the pro-
cess as transient, null-recurrent, or positive-recurrent. Of these, first we consider the case where
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each line is associated with a drift that is asymptotically constant, and where at least one of these
constants is nonzero.

Theorem 2.4. Suppose that (Bp) holds for some p > 1, and conditions (MC) and (Q∞) hold.
Then the following classification applies.

(i) If


i∈S diπ(i) > 0, then Xn is transient.
(ii) If


i∈S diπ(i) < 0, then Xn is positive-recurrent.

In the special case of (Q∞) in which qx ≡ q does not depend on x , Theorem 2.4 is contained
in Theorem 3.1.2 of Fayolle et al. [9], who imposed, in part, an assumption of a uniform lower
bound on Xn+1 − Xn . In the generality of (Q∞), part (ii) is contained in a paper of Falin [7], who
also stated a version of part (i) assuming that (H) holds for x large enough.

The next result deals with the case of drift conditions of Lamperti-type.

Theorem 2.5. Suppose that (Bp) holds for some p > 2, and conditions (Q∞) and (ML) hold.
The following sufficient conditions apply.

• If


i∈S(2ci − s2
i )π(i) > 0, then Xn is transient.

• If |


i∈S 2ciπ(i)| <


i∈S s2
i π(i), then Xn is null-recurrent.

• If


i∈S(2ci + s2
i )π(i) < 0, then Xn is positive-recurrent.

If, in addition, (Q+
∞) and (M+

L ) hold, then the following condition also applies (yielding an ex-
haustive classification):

• If |


i∈S 2ciπ(i)| =


i∈S s2
i π(i), then Xn is null-recurrent.

In the case where S is a singleton, Theorem 2.5 reduces essentially to results of Lamperti
[19,21], and so our result can be seen as a generalization of Lamperti’s.

Our final main result concerns the weak convergence of (Xn, ηn). The limit statement will
involve the distribution function Fα,θ defined for parameters α > 0 and θ > 0 as the (normalized)
lower incomplete Gamma function,

Fα,θ (x) =
γ (α, x2/θ)

0(α)
=

1
0(α)

 x2/θ

0
zα−1e−zdz, (x ≥ 0). (2.3)

Note that, if Z ∼ 0(α, θ) is a gamma random variable with shape parameter α > 0 and scale
parameter θ > 0, then P[

√
Z ≤ x] = Fα,θ (x). (In the special case with α = 1/2 and θ = 2,

Fα,θ is the distribution of the square-root of a χ2 random variable with one degree of freedom,
i.e., the absolute value of a standard normal random variable.)

Theorem 2.6. Suppose that (Bp) holds for some p > 4, and conditions (Q∞) and (ML) hold.
Suppose that the matrix q appearing in (Q∞) is aperiodic. Suppose also that


i∈S(2ci +

s2
i )π(i) > 0. Then, for any k ∈ S and x ∈ R+,

lim
n→∞

P

n−1/2 Xn ≤ x, ηn = k


= π(k)Fα,θ (x),

where

α =
1
2

+


i∈S

ciπ(i)
i∈S

s2
i π(i)

, and θ = 2

i∈S

s2
i π(i). (2.4)
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Remarks 2.7. (i) Under the hypothesis of Theorem 2.6, Theorem 2.5 shows that the process
is null-recurrent or transient; Theorem 2.6 demonstrates a form of asymptotic independence
between Xn (rescaled) and ηn (which converges to π ). By contrast, in the positive-recurrent
aperiodic case, P[Xn ≤ x, ηn = k] (with no scaling) possesses a limit, but that limit cannot
be identified without additional assumptions (and the limit distribution of ηn need not even
be π ).

(ii) The case of Theorem 2.6 in which S is a singleton is essentially Lamperti’s weak
convergence result from [20].

(iii) If in addition (Q+
∞) and (M+

L ) hold, then the boundary case


i∈S(2ci + s2
i )π(i) = 0 is

null-recurrent, by Theorem 2.5. In this case the proof given in Section 5.2 can be modified
to show that n−1/2 Xn → 0 in probability; this is consistent with the fact that the α → 0
limit of Fα,θ corresponds to a point mass at 0.

(iv) With some additional work, the arguments in Section 5.2 should yield the process version
of Theorem 2.6: in the sense of finite dimensional distributions, as n → ∞,

n−1/2 Xnt , ηnt


t∈[0,1]

−→ (xt , ωt )t∈[0,1] ,

where (2/θ)1/2xt is a Bessel process with dimension 2α and ωt is an S-valued white noise
process whose finite-dimensional marginals are sequences of i.i.d. π -distributed variables.

The remainder of the paper is organized as follows. In Section 3 we give some additional con-
text to the present work by describing how our setting generalizes the literature on additive func-
tionals of Markov chains, and by presenting some additional examples, including a variant of the
correlated random walk. Section 4 contains the bulk of our analysis, which proceeds via consider-
ing an embedded Markov chain. The proofs of the main theorems are then completed in Section 5.

To simplify the presentation in the rest of the paper, we often write Px,i [ · ] for P[ · | X0 = x,
η0 = i], corresponding to the law of the Markov chain with initial state (x, i) ∈ Z+×S; similarly
for (expectation) Ex,i .

We finish this section with some general remarks. Our method of proof is different from other
approaches in the literature. Falin [7,8], while also making use of Foster–Lyapunov results, bases
his computations on a delicate algebraic calculation. Rogers [27] uses an embedded Markov
chain, as we do, but his analysis relies on the additive functional representation (see Section 3.1).
Our approach to the excursion estimates for the embedded process, via the Doob decomposition,
makes the emergence of the ‘pseudo-drift’ quantities particularly intuitive from a probabilistic
perspective: see the discussion around (3.3).

The case where S is infinite can give rise to completely different phenomena from the finite
setting, and we do not consider this here. Under suitable assumptions, however, such as uniform
versions of our asymptotic conditions (Q∞), (MC) or (ML), and sufficient moments for τ and the
increments of Xn , the results of the present paper should extend to the infinite setting.

3. Examples and remarks on the literature

3.1. Homogeneity and additive functionals

As mentioned in Remark 2.3, condition (H) is assumed in much of the literature. A special
structure emerges when (H) is imposed for all x . Indeed, one then has that (ηn) itself is a Markov
chain, since

P[ηn+1 = j | (Xn, ηn) = (x, i)] =


y∈Z

r(y − x, i, j) =


z∈Z

r(z, i, j) = q(i, j). (3.1)
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A similar argument shows that (Xn − Xn−1, ηn) is a Markov chain on Z × S, with

P[(Xn+1 − Xn, ηn+1) = (z, j) | (Xn − Xn−1, ηn) = (y, i)] = r(z, i, j).

Then if ψ : Z × S → Z is given by ψ(z, i) = z, we may write

Xn = X0 +

n−1
k=0

ψ(Xk+1 − Xk, ηk+1),

which represents Xn as an additive functional of a Markov chain.
However, on state-space Z+ × S, assuming that (H) holds for all x is very restrictive, and

implies that Xn+1 − Xn ≥ 0 a.s. (see Remark 2.3). So in the homogeneous setting, it makes sense
to instead take the state space to be Z × S so that (2.1) now holds with x and y in Z. Assuming
that (H) holds for all x ∈ Z now yields the additive functional structure above, without imposing
additional restrictions on the magnitude of Xn+1 − Xn .

In either case, we may note that

E[Xn+1 − Xn | (Xn, ηn) = (x, i)] =


z∈Z


j∈S

zr(z, i, j) =: µ1(i), (3.2)

say, assuming that the mean increments are well defined; so there is a constant mean drift µ1(i)
for each i ∈ S.

Moreover, if π is the stationary distribution on S associated with the Markov chain (ηn)

given by (3.1), then a calculation shows that the Markov chain (Xn − Xn−1, ηn) has stationary
distribution ϖ(z, i) on Z × S given by

ϖ(z, i) =


k∈S

π(k)r(z, k, i).

In this context, a result of Rogers [27] on additive functionals of Markov chains shows that
recurrence classification of (Xn) depends on the sign of

i∈S


z∈Z

ϖ(z, i)ψ(z, i) =


i∈S


z∈Z

z

k∈S

π(k)r(z, k, i) =


k∈S

π(k)µ1(k). (3.3)

There are many similar results in the literature for additive functionals of Markov chains in
more general spaces, and related results in ergodic theory concerning ‘co-cycles’ (see, e.g., [2]).
However, the methods adapted to this additive functional structure seem to depend crucially on
the homogeneity assumption (H).

The interpretation of the quantity of (3.3) is as a ‘pseudo-drift’ accumulated over i.i.d. ex-
cursions of the Markov chain: see Rogers [27]. We take this idea further, as the analogues of
these excursions in our setting are not i.i.d., due to the additional non-homogeneity. However,
our methods exploit the essential structure that remains.

3.2. Correlated random walk

In the one-dimensional correlated random walk, a particle performs a random walk on Z with
a short-term memory: the distribution of Xn+1 depends not only on the current position Xn , but
also on the ‘direction of travel’ Xn − Xn−1. Formally, (Xn, Xn − Xn−1) is a Markov chain on
Z×{−1,+1}. Supposing also that (H) holds for all x ∈ Z, this is a special case of the framework
discussed in Section 3.1, with ηn = Xn − Xn−1.
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One standard version of the model supposes that the nonzero transition probabilities are given
by p(x, i, x + j, j) = r( j, i, j) = q(i, j), where

q(i, j) =


1
2

+ ρi if j = i

1
2

− ρi if j ≠ i

is the transition matrix of the Markov chain (ηn), and ρi ∈ (− 1
2 ,

1
2 ) are fixed parameters. For this

random walk, the additive structure described in Section 3.1 is particularly simply expressed via
Xn = X0 +

n−1
k=0 ηk+1.

Corresponding to q is the stationary distribution π(i) =
(1/2)−ρ−i
1−ρi −ρ−i

, and the mean drifts given
by (3.2) are now µ1(i) =


j∈S jq(i, j) = 2iρi . Then we see that the ‘pseudo-drift’ (3.3) is zero

if and only if ρi = ρ is the same for each i ; the random walk is recurrent in exactly this case.
A positive ρi corresponds to persistence of the walker in direction i (the walker has an ‘in-

ertia’); a negative ρi corresponds to a walker who vacillates in direction i , and has an increased
propensity to turn around.

Such models have a long history, and have been studied under different names by many dif-
ferent researchers: as ‘persistent random walks’ by Fürth [11], ‘correlated random walks’ by
Gillis [12], ‘random walks with restricted reversals’ by Domb and Fisher [5], and, recently,
‘Newtonian random walks’ by Lenci [22]. Under appropriate rescaling, the model leads to the
telegrapher’s equation in the scaling limit, as discussed by Goldstein [13] and Kac [17]. There
has been a large amount of recent work on correlated random walk and related models; a small
selection is [1,28,3,15]. Motivation for studying these models arises from several sources, in-
cluding physical Brownian motion [11] and models for molecular configurations [4]. We refer
to [16] for some additional background and references.

As an application of our main results, consider the following variation on the one-dimensional
correlated random walk, intended to probe more precisely the recurrence–transience phase tran-
sition. This time we take the state-space to be Z+ × {−1,+1} to fit into the setting of Section 2.
We suppose that the nonzero transition probabilities are p(x, i, x + j, j) = qx (i, j), where

qx (i, j) =


1
2

+
ci

2x
+ O(x−1−δ) if j = i

1
2

−
ci

2x
+ O(x−1−δ) if j ≠ i

for some constants δ > 0 and ci ∈ R. For ci > 0, the walk is persistent in direction i , and for
general ci the symmetry between the two directions present in the recurrent case is broken: how
does this affect the recurrence?

Under these assumptions, (Q+
∞) holds with q(i, j) = 1/2 for all i, j , so that π(i) = 1/2 for

i = ±1. Also,

µ1(x, i) =


j∈S

jqx (i, j) =
ici

x
+ O(x−1−δ), and

µ2(x, i) =


j∈S

j2qx (i, j) = 1, for x ≥ 1,

so that (M+

L ) holds (with s2
i = 1 for i = ±1). Applying Theorems 2.5 and 2.6 yields the following

result (where we write c+ for c+1 and c− for c−1).
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Corollary 3.1. If c+ − c− < −1, then the walk is positive-recurrent. If c+ − c− > 1, then the
walk is transient. If |c+ − c−| ≤ 1, then the walk is null-recurrent. Moreover, if c+ − c− > −1,
then

lim
n→∞

P[n−1/2 Xn ≤ x, ηn = i] =
1
2

F(c+−c−+1)/2,2(x).

3.3. Modulated queue

To finish this section we return to the queueing model as presented in the introduction. Re-
call that the critical case from the point of view of recurrence and transience is when ρ = λ,
and we are interested in the behaviour of the model under perturbations of the constants ci for
i ∈ S. For this model we have qx (i, j) = (ai j + bi j )/2 + O(x−1) so provided that the matrix
Mi j = (ai j + bi j )/2 is irreducible, condition (Q+

∞) holds. We see that

µ1(x, i) =
ci

x
+ O(x−2), and µ2(x, i) = 1,

so that (M+

L ) holds. Let π be the stationary distribution associated with transition matrix M ,
and set c̄ =


i∈S ciπ(i). Applying Theorems 2.5 and 2.6 yields the following result (cf.

Corollary 3.1).

Corollary 3.2. If c̄ < −1/2, then the Markov chain is positive-recurrent. If c̄ > 1/2, then the
Markov chain is transient. If |c̄| ≤ 1/2, then the Markov chain is null-recurrent. Moreover, if
c̄ > −1/2, then

lim
n→∞

P[n−1/2 Xn ≤ x, ηn = i] =
1
2

Fc̄+(1/2),2(x).

4. Analysis via an embedded Markov chain

4.1. Overview

To analyse (Xn, ηn) we look at an embedded process (Yn), which records the X -coordinate
of the chain when it returns to a given line. Formally, we label an arbitrary state 0 ∈ S. Then set
τ0 = min{n ∈ Z+ : ηn = 0}, and for m ≥ 0 set τm+1 = min{n > τm : ηn = 0}, where we
adopt the usual convention that min ∅ = ∞. To ease exposition, we introduce a ‘coffin’ state ∂
and define the embedded process Yn on Z+ ∪ {∂} by

Yn =


Xτn if τn < ∞,

∂ if τn = ∞.

We also introduce τ = min{n > 0 : ηn = 0} (so τ = τ01{η0 ≠ 0} + τ11{η0 = 0}).
For any n ∈ Z+, given τn < ∞ and Xτn = x , the strong Markov property for the time-

homogeneous Markov chain (Xn, ηn) shows that (Xτn+m, ητn+m)m≥0 is independent of (X0, η0),

. . . , (Xτn , ητn ) and is distributed as a copy of (Xm, ηm)m≥0 given (X0, η0) = (x, 0). In particular,
on τn+1 < ∞, the pair (Xτn+1 , τn+1 −τn) depends on (X0, η0), . . . , (Xτn , ητn ) only through Xτn .
Hence Yn is a Markov chain and, given Yn = x , the random variable τn+1 − τn has the same
distribution as τ conditional on (X0, η0) = (x, 0).

We refer to (Xm, ηm)τn≤m≤τn+1 as the nth excursion from the line 0. The basis for our analysis
of the embedded Markov chain (Yn) will be an analysis of a single excursion, depending on the
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starting position. A key component of this analysis is a coupling result, which we present in the
next subsection.

4.2. Coupling construction

Lemma 4.1. Suppose that condition (Bp) holds for some p > 0 and condition (Q∞) holds. Then
there exists a Markov chain (Xn, ηn, η

⋆
n) on Z+ × S × S such that

• (Xn, ηn) is a Markov chain on Z+ × S with transition probabilities p(x, i, y, j);
• (η⋆n) is a Markov chain on S with transition probabilities q(i, j); and
• for all n ∈ Z+ and all i ∈ S,

lim
x→∞

P
 

0≤k≤n

{ηk = η⋆k}

X0 = x, η0 = η⋆0 = i


= 1. (4.1)

Finally, suppose in addition that (Q+
∞) holds. Then there exists δ > 0 such that, for any A < ∞,

for all i ∈ S, as x → ∞,

1 − P
 

0≤k≤A log x

{ηk = η⋆k}

X0 = x, η0 = η⋆0 = i


= O(x−δ). (4.2)

The statements of Lemma 4.1 will follow from a coupling argument. Essentially, Eq. (4.1)
is proved using a maximal coupling of ηn and η⋆n ; the condition (Q∞) that qx (i, j) has a limit
as x → ∞ means that we can control the probability of decoupling, provided that Xn stays
sufficiently large, and it is this dependence on Xn that introduces a (minor) complication to an
otherwise standard argument. Eq. (4.2) is proved in a similar manner using the stronger condition
(Q+

∞) on qx (i, j); the full details of the proof can be found in the Appendix.
In the remainder of this subsection we explore some consequences of the coupling described

in Lemma 4.1. First we introduce additional notation in the context of the joint probability space
on which the coupled process (Xn, ηn, η

⋆
n) is constructed. We denote by τ ⋆ the first return time

to 0 of the Markov chain (η⋆n), namely

τ ⋆ := min{n ≥ 1 : η⋆n = 0}.

Moreover, we write Px,i, j for the probability measure conditional on X0 = x, η0 = i, η⋆0 = j ,
and Ex,i, j for the corresponding expectation.

Irreducibility of the time-homogeneous Markov chain (Xn, ηn) and finiteness of S imply that
for any x , there exist m(x) < ∞ and ϕ(x) > 0 such that

Px,i [τ ≤ m(x)] ≥ ϕ(x) for all i . (4.3)

In the specific case that qx (i, j) is constant in x , the process (ηn) is distributed exactly as the
finite irreducible Markov chain (η⋆n), so the functions m(x) and ϕ(x) in (4.3) can be chosen to be
uniform over x . Our first consequence of the above coupling is that (4.3) can be strengthened to
such a uniform version under our weaker conditions: roughly speaking, assumption (Q∞) implies
that (ηn) is sufficiently close to (η⋆n) when the X -coordinate of (Xn, ηn) is sufficiently large, and
irreducibility does the rest.

Lemma 4.2. Suppose that condition (Bp) holds for some p > 0 and condition (Q∞) holds. Then
there exist m < ∞ and ϕ > 0 such that, for all i and all x,

Px,i [τ ≤ m] ≥ ϕ. (4.4)
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In the proof of this result, and at several points later on, we consider the event

En := ∩0≤ℓ≤n{ηℓ = η⋆ℓ}. (4.5)

Proof of Lemma 4.2. We work with the Markov chain (Xn, ηn, η
⋆
n) given in Lemma 4.1. Since

η⋆ is a finite irreducible Markov chain, there exist m < ∞ and ϕ > 0 such that Px,i,i [τ
⋆

≤ m] ≥

2ϕ for all i and all x . Conditional on ηn and η⋆n remaining coupled up to time m, we have τ ≤ m
if and only if τ ⋆ ≤ m; hence

Px,i,i [τ ≤ m] ≥ Px,i,i [Em ∩ {τ ⋆ ≤ m}] ≥ Px,i,i [τ
⋆

≤ m] − Px,i,i [Ec
m].

But by Lemma 4.1, there exists x0 such that Px,i,i [Ec
m] ≤ ϕ for all x ≥ x0 and hence (4.4) holds

for all i and all x ≥ x0.
But also, since x0 < ∞, for any m(x) and ϕ(x) satisfying (4.3), we define m0 :=

maxx≤x0 m(x) < ∞ and ϕ0 := minx≤x0 ϕ(x) > 0 so that, for any x ≤ x0,

Px,i [τ ≤ m0] ≥ Px,i [τ ≤ m(x)] ≥ ϕ(x) ≥ ϕ0, for all i.

So, redefining m and ϕ as necessary, (4.4) in fact holds for all i and all x . �

4.3. Excursion durations and occupation estimates

Next we give an exponential tail bound for the duration of excursions, uniform in the initial
location.

Lemma 4.3. Suppose that condition (Bp) holds for some p > 0 and condition (Q∞) holds. Then
there exist constants c > 0 and C < ∞ such that, for all x, n, and r,

P[τn+1 − τn > r | Xτn = x] ≤ Ce−cr .

Proof. Recall that since τn+1 − τn conditional on Yn = x has the same distribution as τ
conditional on X0 = x, η0 = 0, it suffices to show that, for some constants C, c > 0,

Px,i [τ > r ] ≤ Ce−cr , for all x and i . (4.6)

(We then get the claimed result for τn+1 − τn by setting i = 0.) Recall that, by Lemma 4.2,
Px,i [τ ≤ m] ≥ ϕ. Moreover, using the time-homogeneity of (Xn, ηn), for all x and i ,

Px,i [τ ≤ km + m | τ > km] ≥ min
y, j

P[τ ≤ km + m | τ > km, Xkm = y, ηkm = j]

= min
y, j

P[τ ≤ m | X0 = y, η0 = j] ≥ ϕ,

for all positive integers k. But this implies that, for all positive integers k,

Px,i [τ > km] =

k
j=1

Px,i [τ > jm | τ > ( j − 1)m] ≤ (1 − ϕ)k .

Finally, for general r ∈ Z+, there exists an integer k such that km ≤ r < (k + 1)m, so

Px,i [τ > r ] ≤ Px,i [τ > km] ≤ (1 − ϕ)k < (1 − ϕ)r/m−1
≤ Ce−cr ,

for constants C, c > 0 dependent only on ϕ and m, giving (4.6). �
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The next result shows that the mean occupation time of (Xn, ηn) on line i per excursion can
be approximated by the mean occupation time of (η⋆n) in state i per excursion.

Lemma 4.4. Suppose that condition (Bp) holds for some p > 0 and condition (Q∞) holds. Then,
for any i ∈ S,

lim
x→∞

Ex,0

τ−1
k=0

1{ηk = i} =
π(i)

π(0)
.

If, in addition, (Q+
∞) holds, then there exists δ > 0 such that, for any i ∈ S, as x → ∞,Ex,0

τ−1
k=0

1{ηk = i} −
π(i)

π(0)

 = O(x−δ).

Proof. Again we work with the Markov chain (Xn, ηn, η
⋆
n) whose existence is given in the

statement of Lemma 4.1. Fix i ∈ S. For the duration of this proof, we write

W :=

τ−1
k=0

1{ηk = i}, and W ⋆
:=

τ ⋆−1
k=0

1{η⋆k = i}.

Since (η⋆n) is a Markov chain on S with transition probabilities q(i, j), standard Markov chain
theory yields Ex,0,0[W ⋆

] = π(i)/π(0), for any x ∈ Z+. The statements of the lemma will follow
from suitable estimates for Ex,0,0[|W − W ⋆

|].
Again define En by (4.5). Then, for any positive integer n,

Ex,0,0

|W − W ⋆

|


≤ Ex,0,0

|W − W ⋆

|1(En)1{τ ∨ τ ⋆ ≤ n}


+ Ex,0,0

|W − W ⋆

|1(Ec
n)1{τ ∨ τ ⋆ ≤ n}


+ Ex,0,0


|W − W ⋆

|1{τ ∨ τ ⋆ > n}


≤ 0 + nPx,0,0

Ec

n


+ Ex,0,0


(τ ∨ τ ⋆)1{τ ∨ τ ⋆ > n}


.

Moreover,

Ex,0,0

(τ ∨ τ ⋆)1{τ ∨ τ ⋆ > n}


≤ Ex,0,0 [τ1{τ > n}] + Ex,0,0


τ ⋆1{τ ⋆ > n}


. (4.7)

Here, by Cauchy–Schwarz and the tail estimates in Lemma 4.3,

Ex,0,0[τ1{τ > n}] ≤ (Ex,0,0[τ
2
])1/2(Px,0,0[τ > n])1/2 ≤ Ce−cn, (4.8)

for some constants C < ∞ and c > 0, not depending on x , and similarly for the term involving
τ ⋆. For the first statement in the lemma, it suffices to show that

lim
x→∞

Ex,0,0
W − W ⋆

 = 0. (4.9)

Under assumption (Q∞), it follows from (4.8) and its analogue for τ ⋆ that for any ε > 0 we
may choose n ≥ n0 sufficiently large so that the right-hand side of (4.7) is less than ε, and then
Ex,0,0[|W − W ⋆

|] ≤ nPx,0,0[Ec
n] + ε. For fixed n, Px,0,0[Ec

n] → 0 as x → ∞ by (4.1), so that
lim supx→∞ Ex,0,0[|W − W ⋆

|] ≤ ε. Since ε > 0 was arbitrary, (4.9) follows.
For the second statement in the lemma, under assumption (Q+

∞), we use a similar argument
but with n = n(x) = ⌊A log x⌋. As before,

Ex,0,0[|W − W ⋆
|] ≤ n(x)Px,0,0[Ec

n(x)] + Ex,0,0[(τ ∨ τ ⋆)1{τ ∨ τ ⋆ > n(x)}].
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For a sufficiently large choice of constant A, the exponential bound (4.8) shows that the right-
hand side of (4.7) decays as a power of x , for n = n(x). Finally, the term n(x)Px,0,0[Ec

n(x)] also
decays as a power of x , by (4.2), and so we see that Ex,0,0[|W − W ⋆

|] decays as a power of x , as
required. �

4.4. Recurrence and transience relationships

In this subsection we demonstrate the equivalence of recurrence properties of the embedded
process (Yn) to those of the process (Xn).

From this point of the paper onwards, we will be increasingly concerned with multiple
excursions, and it is useful to introduce the notation σ0 := 0 and, for n ∈ Z+,

σn+1 := τn+1 − τn

for the durations of the excursions. Recall the definition of Yn from Section 4.1. Under our
conditions (cf. Lemma 4.3), σn < ∞ a.s. for each n. Hence Yn ≠ ∂a.s., and we can identify Yn
with Xτn for all n. For the remainder of the paper we employ this slight abuse of notation, and
assume that the state space of (Yn) is Z+. The next result relates recurrence of (Xn) to recurrence
of (Yn).

Lemma 4.5. Suppose that condition (Bp) holds for some p > 0 and condition (Q∞) holds. Then
the process (Yn) is an irreducible Markov chain (on Z+). Moreover

(i) (Xn) is recurrent if and only if (Yn) is recurrent.
(ii) (Xn) is positive-recurrent if and only if (Yn) is positive-recurrent.

Proof. As explained in Section 4.1, the fact that (Yn) is a Markov chain follows from the strong
Markov property for (Xn, ηn).

Irreducibility of (Yn) follows from the irreducibility of (Xn, ηn), as follows. For any x, y ∈

Z+, there exists a finite path in the state space Z+×S from (x, 0) to (y, 0) that the chain (Xn, ηn)

has a positive probability of following. But then the (finite) subpath consisting of the points that
are on line 0 corresponds to a path in the state space Z+ that (Yn) has a positive probability of
following.

Now, for statement (i), the fact that Yn = 0 exactly when Xτn = 0 implies {Yn = 0 i.o.} if and
only if {(Xn, ηn) = (0, 0) i.o.}, so (Yn) is recurrent if and only if (Xn, ηn) is recurrent. Using
Lemma 2.1, we have (Yn) is recurrent if and only if (Xn) is recurrent.

Finally, we verify (ii). Let

ξ = min{n ≥ 1 : Yn = 0}, and ζ = min{n ≥ 1 : (Xn, ηn) = (0, 0)}.

Then (Yn) is positive-recurrent if and only if Ex,0ξ < ∞ for some (hence all) x , while (Xn, ηn)

is positive-recurrent if and only if Ex,0ζ < ∞. However, ξ and ζ are related since, given η0 = 0,
it is the case that τ0 = 0 and ζ = τξ , i.e.,

ζ =

ξ−1
k=0

σk+1 =

∞
k=0

σk+11{k < ξ}. (4.10)

In particular, (4.10) shows that ζ ≥ ξ , a.s., so Ex,0ζ < ∞ implies that Ex,0ξ < ∞. For the
implication in the other direction, take expectations in the final expression in (4.10) and use
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linearity of expectations and Fubini’s Theorem to get

Ex,0ζ = Ex,0

∞
k=0

E

σk+11{k < ξ} | Fτk


= Ex,0

∞
k=0

1{k < ξ}E

σk+1 | Fτk


,

since {k < ξ} ∈ Fτk . But, by Lemma 4.3, E

σk+1 | Fτk


is uniformly bounded by a constant, C ,

say, so that

Ex,0ζ ≤ CEx,0

∞
k=0

1{k < ξ} = CEx,0ξ.

Hence Ex,0ζ < ∞ if and only if Ex,0ξ < ∞. Finally, (ii) follows from Lemma 2.2, which gives
the equivalence of positive-recurrence for (Xn, ηn) and (Xn). �

4.5. Increment moment estimates

So far, we have studied the excursions of (Xn, ηn) away from the line ηn = 0 in terms
of the η-coordinate. The next stage is to study the behaviour, over an excursion, of the X -
coordinate. In particular, we estimate the moments of Yn+1 − Yn , with a view to later applying
a Lamperti condition to determine the recurrence/transience of (Yn). First, we need estimates on
the maximum deviation of Xn during a single excursion:

Dn := max
τn≤m≤τn+1

|Xm − Xτn |; (4.11)

note that the distribution of Dn given Xτn = x depends only on x and not on n.

Lemma 4.6. Suppose that condition (Bp) holds for some p > 0 and condition (Q∞) holds. Then,
for any q ∈ (0, p),

sup
x

P[Dn ≥ d | Xτn = x] = O(d−q), and sup
x

E[Dq
n | Xτn = x] < ∞.

Proof. We have

P[Dn ≥ d | Xτn = x] ≤ P[σn+1 ≥ y | Xτn = x] + P[Dn ≥ d, σn+1 < y | Xτn = x]

≤ Ce−cy
+ P


max

τn≤m≤τn+y
|Xm − Xτn | ≥ d

Xτn = x


,

for all d ≥ 0 and y > 0, by Lemma 4.3. Here,

P


max
τn≤m≤τn+y

|Xm − Xτn | ≥ d

Xτn = x


≤ P


max

τn≤m≤τn+y

m−1
ℓ=τn

|Xℓ+1 − Xℓ| ≥ d

Xτn = x



≤ P

 
τn≤ℓ≤τn+y−1


|Xℓ+1 − Xℓ| ≥

d

y

Xτn = x



≤ yC p
d

y

−p
,
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which follows from the inequalities of Boole and Markov and the fact that

E[|Xℓ+1 − Xℓ|
p

| Xτn = x]

=


z,i

E[|Xℓ+1 − Xℓ|
p

| Xℓ = z, ηℓ = i]P[Xℓ = z, ηℓ = i | Xτn = x] ≤ C p,

by assumption (Bp). Then, taking y = d(p−q)/(1+p), where q ∈ (0, p), we obtain P[Dn ≥ d |

Xτn = x] = O(d−q), as claimed. The final claim follows from the fact that

E[Dα
n | Xτn = x] =

∞
d=1

P[Dα
n ≥ d | Xτn = x] ≤


∞

0
P[Dα

n ≥ t | Xτn = x]dt,

which is finite when α ∈ (0, q), where q can be arbitrarily close to p. �

We are now in a position to calculate the moments of Yn+1 − Yn . The first case to consider is
when, for each i , µ(x, i) is asymptotically di .

Lemma 4.7. Suppose that condition (Bp) holds for some p > 1, and conditions (Q∞) and (MC)
hold. Then there exists ε > 0 such that

sup
x

E[|Yn+1 − Yn|
1+ε

| Yn = x] < ∞. (4.12)

Also, as x → ∞,

E[Yn+1 − Yn | Yn = x] =
1

π(0)


i∈S

diπ(i)+ o(1). (4.13)

Proof. First, note that |Yn+1 − Yn| = |Xτn+1 − Xτn | ≤ |Dn|, a.s., where Dn is given by (4.11).
Then the statement (4.12) follows from Lemma 4.6 with (Bp) for p > 1.

It remains to prove (4.13); by the time-homogeneity of (Xn, ηn) and since Yn = Xτn , it
suffices to consider Ex,0[Xτ − X0]. The Doob decomposition for Xn is

Xn − X0 = Mn +

n−1
k=0

E[Xk+1 − Xk | Xk, ηk],

where Mn is a martingale with M0 = 0. Hence, by definition of µ1(x, i),

Xn − X0 = Mn +

n−1
k=0

µ1(Xk, ηk) = Mn +


i∈S

n−1
k=0

µ1(Xk, i)1{ηk = i}.

Since Eτ < ∞, and E[|Mn+1 − Mn| | Fn] ≤ 2E[|Xn+1 − Xn| | Fn] ≤ 2C1, a.s., (by the p = 1
case of (Bp)), the Optional Stopping Theorem gives EMτ = M0 = 0. Therefore,

Ex,0[Xτ − X0] =


i∈S

Ex,0


τ−1
k=0

µ1(Xk, i)1{ηk = i}


. (4.14)

Now, let D = max0≤k≤τ |Xk − X0|, and set Ax = {D < xγ }, for some γ ∈ (0, 1). Note that,
conditional on X0 = x and η0 = 0, the random variable D has the same distribution as the
random variable Dn defined at (4.11) given Xτn = x , so by Lemma 4.6 we have

Px,0[Ac
x ] = Px,0[D ≥ xγ ] = O(x−γ ). (4.15)
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Now, given X0 = x and Ax , we have for all 0 ≤ k ≤ τ that Xk ≥ x − xγ ≥ x/2, say,
for all x sufficiently large. Thus, by (MC), for any θ > 0, there exists x0 < ∞ such that, given
X0 = x ≥ x0,

max
i∈S

max
0≤k≤τ

|µ1(Xk, i)− di | 1(Ax ) ≤ θ, a.s.

Since maxx,i |µ1(x, i)| < ∞ and maxi |di | < ∞, it follows that there exists a constant C < ∞

such that, given X0 = x ≥ x0,

max
i∈S

max
0≤k≤τ

|µ1(Xk, i)− di | ≤ θ + C1(Ac
x ), a.s.

Hence, given X0 = x ≥ x0,τ−1
k=0

µ1(Xk, i)1{ηk = i} −

τ−1
k=0

di 1{ηk = i}

 ≤ θτ + Cτ1(Ac
x ), a.s.

Here, by the Cauchy–Schwarz inequality,

Ex,0[τ1(Ac
x )] ≤ (Ex,0[τ

2
])1/2(Px,0[Ac

x ])
1/2

= O(x−γ /2),

using (4.15) and the fact that τ has all moments, by Lemma 4.3. So, for any δ > 0, we can choose
x1 < ∞ sufficiently large so that, given X0 = x ≥ x1,

max
i

Ex,0


τ−1
k=0

µ1(Xk, i)1{ηk = i}


− Ex,0


τ−1
k=0

di 1{ηk = i}

 ≤ δ.

Together with Lemma 4.4 and (4.14) this yields (4.13). �

Lemma 4.8. Suppose that condition (Bp) holds for some p > 2, and conditions (Q∞) and (ML)
hold. Then there exists ε > 0 such that

sup
x

E[|Yn+1 − Yn|
2+ε

| Yn = x] < ∞. (4.16)

Also, as x → ∞,

E[Yn+1 − Yn | Yn = x] =
1

π(0)


i∈S

ciπ(i)

x
+ o(x−1); (4.17)

E[(Yn+1 − Yn)
2

| Yn = x] =
1

π(0)


i∈S

s2
i π(i)+ o(1). (4.18)

If, in addition (Q+
∞) and (M+

L ) hold, then there exists δ > 0 such that

E[Yn+1 − Yn | Yn = x] =
1

π(0)


i∈S

ciπ(i)

x
+ O(x−1−δ); (4.19)

E[(Yn+1 − Yn)
2

| Yn = x] =
1

π(0)


i∈S

s2
i π(i)+ O(x−δ); (4.20)

Proof. First, since |Yn+1 − Yn| ≤ Dn , with Dn as defined at (4.11), and because Lemma 4.6
implies that supx E[(Dn)

2+ε
| Xτn = x] < ∞, (4.16) follows.
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The proof of (4.17) and (4.18) using (Q∞) and (ML) and the proof of (4.19) and (4.20) using
(Q+

∞) and (M+

L ) are essentially the same, the only difference being in the error terms associated
to each expression. We present the proof of (4.19) and (4.20); it should be clear how to adapt the
argument to prove (4.17) and (4.18).

We proceed as in the proof of Lemma 4.7. Indeed, we follow the reasoning from the second
paragraph of that proof through to Eq. (4.14), giving

Ex,0[Xτ − X0] =


i∈S

Ex,0


τ−1
k=0

µ1(Xk, i)1{ηk = i}


,

and we let D = max0≤k≤τ |Xk − X0|, and set Ax = {D < xγ } as before, but now we require
γ ∈ (1/2, 1). Note that, conditional on X0 = x and η0 = 0, the random variable D has the same
distribution as the random variable Dn defined at (4.11) given Xτn = x , so by Lemma 4.6 we
have that Px,0[D ≥ d] = O(d−p′

) for some p′ > 2 since τ has all moments and (Bp) holds for
some p > 2.

Now, given X0 = x and Ax , we have |Xk − x | ≤ D < xγ for k ≤ τ , so that, by (M+

L ),µ1(Xk, i)−
ci

x

 ≤

 ci

Xk
−

ci

x

+ O((x − xγ )−1−δ1) = O(xγ−2)+ O(x−1−δ1),

uniformly for 0 ≤ k ≤ τ . Therefore µ1(Xk, i)1(Ax ) = (ci/x + O(xγ−2) + O(x−1−δ1))1(Ax ),
which means that µ1(Xk, i) = ci/x + O(xγ−2)+ O(x−1−δ1)+ O(1)1(Ac

x ). So,

Ex,0


τ−1
k=0

µ1(Xk, i)1{ηk = i}



= Ex,0

ci

x
+ O(xγ−2)+ O(x−1−δ1)+ O(1)1(Ac

x )
 τ−1

k=0

1{ηk = i}


,

where the implicit constants are uniform in x and in i . By (Q+
∞) and the second statement in

Lemma 4.4, we have that

Ex,0


τ−1
k=0

1{ηk = i}


=
π(i)

π(0)
+ O(x−δ′), (4.21)

for some δ′ > 0, so

Ex,0[Xτ − X0] =
1

π(0)


i∈S

ciπ(i)

x
+ O(x−1−δ′)+ O(xγ−2)+ O(x−1−δ1)

+ O(1)Ex,0[τ1(Ac
x )].

Here, by Hölder’s inequality, for all r, s > 0 with r−1
+ s−1

= 1,

Ex,0[τ1(Ac
x )] ≤ (Ex,0[τ

r
])1/r (Px,0[Ac

x ])
1/s .

Since τ has all moments, we can take s = p′/2 > 1, so that Ex,0[τ1(Ac
x )] = O(x−2γ ). Then,

since γ ∈ (1/2, 1), δ1 > 0 and δ′ > 0 we have, for some δ′′ > 0,

E[Yn+1 − Yn | Yn = x] =
1

π(0)


i∈S

ciπ(i)

x
+ O(x−1−δ′′).
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To calculate the second moment of Xτ − X0, we will make repeated use of the algebraic
identity a2

− b2
= (a − b)2 + 2b(a − b), which will help to simplify the calculations that follow.

Taking the Doob decomposition for X2
n , we write

X2
n − X2

0 = Mn +

n−1
k=0

E[X2
k+1 − X2

k | Xk, ηk]

= Mn +

n−1
k=0


E[(Xk+1 − Xk)

2
| Xk, ηk] + 2XkE[Xk+1 − Xk | Xk, ηk]


= Mn +

n−1
k=0

(µ2(Xk, ηk)+ 2Xkµ1(Xk, ηk))

= Mn +


i∈S

n−1
k=0

(s2
i + 2ci + O(X−δ1

k ))1{ηk = i},

by (M+

L ), where Mn is a martingale satisfying M0 = 0. Moreover, given X0 = x ,

|Mn∧τ | ≤ |X2
n∧τ − X2

0| + Cτ

= (Xn∧τ − X0)
2
+ 2X0|Xn∧τ − X0| + Cτ

≤ D2
+ 2x D + Cτ,

where D = max0≤k≤τ |Xk − X0| is as defined earlier, and C < ∞ is a constant. Thus, Mn∧τ

is uniformly integrable (in n) and so by the Optional Stopping Theorem EMτ = M0 = 0.
Therefore,

Ex,0[X2
τ − X2

0] =


i∈S

(s2
i + 2ci )Ex,0


τ−1
k=0

1{ηk = i}


+ Ex,0


τ−1
k=0

O(X−δ1
k )


.

As in the calculation of the first moment, we can bound the error term by bootstrapping on the
event Ax : writing O(X−δ1

k ) = O(x−δ1)+ O(1)1(Ac
x ), we get

Ex,0


τ−1
k=0

O(X−δ1
k )


= O(x−δ1)+ O(1)Ex,0[τ1(Ac

x )]

= O(x−δ1)+ O(x−2γ ),

as above, and therefore, by (4.21),

Ex,0[X2
τ − X2

0] =
1

π(0)


i∈S

(s2
i + 2ci )π(i)+ O(x−δ′)+ O(x−δ1)+ O(x−2γ ).

Now we use X2
τ − X2

0 = (Xτ − X0)
2
+ 2X0(Xτ − X0) to get

Ex,0[(Xτ − X0)
2
] =

1
π(0)


i∈S

s2
i π(i)+ O(x−δ′′′),

for some δ′′′ > 0. Finally, taking δ = min{δ′′, δ′′′} yields (4.19) and (4.20), as required. �
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5. Proofs of main results

5.1. Recurrence classification

To prove Theorems 2.4 and 2.5, we use the increment moment estimates from Section 4.5
together with some Foster–Lamperti conditions to classify the process (Yn), and then deduce the
classification for (Xn) from the equivalence results in Section 4.4.

For Theorem 2.5, under Lamperti-type drift assumptions, we apply the following classification
result.

Lemma 5.1 (Lamperti). Let (Zn) be an irreducible time-homogeneous Markov chain on Z+.
Suppose that there exists ε > 0 such that

sup
z

E[|Zn+1 − Zn|
2+ε

| Zn = z] < ∞; (5.1)

lim inf
z→∞

E[|Zn+1 − Zn|
2

| Zn = z] > 0. (5.2)

Let µk(z) = E[(Zn+1 − Zn)
k

| Zn = z].

• If lim infz→∞(2zµ1(z)− µ2(z)) > 0, then Zn is transient.
• If |2zµ1(z)| ≤ µ2(z)+ O(z−δ), for some δ > 0, then Zn is null-recurrent.
• If lim supz→∞(2zµ1(z)+ µ2(z)) < 0, then Zn is positive-recurrent.

Lemma 5.1 is essentially due to Lamperti [19,21], although the form given here is taken from
Menshikov et al. [25, Theorem 3]. The conditions for recurrence and transience are contained
in Theorem 3.2 of [19], and the condition for positive-recurrence is contained in Theorem
2.1 of [21]. The condition for null-recurrence here is slightly sharper than Lamperti’s original
results [21].

Proof of Theorem 2.5. We apply Lemma 5.1 to classify Zn = Yn , and thus, by Lemma 4.5,
classify Xn . First, assuming (Bp) for some p > 2, (Q∞) and (ML), by Lemma 4.8 it is clear that
(5.1) and (5.2) hold for Zn = Yn . Furthermore,

lim inf
x→∞

2xE[Yn+1 − Yn | Yn = x] = lim sup
x→∞

2xE[Yn+1 − Yn | Yn = x]

=
1

π(0)


i∈S

2ciπ(i),

and

lim inf
x→∞

E[|Yn+1 − Yn|
2

| Yn = x] = lim sup
x→∞

E[|Yn+1 − Yn|
2

| Yn = x] =
1

π(0)


i∈S

s2
i π(i).

By Lemma 5.1,


i∈S(2ci − s2
i )π(i) > 0 implies transience, while


i∈S(2ci + s2

i )π(i) < 0
implies positive-recurrence. When |


i∈S 2ciπ(i)| <


i∈S s2

i π(i), we have

lim
x→∞

(|2xE[Yn+1 − Yn | Yn = x]| − E[|Yn+1 − Yn|
2

| Yn = x]) < 0,

which means the middle condition of Lemma 5.1 holds for any δ > 0, and therefore Yn is null-
recurrent.
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Now suppose that (Q+
∞) and (M+

L ) also hold. Then, by Lemma 4.8, we have

|2xE[Yn+1 − Yn | Yn = x]| − E[|Yn+1 − Yn|
2

| Yn = x]

=
1

π(0)


i∈S

2ciπ(i)

−
i∈S

s2
i π(i)


+ O(x−δ)

for some δ > 0, which means that |


i∈S 2ciπ(i)| =


i∈S s2
i π(i) implies that (Yn) is null-

recurrent, completing the classification of (Yn) and therefore of (Xn). �

For Theorem 2.4 we will apply the following condition.

Lemma 5.2. Let (Zn) be an irreducible time-homogeneous Markov chain on Z+. For (Zn) to be
transient, it is sufficient that there exists ε > 0 such that

sup
z

E[|Zn+1 − Zn|
1+ε

| Zn = z] < ∞, and

lim inf
z→∞

E[Zn+1 − Zn | Zn = z] > 0.

We omit the proof of Lemma 5.2, which is similar to the proof of Lemma 5.1 and relies
on demonstrating the existence of a suitable Lyapunov function with negative drift outside a
bounded set, using Taylor’s formula and some careful truncation.

Proof of Theorem 2.4. Consider the Markov chain (Yn). Under the conditions of part (i) of the
theorem, Lemma 4.7 implies that the hypotheses of Lemma 5.2 hold for Zn = Yn , so that (Yn) is
transient. Hence, by Lemma 4.5, (Xn) is also transient.

As mentioned after the statement, part (ii) was obtained by Falin [7]. Our results furnish a
different proof: Lemma 4.7 gives positive-recurrence for (Yn) by Foster’s criterion (e.g. Theorem
2.2.3 of [9]), so, by Lemma 4.5, (Xn) is also positive-recurrent. �

5.2. Convergence in distribution

The first step in the proof of Theorem 2.6 is to apply a result of Lamperti [20] to obtain a
weak limit for the embedded Markov chain (Yn). Recall the distribution function Fα,θ as defined
at (2.3).

Lemma 5.3. Suppose (Xn, ηn) is a Markov chain satisfying (Bp) for some p > 4, (Q∞)
and (ML). Suppose that the matrix q appearing in (Q∞) is aperiodic. Suppose also that

i∈S(2ci + s2
i )π(i) > 0. Define α and θ as at (2.4). Then, for any x ∈ R+,

lim
n→∞

P

n−1/2Yn ≤ x


= Fα,θ


x

π(0)


.

Proof. If (Bp) holds for some p > 4, then a consequence of Lemma 4.6 is that

sup
x

E

|Yn+1 − Yn|

4
| Yn = x


< ∞.

Now we apply Theorem 2.1 of [20] to the Markov chain (Yn), using the increment moment
estimates of Lemma 4.8 and noting the remark preceding the theorem in [20], to obtain

lim
n→∞

P

n−1/2Yn ≤ x


= Fα,θ/π(0)(x) = Fα,θ (x


π(0)),

where the final equality follows from (2.3). �
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Remark 5.4. If in addition (Q+
∞) and (M+

L ) hold, then in the case


i∈S(2ci + s2
i )π(i) = 0 it

follows from Lemma 2.1 of [20] that n−1/2Yn → 0 in probability; cf. Remark 2.7(iii).

The next goal is to deduce from the weak limit for Yn a weak limit for Xn . To do so, we need
(i) to control the value of the process (Xn) between successive observations of the embedded
process, and (ii) to account for the change of time. First we address point (i). For each n ∈ Z+,
let N (n) := max{k : τk ≤ n}, so that τN (n) ≤ n < τN (n)+1.

Lemma 5.5. Suppose that (Xn, ηn) satisfies (Bp) for some p > 2 and (Q∞). Then, as n → ∞,
n−1/2

|Xn − XτN (n) | → 0 in probability.

Proof. Since σk ≥ 1, we have that N (n) ≤ n, a.s. Hence |Xn − XτN (n) | ≤ maxk≤n Dk , where
Dk is as defined at (4.11). Thus it suffices to show that n−1/2 maxk≤n Dk → 0 in probability. For
any γ > 0, we have

max
k≤n

Dk ≤ nγ + max
k≤n


Dk1{Dk > nγ }


≤ nγ +

n
k=0

Dk1{Dk > nγ }.

Since (Bp) holds for p > 2, Lemma 4.6 shows maxk E[Dq
k ] < ∞ for some q > 2, so

E

Dk1{Dk > nγ }


= E


Dq

k D1−q
k 1{Dk > nγ }


≤ n−γ (q−1)E


Dq

k


.

It follows that

n−1/2E max
k≤n

Dk = nγ−(1/2)
+ O(n(1/2)−γ (q−1)),

which is o(1) provided we choose (as we may) 1
2(q−1) < γ < 1

2 . Thus n−1/2 maxk≤n Dk → 0 in

L1, and hence in probability. �

Next we turn to point (ii) mentioned above. For our purposes, the following renewal-type
result will suffice.

Lemma 5.6. Suppose (Xn, ηn) is a Markov chain satisfying (Bp) for some p > 2, (Q∞) and
(ML). Suppose also that


i∈S(2ci + s2

i )π(i) > 0.
Then, as n → ∞, n−1 N (n) → π(0) in probability.

Proof. Under the conditions of the lemma, Theorem 2.5 shows that Xn (and hence Yn) is null,
i.e., null-recurrent or transient. In particular, for any x ≥ 0,

lim
n→∞

E


1
n

n−1
k=0

1{Xτk ≤ x}


= 0. (5.3)

We use an extension of the coupling given in Lemma 4.1 to multiple excursions. We construct
on the same probability space (Xn, ηn) together with a sequence (η⋆k,n) of copies (for k ∈ Z+)
of the Markov chain (η⋆n) as follows. At each τk , k ∈ Z+, start (η⋆k,n)n≥0, an independent copy
of (η⋆n)n≥0, from η⋆k,0 = ητk = 0 ∈ S, coupled to (ηn)n≥τk as described in Lemma 4.1; denote by
σ ⋆k+1 the number of steps until η⋆k,n returns to 0.

Extending the notation En defined at (4.5), we write Ek,n = ∩0≤ℓ≤n{ητk+ℓ = η⋆k,ℓ}, the event
that the coupling started at τk succeeds for n steps.
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Now we use this coupling construction and the null property (5.3) to show that n−1τn →

π(0)−1 in probability. For s > 0, denote χs(x) := x1{x ≤ s}. Note that1n
n−1
k=0

χs (σk+1)−
1
n

n−1
k=0

σk+1

 ≤
1
n

n−1
k=0

σk+11{σk+1 > s}.

Here E[σk+11{σk+1 > s}] ≤ s−1E[σ 2
k+1], say, so that, by Lemma 4.3,

lim
s→∞

sup
k

E

σk+11{σk+1 > s}


= 0.

A similar argument holds for σ ⋆k+1. Hence, for any ε > 0, there exists s0 < ∞ such that

E




1
n

n−1
k=0

σk+1 −
1
n

n−1
k=0

σ ⋆k+1


−


1
n

n−1
k=0

χs (σk+1)−
1
n

n−1
k=0

χs

σ ⋆k+1

 ≤ ε, (5.4)

for all s ≥ s0 and all n. On the event Ek,s (the coupling started at τk succeeds for s steps) we
have χs(σk+1) = χs(σ

⋆
k+1). Then, for any x > 0,χs (σk+1)− χs

σ ⋆k+1

 ≤ s1(Ec
k,s)1{Xτk > x} + s1{Xτk ≤ x}.

Now

P[Ec
k,s ∩ {Xτk > x}] ≤ sup

y>x
P[Ec

k,s | Xτk = y, ητk = η⋆k,0 = 0]

= sup
y>x

P[Ec
s | X0 = y, η0 = η⋆0 = 0].

So for fixed s ≥ s0, Lemma 4.1 shows we may choose x ≥ x0 large enough such that,

E
1
n

n−1
k=0

s1(Ec
k,s)1{Xτk > x} ≤ ε,

for all n. Combining this with the null property (5.3), we obtain that, for fixed s ≥ s0,

lim sup
n→∞

E


1
n

n−1
k=0

χs(σk+1)−

n−1
k=0

χs(σ
⋆
k+1)




≤ ε.

Thus with (5.4) we conclude that

lim sup
n→∞

E

1n
n−1
k=0

σk+1 −
1
n

n−1
k=0

σ ⋆k+1

 ≤ 2ε.

Since ε > 0 was arbitrary, and σ ⋆k+1 are i.i.d. random variables with mean π(0)−1, it follows that
n−1τn → π(0)−1 in probability.

The claimed result now follows by inverting the law of large numbers: for example,

P

n−1 N (n) > π(0)+ ε


≤ P


τ⌈(π(0)+ε)n⌉ ≤ n


≤ P


τ⌈(π(0)+ε)n⌉

⌈(π(0)+ ε)n⌉
≤

1
π(0)+ ε


,

which tends to 0 as n → ∞ for any ε > 0; similarly in the other direction. �

In the proof of Theorem 2.6 we will use two facts about convergence in distribution that we
now recall (see e.g. [6, p. 73]). First, if sequences of random variables ξn and ζn are such that



N. Georgiou, A.R. Wade / Stochastic Processes and their Applications 124 (2014) 3179–3205 3201

ζn → ζ in distribution for some random variable ζ and |ξn − ζn| → 0 in probability, then
ξn → ζ in distribution (this is Slutsky’s theorem). Second, if ζn → ζ in distribution and αn → α

in probability, then αnζn → αζ in distribution.

Proof of Theorem 2.6. First, since n−1 N (n) → π(0) in probability (Lemma 5.6),

lim
n→∞

P


XτN (n)

√
N (n)

·


N (n)

n
≤ x


= lim

n→∞
P


XτN (n)

√
N (n)

≤
x

√
π(0)


= Fα,θ (x),

by Lemma 5.3 and the fact that limn→∞ N (n) = ∞ a.s. Together with Lemma 5.5 and Slutsky’s
theorem, this shows that

lim
n→∞

P[n−1/2 Xn ≤ x] = lim
n→∞

P[n−1/2 XτN (n) ≤ x] = Fα,θ (x). (5.5)

Next we prove the joint convergence of (Xn, ηn). For m ∈ Z+, let Rn,m = n−1/2
|Xn−m − Xn|.

Then, by the p = 1 case of (Bp), we have E[Rn,m] ≤ Cmn−1/2 for some finite constant C .
Hence, for fixed m, as n → ∞, Rn,m → 0 in L1 and hence in probability.

Fix x ∈ (0,∞). Then, for any ε ∈ (0, x),

P[n−1/2 Xn > x, ηn = k] ≤ P[n−1/2 Xn−m > x − ε, ηn = k] + P[Rn,m ≥ ε].

Here

P[n−1/2 Xn−m > x − ε, ηn = k]

=


y:n−1/2 y>x−ε

P[Xn−m = y]P[ηn = k | Xn−m = y]. (5.6)

Again we use the coupling of Lemma 4.1 and the notation En from (4.5). Note thatPy,i,i [ηm = k] − π(k)
 ≤ Py,i,i [Ec

m] +
Py,i,i [η

⋆
m = k] − π(k)

 .
Here, since (η⋆n) is an aperiodic, irreducible finite Markov chain with stationary distribution π ,
Py,i,i [η

⋆
m = k] = P[η⋆m = k | η⋆0 = i] converges (uniformly over i and y) to π(k) as m → ∞.

So, for any δ > 0, we may choose m0 < ∞ such that, for all i and all y,Py,i [ηm0 = k] − π(k)
 ≤ Py,i,i [Ec

m0
] + δ.

By Lemma 4.1, we may then choose y0 < ∞ large enough so that, for all y ≥ y0,P[ηm0 = k | X0 = y] − π(k)
 ≤ 2δ.

Now taking n large enough so that (x − ε)n1/2 > y0, it follows from (5.6) that

P[n−1/2 Xn > x, ηn = k] ≤ P[Rn,m0 ≥ ε] + (π(k)+ 2δ)P[n−1/2 Xn−m0 > x − ε].

We now let n → ∞ and apply (5.5) to obtain

lim sup
n→∞

P[n−1/2 Xn > x, ηn = k] ≤ (π(k)+ 2δ)

1 − Fα,θ (x − ε)


.

Since ε > 0 and δ > 0 were arbitrary, and Fα,θ is continuous, it follows that

lim sup
n→∞

P[n−1/2 Xn > x, ηn = k] ≤ π(k)

1 − Fα,θ (x)


, for all x ∈ (0,∞).

A similar argument in the other direction, starting from the inequality

P[n−1/2 Xn > x, ηn = k] ≥ P[n−1/2 Xn−m > x + ε, ηn = k] − P[Rn,m ≥ ε]
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yields the complementary lim inf statement, so that

lim
n→∞

P[n−1/2 Xn > x, ηn = k] = π(k)

1 − Fα,θ (x)


, for all x ∈ (0,∞). (5.7)

The statement in the theorem now follows from the fact that, by (5.7),

lim
n→∞

P[n−1/2 Xn ≤ x, ηn = k] = lim
n→∞

P[ηn = k] − π(k)

1 − Fα,θ (x)


,

where limn→∞ P[ηn = k] = π(k) by taking x ↓ 0 in (5.7). �
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Appendix. Proof of coupling lemma

In this appendix we give the deferred technical proof of our coupling result, Lemma 4.1.

Proof of Lemma 4.1. As commented on earlier, the proof follows an almost standard coupling
argument. Indeed, since the first two statements of the lemma will be satisfied for any coupling of
(Xn, ηn) and (η⋆n) on a common probability space, in order to also prove (4.1)/(4.2) it makes sense
to use a maximal coupling of ηn and η⋆n , which we will construct in a step-wise fashion. For us,
the condition that qx (i, j) has a limit as x → ∞ means that the probability of decoupling at any
step will be small, provided that Xn stays sufficiently large. This introduces some complications
to the standard coupling arguments, as we will need to keep control of the variation of Xn .

We construct the Markov chain (Xn, ηn, η
⋆
n) by describing a single step:

• If ηn ≠ η⋆n then produce (Xn+1, ηn+1) from (Xn, ηn) according to the transition probabilities
p(x, i, y, j), and produce η⋆n+1 from η⋆n independently according to the transition probabilities
q(i, j).

• Otherwise, given ηn = η⋆n = i and Xn = x , we use a maximal coupling (see, for example,
Lindvall [23, pp. 18–20]) to produce (ηn+1, η

⋆
n+1) via

P[ηn+1 = j, η⋆n+1 = k] =


min{qx (i, j), q(i, k)} for j = k,

(qx (i, j)− q(i, j))+(q(i, k)− qx (i, k))+

1
2


ℓ∈S

|qx (i, ℓ)− q(i, ℓ)|
for j ≠ k.

Then, given ηn+1 = j we produce Xn+1 via

P[Xn+1 = y | ηn+1 = j] =
p(x, i, y, j)

z∈Z+

p(x, i, z, j)
.

It is a simple matter to check that we have constructed a valid coupling of (Xn, ηn) and η⋆n .
Indeed, making use of the fact that

ℓ∈S

|qx (i, ℓ)− q(i, ℓ)| =


ℓ∈S

(qx (i, ℓ)− q(i, ℓ))+ +


ℓ∈S

(q(i, ℓ)− qx (i, ℓ))
+
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and

0 =


ℓ∈S


qx (i, ℓ)− q(i, ℓ)


=


ℓ∈S

(qx (i, ℓ)− q(i, ℓ))+ −


ℓ∈S

(q(i, ℓ)− qx (i, ℓ))
+,

calculation shows that P[ηn+1 = j | (Xn, ηn) = (x, i)] = qx (i, j) and P[η⋆n+1 = j | η⋆n = i] =

q(i, j). Then we see that

P[(Xn+1, ηn+1) = (y, j) | (Xn, ηn) = (x, i)] =
p(x, i, y, j)

z∈Z+

p(x, i, z, j)
qx (i, j) = p(x, i, y, j).

This verifies the coupling construction. Note that, with this coupling,

P[ηn+1 ≠ η⋆n+1 | Xn = x, ηn = η⋆n = i] =
1
2


j∈S

|qx (i, j)− q(i, j)|. (A.1)

It remains to prove (4.1) and (4.2). First in the case of (4.1), for which we assume (Q∞), we give
the argument in detail; we will then indicate how to modify the argument to prove (4.2).

Given ε > 0 and n < ∞, choose x0 so that maxi


j∈S |qx (i, j)−q(i, j)| ≤
ε
n for all x ≥ x0;

this is possible by assumption (Q∞).
Let Ak = {Xk ≥ x0}, and recall from (4.5) that Ek = ∩0≤ℓ≤k{ηℓ = η⋆ℓ}. Then,

P[Ec
k+1 | Ek ∩ Ak] = P[ηk+1 ≠ η⋆k+1 | Ek ∩ Ak]

≤ max
i

sup
x≥x0

P[ηk+1 ≠ η⋆k+1 | Xk = x, ηk = η⋆k = i],

so that, given X0 = x, η0 = η⋆0 = i ,

P[Ec
k+1] ≤ P[Ec

k+1 | Ek ∩ Ak] + P[Ec
k ] + P[Ac

k] ≤
ε

2n
+ P[Ec

k ] + P[Ac
k],

which in turn implies that

P[Ec
n] ≤

ε

2
+

n−1
k=0

P[Ac
k] ≤

ε

2
+ nP


min

0≤k≤n−1
Xk < x0


.

To complete the proof we need to show that, for x sufficiently large,

P


min
0≤k≤n−1

Xk < x0

X0 = x, η0 = η⋆0 = i


≤

ε

2n
, for all i . (A.2)

But

P


min
0≤k≤n−1

Xk < x0

X0 = x, η0 = η⋆0 = i


≤ Px,i


max

0≤k≤n−1
|Xk − X0| > x − x0


≤ Px,i

 
0≤k≤n−1

|Xk+1 − Xk | >
x − x0

n


≤ n max

y, j
P

|Xk+1 − Xk | >

x − x0

n

Xk = y, ηk = j


,
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so (A.2) will follow from

lim
r→∞

max
x,i

P[|Xk+1 − Xk | > r | Xk = x, ηk = i] = 0,

which in turn follows from condition (Bp) with p > 0 and Markov’s inequality; indeed,

max
x,i

P[|Xk+1 − Xk | > r | Xk = x, ηk = i] ≤ max
x,i

E[|Xk+1 − Xk |
p

| Xk = x, ηk = i]

r p

≤
C p

r p .

Therefore P[Ec
n | X0 = x, η0 = η⋆0 = i] ≤ ε for all i and sufficiently large x , and since ε was

arbitrary, this proves (4.1).
The proof of (4.2) is similar, now assuming (Q+

∞). We set n = n(x) = ⌊A log x⌋. Now we
modify the definition of Ak to be Ak = {Xk ≥ x/2}. Then, (A.1) with (Q+

∞) gives

P[Ec
k+1] ≤ P[Ec

k ] + P[Ac
k] + O(x−δ0),

from which we have

P[Ec
n(x)] ≤ O(x−δ0/2)+ A log xP


min

0≤k≤n(x)−1
Xk < x/2


.

The final probability in the last display we estimate in exactly the same way as in the previous
argument, replacing the previous x0 by x/2 and the previous n by n(x), and we again find a term
that decays as a power of x . Thus we obtain (4.2). �
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