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The observational status of Galileon gravity after Planck
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We use the latest CMB data from Planck, together with BAO measurements, to constrain the full parameter
space of Galileon gravity. We constrain separately the three main branches of the theory known as the Cubic,
Quartic and Quintic models, and find that all yield a very good fit to these data. Unlike in ΛCDM, the Galileon
model constraints are compatible with local determinations of the Hubble parameter and predict nonzero neu-
trino masses at over 5σ significance. We also identify that the low-l part of the CMB lensing spectrum may be
able to distinguish between ΛCDM and Galileon models. In the Cubic model, the lensing potential deepens at
late times on sub-horizon scales, which is at odds with the current observational suggestion of a positive ISW
effect. Compared to ΛCDM, the Quartic and Quintic models predict less ISW power in the low-l region of the
CMB temperature spectrum, and as such are slightly preferred by the Planck data. We illustrate that residual
local modifications to gravity in the Quartic and Quintic models may render the Cubic model as the only branch
of Galileon gravity that passes Solar System tests.

I. INTRODUCTION

The idea of modifying Einstein’s theory of General Relativ-
ity (GR) has attracted substantial attention recently in cosmo-
logical studies (see [1] for a review). Despite the overwhelm-
ing success of GR in passing a vast number of experimental
tests [2], these only probe the laws of gravity on length scales
that are much smaller than those relevant for cosmology. As
a result, it remains unclear whether or not the success of GR
can be extended to larger scales, which leaves room for al-
ternative scenarios. This provides the main motivation for
looking at modified gravity models: the study of alternative
theories should result in a better understanding of the differ-
ent observational signatures one may expect, and hence, help
to design future observational missions that aim to test gravity
on cosmological scales. Further motivation to study modi-
fied gravity comes from the fact that these theories may also
offer an explanation for the current accelerated expansion of
the Universe. In the context of GR, such an acceleration can
only be explained by postulating the existence of a "dark en-
ergy" fluid that accelerates the expansion due to its negative
pressure. The energy of the vacuum behaves as a cosmolog-
ical constant (Λ). This represents the simplest explanation
for dark energy. However, there is a huge discrepancy be-
tween the value that particle physics theories predict for Λ,
and the value inferred from cosmological observations. Mod-
ified gravity models address this by attempting to explain the
acceleration without invoking any "dark energy".

Here, we focus on the Galileon model of modified grav-
ity first proposed by Ref. [3]. The action of this model is
made up of five Lagrangian densities for a scalar field ϕ
(cf. Eq. 1). These constitute the most general set of terms that,
in four-dimensional Minkowski space, (i) are invariant under
the Galilean shift transformation ∂µϕ → ∂µϕ + bµ (where
bµ is a constant four-vector); and (ii) lead to equations of mo-
tion that remain at second-order in field derivatives. The latter
property makes this model a subset of the general Horndeskii
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theory [4], protecting it against the presence of Ostrogradski
ghosts (see Ref. [5] for a discussion). In Refs. [6, 7] it was
shown that the original action of Ref. [3] needs to be aug-
mented with certain couplings to curvature tensors, if one re-
quires the field equations to remain second-order in dynami-
cal spacetimes like the Friedmann-Robertson-Walker (FRW).
This breaks the Galileon symmetry, but helps to keep the the-
ory free from pathologies.

The action of the Galileon model contains nonlinear co-
variant derivative self-couplings of ϕ, which induce couplings
between partial derivatives of the Galileon and metric fields.
This is a process known as kinetic gravity braiding [8, 9],
and it is why the Galileon model is called a modified gravity
theory. These derivative interactions can cause the Universe
to accelerate, but also introduce extra terms that modify the
gravitational force law. The latter are proportional to the spa-
tial gradients of ϕ and are usually referred to as "fifth force"
terms. A vital observational requirement is that the amplitude
of these terms must be suppressed in regions such as the So-
lar System, where GR has been proven an extremely success-
ful theory [2]. Interestingly, the same nonlinear nature of the
derivative couplings that give rise to the fifth force is also what
allows for these modifications to be suppressed near massive
bodies like the Sun. Far away from matter sources, the equa-
tion of motion in ϕ can be linearized, resulting in a Poisson-
like equation that gives rise to a sizeable spatial gradient of
ϕ, and hence, to nonvanishing fifth force terms. However,
near massive bodies, where the density is higher, the nonlin-
ear terms can no longer be neglected. This effectively leads
to a suppression of the spatial gradient of ϕ, in such a way
that the magnitude of the fifth force becomes negligible com-
pared to normal gravity. This "screening" effect is known as
the Vainshtein mechanism [10–12].

The Galileon model we study here has been the subject of
many recent papers 1. References [20, 21] explored the phe-
nomenology of the Galileon model at the background level,
and derived observational constraints using data from type

1 See, e.g., Refs. [13–19] for studies of models motivated in similar ways.
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Ia Supernovae (SNIa), Baryonic Acoustic Oscillations (BAO)
and the distance priors encoded in the peak positions of the
Cosmic Microwave Background (CMB). By working under
the quasi-static approximation, Refs. [22–26] have placed
constraints using data for the linear growth rate of matter fluc-
tuations. The first predictions for the CMB temperature, CMB
lensing and linear matter power spectra in Galileon cosmolo-
gies were obtained in Ref. [27], and later used to perform
the first thorough exploration of the cosmological parameter
space in these models using the full information contained in
the CMB temperature spectrum [28]. Reference [29] studied
the bispectrum of matter density perturbations. The Galileon
model predictions for the clustering of matter on small (non-
linear) scales have been studied by performing N-body simu-
lations of structure formation [30, 31] and by making use of
the spherical collapse model in the Excursion Set formalism
[32]. An analytical halo model for Galileon gravity was devel-
oped by Ref. [33], and Ref. [34] investigated the potentially
powerful role that low order statistics in the galaxy velocity
field can play in distinguishing Galileon gravity from GR. All
of these studies have identified some observational tensions
that seem to question the viability of the Galileon model.

The above studies have assumed neutrino particles to
be massless. However, the detection of neutrino flavour
oscillations in atmospheric, solar and reactor experiments
demonstrates that the sum of the three neutrinos masses is
non-zero, Σmν > 0. These experiments measure m2

2 −
m2

1 ≈ (7.5± 0.19) × 10−5 eV2 (1σ) and |m2
2 − m2

3| ≈
(2.427± 0.007) × 10−3 eV2 (1σ) [35], where m1,m2,m3

are the masses of the three neutrino eigenstates. Assuming
a normal mass ordering (m1 < m2 < m3), the data im-
ply Σmν > 0.06 eV, whereas for an inverted mass ordering
(m3 < m2 < m1), Σmν > 0.1 eV. Currently, the upper
bound on the summed neutrino masses from terrestrial ex-
periments is Σmν < 6.6 eV [36, 37]. Such large values of
Σmν can affect substantially a number of different cosmo-
logical observables. As a result, it seems reasonable to re-
quire that consistent cosmological constraints treat Σmν as a
free parameter. This is of particular interest in modified grav-
ity models, where some degeneracies may arise [38–40]. In
the context of Galileon gravity, the impact of massive neutri-
nos has been explored recently in Ref. [41]. In particular, it
has been shown that the modifications introduced by massive
neutrinos at the background and linear perturbation levels can
effectively eliminate observational tensions that were thought
to rule out this theory of gravity.

Here, we update the Galileon constraints presented in
Ref. [28] to include the Planck satellite data [42]. In particu-
lar, for the first time, we make use of the CMB lensing power
spectrum as measured by Planck [43] in the constraints. We
also analyze the impact of considering the possibility of mas-
sive neutrinos by extending the analysis of Ref. [41], who fo-
cused on the so-called Cubic Galileon model. Our ultimate
goal is to provide a general overview of the current observa-
tional status of the Galileon model, and to identify the types
of observables and future experiments that have the greatest
potential to further constrain or rule out this model.

The layout of this paper is as follows. In Sec. II we present

the action of the model and display the relevant background
and linearly perturbed equations. Section III is devoted to the
methodology adopted in our constraints. In particular, we de-
scribe the full cosmological parameter space, as well as the
datasets used in the constraints. In Sec. IV we review briefly
some of the results obtained by previous Galileon constraint
studies. The cosmological constraints for the so-called Cu-
bic sector of the Galileon model are discussed in Sec. V. In
this section, we address explicitly the important role played by
massive neutrinos. We also analyze the resulting best-fitting
cosmologies, and show how these can be further constrained
by future data. Section VI focuses on the constraints for the
so-called Quartic and Quintic sectors of Galileon gravity. We
discuss the implementation of the Vainshtein mechanism in
these sectors of the model, and how such an implementation
can be used to place tight constraints on the model parameters.
Finally, we summarize in Sec. VII.

We assume the metric convention (+,−,−,−) and work
in units in which the speed of light c = 1. Greek indices run
over 0, 1, 2, 3 and 8πG = κ = M−2

Pl , where G is Newton’s
constant and MPl is the reduced Planck mass.

II. THE GALILEON MODEL

The action of the covariant Galileon model (in the absence
of explicit couplings to matter) is given by

S =

∫
d4x
√
−g

[
R

16πG
− 1

2

5∑
i=1

ciLi − Lm

]
, (1)

with

L1 = M3ϕ,

L2 = ∇µϕ∇µϕ,

L3 =
2

M3
�ϕ∇µϕ∇µϕ,

L4 =
1

M6
∇µϕ∇µϕ

[
2(�ϕ)2 − 2(∇µ∇νϕ)(∇µ∇νϕ)

−R∇µϕ∇µϕ/2
]
,

L5 =
1

M9
∇µϕ∇µϕ

[
(�ϕ)3 − 3(�ϕ)(∇µ∇νϕ)(∇µ∇νϕ)

+2(∇µ∇νϕ)(∇ν∇ρϕ)(∇ρ∇µϕ)

−6(∇µϕ)(∇µ∇νϕ)(∇ρϕ)Gνρ

]
, (2)

where R is the Ricci curvature scalar, g is the determinant of
the metric gµν , andM3 ≡MPlH

2
0 withH0 being the present-

day Hubble expansion rate. The five terms in the Lagrangian
density are fixed by the Galilean invariance in a flat spacetime,
∂µϕ→ ∂µϕ+ bµ, and c1−5 are dimensionless constants. The
explicit couplings to the Ricci scalar R and the Einstein ten-
sor Gµν in L4 and L5 break the Galilean symmetry, but are
necessary to limit the equations of motion to second-order in
field derivatives (and hence free from Ostrogradski ghosts) in
spacetimes such as FRW [6]. We set the potential term to zero
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(c1 = 0), as we are only interested in cases where cosmic
acceleration is driven by the kinetic terms of the field. The
Einstein equations and the Galileon field equation of motion
can be found as Eqs. (A1–A7) of Ref. [27].

Throughout the paper we shall refer to three sectors of the
Galileon model. We dub Cubic and Quartic Galileon the mod-
els made up by {L2,L3} and {L2,L3,L4}, respectively. We
shall use the name Quintic Galileon when referring to the most
general model, i.e., {L2,L3,L4,L5}.

A. Linearly perturbed equations

The linearly perturbed gauge-invariant equations in
Galileon gravity have the same structure as in GR, but with ex-
tra contributions to the energy-momentum tensor, Tµν , from
the Galileon field. Here, for brevity, we simply list these con-
tributions and lay out also the main premises of the method of
3 + 1 decomposition used in the derivation. For more details
we refer interested readers to Ref. [27].

In the 3 + 1 decomposition approach, the main idea is to
make spacetime splits of the physical quantities w.r.t. an ob-
server’s four-velocity, uµ [44–47]. This is achieved via the
projection tensor, hµν = gµν − uµuν , which projects covari-
ant tensors onto 3-dimensional hyperspaces that are orthogo-
nal to uµ. For instance, the covariant spatial derivative ∇̂ of a
generic tensor field Aβ...γσ...λ is defined as

∇̂αAβ···γσ···λ ≡ h
α
µh

β
ν · · · hγκhρσ · · · h

η
λ∇

µAν···κρ···η . (3)

The energy-momentum tensor and the covariant derivative

of uµ can be decomposed, respectively, as

Tµν = πµν + 2q(µuν) + ρuµuν − phµν , (4)

∇µuν = σµν +$µν +
1

3
θhµν + uµAν , (5)

in which πµν is the projected symmetric and trace-free (PSTF)
anisotropic stress, qµ is the heat flux vector, ρ is the energy
density, p is the isotropic pressure, σµν is the PSTF shear ten-
sor, $µν = ∇̂[µuν] is the vorticity, θ = ∇αuα = 3ȧ/a = 3H
is the expansion scalar (where a is the mean expansion scale
factor andH is the Hubble rate) andAµ = u̇µ is the observer’s
four-acceleration. A dot denotes derivatives w.r.t. physical
time, which can be expressed in terms of covariant derivatives
as ϕ̇ = uα∇αϕ. Square brackets and parentheses indicate an-
tisymmetrization and symmetrization, respectively. Note that
uαuα = 1, in accordance with the metric signature adopted.

As mentioned above, the Galileon field contributes to the
Einstein equations via additional terms to the components of
the total energy-momentum tensor Tµν :

ρ = ρf + ρϕ, (6)
p = pf + pϕ, (7)
qµ = qfµ + qϕµ , (8)

πµν = πfµν + πϕµν , (9)
where the superscripts ϕ and f indicate, respectively, the
Galileon terms and the terms corresponding to the rest of the
matter fluid. The latter includes photons, neutrinos, baryonic
and cold dark matter. Up to first order in perturbed quantities,
the Galileon terms are given by

ρϕ
.
= c2

[
1

2
ϕ̇2

]
+

c3
M3

[
2ϕ̇3θ + 2ϕ̇2�̂ϕ

]
+

c4
M6

[
5

2
ϕ̇4θ2 + 4ϕ̇3θ�̂ϕ+

3

4
ϕ̇4R̂

]
+
c5
M9

[
7

9
ϕ̇5θ3 +

5

3
ϕ̇4θ2�̂ϕ+

1

2
ϕ̇5θR̂

]
, (10)

pϕ
.
= c2

[
1

2
ϕ̇2

]
+

c3
M3

[
−2ϕ̈ϕ̇2

]
+
c4
M6

[
−4ϕ̈ϕ̇3θ − ϕ̇4θ̇ − 1

2
ϕ̇4θ2 − 4ϕ̈ϕ̇2�̂ϕ− 4

9
ϕ̇3θ�̂ϕ+ ϕ̇4∇̂ ·A+

1

12
ϕ̇4R̂

]
+
c5
M9

[
−5

3
ϕ̈ϕ̇4θ2 − 2

3
ϕ̇5θ̇θ − 2

9
ϕ̇5θ3 − 2

9
ϕ̇4θ2�̂ϕ− 8

3
ϕ̈ϕ̇3θ�̂ϕ− 1

2
ϕ̈ϕ̇4R̂− 2

3
ϕ̇4θ̇�̂ϕ+

2

3
ϕ̇5θ∇̂ ·A

]
, (11)

qϕµ
.
= c2

[
ϕ̇∇̂µϕ

]
+

c3
M3

[
2ϕ̇2θ∇̂µϕ− 2ϕ̇2∇̂µϕ̇

]
+
c4
M6

[
−4ϕ̇3θ∇̂µϕ̇+ 2ϕ̇3θ2∇̂µϕ− ϕ̇4∇̂µθ +

3

2
ϕ̇4∇̂ασµα +

3

2
ϕ̇4∇̂α$µα

]
+
c5
M9

[
−5

3
ϕ̇4θ2∇̂µϕ̇+

5

9
ϕ̇4θ3∇̂µϕ−

2

3
ϕ̇5θ∇̂µθ + ϕ̇5θ∇̂ασµα + ϕ̇5θ∇̂α$µα

]
, (12)

πϕµν
.
=

c4
M6

[
−ϕ̇4

(
σ̇µν − ∇̂〈µAν〉 − Eµν

)
−
(

6ϕ̈ϕ̇2 +
2

3
ϕ̇3θ

)
∇̂〈µ∇̂ν〉ϕ−

(
6ϕ̈ϕ̇3 +

4

3
ϕ̇4θ

)
σµν

]
+
c5
M9

[
−
(
ϕ̇5θ̇ + ϕ̇5θ2 + 6ϕ̈ϕ̇4θ

)
σµν −

(
ϕ̇5θ + 3ϕ̈ϕ̇4

)
σ̇µν −

(
4ϕ̈ϕ̇3θ + ϕ̇4θ̇ +

1

3
ϕ̇4θ2

)
∇̂〈µ∇̂ν〉ϕ
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+
(
ϕ̇5θ + 3ϕ̈ϕ̇4

)
∇̂〈µAν〉 − 6ϕ̈ϕ̇4Eµν

]
, (13)

in which �̂ ≡ ∇̂µ∇̂µ. In Eq. (13), ∇̂〈µ∇̂ν〉ϕ
and Eµν = uαuβWµανβ are PSTF rank-2 tensors that
live in the 3-dimensional hypersurface orthogonal to uµ

(i.e. uµ∇̂〈µ∇̂ν〉ϕ = uµEµν = 0), where Wµανβ is the Weyl
tensor. Angular brackets indicate trace-free quantities.

The linearly perturbed Galileon field equation of motion is
given by

0
.
= c2

[
ϕ̈+ �̂ϕ+ ϕ̇θ

]
+

c3
M3

[
4ϕ̈ϕ̇θ +

8

3
ϕ̇θ�̂ϕ+ 4ϕ̈�̂ϕ+ 2ϕ̇2θ2 + 2ϕ̇2θ̇ − 2ϕ̇2∇̂ ·A

]
+
c4
M6

[
6ϕ̈ϕ̇2θ2 + 4ϕ̇3θ̇θ + 2ϕ̇3θ3 + 8ϕ̈ϕ̇θ�̂ϕ+

26

9
ϕ̇2θ2�̂ϕ− 4ϕ̇3θ∇̂ ·A+ 4ϕ̇2θ̇�̂ϕ+ 3ϕ̈ϕ̇2R̂+

1

3
ϕ̇3θR̂

]
+
c5
M9

[
5

9
ϕ̇4θ4 +

20

9
ϕ̈ϕ̇3θ3 +

5

3
ϕ̇4θ̇θ2 +

8

9
ϕ̇3θ3�̂ϕ+

1

2
ϕ̇4θ̇R̂

+
1

6
ϕ̇4θ2R̂− 5

3
ϕ̇4θ2∇̂ ·A+ 4ϕ̈ϕ̇2θ2�̂ϕ+

8

3
ϕ̇3θ̇θ�̂ϕ+ 2ϕ̈ϕ̇3θR̂

]
. (14)

In the above equations, ϕ = ϕ̄ + δϕ, where ϕ̄ and δϕ de-
note, respectively, the background averaged (an overbar in-
dicates background quantities) and the perturbation values of
the Galileon field. Note that if a spatial derivative acts on ϕ,
then it acts only on the perturbed part of the Galileon field,
e.g. �̂ϕ = �̂δϕ. On the other hand, ϕ̇ = ˙̄ϕ+ ˙δϕ.

B. Background evolution

In order to solve the perturbation equations, one first needs
to know the time evolution of the background quantities. This
can be achieved by solving one of the Friedmann equations:

θ2

3
= κρ̄, (15)

θ̇ +
1

3
θ2 +

κ

2
(ρ̄+ 3p̄) = 0, (16)

and the equation of motion of the background Galileon field:

0 = c2 [ϕ̈+ ϕ̇θ] +
c3
M3

[
4ϕ̈ϕ̇θ + 2ϕ̇2θ2 + 2ϕ̇2θ̇

]
+
c4
M6

[
6ϕ̈ϕ̇2θ2 + 4ϕ̇3θ̇θ + 2ϕ̇3θ3

]
+
c5
M9

[
5

9
ϕ̇4θ4 +

20

9
ϕ̈ϕ̇3θ3 +

5

3
ϕ̇4θ̇θ2

]
, (17)

where we have dropped the overbars on ϕ to lighten the nota-
tion. In Eqs. (15) and (16), the Galileon contribution to ρ̄ and
p̄ is obtained by extracting the zeroth-order part (non-hatted
terms) of Eqs. (10) and (11), respectively:

ρ̄ϕ = c2

[
1

2
ϕ̇2

]
+

c3
M3

[
2ϕ̇3θ

]
+

c4
M6

[
5

2
ϕ̇4θ2

]
+
c5
M9

[
7

9
ϕ̇5θ3

]
, (18)

p̄ϕ = c2

[
1

2
ϕ̇2

]
+

c3
M3

[
−2ϕ̈ϕ̇2

]
+
c4
M6

[
−4ϕ̈ϕ̇3θ − ϕ̇4θ̇ − 1

2
ϕ̇4θ2

]
+
c5
M9

[
−5

3
ϕ̈ϕ̇4θ2 − 2

3
ϕ̇5θ̇θ − 2

9
ϕ̇5θ3

]
. (19)

In general, the background evolution is obtained by solv-
ing Eqs. (15 - 17) numerically. Reference [20] did this and
showed that different initial conditions of the background
Galileon field give rise to different time evolution that even-
tually merge into a common trajectory called the tracker so-
lution. Moreover, Refs. [27] and [28] have shown that it is
a requirement that the tracker solution is reached well before
the onset of the accelerated expansion era so that a reason-
able fit to the CMB data can be achieved (we reillustrate this
in Appendix A). Since before the accelerated era the Galileon
field makes a subdominant contribution to the dynamics of the
expansion, this justifies the use of the tracker solution at all
cosmological epochs. The advantage of assuming the tracker
is twofold. First, it allows one to derive analytical formulae
for the background evolution (just like, e.g., ΛCDM models),
which greatly simplifies and speeds up the numerical calcula-
tions; second, it also allows us to reduce the number of free
parameters by one, which is helpful when exploring the high-
dimensional parameter space of the model.
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The tracker evolution is characterized by

H ˙̄ϕ = constant ≡ ξH2
0 , (20)

where ξ is a dimensionless constant. Multiplying Eq. (15) by
H2, eliminating ˙̄ϕ with Eq. (20) and dividing the resulting
equation by H4

0 , one obtains

E4 =

(
Ωr0a

−4 + Ωm0a
−3 + Ων0

ρ̄ν(a)

ρ̄ν0

)
E2

+
1

6
c2ξ

2 + 2c3ξ
3 +

15

2
c4ξ

4 + 7c5ξ
5, (21)

in which E ≡ H/H0, Ωi0 = ρ̄i0/ρc0, where ρc0 = 3H2
0/κ

is the critical energy density today. The subscript r refers to
radiation, m to baryonic and cold dark matter and ν refers to
neutrinos. At the present day, Eq. (21) gives

Ωϕ0 ≡ 1− Ωr0 − Ωm0 − Ων0

=
1

6
c2ξ

2 + 2c3ξ
3 +

15

2
c4ξ

4 + 7c5ξ
5, (22)

where we have assumed spatial flatness. This equation can
be regarded as a constraint equation for one of the Galileon
parameters, i.e., one of the parameters can be fixed by the
condition that the Universe is spatially flat. The assumption
that the field follows the tracker allows us to fix one more
Galileon parameter. This second constraint equation can be
obtained by plugging Eq. (20) into Eq. (17), which yields

c2ξ
2 + 6c3ξ

3 + 18c4ξ
4 + 15c5ξ

5 = 0. (23)

Equation (21) is a second-order algebraic equation for E(a),
whose solution reads

E(a)2 =
1

2

[(
Ωr0a

−4 + Ωm0a
−3 + Ων0

ρ̄ν(a)

ρ̄ν0

)

+

√(
Ωr0a−4 + Ωm0a−3 + Ων0

ρ̄ν(a)

ρ̄ν0

)2

+ 4Ωϕ0

 .(24)

Finally, using Eq. (20) we have

˙̄ϕ = ξH0/E(a). (25)

These last two equations completely specify the background
evolution in the Galileon model. Note that, on the tracker,
H(a) depends exclusively on the value of the Ωi0 and not
on the Galileon parameters. As a result, observational probes
such as BAO or SNIa, which are sensitive only to background
quantities, cannot constrain the values of the ci.

III. METHODOLOGY

To obtain our results, we have modified the publicly avail-
able CAMB [48] and COSMOMC [49] codes to follow Galileon
cosmologies. Our new versions of these codes have been sub-
jected to a number of tests. For instance, we have checked
that the background evolution computed in CAMB agrees with
the background evolution computed in an independent code
written in Python (although for most of this paper we shall
use the analytical expressions of Eqs. (24) and (25)). At the
level of the perturbed equations, we have also checked that the
energy and momentum conservation equations are satisfied.
The latter equations do not directly enter the calculations. As
a result, the fact that they hold automatically after solving for
the other perturbation equations serves as an independent and
nontrivial check of the code solutions.

We constrain the parameter space by running Monte Carlo
Markov Chains (MCMC). For each model and data combina-
tion we have run eight chains in parallel. The CosmoMC code
checks the convergence of a given set of chains by using the
Gelman and Rubin statistic, RG&R = "variance of the chain
means"/"mean of the chain variances". Our chains are only
stopped if RG&R− 1 < 0.02. When estimating the likelihood
surface from the chain samples, we discard the first third of
the chains to eliminate the points sampled during the "burn-
in" period.

A. Datasets

In our constraints, we consider three data combinations.
The first dataset comprises the Planck data for the CMB tem-
perature anisotropy angular power spectrum [42, 50]. These
include its low-l and high-l temperature components, as well
as the cross-correlation of the temperature map with the
WMAP9 polarization data [51]. For this piece of the like-
lihood, we also vary the nuisance parameters that are used
to model foregrounds, and instrumental and beam uncertain-
ties. We denote this dataset by P. We call our second dataset
PL, which adds to P the data for the power spectrum of the
lensing potential (reconstructed from the CMB), also given
by the Planck satellite [43]. On smaller angular scales, the
CMB lensing power spectrum can be affected by nonlineari-
ties. However, given the current level of precision of the data,
such nonlinear corrections can be ignored and one can assume
that linear perturbation theory holds. The final dataset, de-
noted by PLB, also includes the BAO measurements obtained
from the 6df [52], SDDS DR7 [53], BOSS DR9 [54] and Wig-
gleZ [55] galaxy redshift surveys.

1. Leaving out data sensitive to the nonlinear growth of structure

In general, modified gravity models introduce nontriv-
ial gravitational interactions, which can leave clear imprints
on the way structures form in the Universe. Hence, mea-
surements of the growth rate from redshift space distortions
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(RSD), the amplitude and shape of the galaxy power spec-
trum, cluster abundance, galaxy shear, etc., can in principle
be used to place further constraints on models like Galileon
gravity. However, the use of these data requires a proper un-
derstanding and modelling of structure formation on scales
where nonlinear effects play an important role. These ef-
fects can only be accurately estimated via N-body simulations,
which can be particularly challenging (and expensive) to run
for large numbers of modified gravity cosmologies.

The first N-body simulations of the Galileon model were
presented in Refs. [30, 31], which do not include the effects
of massive neutrinos. As we shall see, one of the main results
of this paper relates to the impact that massive neutrinos have
on the viability of the Galileon model. This justifies investi-
gations of the interplay between the modifications to gravity
in this model and massive neutrinos on small length scales,
which is left for future work. For the time being, we limit
ourselves to the constraints one can derive using only linear
perturbation theory. Future nonlinear studies of structure for-
mation should then focus on the model parameters that best fit
the P, PL and PLB datasets.

B. Parameter space

In addition to the Galileon model parameters

{c2, c3, c4, c5, ξ} , (26)

we also constrain the cosmological parameters{
Ωb0h

2,Ωc0h
2, θMC, τ, ns, As,Σmν

}
, (27)

which are, respectively, the physical energy density of
baryons, the physical energy density of cold dark matter, a
CosmoMC parameter related to the angular acoustic scale of
the CMB, the optical depth to reionization, the scalar spectral
index of the primordial power spectrum, the amplitude of the
primordial power spectrum at a pivot scale k = 0.05 Mpc−1

and the summed mass of the three active neutrino species.
The value of the Hubble expansion rate today, H0 =

100h km/s/Mpc, is a derived parameter (this differs from
Ref. [28]). For a given point in parameter space, the
CosmoMC code determines, by trial-and-error, the value of
H0 that reproduces the sampled value of θMC. θMC is much
less correlated with the other parameters than H0, which
speeds up the convergence of the chains, despite of the ad-
ditional trial-and-error calculations. Parameters such as Ωϕ0

and the rms linear matter fluctuations at 8 Mpc/h, σ8, are
also derived parameters. We always fix the number of rela-
tivistic neutrinos Neff = 3.046, the baryonic mass fraction in
helium YP = 0.24 and the running of the scalar spectral in-
dex dns/dlnk = 0. We also set to zero the amplitude of the
tensor perturbations, and its tensor spectral index, as we are
only interested in scalar perturbations. We briefly investigate
the impact of the tensor fluctuations in Appendix B.

Part of the goal of this paper is to demonstrate the im-
pact that the parameter Σmν has on the goodness of fit of

Galileon models. To this end, we shall consider two varia-
tions of the model: one for which the number of massive neu-
trinos Nmassive = 0 and Σmν = 0, and another for which
Nmassive = 3 and Σmν is a free parameter. We shall refer to
the first class of models as "base" Galileon models, and shall
denote the second class with a prefix ν, e.g., νCubic Galileon.
For comparison purposes, we also consider a νΛCDM model.

1. Scaling degeneracy of the Galileon parameters

We have previously demonstrated that, if one allows all of
the Galileon parameters to vary, then it becomes impossible
to constrain the Galileon sector of the parameter space [28].
This is because of a scaling degeneracy between the Galileon
parameters [20]: all of the equations of the Galileon model
remain invariant under the following transformations

c2 −→ c2/B
2,

c3 −→ c3/B
3,

c4 −→ c4/B
4,

c5 −→ c5/B
5,

ϕ −→ ϕB, (28)

where B is any constant. Figure 1 of Ref. [28] shows
that, when all nonzero Galileon parameters are varying,
then the chains develop narrow and infinitely long re-
gions along which the likelihood does not change. To
circumvent this, in Ref. [28] we employed the practi-
cal solution of fixing the value of c3 and using it as a
pivot parameter to construct the scaling-invariant quanti-
ties

{
c2/c

2/3
3 , c4/c

4/3
3 , c5/c

5/3
3 , ϕc

1/3
3

}
, which could then be

properly constrained by the data. Here, we follow a similar
approach, but fix the value of c2 instead. We have run a set of
chains in which all of the Galileon parameters were allowed
to vary. We found that the parameters c3, c4 and c5 can cross
zero, whereas c2 is always negative. This shows that c2 is
the best Lagrangian parameter to fix. For instance, by fixing
c3 > 0 we would be discarding a priori the potentially vi-
able regions that have c3 < 0. In Ref. [28], by performing
the same test we have found that c3 was also unlikely to cross
zero, and hence could be used as the fixed parameter. The
reason behind this difference is related to the different way
the background evolution is solved. We discuss this further in
subsection VI C. The magnitude of c2 is not critical, as one
can always rescale the resulting constraints to any value of c2
(with the same sign) by using Eqs. (28). For simplicity, we
fix c2 = −1. This way, the L2 term in Eq. (1) becomes the
standard scalar kinetic term, but with the opposite sign.

The scaling degeneracy then further reduces the dimension-
ality of the Galileon sector of the parameter space by one.
This, together with the fact that we can use Eqs. (22 - 23) to
fix two other Galileon parameters, sets the dimensionality of
the Galileon sector of the parameter space to 5− 3 = 2.
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C. Theoretical constraints from the absence of ghost and
Laplace instabilities

When sampling a given point of the parameter space, our
version of CosmoMC first checks if the point is stable against
the existence of ghost or Laplace instabilities of the scalar per-
turbations. The conditions to avoid these theoretical patholo-
gies were derived and presented in Refs. [17, 20, 23]. We have
derived our own expressions and find agreement with the re-
sult of Ref. [23]. These stability conditions, although they ap-
ply to the evolution of the perturbations, depend only on back-
ground quantities, and hence can be evaluated rather quickly.
In the code, if a given point develops one of these types of
instabilities, then that point is rejected automatically, with-
out proceeding to the perturbation equations or to the eval-
uation of observational likelihoods. Without this initial check,
these points would still be rejected as the instabilities dras-
tically affect the evolution of the gravitational potential, and
hence, lead to very poor fits to the CMB data. However, this
step helps to speed up the overall performance of the code,
and also avoids the numerical difficulties associated with the
instabilities.

Although we consider only scalar perturbations, we note
that in principle one could impose similar conditions for the
avoidance of ghost and Laplace instabilities of the tensor per-
turbations [17, 26]. We also do not impose any conditions
that ensure that the perturbation of the Galileon field does not
propagate superluminally, as these cases may not necessarily
lead to pathologies [56]. We do not rule out cases for which
ρ̄ϕ < 0 and let the data decide their viability instead.

IV. OVERVIEW OF PREVIOUS OBSERVATIONAL
CONSTRAINTS

In this section, we summarize the constraints on the
Galileon model of Eq. (1) that were obtained in previous work.
Our goal is simply to provide a general overview of the current
status of Galileon constraints and not to present a thorough re-
view. For further details, we refer the interested reader to the
cited literature and references therein.

The first observational constraints on the Galileon model
were derived in Ref. [21], by using only data sensitive to the
background dynamics. The authors allow for non-flat spa-
tial geometries of the Universe and find, in particular, that al-
though the tracker solution can provide a good fit to the in-
dividual datasets (which include data from SNIa, BAO and
CMB distance priors), there is some tension when one com-
bines these observational probes.

References [24, 25] attempted to use measurements of the
growth rate of structure to constrain the Galileon model.
These two papers concluded that the model has difficulties
in fitting the background and the growth rate data simultane-
ously. However, Ref. [26] performed a more detailed anal-
ysis and found that the tension is actually much less signifi-
cant. The authors of Ref. [26] pointed out that Ref. [24] did
not take into account the scaling degeneracy of the Galileon
parameters; furthermore Ref. [25] used data that is not cor-

rected for the Alcock-Paczynski effect [57], having assumed
also that the shape of the linear matter power spectrum of
Galileon models is the same as in ΛCDM, which is not guar-
anteed [27, 28]. Moreover, as acknowledged in Ref. [26],
the constraints obtained by confronting linear theory predic-
tions with growth data assume the validity of linear theory
on the scales used to measure the growth rate. For example,
the growth rate measurements of the WiggleZ Dark Energy
Survey [58] are obtained by estimating redshift space distor-
tions in the galaxy power spectrum measured down to scales
of k ∼ 0.3hMpc−1. On these scales, however, the impact
of nonlinear effects, galaxy bias, and of the Vainshtein mech-
anism can be significant. N-body simulations of the Quartic
Galileon model [31, 33] have shown that, for k ∼ 0.3hMpc−1

at z = 0, the nonlinear matter power spectrum can differ from
the linear theory prediction by ∼ 10–15%. For the nonlin-
ear velocity divergence power spectrum the difference is even
larger reaching up to 40% on these scales, which can have a
big impact on RSDs.

The first observational constraints using the full shape of
the CMB temperature anisotropy power spectrum were pre-
sented by us in Ref. [28]. We found that the amplitude
of the low-l region of the CMB power spectrum, which is
mostly determined by the Integrated Sachs-Wolfe (ISW) ef-
fect, plays a decisive role in constraining the parameter space
of the Galileon model. The use of the full shape of the
CMB temperature data results in much tighter constraints than
those obtained by using only the information encoded in the
CMB distance priors [16]. Reference [28] finds that the best-
fitting Galileon models to the WMAP9 data [51] have a lower
ISW power relative to ΛCDM, which results in a better fit.
However, some observational tensions become apparent when
background data from SNIa and BAO is added to the analy-
sis. We discuss these further in Sec. V. In the constraints of
Ref. [28], the impact of massive neutrinos was not considered.

The best-fitting Galileon models to the WMAP9 data [28]
predict a relatively large amplitude for the matter fluctuations,
σ8 ∼ 1. This has raised some concern about the ability of the
model to match the observed amplitude of the galaxy power
spectrum. This issue has been addressed by Ref. [33] by per-
forming a Halo Occupation Distribution (HOD) [59] analysis,
using N-body simulations of the Cubic and Quartic Galileon
models. It was found that, despite the enhanced clustering
amplitude on large scales, the modifications to the halo and
galaxy bias allow the models to match the observed cluster-
ing amplitude of LRG galaxies [60], with realistic HODs for
these galaxies. Therefore, the amplitude of the LRG power
spectrum is not a problem in Galileon gravity.

In the Quartic and Quintic Galileon models, the direct cou-
plings to R and Gµν in L4 and L5 in Eqs. (2) give rise to
modifications to gravity that may not be totally suppressed by
the Vainshtein mechanism [61, 62]. In fact, Refs. [31, 32]
have shown that the Quartic Galileon models that best fit the
WMAP9 data predict a non-negligible time variation of the
effective gravitational strength near massive bodies like the
Sun. The physical solutions of the Quintic model in the non-
linear regime are much more challenging to obtain, but it is
likely that similar behavior arises. One then expects that Solar
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System tests [2] should be able to constrain the values of the
c4 and c5 parameters to be very close to zero. We shall return
to this discussion in subsection VI B.

Here, the main improvements over the above studies are:
(i) the update of the CMB temperature data from WMAP
to Planck; (ii) the use of the CMB lensing data to constrain
Galileon models for the first time; and (iii) allowing Σmν 6= 0
to be a free parameter in the MCMC runs. The latter, as we
shall see next, plays an important role in the observational vi-
ability of the Galileon model.

V. RESULTS: CUBIC GALILEON

The Cubic Galileon sector is defined by c4 = c5 = 0, which
leaves c3 and ξ in Eq. (26) as potential free parameters (recall
c2 = −1 to break the scaling degeneracy). However, one can
use Eqs. (22) and (23) to fix two more Galileon parameters.
For the case of the Cubic model we then get

c3 = 1/
(

6
√

6Ωϕ0

)
; ξ =

√
6Ωϕ0. (29)

In this way, the only free parameters in the Cubic Galileon
model are those in Eq. (27), just like in ΛCDM. This con-
trasts with popular modified gravity theories (with f(R) grav-
ity [38–40, 70] being perhaps the leading example), for which
there are, in general, extra functions and parameters to tune,
compared to ΛCDM.

A. Cosmological constraints

Figure 1 shows two-dimensional 95% confidence level
marginalized contours obtained with the PL (dashed) PLB
(filled) datasets for the base Cubic (blue), νCubic (red)
and νΛCDM (green) models. Table I summarizes the one-
dimensional marginalized likelihood (L) statistics, showing
also the best-fitting parameters and corresponding values of
χ2 = −2lnL. Figure 2 shows H(a), the CMB temperature
and lensing power spectrum, the linear matter power spectrum
and time evolution of the linear growth rate, f = dlnD/dlna,
expressed as fσ8, for the best-fitting models.

1. Observational tensions in the base Cubic model

The χ2 values in the base Cubic model are significantly
larger than those in the νCubic and νΛCDM models, which
indicates the markedly poorer fits of the base Cubic model.
Moreover, the quality of the fit becomes worse as one com-
bines the different datasets. In particular, when constrained
with the PLB dataset, the base Cubic model fails to pro-
vide a reasonable fit to any of the likelihood components:
χ2
Lensing ∼ 22, for 8 degrees of freedom (dof); χ2

BAO ∼ 8,

for 6 dof 2. This poorer fit to the data by the base Cubic model
is primarily driven by the difficulty of the model in fitting,
simultaneously, the BAO and the CMB peak positions.

The angular acoustic scale of the CMB fluctuations, θ∗, is
essentially what determines the CMB peak positions. It is
given by θ∗ = r∗s/d

∗
A, where

r∗s =

∫ ∞
z∗

cs
H(z)

dz, (30)

d∗A =

∫ z∗

0

1

H(z)
dz, (31)

are, respectively, the sound horizon and the comoving an-
gular diameter distance to the redshift of recombination z∗;
cs = 1/

√
3 (1 + 3ρ̄b/(4ρ̄γ)) and ρ̄b and ρ̄γ are the back-

ground energy densities of baryons (b) and photons (γ). The
constraints on θ∗ tend to be fairly model independent, since
they depend mostly on the peak positions, rather than the am-
plitude of the power spectrum (cf. Table I). From Eq. (24),
one can show that, at early times, H(a) evolves in the same
way in the Galileon and ΛCDM models. Hence, for fixed cos-
mological parameters, r∗s is also the same in these two models.
However, at late times,H(a) is smaller in the Galileon models
compared to ΛCDM. This can be seen, again, by inspecting
Eq. (24) or by noting the late-time "dips" in H/HνΛCDM − 1
in the top left panel of Fig. 2 (although in this plot the cos-
mological parameters differ from model to model). The point
here is that the smaller late-time expansion rate increases d∗A,
which in turn decreases θ∗. In order to fit the CMB peak posi-
tions, the "intrinsically" smaller expansion rate at late times is
compensated for by larger values of the expansion rate today,
h, in such a way as to preserve the values of d∗A, and hence
θ∗. The preference of the CMB data for high values of h in
the base Cubic model is illustrated in top right panel of Fig. 2.
The lensing data lowers the matter density slightly to reduce
the amplitude of the lensing power spectrum (the Cφφl for the
base Cubic (P) model is not shown in Fig. 2, but is similar
to that of the base Cubic (PLB) model). This increases both
r∗s and d∗A, but affects the latter more. As a result, and by
the above reasoning, the addition of the CMB lensing to the
CMB temperature data helps to push h to even higher values
(cf. Table I).

The inclusion of the BAO data counteracts the preference
of the CMB data for higher values of h. The significance of
this tension is illustrated by the offset between the contours
obtained with the PL and PLB datasets for the base Cubic
model. The addition of the BAO data also pushes the total
matter density to higher values, which has an impact on the
amplitude of both the CMB temperature and lensing spectra.
This triggers a number of slight shifts in the remaining cosmo-
logical parameters in order to optimize the fit. Nevertheless,
this optimization is not perfect, and the base Cubic model ul-
timately fails to fit the combined data well. In addition to the
poor BAO fit, the base Cubic model predicts a high amplitude

2 In Ref. [41], without including the WiggleZ measurements in the BAO
data, it was found that χ2

BAO ∼ 8, for 3 dof.
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FIG. 1. Marginalized two-dimensional 95% confidence level contours obtained using the PL (open dashed) and PLB (filled) datasets for the
base Cubic Galileon (blue), νCubic Galileon (red) and νΛCDM (green) models. In the top right panel, the horizontal bands indicate the 68%
confidence limits of the direct measurements of h presented in Ref. [63] (open dashed) and Ref. [64] (grey filled). In the lower right panel, the
horizontal dashed bands indicate the 95% confidence interval on σ8 for the base Galileon model, for which Σmν = 0.

for CTTl at low-l (top right panel of Fig. 2), caused by a rapid
late-time deepening of the lensing potential (cf. top panels of
Fig. 3). The amplitude of the lensing power spectrum, Cφφl is
also visibly larger than the data (middle left panel of Fig. 2).

2. Alleviating the tensions with Σmν

Although at sufficiently early times massive neutrinos act as
an extra source of radiation, at late times (after becoming non-
relativistic), they will effectively raise the total matter density,
modifying the evolution of H(a) accordingly. In particular,
higher values of Σmν increase H(a) at late times, and there-
fore have the same impact as increasing h on the value of d∗A.
This degeneracy between Σmν and h eliminates the prefer-
ence of the CMB data for large values of h, as shown by the
νCubic contours for the PL dataset in Fig. 1. An important
consequence of this is that, in the νCubic model, there is no
longer a tension between the CMB and the BAO data, as il-
lustrated by the overlap between the contours for the PL and
PLB datasets and by the acceptable χ2 values listed in Table
I.

The presence of the massive neutrinos causes the lensing
potential to deepen less rapidly with time, which reduces the
amplitude of the CMB temperature power spectrum at large
angular scales. On these scales, there is still an excess of
power compared to νΛCDM, but the large errorbars do not

allow tight constraints to be derived. Note also that in the
νCubic model for k & 0.05h/Mpc, the presence of the
massive neutrinos causes the gravitational potentials to decay
slightly during the matter era, rather than remaining constant.
The massive neutrinos also lower substantially the amount of
matter clustering (lower σ8), which results in a better fit to
the CMB lensing power spectrum. Compared to the νΛCDM
model, the νCubic model provides a slightly better fit, as it
predicts more power at l ∼ 40 − 80 and the amplitude de-
creases more rapidly at higher l.

We note, for completeness, that relaxing the assumption
that the universe is spatially flat may also help to alleviate the
tension between the CMB and BAO peak positions. In partic-
ular, Ωk < 0 also lowers d∗A, and as a result, may mimic to
some extent the effect of Σmν > 0 on H(a). We leave for fu-
ture work the study of the impact of Ωk on the ISW effect (see
next subsection), and CMB temperature and lensing spectra.

B. Sign of the ISW effect

The ISW effect is a secondary anisotropy on the CMB tem-
perature maps induced by time-evolving gravitational poten-
tials. Consider for instance a photon travelling through a su-
percluster whose potential is getting shallower with time. This
photon will get blueshifted (increase of temperature) as it goes
into the center of the potential well, but redshifted (decrease
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FIG. 2. Time evolution of the Hubble expansion rate (top left), CMB temperature power spectrum (top right), CMB lensing potential power
spectrum (middle left), linear matter power spectrum (middle right) and time evolution of fσ8 for k = 0.5h/Mpc (bottom left) and k =
0.005h/Mpc (bottom right) for the best-fitting base Cubic (blue), νCubic (red) and νΛCDM (green) models obtained using the PL (dashed)
and PLB (solid) datasets. In the top left panel, the νΛCDM model used in the denominator is the corresponding best-fitting model to the
PLB dataset. In the top right and middle left panels, the data points show the power spectrum measured by the Planck satellite[42, 43]. In the
middle right panel, the data points show the SDSS-DR7 Luminous Red Galaxy host halo power spectrum from Ref. [60], but scaled down by
a constant factor to match approximately the amplitude of the best-fitting νCubic (PLB) model. In the lower panels, the data points show the
measurements extracted by using the data from the 2dF [65] (square), 6dF [66] (triangle), SDSS DR7 (LRG) [67] (circle), BOSS [68] (dot)
and WiggleZ [69] (side triangles) galaxy surveys.
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FIG. 3. Time evolution of the lensing potential, φ, for the best-fitting base Cubic (blue), νCubic (red) and νΛCDM (green) for the PL (dashed)
and PLB (solid) datasets for k = 0.05h/Mpc, k = 0.005h/Mpc, k = 0.0008h/Mpc and k = 0.0005h/Mpc, as labelled in each panel.

FIG. 4. Time evolution of the ratio of the total lensing potential, φ,
and the lensing potential caused by the matter fluid only, φf , for the
νCubic (PLB) model and for a range of k scales, as labelled. This
quantity gives a measure of fifth force induced by the Galileon field.

of temperature) as it comes out of it. Since the potential was
deeper at the time the photon was entering it, overall the tem-
perature of the photon will increase. This causes a so-called
"hot spot" in the CMB maps. If the potential of the superclus-
ter is getting deeper with time, then one would end up with a
"cold spot" instead.

The amplitude of the ISW effect is proportional to the time
derivative of the lensing potential, dφ/dt, integrated along the
line of sight. In Fourier space, φ is given by the equation 3

− k3φ = 4πGa2 [k (Π + χ) + 2aH(a)q] , (32)

where χ, q and Π are, respectively, the Fourier modes of the
total density perturbation, heat flux and anisotropic stress (see
Ref. [27] for more details) 4. Figure 3 shows the time evolu-
tion of φ for the best-fitting models for four different scales
k = 0.05h/Mpc, k = 0.005h/Mpc, k = 0.0008h/Mpc
and k = 0.0005h/Mpc. In the standard ΛCDM picture, φ
grows at the transition from the radiation to the matter dom-
inated eras, stays approximately constant during the matter
era (Ωm ∼ 1), and starts decaying (note the negative sign
on the y-axis) at the onset of the dark energy era. The phys-
ical picture in the Cubic Galileon models is more complex.
During the matter era, φ also remains approximately con-
stant, although on smaller length scales k & 0.05h/Mpc,
the presence of the massive neutrinos can cause φ to decay

3 In terms of the Ψ and Φ potentials of the linearly perturbed FRW line ele-
ment in the Newtonian gauge ds2 = (1 + 2Ψ) dt2 − (1 − 2Φ) dxidxi,
one has φ = (Ψ − Φ) /2.

4 The q term is subdominant on small length scales (large k) and for matter
Π = 0. In this case, one then recovers the standard Poisson equation
−k2φ = 4πGa2χ.
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TABLE I. Summary of the one-dimensional marginalized likelihood distributions. The upper part of the table shows the best-fitting χ2 =
−2lnL values of the components of the P, PL and PLB datasets. The goodness of fit of the Galileon models can be inferred by comparing
the respective χ2 values with those for νΛCDM, which has been shown to be a good fit to these data in [42]. The CMB lensing and BAO
datasets contain, respectively, eight and six degrees of freedom. It is not straightforward to quote the number of degrees of freedom for the
CMB temperature data, due to the way in which the low-l data are analyzed. The middle part of the table shows the corresponding best-fitting
model parameters. In the lower part of the table, we show the 1σ limits on the cosmological parameters obtained for the PL and PLB datasets
(h and σ8 are derived parameters). Recall that for the Cubic sector of Galileon gravity c4 = c5 = 0, c3 and ξ are given by Eqs. (29) and
c2 = −1 to break the scaling degeneracy.

Parameter/Dataset Base Cubic νCubic νΛCDM

(χ2
P ;−−;−−) (9829.8 ;−− ;−−) (9811.5 ;−− ;−−) (9805.5 ;−− ;−−)

(χ2
P ;χ2

L;−−) (9834.6 ; 8.0 ;−−) (9811.6 ; 4.4 ;−−) (9805.3 ; 8.8 ;−−)
(χ2
P ;χ2

L;χ2
B) (9836.7 ; 19.5 ; 8.4) (9814.0 ; 5.1 ; 2.4) (9805.7 ; 8.7 ; 1.4)

100Ωb0h
2: (P, PL, PLB) (2.216; 2.257; 2.173) (2.166; 2.176; 2.202) (2.217; 2.208; 2.213)

Ωc0h
2: (P, PL, PLB) (0.121; 0.115; 0.124) (0.123; 0.122; 0.120) (0.120; 0.118; 0.119)

104θMC: (P, PL, PLB) (104.12; 104.18; 104.05) (104.03; 104.06; 104.11) (104.15; 104.12; 104.10)
τ : (P, PL, PLB) (0.070; 0.072; 0.052) (0.099; 0.084; 0.088) (0.092; 0.086; 0.088)
ns: (P, PL, PLB) (0.963; 0.980; 0.955) (0.949; 0.953; 0.958) (0.960; 0.964; 0.961)
ln(1010As): (P, PL, PLB) (3.054; 3.040; 3.021) (3.111; 3.081; 3.084) (3.096; 3.079; 3.081)
Σmν [eV]: (P, PL, PLB) (0 fixed; 0 fixed; 0 fixed) (1.043; 0.875; 0.538) (0.061; 0.043; 0.033)

h: (P, PL, PLB) (0.774; 0.810; 0.755) (0.656; 0.677; 0.722) (0.674; 0.680; 0.679)
σ8(z = 0): (P, PL, PLB) (0.959; 0.935; 0.949) (0.729; 0.749; 0.822) (0.835; 0.827; 0.829)

100Ωb0h
2: (PL, PLB) (2.233± 0.028 ; 2.175± 0.024) (2.161± 0.030 ; 2.198± 0.024) (2.182± 0.035 ; 2.215± 0.025)

Ωc0h
2: (PL, PLB) (0.116± 0.002 ; 0.124± 0.002) (0.123± 0.003 ; 0.119± 0.002) (0.121± 0.003 ; 0.118± 0.002)

104θMC: (PL, PLB) (104.17± 0.061 ; 104.05± 0.055) (104.04± 0.066 ; 104.10± 0.056) (104.08± 0.073 ; 104.14± 0.057)
τ : (PL, PLB) (0.067± 0.011 ; 0.051± 0.010) (0.087± 0.012 ; 0.088± 0.012) (0.091± 0.013 ; 0.092± 0.013)
ns: (PL, PLB) (0.970± 0.007 ; 0.952± 0.005) (0.948± 0.009 ; 0.961± 0.006) (0.954± 0.009 ; 0.963± 0.006)
ln(1010As): (PL, PLB) (3.034± 0.020 ; 3.019± 0.019) (3.085± 0.023 ; 3.080± 0.023) (3.093± 0.024 ; 3.090± 0.024)
Σmν [eV]: (PL, PLB) (0 fixed ; 0 fixed) (0.980± 0.237 ; 0.618± 0.101) (< 0.551 ;< 0.120)

h: (PL, PLB) (0.800± 0.013 ; 0.758± 0.008) (0.663± 0.030 ; 0.718± 0.009) (0.634± 0.036 ; 0.678± 0.008)
σ8(z = 0): (PL, PLB) (0.935± 0.010 ; 0.944± 0.010) (0.733± 0.042 ; 0.798± 0.024) (0.757± 0.056 ; 0.817± 0.017)

slightly. The modifications induced by the Galileon field
become apparent at later times (a & 0.5) and are scale-
dependent. For k & 0.005h/Mpc, φ deepens at late times,
whereas for k . 0.0005h/Mpc it decays. On intermediate
scales (k ∼ 0.0008h/Mpc) the potential can remain approxi-
mately constant, even at late times, undergoing only small am-
plitude oscillations. To help understand the scale-dependent
behaviour of φ in the Cubic model, we plot the time evolution
of φ/φf for a range of scales k in Fig. 4. The quantity φf is
given by Eq. (32), but considering only the contribution from
the matter fluid in χ, q and Π. This isolates the impact of the
Galileon field, and as such φ/φf provides a measure of the
fifth force modifications to the lensing potential. Firstly, we
note that the Galileon field contribution only becomes non-
negligible at late times, i.e., φ/φf ≈ 1 for a . 0.4. At late
times, on smaller length scales (larger k), the Galileon field
contributes significantly to φ, making it deeper. On the other
hand, on larger length scales (smaller k), the Galileon terms
become less important, which leads to a gradual recovery of
the ΛCDM behaviour, i.e., φ decays at late times.

The physical picture depicted in Fig. 3 suggests that the Cu-
bic Galileon and ΛCDM models predict opposite signs for the
ISW effect on sub-horizon scales, a fact that can potentially
be used to distinguish between them. The CMB temperature

power spectrum is sensitive to (dφ/dt)
2, and hence it can-

not probe the sign of the ISW effect. There are however a
number of different techniques that can be used to determine
dφ/dt. One of these consists of stacking CMB maps at the
locations of known superclusters and supervoids. Given their
size, these superstructures are not yet virialized, and hence
constitute good probes of the ISW effect since their poten-
tials are still evolving. A recent analysis of this type was
performed by the Planck collaboration [71] who claimed to
have found a detection of a positive ISW effect using the su-
perstructure catalogue of Refs. [72, 73]. The significance of
this detection becomes, however, substantially weaker when
the catalogues of Refs. [74] and [75] are used instead. More-
over, all these signals are typically higher than the standard
ΛCDM expectation [76, 77]. This fact, together with the dif-
ferences between using different cluster and void catalogues,
may raise concerns about the presence of unknown systemat-
ics in the analysis, such as selection effects. More recently,
Refs. [78, 79] claimed the detection of a supervoid aligned
with a prominent cold spot in the Planck CMB maps, as one
would expect in models with positive ISW effect.

The cross-correlation of the CMB with tracers of large-
scale structure (LSS) provides another way to probe the ISW
effect. A positive amplitude for this cross correlation was first
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detected in Ref. [80], and later confirmed by Refs. [71, 81, 82],
although with different significances. The cross correlation
functions obtained by using different galaxy catalogues typ-
ically show positive correlation at smaller angular scales,
and become consistent with zero at large angular scales (see
e.g. Fig. 3 of Ref. [82]). This trend is consistent with the
ΛCDM expectation, but Refs. [83–87] have raised some skep-
ticism about the significance of these claims for a positive de-
tection (some of this skepticism is addressed in Ref. [82]).

The potential φ is responsible for both the lensing of the
CMB photons and the ISW effect. As a result, cross correlat-
ing CMB temperature maps with maps of the lensing poten-
tial (used to measure Cφφl in Fig. 2) can potentially be used
to probe the sign and amplitude of the ISW effect. This has
been made possible after the data release by the Planck col-
laboration [71], who found a signal that is consistent with the
ΛCDM expectation that φ decays at late times.

Taken at face value, the above-mentioned measurements
seem to be inconsistent with the predictions of the base Cubic
and νCubic Galileon models. Note that this is not a question
of matching the amplitude of the signal, but instead its sign,
and as a result, it may be hard to reconcile the model predic-
tions with the claims of a positive ISW effect. Note also that
although φ can decay in the Cubic models, this happens only
on horizon-like scales, which do not affect the observational
measurements. However, there is still some ongoing discus-
sion about the understanding of the systematics in these mea-
surements of the ISW effect. This makes us reluctant to add
these data to the constraints at present. Moreover, in the case
of Galileon gravity there is also the potential impact of the
Vainshtein screening mechanism, which is unaccounted for in
linear perturbation theory studies. For instance, on smaller
scales, where the ISW detections are more significant, the
screening mechanism may suppress the modifications to grav-
ity, making the potentials decay as in ΛCDM. For the time
being, we limit ourselves to noting that the positiveness of the
ISW effect may turn out to be a crucial observational tension
of the νCubic model. In the future, one will be able to say
more about it, as more data become available and the discus-
sion about the role of systematic effects is settled, and also
when fully nonlinear predictions are used to model the signal.

C. Future constraints

We now discuss briefly the impact that additional data can
have in further constraining the νCubic model.

For l . 40, the νCubic and ΛCDM models make quite
distinct predictions for Cφφl . As a result, future measurements
of the lensing potential on these angular scales have a strong
potential to discriminate between these two models, provided
the errorbars are small enough [43].

The horizontal bands in the top right panel of Fig. 1 show
the 1σ limits of the direct determinations of the Hubble con-
stant h using Cepheid variables reported in Ref. [63] (open
dashed) and Ref. [64] (grey filled). As one can see in the
figure, these determinations are in tension with the CMB con-
straints for ΛCDM models. This fact has been the subject of

discussions about the role that systematic effects can play in
these direct measurements of h (see e.g. Ref. [88]). This is
why we did not include them in our constraints. Here, we
simply note that νCubic models avoid the tensions apparent
in ΛCDM, and therefore, adding a prior for h would favour
the νCubic over ΛCDM.

Another ΛCDM tension that has become apparent after the
release of the Planck data is associated with the normalization
of the matter density fluctuations. In short, the values of σ8 in-
ferred from probes such as galaxy shear [89] and cluster num-
ber counts [90] seem to be smaller than the values preferred
by the CMB constraints. Massive neutrinos have been shown
to alleviate some of these problems [91, 92]. However, some
residual tensions between datasets seem to remain. In the case
of the νCubic model, the presence of the massive neutrinos
lowers substantially the value of σ8. Compared to ΛCDM, the
constraints on σ8 are rather similar, although they can extend
to slightly lower values (cf. Fig. 1). This happens despite the
enhanced gravitational strength driven by the Galileon field.
It is therefore interesting to investigate whether or not the
νCubic model can evade the above-mentioned ΛCDM ten-
sions. This requires the modelling of nonlinear structure for-
mation in the νCubic model, which is left for future work.

In the context of the νCubic model, the PLB dataset sug-
gests that Σmν > 0 at more than 6σ significance (cf. Ta-
ble I). This contrasts with the constraints on νΛCDM, for
which Σmν < 0.3 eV (at 2σ). This opens an interesting win-
dow for upcoming terrestrial determinations of the absolute
neutrino mass scale (see e.g. Ref. [93] for a review) to dis-
tinguish between these two models. For instance, the high
energy part of the Tritium β-decay spectrum provides a ro-
bust and model-independent way to measure the mass of the
electron neutrino directly. The MAINZ [36] and TROITSK
[37] experiments have set Σmν . 6.6eV (at 2σ), but near-
future experiments such as KATRIN [94] are expected to im-
prove the mass sensitivity down to Σmν . 0.6eV. In the
case that neutrinos are Majorana particles and provide the
dominant contribution in the neutrinoless double β-decay of
heavy nuclei [95], then one may achieve even higher sen-
sitivity: in case of nondetection, these type of experiments
are expected to constrain Σmν . 0.3eV. This would com-
pletely probe the quasi-degenerate neutrino hierarchy spec-
trum (m1 ∼ m2 ∼ m3 ∼ mν > 0.1 eV). The forecast sen-
sitivity of these experiments should be reached in a few years
time and will say more about the viability of the νΛCDM and
νCubic models.

The lower panels of Fig. 2 show the time evolution of fσ8

in the best-fitting models (computed using linear theory), to-
gether with the measurements from the 2dF [65] (square), 6dF
[66] (triangle), SDSS DR7 (LRG) [67] (circle), BOSS [68]
(dot) and WiggleZ [69] (side triangles). In principle, these
data can be used to further constrain the νCubic model. How-
ever, such a comparison between theory and observation may
not be straightforward for at least three reasons. The first one
was already addressed in Sec. IV and it relates to the validity
of linear theory on the length scales probed by the surveys.
As discussed in Sec. IV, on these scales, nonlinearity can af-
fect the statistics of both the density and velocity fields, and
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hence modify significantly the linear theory expectations (see
e.g. [67] for some discussion). The growth measurements are
extracted from the data by analyzing the redshift space dis-
tortions induced by galaxy peculiar motions. This is usually
achieved by assuming a model for how these peculiar veloci-
ties modify the true (unobserved) real space statistics. These
models are typically calibrated and tested against N-body sim-
ulations, most of which are performed assuming GR (see how-
ever [96–98]). Here lies the second nontrivial aspect: to avoid
obtaining results biased towards standard gravity, it seems rea-
sonable to demand first the development of a self-consistent
RSD model for modified gravity to see how it can have an
impact on the extraction of the fσ8 values from the galaxy
catalogues. The third complication has to do with the scale-
dependent growth introduced by the massive neutrinos, even
at the linear level. In the lower panels of Fig. 2, one notes
that the predictions of the νCubic model are, indeed, scale
dependent, due to the relatively large massive neutrino frac-
tion, compared to νΛCDM. However, the measured values of
fσ8 obtained from the different surveys are derived from the
clustering signal of galaxies measured over a range of differ-
ent scales at once. Future constraints on the νCubic model
using these data have therefore to take this scale dependence
into account. We note that this third complication also applies
to ΛCDM models with a large value of Σmν , such as those
found in Refs. [91, 92]; and to f(R) gravity models (see e.g.
Ref [97] for a study of RSD in f(R) gravity).

VI. RESULTS: QUARTIC AND QUINTIC GALILEON

The parameter space of the Quartic Galileon model is the
same as the Cubic model, but with c4 6= 0. In our constraints,
we use Eqs. (22) and (23) to derive c3 and c4 as

c3 =
1

2
ξ−1 − 2Ωϕ0ξ

−3,

c4 = −1

9
ξ−2 +

2

3
Ωϕ0ξ

−4, (33)

with ξ being the free parameter varied in the chains. In the
case of the Quintic model (c5 6= 0), we vary ξ and c3 in the
chains, and derive c4 and c5:

c4 =
1

3
ξ−2 − 8

9
c3ξ
−1 − 10

9
Ωϕ0ξ

−4,

c5 = −1

3
ξ−3 +

2

3
c3ξ
−2 +

4

3
Ωϕ0ξ

−5. (34)

A. Cosmological constraints

Figures 5, 6 and 7 show the same as Figs. 1, 2 and 3, respec-
tively, but for the base Quartic (red dashed), νQuartic (red
filled/solid), base Quintic (blue dashed) and νQuintic (blue
filled/solid) Galileon models and using the PLB dataset. Table
II summarizes the one-dimensional marginalized statistics.

Just as in the case of the Cubic model, the presence of mas-
sive neutrinos in the Quartic and Quintic models also allevi-
ates substantially the observational tensions between the dif-
ferent datasets in PLB (cf. Table II). The situation here is
completely analogous to the case of the Cubic Galileon model
discussed in the last section. Recall that the origin of these ob-
servational tensions lies in the specifics of the late-time evolu-
tion of H(a), which does not depend on the values of the ci.
Consequently, the same degeneracy between h and Σmν ex-
ists in the Quartic and Quintic Galileon models, which leads
to good fits to the BAO, CMB temperature and CMB lensing
data (cf. Fig. 6). It is also noteworthy that the constraints on
the cosmological parameters of Eq. (27) are roughly the same
in the Cubic, Quartic and Quintic models. Since these models
differ in the Galileon subspace of parameters, this indicates
that, to a reasonable extent, the constraints on the cosmolog-
ical parameters do not correlate with those on the Galileon
parameters.

One noticeable difference w.r.t. the Cubic Galileon case re-
lates to the lower amplitude of the CMB temperature spec-
trum at low-l in both the Quartic and Quintic models. This
is explained by the milder late-time evolution of φ, as shown
in Fig. 7. The extra Galileon terms in the Quartic and Quin-
tic models help to reduce the magnitudes of the fifth force,
and hence φ is less affected by the Galileon field. This is il-
lustrated in Fig. 8, which shows the same as Fig. 4 but for
the νQuartic and νQuintic (PLB) models. For instance, for
a = 1 and k = 0.05h/Mpc, φ/φf ∼ 1.21 in the νQuintic
(PLB), whereas φ/φf ∼ 1.9 in the νCubic (PLB). It is in-
teresting to note the nontrivial time evolution of φ/φf in the
νQuintic (PLB) model for k = 0.0005h/Mpc, which indi-
cates that the fifth force terms can be repulsive (φ/φf < 1)
rather than attractive. This shows that in the more general
Quintic models there is more freedom to tune the modifica-
tions to gravity, in such a way as to reduce substantially the
ISW power in the low-l part of the CMB spectrum (blue lines
in the top right panel of Fig. 6).

In Sec. V B, we discussed the possible role that an observa-
tional determination of the sign of the ISW effect could play
in determining the viability of the νCubic Galileon model.
The physical picture depicted in Fig. 7 suggests that any ob-
servational tension that might fall upon the Cubic Galileon
model (due to its negative ISW effect) should be less se-
vere in the νQuartic and νQuintic models. In particular, for
k = 0.005h/Mpc, the νQuintic (PLB) model predicts that
the lensing potential should even decay at late times (a & 0.7),
after a period of deepening (0.4 . a . 0.7). Therefore, it
might be of interest to investigate the signatures that such a
nontrivial time evolution of the lensing potential can have on
the ISW observations discussed in Sec. V B. However, such
an investigation is beyond the scope of this paper.

B. Local time variation of Geff in the Quartic model

As pointed out by Refs. [61, 62], the implementation of
the Vainshtein screening effect in models like the Quartic and
Quintic Galileons may not be enough to suppress all local
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FIG. 5. Same as Fig. 1 but for the base Quartic (red dashed), νQuartic (red filled), base Quintic (blue dashed) and νQuintic (blue filled)
models, using the PLB dataset.

modifications to gravity. Without loss of generality, the mod-
ified Poisson equation in Galileon gravity can be written as
(see e.g. Ref. [32] for more details):

∇2Ψ =
[
A(t) +B(t,∇2ϕ)

]
∇2ΨGR + C(t,∇2ϕ), (35)

where ∇2 is the three-dimensional Laplace operator, Ψ is the
total modified gravitational potential and ΨGR is the GR po-
tential that satisfies the standard Poisson equation,∇2ΨGR =
4πGδρm, where δρ is the total matter perturbation. The
shapes of the functions A,B,C depend on whether one as-
sumes the Cubic, Quartic or Quintic models. An important
aspect of the functions B and C is that they can be neglected
if the spatial variations of the Galileon field are small com-
pared to the variations in the gravitational potential, i.e., if
∇2ϕ/∇2ΨGR → 0, then B,C → 0.

The Vainshtein mechanism is implemented through non-
linear terms in the Galileon field equation of motion, which
effectively suppress ∇2ϕ (compared to ∇2ΨGR) near over-
dense objects like our Sun. As a result, in the Solar System,
Eq. (35) reduces to

∇2Ψ = A(t)∇2ΨGR. (36)

In the case of the Cubic Galileon model, A(t) ≡ 1 [32, 33]
and one recovers exactly the standard Poisson equation in GR.
However, in the Quartic and Quintic models, A(t) depends
on the time evolution of ϕ̄ (which cannot be screened), and

hence, residual modifications remain, even after the imple-
mentation of the Vainshtein mechanism. Figure 9 shows 104

randomly selected points from the chains used to constrain
the νQuartic model with the PLB dataset, projected onto the
c3 − c4 and ξ − c4 planes. The points are coloured accord-
ing to the value of Geff/G (lower panel) and Ġeff/G (upper
panel) today. These two quantities were evaluated by follow-
ing the strategy presented in Refs. [32, 33]. In short, assuming
spherical symmetry, one evaluates

Geff

G
(a, δ) =

Ψ,r /r

Ψ,GR
r /r

, (37)

where ,r denotes a partial derivative w.r.t. the radial coordi-
nate r and δ = δρm/ρ̄m is the density contrast of the (top-hat)
matter fluctuation. In Fig. 9, we have assumed that in our So-
lar System δ = 107, although this is not critical for our mostly
qualitative discussion5. The value of Ġeff/Gwas evaluated by
taking finite differences at two consecutive times close to the
present day (we have ensured that the time step used is small
enough to be accurate). The figure shows that if c4 is not suf-
ficiently close to zero, then Geff/G 6= 1 and Ġeff/G 6= 0,
contrary to what one would expect in standard gravity. These
modifications are caused by the function A(t), whose origin

5 To first approximation, we assume also that all of the matter components
(baryons, CDM and massive neutrinos) contribute equally to δ.
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FIG. 6. Same as Fig. 2 but for the base Quartic (red dashed), νQuartic (red solid), base Quintic (blue dashed) and νQuintic (blue solid)
models that best fit the PLB dataset.

can be traced back to the explicit coupling to the Ricci scalar
R in L4 (cf. Eq. (2)), which is needed to ensure that the theory
is free from Ostrogradski ghosts. As a result, the requirement
that the theory remains free from pathologies ultimately leads

to nonvanishing local modifications to gravity. For the reasons
listed in Ref. [32], the same calculations for the Quintic model
are much more challenging to perform due to the extra level of
nonlinearity in the equations. However, the direct coupling to
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FIG. 7. Same as Fig. 7 but for the base Quartic (red dashed), νQuartic (red solid), base Quintic (blue dashed) and νQuintic (blue solid)
models that best fit the PLB dataset.

FIG. 8. Same as Fig. 4 but for the νQuartic (red) and νQuintic
(blue) Galileon models that best-fit the PLB dataset. The solid
and dashed lines correspond to k = 0.05h/Mpc and k =
0.0005h/Mpc, respectively.

Gµν in L5 is likely to give rise to the same qualitative behav-
ior. Finally, we note that in Minkowski space, the couplings to
curvature tensors are not needed to keep the theory ghost-free,
and hence A(t) = 1, just like in the Cubic model. This shows
the importance of taking the time-varying cosmological back-
ground into account when studying modified gravity models

locally.
The phenomenology of the Quartic and Quintic models

near massive bodies like our Sun can be used to further con-
strain their parameter space. The best-fitting νQuartic (PLB)
model predicts that the effective local gravitational strength
is varying at a rate Ġeff/G ∼ −150 × 10−13yr−1. How-
ever, Lunar Laser Ranging experiments constrain Ġeff/G =
(4± 9)× 10−13yr−1 [99]. From the figure we see that this is
only allowed provided c4 is very close to zero. From the above
reasoning, these constraints are also likely to set c5 ≈ 0, in
which case one recovers the Cubic Galileon studied in the last
section. We leave for future work a formal and more detailed
use of local gravity experiments to constrain this and other
modified gravity models.

C. The Galileon subspace of parameters in Quintic model

Figure 10 shows the points accepted in the chains (after the
burn-in period) used to constrain the νQuintic model with the
PLB dataset, projected onto the c3−ξ and c4−c5 planes. The
grey dots indicate the points that were tried during the sam-
pling, but which failed to meet the conditions of no ghost and
Laplace instabilities of the scalar fluctuations. It is notewor-
thy that these stability conditions can, on their own, rule out a
significant portion of the parameter space.

In the ξ − c3 plane, one can identify two branches that de-
velop along stable but increasingly narrow regions of the pa-
rameter space, and that intersect at the location of the best-
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TABLE II. Same as Table I, but for the Quartic and Quintic models and using the PLB dataset. Recall that for the Quartic model constraints,
c5 = 0, and c3, c4 are derived parameters. For the Quintic model, the derived parameters are c4 and c5. For both models, c2 = −1 to break
the scaling degeneracy.

Parameter/Dataset Base Quartic νQuartic Base Quintic νQuintic

(χ2
P ;χ2

L;χ2
B) (9813.6 ; 15.6 ; 13.3) (9805.9 ; 4.7 ; 2.2) (9805.0 ; 20.5 ; 13.4) (9800.4 ; 5.2 ; 2.2)

100Ωb0h
2: (PLB) (2.175) (2.200) (2.219) (2.211)

Ωc0h
2: (PLB) (0.123) (0.120) (0.123) (0.119)

104θMC: (PLB) (104.07) (104.13) (104.07) (104.08)
τ : (PLB) (0.058) (0.095) (0.064) (0.082)
ns: (PLB) (0.951) (0.957) (0.950) 0.958)
ln(1010As): (PLB) (3.027) (3.095) (3.043) (3.071)
Σmν [eV]: (PLB) (0 fixed) (0.576) (0 fixed) (0.556)

ξ: (PLB) (2.43) (2.29) (4.50) (3.89)
c3: (PLB) (0.101) (0.098) (0.134) (0.143)
c4: (PLB) (−0.0045) (−0.0037) (−0.012) (0.014)
c5: (PLB) (0 fixed) (0 fixed) (0.0013) (0.0017)

h: (PLB) (0.763) (0.725) (0.764) (0.723)
σ8(z = 0): (PLB) (0.956) (0.816) (0.945) (0.814)

100Ωb0h
2: (PLB) (2.185± 0.024) (2.201± 0.024) (2.218± 0.024) (2.220± 0.024)

Ωc0h
2: (PLB) (0.122± 0.002) (0.119± 0.002) (0.123± 0.002) (0.119± 0.002)

104θMC: (PLB) (104.07± 0.057) (104.11± 0.057) (104.07± 0.058) (104.10± 0.056)
τ : (PLB) (0.060± 0.010) (0.088± 0.013) (0.060± 0.010) (0.087± 0.013)
ns: (PLB) (0.952± 0.005) (0.960± 0.006) (0.951± 0.006) (0.959± 0.006)
ln(1010As): (PLB) (3.032± 0.019) (3.082± 0.024) (3.035± 0.019) (3.081± 0.024)
Σmν [eV]: (PLB) (0 fixed) (0.560± 0.101) (0 fixed) (0.540± 0.108)

ξ: (PLB) (2.46+0.10
−0.12) (2.40± 0.13) (4.3+0.52

−1.58) (4.23+0.53
−2.14)

c3: (PLB) (0.101+0.006
−0.003) (0.103+0.008

−0.004) (0.132+0.019
−0.004) (0.123+0.033

−0.006)
c4: (PLB) (−0.0045+0.0005

−0.0010) (−0.0046+0.0007
−0.0014) (−0.012+0.002

−0.004) (−0.010+0.002
−0.008)

c5: (PLB) (0 fixed) (0 fixed) (0.0015+0.0009
−0.0005) (0.0009+0.0017

−0.0005)

h: (PLB) (0.764± 0.008) (0.724± 0.010) (0.762± 0.008) (0.724± 0.010)
σ8(z = 0): (PLB) (0.960± 0.012) (0.824± 0.027) (0.945± 0.016) (0.823± 0.027)

fitting regions. The narrowness of these branches may raise
concerns about the fairness of the Monte Carlo sampling.
Consider, for instance, a chain that is currently in the upper
branch (which goes through ξ ∼ 10 to guide the eye). Since
there are only two possible directions that do not lead to in-
stabilities, the majority of the MCMC trials will be rejected
and the chain will remain at the same point for a large num-
ber of steps. The narrowness of the gap between the unstable
points therefore makes it harder for the chains to explore the
regions that lie along the direction of the gap. Consequently,
the "end point" of the branches may be determined not only
by its poorer fit to the data, but also by these limitations of the
numerical sampling.

To address the above concerns, as a test, we have run chains
with priors on ξ to force the chains to sample only the lower
(ξ . 3) and the upper branches (ξ & 3). These runs have
shown that the length of the branches may extend just slightly
(compared to Fig. 10). This is expected since the chains spend
more time in each branch, and hence, have a better chance
of probing the limits of the branches. To learn more about
the likelihood surface along the direction of the branches, we
have further forced the chains to sample only the branch re-

gions that are sufficiently far away from the intersection (to
explore the far end of the lower branch we have imposed ξ . 3
and c3 . 0.0; and for the upper branch we have imposed
ξ & 12). Also, in this second test, we have fixed all of the
remaining cosmological parameters to their best-fitting val-
ues from Table II. Again, as expected, these chains extended
a bit more compared to Fig. 10. In all these tests, however,
the value of χ2 increases along these branches, indicating that
the far end of the branches are indeed worse fits to the data.
We have also looked at the CMB power spectrum for points
located deep in the branches to confirm that the CMB spec-
tra becomes visibly worse, compared to the best-fitting point.
We therefore conclude that, despite some sampling difficul-
ties that may arise due to the narrow stable regions, the "end
points" of the branches are mostly determined by their poorer
fit to the data. We stress that these complications in sampling
the branches of the top panel of Fig. 10 are only important in
determining the exact limit of confidence contours. For the
purpose of identifying the best-fitting parameters, and subse-
quent analysis of its cosmology, these issues are not important
as the best-fitting regions lie sufficiently far away from the end
of the branches.
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FIG. 9. Sample of 104 randomly selected points from the chains used
to constrain the νQuartic model with the PLB dataset, projected
onto the Galileon subspace of parameters. The points are coloured
according to their respective values of Geff/G(a, δ) (lower panel)
and Ġeff/G(a, δ) (upper panel), at a = 1 and for top-hat profiles
with δ = 107 (see text). The big red dot indicates the position of the
best-fitting point of (cf. Table II).

In the constraints of Ref. [28], the allowed values of c4/c
4/3
3

and c5/c
5/3
3 (c3 = 10) could not cross zero due to the con-

straints imposed by the ghost and Laplace stability conditions
(cf. Fig. 2 of Ref. [28]). This is different from what it is shown
in Fig. 10. In Ref. [28], the background evolution was ob-
tained numerically for general cases, which follow the tracker
typically only at late times. Consequently, at early times and
for fixed cosmological parameters, the exact time evolution of
ϕ̄ in this work and in Ref. [28] is not the same (see the discus-
sion in Appendix A). Although these early time differences
do not affect the CMB spectrum nor H(a) (as the Galileon
is subdominant), they can be important in the stability condi-
tions. In particular, in the chains of Ref. [28], the points with
c5 < 0 and c4 > 0 were rejected due to violations of the
ghost and Laplace stability conditions at early times, when
ϕ̄(a) was not yet following the tracker. If the tracker solution
is assumed at all cosmological epochs, then these points no
longer develop instabilities and can in fact be accepted by the
chains, as shown in Fig. 10. Note also that the constraints of
Ref. [28] have not missed the best-fitting points, since the lat-
ter are characterized by c5 > 0 and c4 < 0. In Ref. [28], if

all of the Galileon parameters were allowed to vary to explore
the scaling degeneracy, then the stability conditions prevent c3
from changing its sign, which is also different from the case
in this paper (cf. subsection III B 1). This is why c3 could be
used as the pivot parameter to break the scaling degeneracy in
Ref. [28], but it is not a good option when one assumes the
tracker evolution.

The lower panel of Fig. 10 zooms into the best-fitting re-
gions of the c5− c4 plane. The points are color coded accord-
ing to their values of ξ, which helps to identify the branches in
the top panel. The projection along the ξ direction gives rise
to overlap of the points for which ξ & 3 and for which ξ . 3.
We also note that the high-ξ points lie on a much narrower
region of the c5 − c4 plane, compared to those with lower
ξ. This can be understood by recalling that c4 and c5 are de-
rived parameters that depend on c3, ξ and Ωϕ0 (cf. Eqs.(34)).
When ξ is sufficiently large, the terms ∝ Ωϕ0 in Eqs. (34)
can be neglected. This way, the narrow constraints imposed
by the stability conditions on the c3 and ξ parameters (upper
panel of Fig. 10) lead directly to narrow constraints on c4 and
c5, as well. On the other hand, when ξ is smaller, the terms
∝ Ωϕ0 are no longer negligible. Consequently, the different
sampled values of Ωϕ0 (which are not as tightly constrained
as c3 and ξ by the stability conditions) introduce extra scatter,
which broadens the shape of the region of accepted points. A
closer inspection shows also that an empty (unsampled) re-
gion forms at (c4, c5) ∼ (−0.012, 0.0013) (barely visible at
the resolution of the figure). The same empty region was also
found in Ref. [28]. This serves to show the rather nontrivial
shape of the parameter space in Quintic Galileon model. For
instance, the CosmoMC routines that evaluate the confidence
contours from chain samples cannot resolve all these details
clearly.

VII. SUMMARY

We have studied and constrained the parameter space of
the covariant Galileon gravity model using the latest obser-
vational CMB (temperature and lensing) data from the Planck
satellite and BAO measurements from the 2dF, 6dF, SDSS-
DR7, BOSS and WiggleZ galaxy redshift surveys. The pa-
rameter space in the Galileon model can be divided into a
set of cosmological parameters, Eq. (27), and a set of five
Galileon parameters, Eq. (26). However, we have shown that
the dimensionality of the Galileon subspace of parameters can
be reduced from five to two (i) by taking advantage of a set of
scaling relations between the Galileon parameters, Eq. (28);
(ii) by assuming a spatially flat Universe, Eq. (22) and (iii)
by assuming that the background evolution of the Galileon
field follows the so-called tracker solution from sufficiently
early times, Eq. (23). The latter assumption is justified, as
otherwise, the model fails to provide a good fit to the CMB
data. Moreover, the tracker solution admits analytical expres-
sions for H(a) and ϕ̄(a). The exploration of the parameter
space was performed using MCMC methods with the aid of
suitably modified versions of the publicly available CAMB and
CosmoMC codes.
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The action of the Galileon model we considered is made
up of four Lagrangian densities, L2−5, which contain non-
linear derivative self-couplings of the Galileon scalar field.
These Lagrangian densities are named after the power with
which the field appears in them. Since the different lev-
els of complexity can lead to different phenomenologies,
we have analyzed separately the three main branches of
the Galileon model parameter space. These are the so-
called Cubic, {L2,L3}; Quartic {L2,L3,L4} and Quintic
{L2,L3,L4,L5} Galileon models. A major goal of this paper
was to investigate the impact that massive neutrinos have on
the observational viability of Galileon gravity. We have there-
fore constrained "base Galileon models", for which Σmν = 0;
and νGalileon models, for which Σmν is a free parameter to
be constrained by the data. Our main findings can be summa-
rized as follows:

• When Σmν = 0, all sectors of Galileon gravity have
difficulties in fitting the BAO and the CMB peak posi-
tions simultaneously. This tension is related to the spe-
cific late-time evolution of H(a) (cf. Eq. (24)), which
leads to different constraints on the value of h by the
CMB (higher h) and BAO (lower h) data (cf. Fig. 1 and
5). This tension applies to all sectors of the Galileon
model, since H(a) does not depend on the values of the
ci parameters. In addition to this observational tension,
these best-fitting models also predict too much power
for the CMB lensing potential spectrum (left middle
panels of Figs. 2 and 6). In the case of the Cubic
Galileon model, there is also an excess of ISW power in
the low-l region of the CMB temperature power spec-
trum (top right panel of Fig. 2).

• If neutrinos are sufficiently massive, then they modify
the late-time expansion history in such a way that the
CMB data no longer prefers high values for h. This
completely eliminates the tension with the BAO data if
Σmν & 0.4 eV (2σ) in the case of the Cubic Galileon
(cf. Fig. 2), and Σmν & 0.3 eV (2σ) in the case of
the Quartic and Quintic models (cf. Fig. 6). These
best-fitting νGalileon models also reproduce much bet-
ter the CMB lensing power spectrum. This fit can be
even slightly better than in ΛCDM models, mainly due
to a better fit to the data at l ∼ 60 (left middle pan-
els of Figs. 2 and 6). For the Cubic Galileon model,
massive neutrinos also help to lower the excess of ISW
power in the CMB. The neutrino mass constraints in the
νGalileon models leave room for upcoming terrestrial
neutrino experiments to help distinguish between these
models and ΛCDM.

• In Galileon gravity, the time evolution of the lensing
potential φ differs from the ΛCDM result at late times,
and its qualitative behaviour is also scale-dependent
(cf. Figs. 3 and 7). In the case of the Cubic mod-
els, φ deepens considerably at late times on scales
k & 0.005h/Mpc, but decays (as in ΛCDM) on scales
k . 0.0005h/Mpc. This behaviour follows from the
scale dependence of the magnitude of the modifications

to gravity induced by the Galileon field, which becomes
weaker on horizon-like scales (cf. Fig. 4). The extra
Galileon terms in the Quartic and Quintic sectors of the
model allow for milder and smoother time evolution of
φ for k & 0.005h/Mpc, but the potential can still decay
for k . 0.0005h/Mpc.

• The fact that φ deepens at late times for k &
0.005h/Mpc in the Cubic model implies a negative
ISW sign. This is opposite to what has been found
recently by a number of observational studies that
claimed the detection of a positive sign for the ISW
effect (cf. Sec. V B). There is still ongoing discus-
sion about the impact that systematics (such as selec-
tion effects) might play in the significance of these ob-
servations. In Galileon gravity there are also additional
complications associated with how the ISW might be
affected by the nonlinearities of the screening mecha-
nism. If in the future, these potential issues with the
observations turn out to be unimportant, then the sign
of the ISW effect can play a crucial role in determining
the viability of Cubic Galileon models, potentially rul-
ing them out. The same may hold for our best-fitting
Quartic models. The situation is a bit more unclear in
the Quintic sector, since φ can decay and deepen at dif-
ferent epochs (cf. Fig. 7).

• The modified expansion rate in Galileon gravity com-
pared to ΛCDM (cf. Eq. (24)) leads to CMB con-
straints that are compatible with local determinations
of h (cf. Figs. 1 and 5). νGalileon models therefore
avoid this observational tension that is currently plagu-
ing ΛCDM.

• The large-scale modifications to gravity, together with
the small-scale screening effects and the impact of the
large neutrino density, may lead to clear imprints in ob-
servables that are sensitive to the growth rate of struc-
ture. The latter include the shape and amplitude of
the galaxy power spectrum (cf. middle right panels of
Figs. 2 and 6), cluster abundance, galaxy weak-lensing,
measurements of fσ8 (cf. lower panels of Figs. 2 and
6), etc. A proper constraint study using these observ-
ables requires the use of N-body simulations, which is
left for future work.

• The explicit couplings between the Galileon field
derivatives and curvature tensors in the L4 and L5 La-
grangian densities (cf. Eq. (2)) give rise to modifica-
tions to gravity that cannot be totally suppressed by the
Vainshtein mechanism. In particular, the effective lo-
cal gravitational strength is time varying in the Quartic
and Quintic models, which puts these models into sig-
nificant tension with Solar System constraints. We have
shown how, by imposing a prior for the time variation
of Geff obtained from Lunar Laser experiments, one
can essentially constrain the Quartic (and very likely
the Quintic) model to look almost like the Cubic model
(cf. Fig. 9). A more quantitative use of Solar System
tests to constrain Galileon gravity is left for future work.
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Appendix A: The time of tracker solution

Figure 11 shows the time evolution of the Galileon field
background energy density ρ̄ϕ (upper) and equation-of-
state parameter wϕ (middle), for the best-fitting base Cubic
Galileon model (PLB) for three different epochs where the
background evolution follows the tracker solution: all cosmic
epochs (blue), a & 0.2 (green) and a & 0.6 (red). The lower
panel shows the respective CMB angular power spectrum.
One notes that, indeed, models with different time evolution
at early times eventually start following the tracker solution.
The latter is characterized by a phantom evolution wϕ < −1,
i.e., the dark energy density grows with the expansion of the
Universe. Also, the tracker is reached sooner if the Galileon
density is smaller at earlier times. The initial conditions are

set up by different values of ϕ̄i at some initial time, when
solving Eqs. (15 - 17) numerically.

The figure shows that, if the background evolution is not on
the tracker sufficiently before the start of the dark energy era
(a ∼ 0.5), then this leads to a poor fit to the CMB temperature
data. Also, the physical predictions do not depend on the time
the tracker is reached, provided it does so at a . 0.5. This
shows that by assuming the tracker solution at all epochs we
are not at risk of missing any best-fitting regions of the param-
eter space of the model. This justifies the strategy adopted in
this paper.

Appendix B: Tensor perturbations

In our constraints, we are mainly interested in the role
played by scalar fluctuations, and as a result, we have set
the amplitude of tensor fluctuations to zero (vector perturba-
tions play a negligible role as they decay very quickly after
their generation). In this appendix, we briefly investigate the
impact that the evolution of tensor fluctuations can have in
Galileon gravity models.

The relevant equations for the evolution of the tensor modes
can be written as [45–47]:

0 = σ̇µν +
2

3
θσµν + Eµν +

κ

2
πµν , (B1)

0 =
κ

2

[
π̇µν +

1

3
θπµν

]
− κ

2
(ρ+ p)σµν

−
[
Ėµν + θEµν − ∇̂αBβ(µε

β
ν)γαu

γ
]
, (B2)

where, Eµν and Bµν are, respectively, the electric and mag-
netic parts of the Weyl tensor, Wµναβ , defined by Eµν =
uαuβWµανβ and Bµν = − 1

2u
αuβε γδ

µα Wγδνβ . εµναβ is the
covariant permutation tensor. The Galileon field contributes to
the tensor modes evolution via its modifications to the back-
ground dynamics, but also via its anisotropic stress (Eq. (13)),
both of which are only important at late times. Explicitly, the
relevant terms from Eq. (13) that enter Eqs. (B1) and (B2) are

πϕ, tensor
µν

.
=

c4
M6

[
−ϕ̇4 (σ̇µν − Eµν)−

(
6ϕ̈ϕ̇3 +

4

3
ϕ̇4θ

)
σµν

]
+
c5
M9

[
−
(
ϕ̇5θ̇ + ϕ̇5θ2 + 6ϕ̈ϕ̇4θ

)
σµν −

(
ϕ̇5θ + 3ϕ̈ϕ̇4

)
σ̇µν − 6ϕ̈ϕ̇4Eµν

]
, (B3)

where the superscript tensor indicates we are only considering
the terms that contribute to the tensor fluctuations. Recall that
for the Cubic Galileon model, c4 = c5 = 0, and as a result,
there is no explicit contribution from the Galileon field to the
tensor perturbations.

As in the case of scalar fluctuations, when studying the
evolution of the tensor perturbations of the Galileon field,

one must also ensure that they do not develop ghost nor
Laplace instabilities. The conditions for the avoidance of
these pathologies were derived in Ref. [17]. With our nota-
tion, the no-ghost condition is given by

QT /M
2
Pl =

1

2
− 3

4

c4
M6

ϕ̇4 − 3

2

c5
M9

ϕ̇5H > 0, (B4)
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whereas the no-Laplace instability condition is given by

c2T =
1

QT

[
M2

Pl

2
+

1

4

c4
M6

ϕ̇4 − 3

2

c5
M9

ϕ̇4ϕ̈

]
> 0. (B5)

During the sampling of the parameter space, we have only
checked for the stability of the scalar fluctuations. Conse-
quently, it is possible that some of the accepted points are as-
sociated with tensor instabilities. For the case of the Quartic
model, we have checked that all of the accepted points in the
chains are tensor-stable. The same however is not true for the
Quintic model. This is illustrated in Fig. 12, which shows the
points accepted in the chains used to constrain the base Quin-
tic model with the PLB dataset. The red crosses, which con-
tain the best-fitting point of Table II (black circle), indicate the
regions of the parameter space which develop Laplace insta-
bilities of the tensor perturbations. It is remarkable that taking
the tensor stability conditions into account rules out more than
half of the parameter space space allowed by the PLB dataset
and scalar stability conditions. The red circle indicates the
best-fitting point that is tensor-stable, for which ∆χ2 = 1.7
compared to the best-fitting point of Table II. Hence, although
the stability conditions rule out a significant portion of the pa-
rameter space, they still leave behind regions which can pro-

vide a similar fit to the data, compared to the case where only
scalar stability conditions are considered.

Figure 13 shows the CMB temperature power spectrum,
the cross-correlation of the temperature and E-mode polariza-
tion of the CMB and the B-mode polarization power spectrum
for the tensor-stable νΛCDM (green), base Quartic (red) and
base Quintic (blue) models that best-fit the PLB dataset. The
dashed curves show the spectra obtained by setting r0.05 =
0.2, where r0.05 is the tensor-to-scalar ratio of primordial
power (at a pivot scale k = 0.05Mpc−1). Our choice of r0.05

is merely illustrative. The solid curves show the spectra for
r0.05 = 0. We also assume a zero tensor spectral index with
no running. One notes that the modifications driven by set-
ting r0.05 = 0.2 are roughly of the same size for the three
models. This shows that the tensor perturbations from the
Galileon field are not affecting the overall spectra in a non-
trivial and sizeable way. This justifies the approach in our
model constraints, where we have neglected the role of the
tensor modes. The differences between the Quartic, Quintic
and νΛCDM models are only visible at low-l. In the partic-
ular case of the B-mode power spectrum, it is interesting to
note that for l & 10, the Galileon models predict essentially
the same amplitude as standard ΛCDM. As a result, any de-
tections of the B-mode signal at l ∼ 80 such as those reported
by BICEP-2 [100] are unlikely to be directly related to the
Galileon field per se.
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(2013), arXiv:1212.1394 [gr-qc]
[10] A. Vainshtein, Phys. Lett. B 39, 393 (1972), ISSN 0370-2693
[11] E. Babichev and C. Deffayet(2013), arXiv:1304.7240 [gr-qc]
[12] K. Koyama, G. Niz, and G. Tasinato(2013), arXiv:1305.0279

[hep-th]
[13] R. Gannouji and M. Sami, Phys.Rev. D82, 024011 (2010),

arXiv:1004.2808 [gr-qc]
[14] N. Chow and J. Khoury, Phys.Rev. D80, 024037 (2009),

arXiv:0905.1325 [hep-th]
[15] A. Ali, R. Gannouji, and M. Sami, Phys. Rev. D 82, 103015

(2010)
[16] J. Neveu, V. Ruhlmann-Kleider, P. Astier, M. BesanÃğon,
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FIG. 10. Accepted MCMC points (after the burn-in period) obtained
in the constraints of the νQuintic model using the PLB dataset, pro-
jected onto the ξ − c3 (top panels) and c5 − c4 (middle and lower
panels) planes. In the top panel, the black dots indicate those points
that were tried during the sampling but failed to meet the conditions
for the absence of ghost and Laplace instabilities of the scalar fluc-
tuations. In the middle and lower panels, the points are color coded
according to their value of ξ. The lower panel zooms into a region of
the middle panel. The big red dot indicates the best-fitting point.
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FIG. 11. From top to bottom, the first two panels show the time
evolution of the background energy density and of the Galileon field
equation-of-state parameterwϕ for the base Cubic (PLB) model. The
time evolution is shown for three cases that differ in the time when
the background evolution follows the tracker solution: all epochs
(blue), a & 0.2 (green) and a & 0.6 (red). The bottom panels
shows the corresponding CMB power spectrum (here, the blue and
green curves are overlapping). In the top panel, the dashed and dot-
ted curves correspond, respectively, to the total matter (baryons and
CDM for this model) and radiation (photons and massless neutrinos
for this model).
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FIG. 12. Same as the upper panel of Fig. 10, but for the base Quintic
model and with the accepted points colored according to their stabil-
ity of the tensor perturbations. The red crosses indicate points which
are associated with tensor Laplace instabilities, as labelled. The big
black dot indicates the best-fitting point found in the chains. The big
red dot indicates the best-fitting point considering only tensor-stable
points (the fact that this point looks like it lies in the tensor-unstable
region is purely due to the resolution of the figure).

FIG. 13. From top to bottom, the lines show, respectively, the CMB temperature power spectrum, the cross-correlation of the CMB temperature
with the E-mode polarization and the B-mode polarization power spectrum for the νΛCDM (green), base Quartic (red) and base Quintic (blue)
models, for r0.05 = 0 (solid) and r0.05 = 0.2 (dashed). For theCTEl curves, the lines are thiner at the values of l for which the cross-correlation
becomes negative. The curves for the Quintic model correspond to the best-fitting model that is tensor-stable (c.f. Fig. 12).
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